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ABSTRACT
Java uses garbage collection (GC) for the automatic recla-
mation of computer memory no longer required by a running
application. GC implementations for Java Virtual Machines
(JVM) are typically designed for single processor machines,
and do not necessarily perform well for a server program
with many threads running on a multiprocessor. We de-
signed and implemented an on-the-fly GC, based on the al-
gorithm of Doligez, Leroy and Gonthier [13, 12] (DLG), for
Java in this environment. An on-the-fly collector, a collector
that does not stop the program threads, allows all proces-
sors to be utilized during collection and provides uniform
response times. We extended and adapted DLG for Java
(e.g., adding support for weak references) and for modern
multiprocessors without sequential consistency, and added
performance improvements (e.g., to keep track of the objects
remaining to be traced). We compared the performance
of our implementation with stop-the-world mark-sweep GC.
Our measurements show that the performance advantage for
our collector increases as the number of threads increase and
that it provides uniformly low response times.
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The concept of automatic reclamation of unused heap stor-
age, or garbage collection, was introduced for LISP in 1960.
Since then, garbage collection has been adapted for many
other languages, such as Scheme, ML, Prolog, Smalltalk,
Eiffel and more recently Java.

The first algorithm for GC was the mark-sweep technique.
In this method, the connectivity graph of a program’s live
objects is determined by tracing from the set of roots for
the program, typically the program’s stack, registers and
static storage. Objects traced are marked, and at the end
of the trace, any object not marked is unreachable, and can
therefore be reclaimed, or collected, by the sweep phase.
Typically, this is done in a stop-the-world manner, where
all program threads, or mutators, are halted for the dura-
tion of garbage collection. In early LISP systems, the cost
of garbage collection was high; some large LISP programs
were spending 25 to 40 percent of overtime time executing
GC [22], which resulted in slow program execution as well
as long pause times.

Java was initially aimed at clients; however, its write-once-
run-anywhere promise has led it to being adopted as a pro-
gramming language for server applications. These applica-
tions tend to be highly multithreaded, with tens to even hun-
dreds of threads running simultaneously. Running a stop-
the-world garbage collector in this situation would appear
inefficient, since during GC only one of the server’s proces-
sors is utilized, and without good support from the under-
lying operating system, quiescing, or stopping all threads,
can be a time consuming operation. Furthermore, as heaps
and their number of live objects become larger, the time an
application is stopped for garbage collection increases, and
response times become long and uneven.

There are two approaches to keeping all the processors ac-
tive:

1. Concurrent collectors: Running the collector concur-
rently with the mutators. The collector thread runs on
one processor while the program threads keep running
concurrently on the other processors. The program
threads may be stopped for a short time to initiate
and/or finish the collection.

2. Parallel collectors: Stopping all program threads com-
pletely, and then running the collector in parallel in



several collector threads. This way, all processors can
be utilized by the collector threads.

In this paper we discuss a concurrent collector; in particu-
lar, our collector belongs to a subclass of these collectors,
which we call on-the-fly collectors. (We use Dijkstra’s orig-
inal term on-the-fly for such collectors [10].) An on-the-fly
collector does not need to stop the program threads simul-
taneously, not even for the initialization or the completion
of the collection cycle. The study of on-the-fly garbage col-
lectors was initiated by Steele and Dijkstra, et al. [30, 9] and
continued in a series of papers [10, 18, 5, 6, 23, 24] culmi-
nating in the Doligez-Leroy-Gonthier (DLG) collector [13,
12].

The advantage of an on-the-fly collector over a parallel col-
lector and other types of concurrent collectors [3, 16, 28, 7],
is that it avoids the operation of stopping all the program
threads simultaneously. Usually, program threads cannot
be stopped at any point; thus, there is a non-negligible wait
until the last (of many) threads reaches a safe point where
it may stop.

On-the-fly collectors also satisfy the requirement for short
and even response times. For DLG in particular, the longest
time that a thread waits for garbage collection is the time for
it to mark the objects directly reachable from its stack (as-
suming that garbage collection cycles are always triggered
soon enough such that the program never runs out of mem-
ory).

The drawback of on-the-fly collectors is that they require a
write barrier and some handshakes between the collector and
mutator threads during the collection. Also, they typically
employ fine-grained synchronization, thus, leading to error-
prone algorithms and implementations.

1.1 This Work
We adapted and extended DLG for use as part of a Java Vir-
tual Machine implementation on a modern multiprocessor
without sequential consistency. To support Java we added
support for finalization, weak references and intern table
collection. To run in our Java Virtual Machine we modified
DLG to allow conservative scanning of thread stacks. To al-
low execution on a multiprocessor architecture where a load
from memory is allowed to pass a store to memory [1], we
removed from the algorithm its corresponding dependencies
on memory access order.

We also added performance improvements: an efficient im-
plementation of the handshake mechanism in the presence
of non-Java native code (Java native methods), a color tog-
gle mechanism that simplifies the determination of the color
for a newly created object and reduces the amount of work
during sweep, and a novel and efficient mechanism to keep
track of the objects remaining to be traced.

We designed and implemented a heap manager and asso-
ciated heap data structures (e.g., color bitmap) that avoid
fragmentation and reduce the working set during sweep by
allowing objects to be freed without touching them.

We implemented our on-the-fly collector as part of a JDK

1.1.6 prototype on AIX and compared its performance for
a multithreaded business object benchmark with an im-
plementation of a stop-the-world mark-sweep collector for
the same Java Virtual Machine. Our measurements on a
multiprocessor show a performance degradation for a single
thread. However, for greater than three threads the on-
the-fly collector always performs better; overall application
throughput generally increases as the number of application
threads increase and in some cases is 20% higher. Our mea-
surements also show short and even application response
times; when the garbage collector thread is given a priority
boost on a multiprocessor (thereby ensuring that it always
runs when it has work), the maximum response time for 7
threads or less was 100 ms and the highest measured re-
sponse time was 540 ms.

