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Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical

three-stage pipeline, i.e., training, pruning, and retraining (fine-tuning), significantly increases the overall training time. In this paper,

we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation (SLR), which is tailored

to overcome difficulties caused by the discrete nature of the weight-pruning problem. We further prove that our method ensures fast

convergence of the model compression problem, and the convergence of the SLR is accelerated by using quadratic penalties. Model

parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other

state-of-the-art methods. We evaluate our method on image classification tasks using CIFAR-10 and ImageNet with state-of-the-art multi-

layer perceptrons (MLPs)-based networks such as MLP-Mixer, attention-based networks such as Swin Transformer, and convolutional

neural networks-based models such as VGG-16, ResNet-18, ResNet-50 and ResNet-110, MobileNetV2. We also evaluate object detection

and segmentation tasks on COCO, KITTI benchmark, and TuSimple lane detection dataset using a variety of models. Experimental

results demonstrate that our SLR-based weight-pruning optimization approach achieves a higher compression rate than state-of-the-art

methods under the same accuracy requirement and also can achieve higher accuracy under the same compression rate requirement. Under

classification tasks, our SLR approach converges to the desired accuracy 3× faster on both of the datasets. Under object detection and

segmentation tasks, SLR also converges 2× faster to the desired accuracy. Further, our SLR achieves high model accuracy even at the

hard-pruning stage without retraining, which reduces the traditional three-stage pruning into a two-stage process. Given a limited budget

of retraining epochs, our approach quickly recovers the model’s accuracy.
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1 INTRODUCTION

Deep neural network (DNN)-based statistical models are increasingly demanding of computational and storage resources,

with costs proportional to the model size (i.e., the number of parameters in a model). This resource consumption is

especially an issue for embedded or IoT devices [16, 35]. By reducing model size, one can decrease both storage costs

and computation costs when evaluating a model. Various techniques exist for reducing model size while maintaining its

performance, e.g., weight pruning, sparsity regularization, quantization, and clustering. These techniques are collectively

known as model compression [6, 7, 10, 14, 27, 28, 30, 37, 40].

These works leverage the observation that training a compact model from scratch is more difficult and less effective

than retraining a pruned model [9, 25]. Therefore, a typical three-stage pipeline has been used: training (large model),

pruning, and retraining (also called “fine-tuning"). The pruning process involves setting the redundant weights to zero

while keeping the important weights to maintain performance. The retraining process is necessary since the model

accuracy significantly decreases after hardpruning. However, this three-stage weight pruning approach substantially

adds to the overall training cost. For example, although the state-of-the-art weight pruning methods achieve a very high

compression rate while maintaining the prediction accuracy on many DNN architectures, the retraining process requires

more time, e.g., 80 epochs for ResNet-18 on ImageNet, which is 70% of the original training epochs using Alternate

Direction Method of Multipliers (ADMM) [33, 42].

Given the pros and cons of the current weight pruning method, this paper aims to answer the following questions: Is

there an optimization method that can achieve high model accuracy even at the hard-pruning stage and can significantly

reduce retraining trails? Given a limited budget of retraining epochs, is there an optimization method that can rapidly

recover model accuracy (much faster than the state-of-the-art methods)?

The primary obstacle in addressing these questions is the discrete nature of the model compression problems caused

by “cardinality" constraints, which ensure that a certain proportion of weights is pruned. In this paper, we develop a

weight-pruning optimization approach based on recent Surrogate Lagrangian relaxation (SLR) [3], which overcomes

all major convergence difficulties of standard Lagrangian relaxation. Within the SLR approach, Lagrangian multipliers

converge to their optimal values much faster as compared to those within other methods (e.g., ADMM).

We summarize our contributions/findings as:

• We adapt the SLR-based approach to overcome difficulties caused by the discrete nature of the weight-pruning

problem while ensuring fast convergence.

• We use quadratic penalties to further accelerate the SLR convergence. The method possesses nice convergence

properties inherited from the rapid reduction of constraint violations owing to quadratic penalties, and quadratic

penalties ultimately lead to faster convergence. Also, unlike previous methods such as ADMM, the SLR guarantees

convergence, thereby leading to unmatched performance compared to other methods. Therefore, model parameters

obtained by SLR are much closer to their optimal values as compared to those obtained by other state-of-the-art

methods.

• We provide a convergence proof of the SLR method for weight pruning problems. Existing coordination-based

weight pruning approaches do not converge when solving non-convex problems. Other coordination techniques

(e.g., ADMM) are not designed to handle discrete variables and other types of non-convexities.

• Our proposed SLR-based model-compression method achieves high model accuracy even at the hard-pruning

stage using our SLR-based weight-pruning optimization approach; given a limited budget of retraining epochs, our

method quickly recovers the model accuracy.
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We conduct comprehensive experiments on various tasks and datasets to further prove the effectiveness of our proposed

SLR-based model compression method. For classification tasks, we test our method on not only convolutional neural

networks (CNN)-based models like VGG-16, ResNet-18, ResNet-50 ResNet-110, and MobileNetV2, but also on non-

CNN based models such as MLP-Mixer, a multi-layer perceptron (MLPs)-based network, and Swin Transformer, an

attention-based network. We also test and compare our SLR method with other state-of-the-art (SoTA) pruning methods

on segmentation and detection tasks. Our experiments involve various dataset benchmarks like CIFAR-10, ImageNet,

COCO, KITTI, and TuSimple. The results demonstrate that our proposed SLR method outperforms the state-of-the-art

compression methods. Our method converges 3× faster to the desired accuracy on both CIFAR-10 and ImageNet datasets

under both CNN-based and non-CNN-based classification tasks, 2× faster on COCO object detection tasks. Moreover, up

to a 6% accuracy gap can be achieved between SLR and SoTA at the hard-pruning stage under classification tasks, and a

44% accuracy gap in object detection and segmentation tasks.

