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ABSTRACT
Self Driving Labs (SDLs) that combine automation of experimental
procedures with autonomous decision making are gaining popular-
ity as a means of increasing the throughput of scientific workflows.
The task of identifying quantities of supplied colored pigments that
match a target color, the color matching problem, provides a simple
and flexible SDL test case, as it requires experiment proposal, sam-
ple creation, and sample analysis, three common components in
autonomous discovery applications. We present a robotic solution
to the color matching problem that allows for fully autonomous
execution of a color matching protocol. Our solution leverages the
WEI science factory platform to enable portability across different
robotic hardware, the use of alternative optimization methods for
continuous refinement, and automated publication of results for
experiment tracking and post-hoc analysis.
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1 INTRODUCTION
Self-Driving Laboratories (SDLs) combine automation of individual
experimental steps with automated decision procedures (e.g., opti-
mization or AI methods) for selecting new experiments. By thus
enabling closed-loop, autonomous discovery, SDLs can accelerate
scientific discovery by enhancing precision, efficiency, and repeata-
bility of experimental protocols [1, 6, 7, 10, 15]. When combined
with programming frameworks [9, 11, 13, 14] that facilitate the
substitution of alternative experimental apparatus, experimental
protocols, and decision procedures, SDLs become broadly applica-
ble, multi-purpose research instruments.

The color-mixing problem [2, 9] has been employed by several
SDL groups for pedagogical purposes and to permit low-cost ex-
perimentation with alternative decision procedures. The task here
is to identify quantities of a small number of provided colored pig-
ments that, when mixed, best match a specified target color [2, 9].
While simple, this problem captures important elements of SDL
applications: in particular, the need to propose samples, create sam-
ples, characterize samples, and process characterization results to
generate new proposals.

The authors and their colleagues in Argonne’s Rapid Prototyping
Lab (RPL) have created a modular, re-configurable robotic workcell
to enable multiple robotic workflows on a shared set of hardware.
Using this system, we have implemented a color mixing application,
color picker, that employs five devices that serve other roles in other
workflows. The color mixing is performed fully autonomously,
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Figure 1: A photograph and diagram of the robotic workcell used for the color picking experiment. The sciclops picks up a
96-well plate from its plate storage towers, and transfers it to its exchange location. The pf400 then transfers the plate to the
ot2, which mixes the three target colors. When the liquid reservoirs in the system are empty, the custom robot, barty, refills
them by using peristaltic pumps. Once the mixing is completed, the plate is transferred to the Camera location to be imaged.
The plate is then looped between the camera and the OT2 until the experiment is over.

with everything from fetching a new plate to analyzing the color
image to uploading data to the web performed completely without
human intervention. Over time, we were able to increase the lab’s
reliability while measuring its performance across a number of
relevant metrics, showing the color mixing application’s usefulness
as an SDL benchmark.

An earlier version of the color picker application was described
in a previous paper [13]. Here we describe extensions to that work
that incorporate an additional device, the Barty liquid replenisher,
provide a more detailed description of the application, and discuss
its use as a possible SDL benchmark.

2 METHODS
We describe in turn the color-picker problem, our workcell archi-
tecture, our implementation of the problem on the workcell, and
other aspects of our approach.

2.1 Application
The color picker application that we present here mixes four com-
ponent liquids, specifically cyan, yellow, magenta, and black dyes,
in a microplate to attempt to produce a liquid sample that matches
a target color as closely as possible.

This process consists of three steps. First, our optimization al-
gorithm leverages its (initially empty) set of data obtained to date
to propose a set of experiments to perform, expressed as a set of
volumes for each liquid. Second, our robotic workcell is instructed
to produce these samples by dispensing and mixing the appropri-
ate quantities of each liquid. Third, the workcell is instructed to

measure the colors of the samples produced. The results from the
third step are then fed back to step 1, until a termination criteria is
satisfied. We accomplish these various tasks by using the execution
framework described by Vescovi et al. [13].

2.2 Workcell
We have defined in previous work a modular architecture for SDLs
in which modules encapsulating scientific instruments and other
devices (e.g., plate crane) are linked with manipulators to form
workcells [13]. Eachmodule is represented by a software abstraction
that exposes a single device and, via interface methods, the actions
that the device can perform; a declarative YAML notation is used
to specify how a workcell is configured from a set of modules.

Users can specify, again using a declarative notation, workflows
that perform sets of actions on modules. They can also write Python
applications that run one or more workflows on specified work-
cell(s) and typically also invoke associated computational and data
manipulation steps, for example to run solvers and publish results.
Workflows can be reused in different applications, and modules
in different workflows, and workflows can be retargeted to differ-
ent modules and workcells that provide comparable capabilities.
Workflow steps are translated into commands sent to computers
connected to devices, which then call driver functions specific to
their attached device.