A collector similar to the one described in this paper is part
of the production JVM on OS/400 and S/390.

In a related paper [14, 15], we show how to incorporate
generations into our on-the-fly collector and compare the
performance of the collector with generations to the collector
described in this paper.

1.2 Organization
We start with a review of the DLG algorithm in Section 2. In
Section 3, we continue with a description of the adaptations
to the algorithm to support the memory coherency model
of the underlying hardware, conservative garbage collection,
and the Java language. We describe our performance im-
provements in Section 4 and our heap manager in Section 5.
We present pseudo-code for our collector in Section 6. We
discuss our performance measurements in Section 7. Finally
we conclude and present ideas for future improvements in
Section 8.

2. OVERVIEW OF DLG
The Doligez-Leroy-Gonthier algorithm [13, 12] extends the
idea for on-the-fly mark-sweep collection presented by Di-
jkstra [9] to multiple mutators. In the DLG algorithm, the
collector moves through three different phases or statuses
(sync1, sync2, async) during the GC cycle. The transition
from stage to stage can only occur once all the mutators have
acknowledged that they are aware of the current collector
stage through a handshake mechanism. Mutators require a
write barrier for object update and coordination with the
collector during object creation. The specific action to be
carried out during the update or create is determined by the
phase of the collector.

Originally introduced by the Dijkstra [9], a color abstraction
is used to indicate the state of an object with respect to col-
lection. Colors are assigned to objects or memory locations
as follows:

Blue: Memory that is unallocated.
White: Memory that has not been scanned by the collector
during the current GC cycle. Memory left white after the
collector has completed tracing is garbage.
Gray: Objects marked by the collector, but whose children
may have not been marked.
Black: Objects marked by the collector, whose direct chil-
dren have also been marked.



Each of the mutator threads and the collector thread have
its own status variable. At the start of the GC cycle, the
collector sets its status to sync1. A mutator acknowledges
this change in the collector’s status by changing its own
status to sync1. This is called a handshake. A mutator may
not handshake while it is updating an object slot or creating
an object.

During sync1, mutators create objects white. When a slot
containing a pointer to an object is updated, the write bar-
rier shades gray both the object referenced by the old value
and the object referenced by the new value.

After all mutators have moved into sync1, the collector sets
its status to sync2 and requires the mutators to handshake.
The write barrier action and the color chosen for object cre-
ation during sync2 remain the same as for sync1 ; sync2
acts as a tripwire to guarantee that all memory transactions
that started before all mutators transitioned to sync1 have
completed.

Once all threads are in sync2, the collector moves to async.
The trace and sweep occur during async. The collector re-
mains in async until it begins the next collection cycle.

As each mutator responds to async, it marks its roots for
the collector to trace. Once a mutator has marked its local
roots, it is only required to gray the object referenced by
the old value on update. This graying of the old reference
by the write barrier continues until the collector completes
the trace.

At the beginning of async a mutator also begins to color
its newly created objects black. This continues until sweep.
During sweep the location of the collector’s sweep pointer
determines the color for newly created objects: an object is
created white if it is created in memory which has already
been swept, black if not yet swept, and gray if it is created
at the point where the collector is sweeping. Starting with
the completion of sweep all objects are created white.

We describe efficient implementations of the write barrier in
Section 4.1 and the handshake mechanism in Section 4.2.

3. REQUIRED ADAPTATIONS OF DLG
Implementing the Doligez-Leroy-Gonthier algorithm for a
Java VM required adaptations to support the memory co-
herency model of the underlying hardware, the Java lan-
guage, and conservative garbage collection.

3.1 Memory Coherency
Explicit synchronization is avoided in several places in the
DLG algorithm by assuming that order in which load and
store operations appear in the algorithm is the order in
which they are actually executed. These assumptions hold
for multiprocessors, which support sequential consistency
[25, 1]. Many modern multiprocessors, however, use mem-
ory consistency models that permit the reordering of mem-
ory accesses by the CPU in order to enable hardware per-
formance optimizations such as write buffers. On such ma-
chines, the use of explicit system-dependent synchronization
operations, often called fences, is required in order to guar-
antee the correct order of execution. These are expensive

operations, and in many cases, would severely degrade per-
formance.

The platforms on which our on-the-fly collector has been
implemented (e.g., OS/400 and S/390) allow load operations
to pass store operations. We needed to modify the DLG
algorithm to remove these store-load dependencies so as to
avoid the need for costly fence operations.

We found two store-load dependencies in the algorithm: in
object creation and in tracking the objects to be traced.
In both cases we found a performance improvement, which
replaced the part of the code with the dependency. We
describe the first one here and the second one in Section 4.4,
where we also describe the multiple mark buffer mechanism
that avoids it.

DLG employs an ingenious mechanism for avoiding explicit
synchronization between a mutator, when it chooses a color
for a newly created object, and the sweep phase of GC.
When the mutator creates an object, it colors it black. Then
it reads the value of a global sweep pointer. If the address
of the object is less than the sweep pointer (sweep always
occurs in address order starting at the low addresses), it re-
colors the object white; if the address is equal, it recolors
the object gray. Unfortunately, the correctness of this mech-
anism depends on the store of the black color preceding the
load of the sweep pointer. If the order were to be reversed,
the object could stay black and its children could be col-
lected during the next collection cycle. Our color toggle,
presented in Section 4.3, also solves the memory coherence
problem for object creation.