2 RELATED RESEARCH

2.1 Model Compression

Given the increasing computational and storage demands of Deep Neural Networks (DNNs), model compression has

become increasingly essential when we implement highly efficient deep learning applications in the real world. There

are two common compression techniques, weight pruning, and weight quantization. As numerous researchers have

investigated that some portion of weights in neural networks are redundant, weight pruning aims to remove these

less important coefficient values and it achieves model compression while maintaining performance similar to the

uncompressed model. Structured and non-structured (irregular) weight pruning are two mainstream methods. Weight

quantization is another technique that reduces weight storage by decreasing the number of bits used to represent weights.

In early work [12], the researchers proposed an iterative irregular weight pruning method where most reductions are

achieved in fully-connected layers, and the reduction achieved in convolutional layers can hardly achieve significant

acceleration in GPUs. For weight storage, it reduces 9× the number of parameters in AlexNet and 13× in VGGNet-16.

To address the limitation in irregular weight pruning, structured weight pruning methods were proposed by [38]. It

investigated structured sparsity at the levels of filters, channels, and filter shapes. However, the overall compression rate in

structured pruning is limited compared to unstructured pruning. In AlexNet without accuracy degradation, the average

weight pruning rate in convolutional layers is only 1.4×. The recent work [15] achieved 2× channel pruning with a 1%
accuracy degradation on VGGNet-16. Later, [26] proposed a framework for 𝐿0 norm regularization for neural networks,

aiming to prune the network during training by selecting weights and setting them to exactly zero. [9] introduced The

Lottery Ticket Hypothesis, which observes that a subnetwork of a randomly-initialized network can replace the original

network with the same performance.

In this work, our focus is on irregular pruning which can achieve much higher accuracy compared to structured

pruning [38] due to its flexibility in selecting weights.

2.2 Alternating Direction Method of Multipliers

The ADMM is an optimization algorithm that breaks optimization problems into smaller subproblems, each of which is

then solved iteratively and more easily. The early studies of ADMM can be traced back to the 1970s, and a variety of

statistical and machine learning problems that can be efficiently solved by using ADMM were discussed [2]. Recently,

weight pruning studies achieved a high compression rate and avoided significant accuracy loss by integrating the powerful

3



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhou, et al.

ADMM. The successful applications with ADMM outperform prior approaches by applying dynamic penalties on

all targeted weights. The algorithm can be applied to various schemes of both nonstructured pruning and structured

pruning. [42] was the first work implementing an ADMM-based framework on DNN weight pruning, achieving 21×
irregular weight pruning with almost no accuracy loss in AlexNet. A pattern-based weight pruning approach was proposed

with high efficiency specifically designed and optimized for mobile devices [29], it explored a fine-grained sparsity to

maximize the utilization of devices with limited resources. [22] improved the previous ADMM-based structured weight

pruning framework by adopting a soft constraint-based formulation to achieve a higher compression rate and tune fewer

hyperparameters.

3 WEIGHT PRUNING USING SURROGATE LAGRANGIAN RELAXATION (SLR)

Consider a deep neural network (DNN) with 𝑁 layers indexed by 𝑛 ∈ 1, ..., 𝑁 , where the weights in layer 𝑛 are denoted by

W𝑛 . The objective is to minimize a loss function

min
W𝑛

{
𝑓
(
W𝑛

)}
(1)

subject to constraints on the cardinality of weights within each layer 𝑛, where the number of nonzero weights should be

less than or equal to the predefined number 𝑙𝑛 . This constraint can be captured using an indicator function 𝑔𝑛 (·) as:

𝑔𝑛 (W𝑛) =

0 if card(W𝑛) ≤ 𝑙𝑛, 𝑛 = 1, . . . , 𝑁

+∞ otherwise
(2)

In its entirety, the problem cannot be solved either analytically or by using stochastic gradient descent. To enable the

decomposition into smaller manageable subproblems, duplicate variables are introduced and the problem is equivalently

rewritten as:

min
W𝑛,Z𝑛

{
𝑓
(
W𝑛

)
+

𝑁∑︁
𝑛=1

𝑔𝑛 (Z𝑛)
}
, subject to W𝑛 = Z𝑛, 𝑛 = 1, . . . , 𝑁 (3)

Here the first term is a nonlinear smooth loss function and the second term is a non-differentiable “cardinality" penalty

term [42]. To solve the problem, constraints are first relaxed by introducing Lagrangian multipliers to decompose the

resulting problem into manageable subproblems, which will be coordinated by the multipliers. The constraint violations are

also penalized by using quadratic penalties to speed up convergence. The resulting Augmented Lagrangian function [2, 42]

of the above optimization problem is thus given by:

𝐿𝜌
(
W𝑛,Z𝑛,Λ𝑛

)
= 𝑓

(
W𝑛

)
+

𝑁∑︁
𝑛=1

𝑔𝑛 (Z𝑛) +
𝑁∑︁
𝑛=1

tr[Λ𝑇
𝑛 (W𝑛 − Z𝑛)] +

𝑁∑︁
𝑛=1

𝜌

2
∥W𝑛 − Z𝑛 ∥2𝐹 (4)

where Λ𝑛 is a matrix of Lagrangian multipliers corresponding to constraints W𝑛 = Z𝑛 , and has the same dimension as

W𝑛 . The positive scalar 𝜌 is the penalty coefficient, tr(·) denotes the trace, ∥ · ∥2
𝐹

denotes the Frobenius norm.

In the following, we are motivated by decomposability enabled by SLR [3], which overcame all major difficulties

of standard Lagrangian Relaxation, significantly reducing zigzagging and ensuring convergence. The relaxed problem

will be decomposed into two manageable subproblems, and these subproblems will then be coordinated by Lagrangian

multipliers.