The color picker application that we present here targets five
modules: plate crane, manipulator, liquid handler, liquid replenisher,
and camera. In our experiments, we execute this application on the
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Color Picker Application
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Figure 2: The color-picker application. The Python code, color_picker_app.py, implements logic that runs three distinct WEI
flows, with the second (plus associated publish and compute steps) called repeatedly until termination criteria are satisfied. The
orange box below the ot2 run_protocol action gives the name of the protocol file. Module names are as in Section 2.2.

Argonne Rapid Prototyping Lab workcell, a configuration that com-
prises 10 modules useful for a variety of experimental protocols in
biology and education. Here, we use just the five modules shown in
Figure 1, and as specified in the YAML file at https://bit.ly/3ZCVniT.

The complete RPL workcell also includes (not shown) modules
used for PCR and for growing and analyzing cells, but this applica-
tion targets only those depicted in Figure 1:

• sciclops is the Hudson SciClops Microplate Handler, a mi-
croplate storage and staging system that can access multiple
storage towers, facilitating the housing of plates.

• pf400 is the workcell’s manipulator, a robotic arm used to
transfer microplates between different plate stations. Op-
erating on a rail mechanism, this robot acts as the central
transportation unit within the workcell. Its core function is
to shuttle microplates between different modules.

• ot2 is an automatic pipetting device that contains four sep-
arate color reservoirs and a set of pipette tips. Once the
pf400has delivered a plate to the ot2 deck, it mixes liquids
in the proportions set by the optimization algorithm to gen-
erate new sample colors.

• barty is a robot developed in RPLwith four peristaltic pumps
that transfer liquid from large storage vessels to the reser-
voirs of the the ot2. Our application instructs barty to refill
the ot2 reservoirs periodically so that experiments can run
for extended periods.

• camera is a Logitech webcam mounted with a ring light
that is used to capture images of the microplate. This module
incorporates amicroplatemount designed to allow the pf400
to place the microplate in the same location each time.

2.3 The Color Picker Application
Our color picker application (accessible at https://bit.ly/3ZCigTB)
engages four workflows (see the folder https://bit.ly/45bzFUb), as
shown in Figure 2. It proceeds as follows:

(1) If a new plate is needed (as when starting or when the pre-
vious plate was full), call workflow cp_wf_newplate to in-
struct modules as follows:

(a) pf400: Retrieve new plate from sciclops, place it at camera
(b) barty: Fill ot2 reservoirs

(2) Run workflow cp_wf_mix_colors to:
(a) pf400: Transfer the plate to ot2
(b) ot2: Dispense and combine specified pigment amounts
(c) pf400: Return plate to camera
(d) camera: Photograph the plate.

(3) Process the image as described in Section 2.4.
(4) Publish the obtained data, as described below.
(5) Invoke a specified Color Picking Solver to evaluate the data

and, if the termination criteria are not met, select the next
set of colors.

(6) If the plate is full, run workflow cp_wf_trashplate to dis-
pose of the plate and drain the ot2 reservoirs using barty.

(7) If the reservoirs need refilling, runworkflow cp_wf_replenish
to drain and refill them.

Once termination criteria are satisfied (e.g., target color matched
or resources exhausted), the application runs cp_wf_trashplate
again to finalize the experiment.

For each workflow that is run, a file is created that details the step
names run, their start time, end time and total duration. These files
are saved locally to the maching running the workflow manager.

The publication step engages a Globus flow [4] to publish data
to the ALCF Community Data Co-Op (ACDC) data portal (Figure 3).
For each run, the data created includes the colors produced, the
timing of each step, the scoring results from the solver, and the raw
plate images for quality control.

2.4 Image Processing
To process the webcam images for color detections, we station
the plate at a known distance from an ArUco marker [5]. Using
OpenCV [3], we detect the ArUco marker in the image, and use the

https://bit.ly/3ZCVniT
https://bit.ly/3ZCigTB
https://bit.ly/45bzFUb
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Figure 3: Two views of a Globus Search portal for data generated by the color-picker application, at https://acdc.alcf.anl.gov.
Left: Summary view for an experiment performed on August 16th, 2023, involving 12 runs each with 15 samples, for a total of
180 experiments. The images are those taken by the camera. Right: Detailed data from run #12.

size and position of the marker to determine the approximate pixel-
coordinate boundaries of the microplate. To account for potential
shifting in the camera position, we further refine the location of
the microplate by drawing on a particular physical characteristic
of the plate: the circular wells. With the HoughCircles algorithm
from OpenCV, we can detect circular features in the image to pre-
cisely identify the center of wells. As this method is prone to false
negatives, we further align a grid to all well-sized circles within
the approximate plate position, and use this grid’s size and orien-
tation to predict the center points for all wells in the image, even
those originally missed by the HoughCircles algorithm. Finally,
the detected colors at the well center points are reported to the
optimization algorithm.