There are architectures that employ weaker forms of mem-
ory coherency, where any pair of memory accesses can be ex-
changed (assuming no data dependency) [1]. In order to run
the on-the-fly collector on these architectures, any load-load,
load-store, and store-store dependencies would also have to
be removed from the algorithm. We do not deal with this
in the current paper.

3.2 Java Language
To support features of the Java language we added support
for finalization, weak references and intern table to the on-
the-fly collector.

3.2.1 Finalization
In Java, a class may have a finalize method. Accord-
ing to the semantics of the language, the JVM must invoke
the object’s finalize method before reusing the object’s
memory for another object [17, 27]. The on-the-fly collec-
tor can use the same strategy as a stop-the-world collector
for dealing with finalization – determine the objects that
are ready for finalization during a garbage collection cycle
and queue them for later processing by a separate finalizer
thread. This requires the addition of a finalize-trace phase
after the trace of the live objects has been completed. The
interesting point with respect to the on-the-fly collector is
that the write barrier does not need to be active during this
phase as the mutators will not be able to access the objects
being traced.

The head of the list of the objects waiting for finalization



is a global root. Updates to the head of the list by the
finalizer thread need to be done with the write barrier just
like updates to objects and to any other global root.

3.2.2 Weak References
A weak reference is a reference that does not keep an object
from being collected [19]. In Java, a weak reference is encap-
sulated by a special reference object. In JDK 1.1 there was
a single type of reference object, sun.misc.ref [32]. In Java
2, there are three types of reference objects, soft, weak and
phantom and associated degrees of reachability [31]. Fi-
nalization for Java 2 is also implemented using a special
final reference object. These objects can also have associ-
ated Reference Queues, where the object is enqueued when
the appropriate change to its reachability occurs. We re-
fer the reader to the specification of Reference Objects for
more information [31]. We limit our discussion to basic weak
references without queues; extensions to support the other
reference object types and queues are straightforward.

A weak reference encapsulates a reference to another object
called the referent. A weak reference object has two meth-
ods of interest: (1) a constructor, which takes an object as
a parameter and creates a new weak reference object with
the parameter as its referent, and (2) a get method, which
returns a normal strong reference to the referent. An ob-
ject is strongly reachable as long as it is reachable through a
chain of strong references from a root. An object is weakly
reachable when it is no longer strongly reachable, but is
reachable through a weak reference. The garbage collector
clears a weak reference when it determines that its referent
is weakly reachable; if the referent object has a finalize

method, it is also becomes eligible for finalization. Accord-
ingly, the clearing of weak references by the collector occurs
between the completion of trace and the start of finalize-
trace.

Read Barrier for theget Method
A mutator using the get method interferes with the trace
of the garbage collector. It creates a strong pointer to an
object that may be collected otherwise. In particular, if the
roots were already marked and the object becomes reach-
able directly from the roots, then the trace of the collection
may not shade it, and the sweep may collect it. Thus, we
add a read barrier for the get operation. During the trace
and until the weak references are processed by the collec-
tor, any get of a weak reference object shades the referent.
After the collector completes its handling of the reference
objects, it is guaranteed that all referents are shaded or the
reference objects do not point to them anymore (the point-
ers were cleared), thus, the read barrier may return without
any action.

Our read barrier requires a simple mutual exclusion lock,
which we call the refProcessingLock, to prevent the muta-
tor from turning a weakly reachable object into a strongly
reachable object while the collector processes the weak ref-
erences. We might enable more concurrency if we were to
use a share/exclusive lock instead, e.g., a mutator thread
locks it in shared mode when it enters the read barrier (so
that many mutator threads can enter the read barrier at
once), and the collector locks it exclusive when it processes
the weak references. Since the lock is held for a very short

time by a mutator thread, we chose to use a simple mutual
exclusion lock.

We would like to avoid locking in the read barrier as much
as possible so that the read barrier does not reduce the level
of concurrency. We observe that a mutator has to shade the
referent in the following case: The mutator has marked its
roots (i.e., its local collection status is async), the collector
has not yet completed processing the weak reference objects,
and the referent is white.

Accordingly, we avoid locking by the read barrier by check-
ing the color of the referent object, the stage of the collector,
and the collection status of the mutator thread. We need
to lock only if the referent is white and the collector has
started a collection cycle, but has not yet finished process-
ing the weak references. If the referent is already shaded
(gray or black), or the collector has completed its process-
ing of weak references (e.g., it could be sweeping or resting
between cycles) no locking is required.

Finally, we would like to discuss handshake/cooperate dur-
ing the execution of the get method. We assume that no
handshake/cooperate can occur during the execution by a
mutator of a get method on a weak reference unless the mu-
tator is waiting to obtain the reference processing lock. If a
handshake/cooperate could occur, the collector could start
a new collection cycle (e.g., enter a stage during which gray-
ing of the referent is required) after the read barrier check
already determined that no graying is necessary. The result
could be that the graying of a referent would be missed, thus
leading to a dangling reference.

We show the code for the get() routine in Figure 4.

Processing the Weak Reference Objects
During trace the collector links together the weak reference
objects that are reachable from the roots, but does not
trace through the referents. When the trace is complete,
the collector processes the list of weak reference objects as
described below.

First, the collector acquires the refProcessingLock in exclu-
sive mode. This will stop mutators from accessing a refer-
ence object whose referent is still white. Thus, from this
point on in the cycle, the mutators do not change the reach-
ability of an object. They can only touch strongly reachable
objects.

Immediately after acquiring the lock, we check that the trace
is complete again. This is required because a mutator thread
might have just finished a get method, so that the object is
colored gray, but not all of its children are shaded.