Step 1: Solve “Loss Function" Subproblem for W𝑛 by using Stochastic Gradient Descent. At iteration 𝑘, for

given values of multipliers Λ𝑘
𝑛 , the first “loss function" subproblem is to minimize the Lagrangian function while keeping
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Z𝑛 at previously obtained values Z𝑘−1
𝑛 as

min
W𝑛

𝐿𝜌
(
W𝑛,Z𝑘−1

𝑛 ,Λ𝑘
𝑛

)
(5)

Since the regularizer is a differentiable quadratic function, and the loss function is differentiable, the subproblem can be

solved by stochastic gradient descent (SGD) [1]. To ensure that multiplier-updating directions are “proper," the following

“surrogate" optimality condition needs to be satisfied following [3, p. 179, eq. (12)]:

𝐿𝜌
(
W𝑘

𝑛,Z
𝑘−1
𝑛 ,Λ𝑘

𝑛

)
< 𝐿𝜌

(
W𝑘−1

𝑛 ,Z𝑘−1
𝑛 ,Λ𝑘

𝑛

)
(6)

If (6) is satisfied, multipliers are updated following [3, p. 179, eq. (15)] as:

Λ′𝑘+1
𝑛 := Λ𝑘

𝑛 + 𝑠 ′𝑘 (W𝑘
𝑛 − Z𝑘−1

𝑛 ) (7)

where stepsizes are updated as [3, p. 180, eq. (20)] as

𝑠 ′𝑘 = 𝛼𝑘
𝑠𝑘−1 | |W𝑘−1 − Z𝑘−1 | |

| |W𝑘 − Z𝑘−1 | |
(8)

Step 2: Solve “Cardinality" Subproblem for Z𝑛 through Pruning by using Projections onto Discrete Subspace.
The second “cardinality" subproblem is solved with respect to Z𝑛 while fixing other variables at values W𝑘

𝑛 as

min
Z𝑛

𝐿𝜌
(
W𝑘

𝑛,Z𝑛,Λ′𝑘+1
𝑛

)
(9)

Since 𝑔𝑛 (·) is an indicator function, the globally optimal solution of this problem can be explicitly derived as [2]:

Z𝑘
𝑛 = ΠS𝑛

(
W𝑘

𝑛 + Λ′𝑘+1
𝑛

𝜌

)
(10)

where ΠS𝑛 (·) denotes the Euclidean projection onto the set S𝑛 = {W𝑛 | card(W𝑛) ≤ 𝑙𝑛}, 𝑛 = 1, . . . , 𝑁 . To ensure that

multiplier-updating directions are “proper", the following “surrogate" optimality condition needs to be satisfied:

𝐿𝜌
(
W𝑘

𝑛,Z
𝑘
𝑛,Λ

′𝑘+1
𝑛

)
< 𝐿𝜌

(
W𝑘

𝑛,Z
𝑘−1
𝑛 ,Λ′𝑘+1

𝑛

)
(11)

Once (11) is satisfied,1 multipliers are updated as:

Λ𝑘+1
𝑛 := Λ′𝑘+1

𝑛 + 𝑠𝑘 (W𝑘
𝑛 − Z𝑘

𝑛) (12)

where stepsizes and stepsize-setting parameters [3, p. 188, eq. (67)] are updated as:

𝑠𝑘 = 𝛼𝑘
𝑠 ′𝑘 | |W𝑘−1 − Z𝑘−1 | |

| |W𝑘 − Z𝑘 | |
; 𝛼𝑘 = 1 − 1

𝑀 × 𝑘 (1−
1
𝑘𝑟

)
, 𝑀 > 1, 0 < 𝑟 < 1 (13)

The theoretical results are based on [4, 5, 11] and are summarized below:

Theorem 1 (Sufficient Condition for Convergence) Assuming for any integer number 𝜅 there exists 𝑘 > 𝜅 such that

surrogate optimality conditions (6) and (11) are satisfied, then under the stepsizing conditions (8) and (13), the Lagrangian

multipliers converge to their optimal values Λ∗
𝑛 that maximize the following dual function:

𝑞(Λ) ≡ min
W𝑛,Z𝑛

𝐿𝜌
(
W𝑛,Z𝑛,Λ𝑛

)
(14)

PROOF. The proof will be based on that of [3]. The major difference between the original SLR method [3] and the

SLR method of this paper is the presence of quadratic terms within the Lagrangian function (4).

1If condition (11) is not satisfied, the subproblems (5) and (9) are solved again by using the latest available values for W𝑛 and Z𝑛 .
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It is important to mention that the weight pruning problem can be equivalently rewritten in a generic form as (15),

where X collectively denotes the decision variables {W𝑛,Z𝑛}

min
X

F(X), s.t. G(X) = 0 (15)

where

F(X) ≡ 𝑓
(
W𝑛

)
+

𝑁∑︁
𝑛=1

𝑔𝑛 (Z𝑛) +
𝑁∑︁
𝑛=1

𝜌

2
∥W𝑛 − Z𝑛 ∥2𝐹 , G(X) ≡ W𝑛 − Z𝑛, 𝑛 = 1, . . . , 𝑁 (16)

The feasible set of (15) is equivalent to the original model compression problem. Feasibility requires W𝑛 = Z𝑛 , which

makes the term 𝜌
2 ∥W𝑛 − Z𝑛 ∥2𝐹 within (16) disappear. Therefore, the Lagrangian function corresponding to (15) is the

Augmented Lagrangian function (4) to the original model compression problem. Furthermore, the surrogate optimality

conditions (6) and (11) are the surrogate optimality conditions that correspond to the Lagrangian function F(X) + ΛG(X)
that corresponds to (15). Therefore, since within the original SLR [3, Prop. 2.7, p.188] convergence was proved under

conditions on stepsizes (8) and (13) and the satisfaction of surrogate optimality conditions, which are assumed to be

satisfied here, multipliers converge to their optimal values for the model compression under consideration as well. □