2.5 Color Picking Solvers
The color picking problem admits to an analytic solution, given
accurate models of how colors combine and the properties of our
color sensor. However, treating the problem as a black box, as
we do here, allows us to employ the problem as a surrogate for
more complex problems and to experiment with different decision
procedures in a simple setting. We have implemented to date two
such decision procedures, a simple evolutionary solver (a genetic
algorithm) and a Bayesian solver, thus demonstrating the ability
to run multiple optimization algorithms without changes to other
elements of the system.

Genetic algorithms (GAs) are optimization and search heuristics
inspired by natural evolution. Initially populated with random or
heuristically chosen solutions, each iteration—termed a generation—
evaluates individuals based on a fitness function. The fittest individ-
uals are selected, and the remainder of the population is augmented.

Over multiple generations, the population converges towards opti-
mal or near-optimal solutions. For the initial population, points are
sampled from a uniform grid of proper dimensions (corresponding
to the number of mixing colors). Once a population of colors with
grades (floating point values representing delta e distance to the
target) a new population is created. The most accurate element
of the previous population is propagated into the new generation.
One third of the new population is created by randomly selecting
two elements of the previous population and taking the average of
them. One third of the population is created by taking a random
element of the previous population and randomly shifting its ratios.
The final third of the population is created by randomly creating a
new set of ratios. The code for this is at https://bit.ly/3rGxI4m. We
present results obtained with the genetic algorithm in Figure 4.

We also implemented a Bayesian optimization method based on
scikit-learn [8]: see https://bit.ly/3EVDNgs. Bayesian optimization
leverages a surrogate probabilistic model, commonly Gaussian Pro-
cesses, to approximate the objective function and iteratively refines
this based on evaluations. We do not present results obtained with
this approach as they do not yield a systematic improvement over
the genetic algorithm.

3 RESULTS
We present results obtained when running the color picker applica-
tion with the simple evolutionary solver, a fixed target color, and
the total number of samples fixed at N=128. We varied the batch
size B across different experiments by powers of two from 1 to 64.

The results, as depicted in Figure 4, show outcomes from varying
batch sizes. Each dot in the figure represents the time elapsed in

https://acdc.alcf.anl.gov
https://bit.ly/3rGxI4m
https://bit.ly/3EVDNgs


Exploring Benchmarks for Self-Driving Labs using Color Matching SC-W 2023, November 12–17, 2023, Denver, CO, USA

0 100 200 300 400 500
Elapsed time in experiment (minutes)

10

15

20

25

30
Be

st
 sc

or
e 

so
 fa

r
1

32
64

96 128

2

32

64
96 128

4

32

64

96 128

8

32 64
96

128

16

32 64 96 128

32 64 96
128

64
128

Target color: Batch size
1
2
4
8
16
32
64

Figure 4: Results of seven experiments, in each of which the color picker application creates and evaluates 128 samples, in
batches of an experiment-specific size B = 1, 2, 4, 8, 16, 32, and 64. In each experiment, the target color is RGB=(120,120,120), the
first sample(s) are chosen at random, and later samples are chosen by applying a solver algorithm to camera images. Each dot has
as x-value the elapsed time in the experiment and as y-value the Euclidean distance in three-dimensional color space between
the target color and the best color seen so far in the experiment. The evolutionary algorithm used has random elements, which
means that improvement between iterations is not guaranteed, leading to the long flat stretches in the graph. The numbers in
the graph represent selected sample sequence numbers. Results depend on the original random guesses, but overall, as we
might expect, experiments with smaller batch sizes achieve lower scores, but take longer to run. (Figure adapted from [13].)

the experiment (x-axis) against the Euclidean distance in the three-
dimensional color space between the target color and the best-
matched color at that point (y-axis).

It is evident from the results that the initial random guesses
influence the outcomes. However, a general trend observed is that
experiments with smaller batch sizes took longer to run but were
more accurate in color matching.

The data publication capabilities allowed us to capture these
results efficiently. Figure 3 provides two views of the Globus Search
portal, detailing data generated by the application.