Next, we make a pass over the list of weak reference objects
and clear the ones whose referents are white. After the pass
is complete we have the following property: each weak ref-
erence object either points to a black object or its pointer
is cleared. Since from this point on it is not possible that
the get method could access a white object, we can release
the weak reference lock and let the mutators use the weak
references with no delay.



We show the code for processing weak references in Figure 4.

3.2.3 Intern Table Collection
The java.lang.String class provides a method for intern-
ing of Java strings. If the intern method is invoked on a
string, whose value is equal to an already existing string in
the pool of interned strings, the string from the pool will be
returned. Otherwise, the string will be added to the pool
and a reference to it returned.

To accomodate long-running server applications, we would
like to allow garbage collection of the pool. This requires
coordination between intern and the collector. It is accom-
plished by using a read barrier similar to the one for weak
references, both for the creation of new entries in the intern
pool, and for retrieval of existing strings from the pool. The
collector removes white strings from the intern table just
before sweep.

3.3 Accomodating Conservative Stack Scan-
ning

We had to modify DLG to accomodate conservative stack
scanning. This forced us to give up an optimization for the
fill operation. We provide details below.

The DLG algorithm differentiates between two type of store
operations, the fill operation, which stores a value in a new
heap object that is private to a thread, and the update oper-
ation, which stores a value in an existing heap object, which
may also be referenced by more than one thread. Fill oper-
ations do not require use of the write barrier.

The JVM used as a basis for our collector is conservative
with respect to the roots, i.e., there is no way to determine
if a value in a register or on a stack is a pointer or an integer
value that looks like a pointer. This requires that any root
value which looks like a pointer must be traced. One side
effect of this is that by tracing an arbitrary value on one
thread’s stack, the collector may get access to an object on
another thread’s stack while the object is being filled. This
could lead to the following scenario:

An object, O, is created white by thread A during sync2.
Before it can be initialized by the fill operation, thread A is
delayed, e.g., by a context switch. Thread B starts scanning
its stack as part of its transition to async, and encounters
an arbitrary value, which it conservatively interprets as a
pointer to O. Thread B marks O, sees that it does not have
any descendants, and colors it black. Thread A then re-
sumes, and completes the fill operation by setting a field in
O to point to another white object, O’, referenced from A’s
stack. Thread A then pops O’ from its stack, leaving the
only reference to O’ from a black object, O. This will cause
O’ to be incorrectly collected by the collector.

The fill operation must therefore be done with the same
write barrier as for normal object updates. Indentifying
opportunities to exploit fill in Java programs is difficult in
any case, since it requires program analysis; hence, this is
not a serious drawback.

4. PERFORMANCE CONSIDERATIONS

Efficient implementations of the constructs underlying the
DLG algorithm are essential for good performance. We de-
scribe our implementation of the write barrier that avoids
most of the cost when the garbage collector is not active.
We also implement the handshake mechanism in a way that
avoids most of the cost for polling. Additionally, we added
several performance improvements to the algorithm, a color
toggle to reduce the cost of sweep and object creation, and
multiple mark buffers to keep track of the objects remaining
to be traced efficiently.

4.1 Write Barrier
The code for the full write barrier of the DLG collector is
too long for a JIT to generate inline (see the update routine
in Figure 1). Fortunately, the full write barrier needs to be
active only while the collector is active, more specifically,
from the start of a collection cycle and until the completion
of the trace of the reachable objects. Thus, to implement
the write barrier efficiently, we employ a global flag to indi-
cate whether the collector is in this part of its cycle. Code
generated by the JIT for the update of a reference field of
an object checks the flag. If the flag is on, the code calls
an out-of-line function, which implements the write barrier,
and then does the update itself inline. If the flag is off, the
code skips the call to the function and branches directly to
the update.

4.2 Handshake Mechanism
In order for the collector to progress from one stage to an-
other, all the mutators must handshake with the collector,
changing their status to that of the collector. To ensure
progress, the mutators must check if their cooperation is re-
quired on a regular basis. Typically this is done by polling on
method invocation and backward branches [11]. The over-
head for polling code may be expensive for short loops and
short methods [2].

Also, if a thread is in a blocking system call or executing
a native method, it may not cooperate in a timely fashion.
One solution is to encapsulate these code sections such that
the collector can perform the cooperation for the mutator.
DLG refer to this as the mutator delegating to the collec-
tor [13, 12]. This is relatively straightforward for sync1 and
sync2, just requiring changing the mutator’s status. How-
ever, async is more complicated. In order to carry out the
delegated mutator’s role for the transition to async, the col-
lector has to mark the thread’s roots, and guarantee no new
roots are created (and hence potentially skipped over), dur-
ing the marking. This requires the mutator to save its roots
at the start of delegation, and to check that the collector
is not executing the handshake on its part before leaving
the delegation. This overhead for delegation can also have
a serious impact on performance if it is used frequently on
short-running sections of code.

An alternative to delegation is to stop, one at a time, each
thread that has not cooperated within a certain amount of
time. The collector first checks that the stopped thread is
not executing object creation, the write barrier or the read
barrier for weak references; then it carries out the handshake
on behalf of the stopped thread. If the thread is executing
in one of these critical sections, the collector restarts the
thread and then stops it again, repeating until it can carry



out the handshake or the thread has cooperated on its own.
Atomicity of these critical sections is ensured by a per thread
cantcooperate flag, which is set before entering one of these
code sections and reset upon exiting. On platforms that
do not support efficient thread stopping, signals and a sig-
nal handler, which forces the handshake, can be employed
instead.