Although the convergence proof in Theorem 1 is valuable for distinguishing SLR from previous decomposition and

coordination methods (e.g., ADMM) in terms of convergence, it does not provide insight into the solution quality on its

own. This issue is addressed in Theorem 2, where the faster convergence of SLR is rigorously quantified. Since both

ADMM and SLR methods are dual methods to maximize the dual function (14), it is common practice to determine upper

bounds for the maximization problems. In the context of the problem being examined, an upper bound for the optimal

dual value 𝑞∗ will be established within each method, enabling the evaluation of the quality of dual solutions - specifically,

Lagrangian multipliers serve as the decision variables in the dual space.2

Theorem 2 (Dual solution quality: Best-case performance). Assuming that the “sufficient condition for convergence”

stated within Theorem 1 is satisfied, then Surrogate Lagrangian Relaxation provides a better dual solution quality as

compared to ADMM: in particular, there exists an iteration 𝜅 so that for all iterations 𝑘 > 𝜅, the following condition holds:

𝑞𝑆𝐿𝑅𝜅 < 𝑞𝐴𝐷𝑀𝑀
𝜅 (17)

PROOF. There exists an overestimate of the optimal dual value [4, 5], which in terms of our problem under consideration

can be expressed as:
𝑞𝑆𝐿𝑅
𝑘

= 𝛾 · 𝑠𝑘 · ∥W𝑘
𝑛 − Z𝑘

𝑛 ∥2𝐹 + 𝐿𝜌
(
W𝑘

𝑛,Z
𝑘
𝑛,Λ

𝑘
𝑛

)
(18)

Here 𝛾 ∈ [0, 1] is a parameter. Since within the surrogate Lagrangian relaxation, stepsizes are approaching 0, then

𝑞𝑆𝐿𝑅
𝑘

→ 𝐿𝜌
(
W𝑘

𝑛,Z
𝑘
𝑛,Λ

𝑘
𝑛

)
(19)

Moreover, assuming that a sufficient condition for convergence is satisfied, then the Lagrangian dual value approaches the

dual value (as proved, for example, it [3]), therefore,

𝑞𝑆𝐿𝑅
𝑘

→ 𝑞(𝜆∗) (20)

Within ADMM, however, since stepsizes/penalty coefficients do not approach zero, then the overestimate of the optimal

dual value 𝑞(𝜆∗) is bounded away from it:

𝑞𝐴𝐷𝑀𝑀
𝑘

= 𝛾 · 𝜌 · ∥W𝑘
𝑛 − Z𝑘

𝑛 ∥2𝐹 + 𝐿𝜌
(
W𝑘

𝑛,Z
𝑘
𝑛,Λ

𝑘
𝑛

)
(21)

2Higher quality of primal variables - weights and biases is implied since superior coordination through Lagrangian multipliers significantly improves the
quality of primal solutions. Though in a different problem context, this assertion has been empirically verified [5].
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Therefore, since the first term does not approach zero, and the second term does not approach the optimal dual value from

above, there exists 𝜅 such that (17) holds. □

Algorithm 1 Surrogate Lagrangian Relaxation

1: Initialize W0
𝑛,Z0

𝑛,Λ0
𝑛 and 𝑠0

2: while Stopping criteria are not satisfied do
3: 1 solve subproblem (5),

4: if surrogate optimality condition (6) is satisfied then
5: keep W𝑘

𝑛,Z𝑘
𝑛 , and update multipliers Λ𝑘

𝑛 per (7),

6: else
7: keep W𝑘

𝑛,Z𝑘
𝑛 , do not update multipliers Λ𝑘

𝑛 ,

8: end if
9: 2 solve subproblem (9),

10: if surrogate optimality condition (11) is satisfied then
11: keep W𝑘

𝑛,Z𝑘
𝑛 , and update multipliers Λ𝑘

𝑛 per (12),

12: else
13: keep W𝑘

𝑛,Z𝑘
𝑛 , do not update multipliers Λ𝑘

𝑛 ,

14: end if
15: end while

The algorithm of the proposed SLR method is summa-

rized in Algorithm 1. The SLR method benefits from ef-

ficient subproblem solution coordination with guaranteed

convergence enabled by stepsizes (8) and (13) approach-

ing zero. Without this requirement, multipliers (12) would

not exhibit convergence. By the satisfaction of surrogate

optimality conditions (6) and (11) ensuring that multipli-

ers are updated along “good" directions. Section 4 will

empirically verify that there always exists iteration 𝜅 after

which the “surrogate” optimality conditions are satisfied

ensuring that multipliers approach their optimal values

during the entire iterative process.

The SLR method also benefits from the indepen-

dent and systematic adjustment of two hyper-parameters:

penalty coefficient 𝜌 and the stepsize 𝑠𝑘 . In contrast, other

coordination methods are not designed to handle discrete

variables and other types of non-convexities. For exam-

ple, ADMM does not converge when solving non-convex

problems [2, p. 73] because stepsizes 𝜌 within the method

do not converge to zero. Lowering stepsizes to zero within ADMM would also result in a decreased penalty coefficient,

leading to slower convergence.

4 EVALUATION

In this section, we discuss our experimental results for the image classification task using CNN-based models and

non-CNN-based models. We also evaluate our method under object detection and image segmentation tasks.

4.1 Experimental Setup

All of our code, including image classification tasks and object detection and segmentation tasks, is implemented with

Python 3.6 and PyTorch 1.6.0. For our experiments on the COCO 2014 dataset, we used the pycocotools v2.0 packages.

For our experiments on TuSimple lane detection benchmark dataset3, we used SpConv v1.2 package. We conducted our

experiments on Ubuntu 18.04 using Nvidia Quadro RTX 6000 GPU with 24 GB GPU memory.

We begin by pruning the pretrained models through SLR training. Afterward, we perform hard-pruning on the model,

completing the compression phase. We report the overall compression rate (or the percentage of remaining weights) and

prediction accuracy.