Our longest run with 𝐵=1 (i.e., a single sample per iteration) com-
pletes in 8 hours and 12 minutes without human intervention. This
run consisted of 387 distinct robotic actions that were performed
without error, and 128 distinct data upload steps that allowed for
fine-grained tracking of the progress of the experiment. Data up-
loads occurred on average every 3 minutes and 48 seconds, and
required moving the microplate from the camera module to the ot2
and back, meaning the pf400 had to pick and place the microplate
precisely twice per time period.

4 DISCUSSION
We have presented a solution to the color matching problem as an
exemplary implementation of experiment-in-the-loop computing.
Leveraging a recent proposed modular SDL architecture [13], our
implementation combines fine-grained control of various experi-
mental apparatus with invocations of computing and data resources,

accessed and coordinated by using Globus automation servicemech-
anisms [12]. Continuous publishing of results permits monitoring
of progress, and its modular architecture allows for the substitu-
tion of alternative instruments, optimization solvers, computing
resources, and storage resources. While certainly not extreme-scale,
we expect this application to be of interest to XLOOP attendees as
a test case for their own experiment-in-the-loop approaches.

The color-mixing application allows us to test aspects of a setup
that we believe are necessary for any multipurpose self-driving
lab application. Specifically, it requires a synthesis step and a data
acquisition step, with distinct instruments for each step. We suggest
this sets a self-driving lab apart from single instrument stations that
can perform multiple functions. It also requires multiple iterations
of a similar process, necessary for using optimization or machine-
learning algorithms to generate samples. The reliability with which
we were able to run it allowed us to test the resiliency of our work-
cell infrastructure and learn more about the nature of errors that
could occur, and also to compare different optimization algorithms.
Because the color picking experiment uses inert reagents, it can be
run on multiple different forms of hardware. As such, we believe it
could serve as a benchmark application for self-driving labs. Specif-
ically, we will discuss metrics around a color-mixing run with a
batch size of 1, as this required the most robot coordination, and
ran for the greatest amount of time.
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Table 1: Proposed metrics for self-driving labs and our best
results for a color picker batch size of 1.

Metric Value for B = 1
Time without humans 8 hours 12 mins

Completed commands without humans 387
Synthesis time 5 hours 10 mins
Transfer time 3 hours 2 mins

Total colors mixed 128
Time per color 4 mins

As the number of multi-purpose self-driving labs increases, the
creation of metrics to compare and contrast their capabilities be-
comes relevant both to designers hoping to measure their perfor-
mance of their systems and to researchers hoping to best utilize
the available resources. We propose three metrics for evaluating
the performance of the color-mixing experiment. We suggest that
metrics such as these can provide a basis for comparison across
different SDL implementations, and ultimately may allow facilities
to convey their capabilities accurately to possible users.

The first metric is time without human input (TWH), equivalent
to the longest time that an experiment ran without human inter-
vention. This metric gives a sense of how much human time is
being saved by automating the lab. However, it does not necessarily
reflect a level of automation, as it is sensitive to how long individual
actions take to run. Our best run according to this metric was 8
hours and 12 minutes.

The second metric is commands completed without human input
(CCWH), i.e., the number of commands sent and successfully exe-
cuted by the instruments over the course of the experiment without
human intervention. A command is defined as one or more actions
carried out consecutively by a single instrument without input
from the control system. A completed command is one for which
the instrument successfully performs each constituent action and
reports success to the system. In our experience, most failures occur
during reception and processing of commands, making CCWH a
good measure of the resiliency of the SDL’s communications and
the reliability of its constituent instruments. Our best run according
to this metric involved 387 successful commands. An interesting
future experiment would involve integrating additional OT2s in
our workflow, so that multiple plates of colors could be mixed at
once This would lead to an increase in CCWH, but potentially a
lower TWH for the same experimental results.

The third metric, which speaks to the efficiency of the lab overall,
is time per color, i.e., total experiment run time divided by the num-
ber of color samples produced. This metric captures the per-sample
efficiency and allows comparisons across different self-driving lab
configurations and levels of parallelism. We achieved around four
minutes per color for our B=1 run. We can also divide the total
run time into synthesis time, that used specifically to mix colors,
and transfer time, that used to move samples between instruments,
which can help provide more information on where the bottlenecks
in the system lie. Our B=1 run achieved 5 hours 10 minutes synthe-
sis time and 3 hours 2 minutes transfer time, meaning that 63% of
the total time time was spent mixing colors using the OT2, possibly
an area for improvement.

In future work we would like to integrate our system with Baird
and Sparks’ closed-loop spectroscopy lab code [2] so as to permit
experimentation with their various optimization codes and different
search approaches.
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