In the actual implementation of our code, we have used
a combination of the mechanisms discussed above. Muta-
tor threads poll when they do an expensive allocation, e.g.,
when an allocation bin needs to be refilled or when allocating
a large object (see Section 5). The cost for polling is small
compared to the cost of the allocation. We use delegation
selectively on functions that are assumed to be long-running
(e.g., obtaining a monitor lock). We use signalling as a last
resort mechanism.

4.3 Color Toggle
According to the basic mark-sweep algorithm, the color of
all black (marked) objects must be reset to white (clear) in
preparation for the next GC cycle. We introduce a color
toggle similar to previous work [24, 20, 8, 4, 21]. Instead
of changing the color for each black object, the color toggle
simply changes the interpretation of the colors. There are
three main advantages to this modification. First, it reduces
the amount of work that the collector must do, since the
collector no longer is required to reset black items to white
in sweep. Second, it simplifies and speeds up object creation
by removing the checks for the location of the sweep pointer.
Third, it removes the the store-load dependency in object
creation discussed in Section 3.1.

In place of white and black, we employ a clear color and a
mark color respectively. We exchange (toggle) the meaning
of the bit patterns used for the clear and mark colors at the
start of the collection cycle.

We also introduce an allocation color variable per program
thread. A thread assigns its newly created objects its allo-
cation color, regardless of the collector stage or the location
of the sweep pointer. A thread’s allocation color changes
from the clear color to the mark color during its transition
to async.

Trace colors live objects in the mark color. At entry to
sweep, live objects are mark color and garbage objects are
clear color. Sweep collects the clear colored objects and re-
colors them blue. The objects colored mark color automat-
ically become clear color at the start of the next collection
cycle when the meanings of clear color and mark color are
toggled.

Notice that this transformation preserves the original al-
gorithm. In the orignal algorithm, black objects are set to
white by sweep, and then white remains the color for alloca-
tions until a thread enters async again during the next cycle.
Here objects colored mark color are cleared automatically at
the start of the next cycle, and a thread starts coloring new
objects with the mark color when it enters async.

We show the code for the color toggle for the mutator rou-
tines (create and cooperate) in Figure 1 and for the collector

(clear and sweep) in Figure 2.

4.4 Multiple Mark Buffers
As was shown in Dijkstra’s original article, tracing must be
carried out until no more gray objects are detected in the
heap. This requires repeated scans of the heap, or a data
structure that is proportional to the size of the heap, e.g.,
if a separate color bitmap is used (see Section 5). These
repeated scans are expensive. Kung and Song [23] use a
double-ended queue to avoid scans, but this solution requires
synchronization on inserting objects in the queue when more
than one mutator is active.

DLG employs a scan pointer, a dirty flag and a collector
mark stack in order to reduce the number of scans [13, 12].
The trace stage of the collector scans the objects in address
order to find gray objects, updating the scan pointer as the
scan progresses. The collector employs the mark stack to
keep track of the children of gray objects that need tracing,
emptying the mark stack each time before it continues the
scan. The collector sets the dirty flag if its stack overflows.
When a mutator executes the write barrier, it also sets the
dirty flag if the address of the object it colors gray is less than
the scan pointer. Trace repeatedly scans the objects until it
completes a scan and the dirty flag is not set. (Notice that
the DLG solution requires that the store of the gray color
complete before the load of the scan pointer; thus, it suffers
from the store-load memory coherence problem mentioned
in Section 3.1.)

We have designed and implemented a solution which both
eliminates repeated scans of the heap and eliminates, for
all practical purposes, the need for synchronization to keep
track of the gray objects remaining to be traced. In our
solution, each mutator thread is assigned a dedicated mark
buffer from a pool of mark buffers. The collector thread has
a mark stack.

Each mark buffer has a header with the following fields:

• lastWrite: The last position in the buffer which was
written by the buffer owner. Only the buffer owner
may update it.

• lastRead : The last position in the buffer scanned by
the collector. Only the collector may update it.

To simplify the presentation we assume here that a single
mark buffer is associated with a mutator thread over its
lifetime and that it never runs out of space. (In our imple-
mentation we keep the mark buffers in a linked list, use an
indicator in each buffer to show whether it is in use, and use
low cost compare-and-swap synchronization to obtain a new
mark buffer for a thread when its previous buffer fills.)

Insertions to a mark buffer are done without synchroniza-
tion. Upon insertion, the mutator updates the lastWrite
field associated with its mark buffer. The collector, upon
scanning a mark buffer, will read from the lastRead element
to the lastWrite element, inserting each “popped” element
in its mark stack, and updating the lastRead field.



Tracing is complete when the collector has emptied its mark
stack, and made a complete pass through the pool of mark
buffers finding that for each buffer lastRead is equal to last-
Write. The cost of this pass is dependent on the number of
threads (mark buffers), rather than the number of objects
as in previous solutions. Notice that this termination condi-
tion for trace is also equivalent to the termination condition
for the previous solutions; namely, not finding any gray ob-
jects in the mark buffers is eqivalent to not finding any gray
objects in the heap.

We show the code for multiple mark buffers in the collector
routines of Figure 3.

5. HEAP MANAGEMENT
Our heap manager uses a two-level allocation scheme similar
to that of Boehm et. al. [7]; however, our heap manager does
not employ the same internal data structures. It differen-
tiates between small and medium, and large objects, using
a different allocation scheme for each. Allocation of small
objects in Java is a frequent operation, and therefore we
designed small object allocation for efficiency. Large object
allocation is less frequent, and also slower due to required
object initialization.

We divide memory into blocks (in our implementation we
choose the block size to be the same as the page size). An
object is large if its size is greater than half a block. Large
object allocations are done in block increments, i.e., large
objects are rounded up in size to full block increments.