3https://github.com/TuSimple/tusimple-benchmark
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4.2 Evaluation of Image Classification Tasks using CNN-based Models

Models and Datasets. We use ResNet-18, ResNet-50, ResNet-56, ResNet-110 [13] and VGG-16 [35] on CIFAR-10.

On ImageNet ILSVRC 2012 benchmark, we use ResNet-18, ResNet-50 [13] and MobileNetV2 [34]. We use the pretrained

ResNet models on ImageNet from Torchvision’s “models" subpackage.

Table 1. Comparison of SLR and ADMM on CIFAR-10 and ImageNet. ImageNet results show Top-1 / Top-5 accuracy.

Baseline (%) Epoch ADMM (%) SLR (%) Compression Rate
CIFAR-10
ResNet-18 93.33 40 72.84 89.93 8.71×
ResNet-50 93.86 50 78.63 88.91 6.57×
VGG-16 93.27 110 69.05 87.31 12×

ResNet-56 93.39 30 90.5 92.3 6.5×
ResNet-110 93.68 30 89.71 92.31 9.7×
ImageNet
ResNet-18 69.7 / 89.0 40 58.9 / 81.7 60.9 / 84.4 6.5×
ResNet-50 76.1 / 92.8 30 64.8 / 85.1 65.9 / 87.5 3.89×

MobileNetV2 71.8 / 91.0 60 61.8 / 84.3 63.2 / 85.5 1.76×
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(a) ResNet-18 on CIFAR-10.
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(b) ResNet-50 on CIFAR-10.
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(c) VGG-16 on CIFAR-10.
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(d) ResNet-56 on CIFAR-10.
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(e) ResNet-110 on CIFAR-10.
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(f) ResNet-18 on ImageNet.
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(g) ResNet-50 on ImageNet.

Fig. 1. Hardpruning accuracy after SLR and ADMM training on CIFAR-10 and ImageNet benchmarks. Accuracy is reported
periodically and training is stopped when desired accuracy is reached.
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Training Settings. In all the experiments, we set 𝜌 = 0.1. In CIFAR-10 experiments, we use a learning rate of 0.01,

batch size of 128, and the ADAM optimizer. In ImageNet experiments, we use a learning rate of 10−4, batch size of 256,

and the SGD optimizer. For a fair comparison of SLR and ADMM methods, we use the same number of training epochs

and sparsity configurations for both methods in the experiments.

Table 1 shows our comparison of SLR and ADMM on CIFAR-10 and ImageNet benchmarks. For both experiments,

SLR parameters are set as 𝑀 = 300, 𝑟 = 0.1, and 𝑠0 = 10−2. After the SLR and ADMM training, hardpruning is performed,

and the hardpruning accuracy is reported without any additional retraining, given a limited budget of training epochs.

According to our results, SLR outperforms the ADMM method in terms of accuracy under the same compression rate.

When the compression rate is the same, SLR always obtains higher classification accuracy compared with ADMM under

the same number of epochs of training. As compression rates increase, the results reveal a more significant accuracy gap

between SLR and ADMM across various network architectures. This demonstrates that our SLR converges faster and

quickly recovers the model accuracy at the hardprune stage, which achieves retrain-free given the limited training budget.

Figure 1 shows the hardpruning accuracy for SLR vs. ADMM on CIFAR-10 and ImageNet, corresponding to Table 1.

During training, hardpruning accuracy is checked periodically. If the hardpruning accuracy meets the accuracy criteria,

the training is stopped. As seen in Figure 1, SLR converges quickly and reaches the desired accuracy almost 3× faster

than ADMM on CIFAR-10. Moreover, in Figure 1c, ADMM is still below the desired accuracy even after 300 epochs of

training on VGG-16, while SLR finishes training at 80 epochs. Similarly, as shown in Figures 1f and 1g, ADMM cannot

achieve the desired accuracy after 60 and 50 epochs of training on ImageNet, while SLR reaches the threshold quicker.

Table 2. SLR performance comparison with VGG-16, ResNet-18, ResNet-50 and ResNet-56 on CIFAR-10.

Model Method Accuracy (%) Params Pruned (%)

VGG-16

SLR 91.2
90AMC [14] 91.0

L0 [26] 80.0
SLR 93.1

60
One-shot pruning[25] 92.4
SLR 93.2

50
Iter. Prun. [12] 92.2

ResNet-18
SLR (at 20k iterations) 89.9

88.6
Iter. prun. [9] 75.0

ResNet-50
SLR 93.6

60
AMC [14] 93.5

ResNet-56

SLR 92.3 84.4
GSM [8] 94.1 85.0
Group Sparsity [20] 92.65 79.2
[43] 92.26 20.49
GAL-0.6 [23] 93.38 11.8
[18] 93.06 13.7
NISP [41] 93.01 42.6
KSE [21] 93.23 54.73
DHP-50 [19] 93.58 41.58

Table 2 shows the comparison of SLR with other recent model compression works on the CIFAR-10 benchmark. We

report the percentage of parameters pruned after SLR training and the final accuracy. We start training the networks with
9
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a learning rate of 0.1 and decrease the learning rate by a factor of 10 at epochs 80 and 100. On ResNet-18, we compare

our results at only 20k iterations. For VGG-16 and ResNet-50, we observe that SLR can achieve up to 60% pruning with

less than 1% accuracy drop.

4.3 Evaluation on Image Classification Tasks using state-of-the-art Non-CNN-based Models

In this subsection, we demonstrate our experimental results of applying the SLR weight pruning method on a multi-layer

perceptron (MLPs)-based architecture: MLP-Mixer [36] and on an attention-based network: Swin Transformer [24].

Models and Datasets. MLP-Mixer does not contain any convolution layer or self-attention block. This architecture

relies solely on multi-layer perceptrons. Alternating between channel-mixing MLPs and token (image patch)-mixing

MLPs, the MLP-Mixer can achieve decent accuracy with much fewer computational resources than state-of-the-art

methods. Swin Transformer is a hierarchical transformer-based architecture that utilizes shifted windows for representation.

It has linear computational complexity with respect to input image size and achieves state-of-the-art performance on

both image classification and object detection and semantic segmentation tasks. We conduct experiments on ImageNet

ILSVRC 2012 benchmark. We utilize the pretrained models from the PyTorch Image Models code base [39].

Training Settings. Similar to experiments with CNN-based models, we set 𝜌 = 0.1. We set the learning rate at 0.01,

batch size of 128, and use SGD optimizer with the momentum of 0.9 and a weight-decay of 10−4. To ensure a fair

comparison, we used the same number of training epochs and sparsity configurations for both SLR and ADMM methods.

Comparison of SLR and ADMM. The comparison of SLR and ADMM applied on MLP-Mixer model on ImageNet

benchmark is presented in Table 3. We compare the two methods using three distinct compression rates. The final

hardpruning accuracy is reported after 100 epochs of training without further retraining. Retrain accuracy is also reported

after 50 epochs. For all SLR experiments, we set the parameters to 𝑀 = 300, 𝑟 = 0.1, and 𝑠0 = 0.01. As indicated in

Table 3, in terms of hardpruning, when the compression rate is low as 1.96×, the two methods have similar performance.

As the compression rate increases to 3.16× and 8.28×, SLR outperforms ADMM, with the accuracy gap widening as the

Table 3. SLR pruning results with MLP-Mixer on ImageNet through different compression rates.

Baseline Compression Hardpruning Acc. (%) Retraining Acc. (%)
Acc (%) Rate ADMM SLR ADMM SLR

Top@1 Top@5 Top@1 Top@5 Top@1 Top@5 Top@1 Top@5 Top@1 Top@5
1.96× 75.332 91.734 75.392 91.752 75.332 91.714 75.392 91.752

76.598 92.228 3.16× 71.798 89.64 72.578 90.136 73.362 90.672 73.56 90.750
8.28× 47.592 71.698 54.834 77.696 70.864 89.38 71.036 89.494

Table 4. SLR pruning results with Swin Transformer (Tiny) on ImageNet through different compression rates.

Baseline Compression Hardpruning Acc. (%) Retraining Acc. (%)
Acc (%) Rate ADMM SLR ADMM SLR

Top@1 Top@5 Top@1 Top@5 Top@1 Top@5 Top@1 Top@5 Top@1 Top@5
1.95× 78.910 94.288 79.018 94.446 79.146 94.424 79.108 94.456

81.350 95.532 3.13× 73.074 91.370 74.322 91.988 75.278 92.55 75.508 92.630
4.50× 63.892 85.104 67.398 87.494 72.626 90.966 73.046 91.364
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compression rate increases. This demonstrates that SLR outperforms ADMM by achieving higher accuracy during the

hardpruning stage, which leads to more efficient use of training resources.

The comparison of SLR and ADMM on the Swin Transformer model on ImageNet benchmark is shown in Table 4. In

all the experiments, we choose the tiny version (Swin-T) as it balances the model size and accuracy very well. For SLR

experiments, when compression rate is 1.96×, we use parameters as 𝑀 = 150, 𝑟 = 0.1 and 𝑠0 = 0.05. When compression

rate is 3.16×, we use parameters as 𝑀 = 300, 𝑟 = 0.1 and 𝑠0 = 0.01. And when compression rate is 4.5×, we use parameters

as 𝑀 = 150, 𝑟 = 0.05 and 𝑠0 = 0.005. As demonstrated, when the compression rate is 1.95×, SLR obtains higher accuracy

than ADMM at the hardpruning stage. After 50 epochs of retraining, the accuracy of ADMM improves 0.2% and becomes

closer to the accuracy of SLR, while SLR improves 0.01%. This demonstrates that our SLR can obtain higher accuracy at

the hardpruning stage. As the compression rate increases, the accuracy gap between SLR and ADMM also widens. For

instance, at a compression rate of 4.5×, the accuracy of SLR is 2.4% higher than that of ADMM at the hardpruning stage.

Figure 2 plots periodically checked the hardpruning accuracy of SLR and ADMM with MLP-Mixer on ImageNet.

The compression rates correspond to Table 3, following the same procedure described in section 4.2. As shown, SLR

quickly converges and achieves higher accuracy compared with ADMM. When the compression rate is low, such as

1.96×, two methods converge at a similar rate. However, as the compression rate increases, SLR not only converges faster

than ADMM but also reaches much higher accuracy. ADMM even cannot achieve the desired accuracy after 60 epochs of

training when the compression rate is 8.28×. In Figure 2c, we can see SLR quickly converges to the threshold at around

50 epochs and results in an 8.6% accuracy gap between ADMM when the training of SLR is stopped, ADMM’s accuracy

continues to improve albeit slowly until epoch 100.

20 40 60 80 100
Epoch

90.4

90.6

90.8

91.0

91.2

91.4

91.6

91.8

Ac
cu

ra
cy

 (%
)

MLP-Mixer with Compression 1.96x

SLR
ADMM

(a) Compression rate = 1.96×.

20 40 60 80 100
Epoch

78

80

82

84

86

88

90

Ac
cu

ra
cy

 (%
)

MLP-Mixer with Compression 3.16x

SLR
ADMM

(b) Compression rate = 3.16×.
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Fig. 2. Top5 Hardprune accuracy of MLP-Mixer on ImageNet after SLR and ADMM pruning. Accuracy is reported periodically.
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Fig. 3. Top-5 Hardprune accuracy of Swin Transformer (Tiny) on ImageNet benchmarks after applying SLR and ADMM
weight pruning. Accuracy is reported periodically.
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Figure 3 plots periodically-checked hardpruning accuracy of SLR and ADMM with Swin Transformer on ImageNet,

with the compression rates corresponding to those reported in Table 4. Under the three compression rates, SLR consistently

converges to the desired accuracy in half the number of training epochs compared to ADMM. Even when the compression

rate is 3.16×, SLR results in an approximately 1% accuracy gap with ADMM when it stops training. This further

demonstrates our SLR can quickly recover the model accuracy at the hard-pruning stage itself.