Small objects are up to 128 bytes and medium objects are
between small and large. Small and medium object alloca-
tion is done from bins of pre-sized chunks. Each thread has
a private vector of small object bins for fast allocation with-
out synchronization. Medium objects are allocated less fre-
quently; for them we employ a global vector of bins, shared
by all mutators, and allocate from the bins using compare-
and-swap. This avoids excessive storage requirements.

Ranges of free memory blocks are held in a binary tree sorted
first by size and then by address. When a request for a large
object is received, the block manager will select a range of
free blocks on a best-fit basis. If there is more than one
fit, it selects the one starting at the lowest address. If this
range is larger than the requested large object (remembering
that large objects are allocated on block boundaries), then
it will be split to return an object of the requested size,
and a remainder. The remainder will be reinserted into the
binary tree. Initially the block tree consists of just a single
node of contiguous heap. The binary tree is protected by a
mutual exclusion lock, which is acquired for the duration of
an individual operation on the tree.

We also maintain a color bitmap vector, four bits for every
eight bytes of heap memory, with very fast mapping from an
object to its color and vice versa. Sweep scans this vector
without touching the objects. We arranged the mapping
so that the color for two consecutive objects is never in the
same byte of bitmap, so that accessing of the color can occur
without synchronization. The color bitmap also enables fast
conservative pointer detection while scanning the stacks.

During sweep, if the collector frees an entire block, the block
is returned to binary tree, and coalesced with an existing,
contiguous range of blocks, if possible. If some but not all
objects in the block were freed, then the collector will put the
block in a list of partially filled blocks, based on the size of
its chunks. Note that queuing partially filled blocks instead
of immediately chaining freed chunks into the correspond-
ing allocation bin has two advantages. This solution avoids
touching, and potentially incurring a page fault, memory
which might never be accessed. In addition, for small ob-
jects, it saves potential fragmentation by having mutators
chain chunks on an as-needed basis, rather than arbitrarily
push a chain into a thread’s dedicated small object vector.
The lists of partially filled blocks are organized in a global
bin vector. There is a parallel vector of mutual exclusion
locks, one for each allocation size, to protect the lists against
concurrent accesses.

When a small object bin empties, the collector will attempt
to refill the bin by taking a block from the partially filled
block bin and linking its available chunks into the allocating
bin. If no partially filled block of the correct size exists, the
block manager will take a block from the binary tree, chop it
into chunks of the corresponding size, and chain the chunks
into the allocating bin.

We could readily employ additional techniques for reducing
fragmentation and working set size, e.g., by splitting free
chunks [26] and by exchanging single free blocks in the mid-
dle of the heap for contiguous free blocks at the end of the
heap [29].

6. ALGORITHM DETAILS
In this section we provide pseudo-code for our on-the-fly
algorithm, including many of the adaptations and perfor-
mance improvements discussed in earlier sections.

Our presentation of the algorithm is based on that of DLG
[13, 12]. One difference with DLG is that we separate the
handshake into two parts, postHandshake and waitHand-
shake, instead of using a second collector thread. Another
difference is that we introduce a global stage variable to keep
track of the collector’s progress with respect to the mark-
sweep collection cycle. The values for stage are from the
set clear-or-marking, tracing, refProcessing, sweeping, and
resting. An ordering is defined on these values such that
clear-or-marking is the lowest in the ordering and resting is
the highest.

Figure 2 shows the overall collection cycle. weakRefsList
is a list of the weak reference objects encountered during
trace. The clear operation empties it and the add operation
inserts an element in it.

Figure 1 shows the mutator routines that are influenced
by the collector: the write barrier (update routine), object
creation (create routine), and the cooperate routine, which
the mutator must call regularly. In the code, the notation
heap[x, i] denotes slot i of the object at address x.

Figure 3 shows the collecor routines. markbuffer[m] is the
mark buffer belonging to mutator thread m; lastWrite[m]
and lastRead[m] hold the lastWrite and lastRead values as-



Update(x,i,y):
If (statusm 6=async) then

MarkGray(heap[x,i])
MarkGray(y)

else if (stage = tracing) then
MarkGray(heap[x,i])

heap[x, i]← y

Create:
Pick x ∈ free.
color[x]← allocationColorm
Return x

Cooperate:
If (statusm 6= statusc) then

If (statusm = sync2) then
For each x ∈ roots:

MarkGray(x)
allocationColorm ← markColor

statusm ← statusc

Figure 1: The mutator routines

clear : stage← clear-or-marking
exchange values of markColor and clearColor
weakRefsList.clear()
Handshake(sync1)

mark: Handshake(sync2)
stage← tracing
postHandshake(async)
mark global roots
waitHandshake

trace : CollectorTrace()
stage← refProcessing
processRefs()
stage← sweeping

sweep : For each object x in the heap:
if (color(x) = clearColor)

free← free ∪ x
color(x)← blue

stage← resting

Figure 2: The collection cycle

MarkGray(x):
if (color(x) = clearColor) then
markbuffer[m][lastwrite[m]]← x
lastwrite[m]← lastwrite[m] + 1

CollectorTrace:
clean← FALSE
while (!(clean))
clean← TRUE
For each m ∈ mutators

while (lastread[m] < lastwrite[m])
clean← FALSE
lastread[m]← lastread[m] + 1
markBlack(markbuffer[m][lastread[m]])
EmptyCollectorStack()

MarkBlack(x):
If (color(x) 6= markColor) then

If (weakReference(x)) then
weakRefsList.add(x)
For each pointer i ∈ x except x.referent do:

CollectorMarkGray(i)
color(x)← markColor

else
For each pointer i ∈ x do:

CollectorMarkGray(i)
color(x)← markColor

CollectorMarkGray(x):
if (color(x) = clearColor)
markstack.push(x)