4.4 Evaluation on Object Detection and Segmentation Tasks

In this subsection, we evaluate our SLR-based weight pruning method on three object detection and segmentation

benchmarks.

Models and Datasets. In the first experiment, we test YOLOv3 and YOLOv3-tiny models [32] on COCO 2014

benchmark. We followed the publicly available Ultralytics repository4 for YOLOv3 and its pretrained models. The second

experiment focuses on lane detection. We use the pretrained model from Ultra-Fast-Lane-Detection [31] on the TuSimple

lane detection benchmark dataset. The third experiment involves 3D point cloud object detection experiments. We use

PointPillars [17] pretrained model on KITTI 2017 dataset following the OpenPCDet repository5. In this experiment, we

use LIDAR point cloud data as input. Each point cloud data point is stored as a large collection of 3D elevation points,

each point is represented as a 1 ∗ 4 vector containing 𝑥,𝑦, 𝑧 (3D coordinates) and intensity [44].

Training Settings. In all experiments we use 𝜌 = 0.1. We set SLR parameters as 𝑀 = 300, 𝑟 = 0.1 and 𝑠0 = 10−2. We

follow the same training settings provided by the repositories we use. Finally, we use the same number of training epochs

and sparsity configurations for ADMM and SLR.

Table 5. ADMM and SLR pruning results with different
structure of YOLOv3 on COCO dataset.

Architecture Epoch Method Hardprune
mAP

Comp.
Rate

15
ADMM 35.2

1.19×
SLR 36.1

YOLOv3-tiny
(mAP = 37.1)

20
ADMM 32.2

2×
SLR 36.0

25
ADMM 25.3

3.33×
SLR 35.4

YOLOv3-SPP
(mAP = 64.4)

15
ADMM 41.2

2×
SLR 53.2

Table 6. SLR pruning results with ResNet-18 on TuSim-
ple benchmark through different compression rates.

Comp.
Rate

Hardprune Acc. (%) Retrain Acc. (%)
ADMM SLR ADMM SLR

1.82× 92.49 94.64 94.28 94.63
2.54× 92.25 94.56 94.04 94.93
4.21× 90.97 94.66 94.18 94.68
12.10× 88.41 94.51 94.45 94.7
16.85× 78.75 94.55 94.23 94.65
22.80× 67.79 94.62 94.08 94.55
35.25× 57.05 93.93 93.63 94.34
77.67× 46.09 89.72 88.33 90.18

Testing Settings. On YOLOv3 models, we calculate the COCO mAP with IoU = 0.50 with image size of 640 for

testing. In lane detection experiments, the evaluation metric is “accuracy", which is calculated as
∑

clip 𝐶clip∑
clip 𝑆clip

, where 𝐶𝑐𝑙𝑖𝑝 is

the number of lane points predicted correctly and 𝑆𝑐𝑙𝑖𝑝 is the total number of ground truth in each clip.

The KITTI dataset is stratified into easy, moderate, and hard difficulty levels. Here, Easy level means the minimum

height of the bounding box is 40 pixels, all objects in the images are fully visible, and the percentage of truncation of

objects being less than 15%; Moderate level is with minimum bounding box height being 25 pixels, objects in the images

4https://github.com/ultralytics/yolov3
5https://github.com/open-mmlab/OpenPCDet
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are partly visible, and percentage of truncation of objects being less than 30%; Hard level is with minimum bounding box

height being 25 pixels, but some objects in the image are difficult to see, and maximum percentage of truncation is 50%.

mAP is calculated under each difficulty strata with 𝐼𝑜𝑈 = 0.5.

Comparison of SLR and ADMM.. Our comparison of SLR and ADMM methods on the COCO dataset is shown

in Table 5. We have compared the two methods under three different compression rates for YOLOv3-tiny and tested

YOLOv3-SPP pretrained model with a compression rate of 1.98×. We can see that the model pruned with the SLR method

has higher accuracy after hardpruning in all cases. At a glance at YOLOv3-tiny results, we observe that the advantage of

SLR is higher with an increased compression rate.
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(b) YOLOv3-tiny.

Fig. 4. Hardpruning accuracy of YOLOv3 and YOLOv3-
tiny. Accuracy is reported every 5 epochs and training is
stopped when methods reach the accuracy threshold.

1.
82

4.
21

12
.1

0
16

.8
5

22
.8

0

35
.2

5

77
.6

7

Compression Rate

40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Hardpruning Accuracy

SLR
ADMM

Fig. 5. Hardpruning accuracy on TuSimple benchmark
with ADMM vs. SLR training for several compression
rates. SLR has a greater advantage over ADMM as the
compression rate increases.

(a) Weights before after pruning with SLR (middle) and ADMM (right) under the same compression rate (77.6×).

(b) Weights before and after pruning with SLR (middle) and ADMM (right) under the same accuracy (89.0%).

Fig. 6. Heatmap of ResNet-18 weights on TuSimple benchmark before and after pruned with SLR and ADMM. Weights are
more zeroed out with SLR compared to ADMM.
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In compression rate 3.33× on YOLOv3-tiny, given a limit of 25 epochs, we can observe that the gap between ADMM

and SLR is much higher, which is due to the faster convergence of SLR as shown in Figure 4b. Similarly, Figure 4a shows

the mAP progress of YOLOv3 during SLR and ADMM training for 50 epochs, pruned with 2× compression rate. SLR

reaches the mAP threshold only at epoch 15.