EmptyCollectorStack:
while (!markstack.empty())

markBlack(markstack.pop())

Handshake:
postHandshake(s)
waitHandshake

postHandshake(s):
statusc ← s

waitHandshake:
For each m ∈ mutators

wait for statusm = statusc

Figure 3: The collector routines



get(r):
x← r.referent
If (x 6= null and color(x) = clearColor and

stage <= refProcessing) then
Lock( refProcessingLock )
x← r.referent
If (x 6= null and color(x) = clearColor and

stage <= refProcessing) then
MarkGray(x)

Unlock( refProcessingLock )
else if (x 6= null) then

x← r.referent
return x

processRefs():
Lock( refProcessingLock )
CollectorTrace()
For each weakRef r in weakRefsList do:

x← r.referent
If (x 6= null and color(x) = clearColor) then

r.referent← null
Unlock( refProcessingLock )

Figure 4: Weak reference read barrier and process-
ing code

sociated with it. markstack is the collector’s mark stack.

Figure 4 shows the read barrier for weak references and the
collector code to process weak references.

7. EXPERIMENTAL RESULTS
Our goals are to compare our on-the-fly collector with a
stop-the-world mark-sweep collector, to check the response
time for on-the-fly collection, and to measure the benefits
of our performance improvements. Both collectors were im-
plemented on a JDK 1.1.6 prototype that included a JIT.
The stop-the-world collector was the collector that was pro-
vided at that time for AIX. It performs compaction as a
last resort, when the collection cycle fails to free a chunk
of memory large enough to satisfy the allocation that led
to the collection. The on-the-fly collector employed the im-
provements and adaptations described in the earlier sections
with the exception of the color toggle.

Except where noted, the machine used was a 4-CPU 200
MHz PowerPC 640e with 256 MB of main memory running
AIX 4.2.1. The measurements reported are based on 10 re-
peated trials for each data point, averaged. All runs were
done on a dedicated machine. Except where noted, all runs
were done with the initial heap size set equal to the maxi-
mum heap size. There were no effects due to paging.

7.1 The Benchmark
We used the Portable Business Object Benchmark (pBOB)
for our performance comparisons. pBOB is a kernel of busi-
ness logic, wrapped in a (self contained) driver that simu-
lates a multithreaded application server environment. pBOB
is not a Transaction Processing Council (TM) benchmark,
but was inspired by the TPC-C benchmark specification.

pBOB is self contained and only depends on the Java Core
APIs. pBOB is highly configurable, easy to use, and widely
used within IBM for testing and benchmarking JVMs. Due
to pBOB’s recognised utility, pBOB has been submitted to
SPEC for inclusion as a server side benchmark.

tpmBOB, pBOB transactions per minute, is a measure of
throughput. Response time is reported by pBOB as the
maximum time for a transaction to complete. Thus, it takes
into account both the hiccup due to a stop-the-world collec-
tor and the slowdown due to an on-the-fly collector. The
response times we report is the average of the maximum
time reported over 10 runs.

Except where noted otherwise, we used the 1.2 beta ver-
sion of the benchmark. We typically varied the number of
threads from 1 to 20.

7.2 The Results
In Figure 5 we compare the tpmBOB throughput for 64
MB and 128MB maximum heap sizes. From Figure 5 we
can see that from 3 threads and above the on-the-fly GC
improves the tpmBOB from 5% to 10%. The reason for the
degradation in tpm with small number of threads is that
we pay the cost for on-the-fly collection (the write barrier)
without getting its benefit (the stop-the-world collector does
little or no collection).

Due to its mechanism governing the triggering of a GC cycle,
the on-the-fly collector prototype used for these experiments
did not always take full advantage of the memory that it
was afforded. The RSS (resident set size) row provides a
performance comparison when both collectors use the same
amount of main memory during their runs. We measured
the number of main memory pages used by the JVM running
the on-the-fly collector for a particular number of threads
using a 128 MB maximum heap size. Then we found the
maximum heap size that would cause the JVM running the
stop-the-world collector to use the same number of main
memory pages. Then we measured the throughput for the
stop-the-world collector at this heap size. When using the
same amount of memory we see that from 3 threads and
above the on-the-fly GC improves tpmBOB from 7% to 20%.

In Figure 6 we show the percentage of the running time spent
in GC for the stop-the-world collector. We use this to com-
pute the maximum application speedup that the on-the-fly
collector would provide assuming that it uses the same pro-
portion of computing power as the stop-the-world collector
and that there is no extra overhead due to its concurrency
(e.g., the write barrier is free). As an example, assume that
the stop-the-world collector takes 10% of the application’s
running time, when run on 4 CPUs. Then, assuming 4 or
more threads, and 100 units of work on each processor, 360
units of work are being spent on program work, 10 units on
garbage collection, and 30 units on idle time (3 of the proces-
sors are idle during the GC cycle). If there were perfect par-
allelization, then the 30 units of work on the idle processors
could also be utilized. Since this would also cause additional
collection work, we would have 360 + 30 * (360/370) units
of work available for program work. Thus, the maximum
possible speedup would be 1 + 30/370, or approximately
8.1%. These calculated speedups are shown in Figure 7.



No. threads 1 2 3 4 5 6 7 8 9 10 15 20
64m heap -3.1 1.1 4.2 7.0 9.2 9.0 9.0 6.5 9.5 12.9 8.9
128m heap -6.8 -0.9 6.6 7.1 6.8 9.2 6.8 6.8 5.5 7.2 9.9 9.8
same RSS -5.9 -0.06 6.7 11.9 13.6 16.9 15.8 16.4 18.8 20.2 13.6 17.9

Figure 5: % Improvement in TPMs

No. threads 1 2 3 4 5 6 7 8 9 10 15 20
64m heap 2.9 4.8 7.1 9.6 10.2 12.5 14.0 14.6 17.3 20.6 34.2
128m heap 2.0 3.4 5.8 7.1 8.0 8.1 9.3 10.6 11.8 12.4 14.1 19.6
same RSS 3.0 6.3 9.9 12.4 13.7 15.7 17.6 18.9 20.9 22.3 20.1 21.5

Figure 6: % Time in GC for the stop-the-world collector

No. threads 1 2 3 4 5 6 7 8 9 10 15 20
64m heap 3.0 5.0 7.6 7.8 8.3 10.3 11.7 12.3 14.9 18.3 34.5
128m heap 2.0 3.5 6.2 5.6 6.4 6.5 7.5 8.6 9.7 10.3 11.8 17.2
same RSS 3.1 6.7 11.0 10.6 12.0 14.0 16.0 17.6 19.9 21.6 19.0 20.5

Figure 7: % Maximal Theoretical Improvement in TPMs

No. threads 1 2 3 4 5 6 7 8 9 10 15 20
o-t-f 64m heap 0.01 0.02 0.03 0.05 0.08 0.09 0.1 0.11 0.12 0.51 6.59
s-t-w 64m heap 1.11 1.34 1.54 1.76 1.89 2.07 2.26 2.43 2.7 3.22 5.18 6.59
o-t-f 128m heap 0.01 0.02 0.03 0.04 0.07 0.09 0.09 0.12 0.12 0.13 0.27 1.96
s-t-w 128m heap 1.2 2.18 2.43 2.63 2.83 3.06 3.24 3.44 3.63 3.92 5.73 7.35
o-t-f priority boost 64m 0.01 0.02 0.03 0.05 0.08 0.09 0.1 0.11 0.13 0.24 0.54
o-t-f priority boost 128m 0.01 0.02 0.04 0.05 0.07 0.08 0.1 0.13 0.14 0.18 0.28 0.34

Figure 8: Maximum response time in seconds

No. threads 3 4 5 10 15 20
o-t-f 12.00 14.00 17.25 32.75 48.75 64.00
s-t-w 11.25 11.25 17.50 23.50 41.50 52.75

Figure 9: Heap usage in MB

No. threads 4 8 10 20
64m heap 0.7 2.4 1.75 1.05

Figure 10: % TPM improvement for multiple mark buffers

No. threads 1 2 3 4 5 6 7 8 9 10 11 12
3.09 4.74 6.15 1.12 3.22 3.53 2.87 4.40 1.92 3.92 1.83 1.59

Figure 11: % TPM improvement for the color toggle



The same RSS row is the most interesting to compare with
the actual speedup in Figure 5 because the two collectors
are using close to the same amount of memory.

In Figure 8 we compare the maximum response time for the
GCs. In the figure “o-t-f” stands for “on-the-fly” and “s-t-
w” for “stop-the-world”. We see that the on-the-fly collector
significantly improves the maximum response time except
for large numbers of threads. For large numbers of threads
the collector thread competes with the mutator threads in
order to run on a processor. To overcome this problem we
built a version of the collector that increases the priority
of the GC thread so that it is greater than the priority of
the mutator threads. With this priority boost the collector
always gets a processor if it has work to do. With the prior-
ity boost the response time of the on-the-fly collector is low
and uniform even for large number of threads; it reaches a
maximum of 0.54 seconds for 64 MB heaps and 0.34 seconds
for 128 MB heaps.

In Figure 9 we compare the heap usage for the two collectors;
in particular, the smallest heap in which pBOB completes
without running out of memory. The on-the-fly collector
requires more memory because it does not move objects to
reduce fragmentation. For 20 threads it requires 21% more
memory than stop-the-world.

In Figure 10 we compare the on-the-fly collector with and
without the multiple mark buffers. Without multiple mark
buffers, we used the DLG tracing scheme. The measure-
ments were done on a 4-way 332 MHz PowerPC 604e with
512 MB main memory. The JIT was disabled. The maxi-
mum memory size was 64 MB and the initial memory size
was 1 MB. The improvement measured was small, but no-
tice that this is an overall application improvement and not
just an improvement to GC time.

In Figure 11 we compare the on-the-fly collector with and
without the color toggle.

The measurements were done on a 4-way S/390 partition
running a prototype version of JDK 1.1.6. The pBOB ver-
sion was 1.0. Again the measured improvement was small;
however, it is the overall application improvement.

8. FUTURE DIRECTIONS
Even when using an on-the-fly GC algorithm, for a highly
multithreaded program running on a multiprocessor with
many processors, the garbage collector thread may be over-
whelmed by the work created for it by mutator threads.
Boosting the priority of the collector thread can help, but
only up to a certain degree. If the collector is not able to
clear garbage at the rate that it is being produced, then
eventually the heap will become depleted; the garbage col-
lection will be synchronous, so that threads attempting to
allocate will have to wait until the collector sweeps mem-
ory and begins freeing objects before they will be able to
continue. In this case the collector is essentially reduced to
working in stop-the-world mode, but with the extra over-
head of the write barriers.

A future work direction is to investigate having multiple
collector threads. Multiple collection threads will shorten

the overall GC cycle. In addition to preventing synchronous
GC, this will also reduce the amount of time that the mu-
tators are required to pay the overhead of the write barrier.
Thus, it should lead to overall increased throughput. How-
ever, running several collector threads in parallel will also
diminish the number of processors available to the mutators
during collection. This could reduce the amount of applica-
tion work accomplished during collection and increase the
latency perceived by a user for his transactions. Careful
tuning will be necessary.
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