Table 6 reports our result for the Lane Detection task on the TuSimple lane detection benchmark after 40 epochs of

training and 5 epochs of masked-retraining. We conducted experiments under 8 different compression rates. Figure 5

illustrates the accuracy gap between ADMM and SLR methods after hardpruning as the compression rate increases.

From Figure 5, our observation is that for a small compression rate such as 1.82×, SLR has little advantage over

ADMM in terms of hardpruning accuracy. However, as the compression rate increases, SLR starts to perform better than

ADMM. For example, SLR survives 77.67× compression with slight accuracy degradation and results in 89.72% accuracy

after hardpruning, while ADMM accuracy drops to 46.09%. This demonstrates that our SLR-based training method has a

greater advantage over ADMM, especially in higher compression rates, as it achieves compression with less accuracy loss

and reduces the time required to retrain after hardpruning.

Finally, in Figure 6, we show the difference between the weights of one layer before and after pruning with SLR and

ADMM. In Figure 6a, we show the initial (non-pruned) weights and then show the sparsity of weights under the same

compression rate (77×) with SLR and ADMM. Initially, the layer has low sparsity. After training with SLR and ADMM,

Table 7. ADMM and SLR results of PointPillars model on KITTI in different task difficulty levels and compression rates.

Level Orig mAP Compression ADMM SLR
After Hardprun After Retrain After Hardprune After Retrain

Easy 80.7

4.874× 77.0 81.5 77.8 82.2
5.702× 74.7 74.7 77.3 79.3
6.431× 72.9 77.5 76.6 75.3
9.449× 58.6 70.9 68.0 79.9

Moderate 78.5

4.874× 73.8 77.1 74.5 78.4
5.702× 71.9 71.0 74.5 75.3
6.431× 69.9 73.2 73.2 72.7
9.449× 54.1 66.8 65.6 75.8

Hard 60.7

4.874× 51.9 51.2 52.0 56.4
5.702× 50.1 50.2 52.9 51.3
6.431× 48.5 47.8 49.5 50.7
9.449× 30.8 35.6 46.1 51.4
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(a) Pruning on Easy task level.
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Fig. 7. mAP of PointPillars model after hard-pruning using different compression rates under different difficulty levels.
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we can see an increased number of zeroed-weights. SLR moves towards the desired sparsity level faster than ADMM. In

Figure 6b, we compare the sparsity of weights under the same accuracy (89.0%). It can be observed that SLR significantly

reduced the number of non-zero weights, and ADMM has more non-zero weights remaining compared with SLR.

Lastly, Table 7 shows the 3D point cloud object detection model compression results on the KITTI benchmark. The

SLR and ADMM results are reported after 40 epochs of training and 3 epochs of masked-retraining. We have two

observations: First, SLR has much higher accuracy than ADMM after hardpruning with compression rate increased. For

example, as shown in Figure 7, when tested under 9.44× compression rate, under “hard" strata, SLR has mAP that more

than 15% higher than ADMM as illustrated in Figure 7c. In “easy" and “moderate" difficulty strata, as shown in Figure

7a and Figure 7b, hardpruning mAP of SLR is still more than 10% higher than ADMM under 9.44× compression rate.

Secondly, we observe that since SLR has higher mAP after the hardpruning stage, it also reaches significantly higher

mAP after retraining. There is almost 16% mAP difference between SLR and ADMM in the “hard" difficulty level under

9.44× compression rate. This shows that when the retraining budget is limited, our SLR method can quickly recover the

model accuracy.

4.5 Ablation Studies
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Fig. 8. Hardpruning accuracy of ResNet-18 on CIFAR-10 during SLR training with respect to different values of 𝑠0, 𝑀 and 𝑟 .
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Fig. 9. Surrogate optimality condition satisfaction graph during
the SLR training of ResNet-18 on CIFAR-10 for 50 epochs (1:
satisfied, 0: not satisfied). Conditions are satisfied periodically.

We conduct several experiments to observe SLR behav-

ior with respect to SLR parameters 𝜌, 𝑠0, 𝑟 and 𝑀 on the

ResNet-18 model (93.33% accuracy) on CIFAR-10. We

prune the model through SLR training for 50 epochs with

a compression rate of 8.71× and observed the hardpruning

accuracy every 10 epochs. Figure 8 shows the accuracy

of the model through SLR training based on the different

values of 𝑠0, 𝑀 , and 𝑟 . Based on the hardpruning accuracy

throughout training, it can be seen that, even though the

parameters do not have a great impact on the end result,

the choice of 𝑠0 can impact the convergence of the model.

From Figure 8a, we can state that 𝑠0 = 10−2 provides higher starting accuracy and converges quickly. Figure 8b and

Figure 8c demonstrate the impact of 𝑀 and 𝑟 on the hardpruning accuracy respectively.

Figure 9 demonstrates that there exists iteration 𝜅 (as required in the Theorem) so that the surrogate optimality

condition, the high-level convergence criterion of the SLR method, is satisfied during training with 𝑠0 = 10−2, 𝜌 = 0.1
15



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhou, et al.

thereby signifying that “good" multiplier-updating directions are always found. For example, after the conditions are

violated at epoch 9, there exits 𝜅 = 10 so that at iteration 11, after 𝜅 = 10, the surrogate conditions are satisfied again.

5 CONCLUSIONS

In this paper, we addressed the DNN weight-pruning problem as a non-convex optimization problem by adopting the

cardinality function to induce weight sparsity. The SLR method decomposes the relaxed weight-pruning problem into

subproblems, which are then efficiently coordinated by updating Lagrangian multipliers, resulting in fast convergence.

We carried out weight-pruning experiments on image classification and object detection and segmentation tasks on

various datasets to compare our SLR method against ADMM and other SoTA. We observed that our SLR method offers a

significant advantage under high compression rates and achieves higher accuracy during weight pruning. Additionally,

SLR reduces the accuracy loss caused by the hardpruning and shortens the retraining process. Given its effective

optimization as well as coordination capabilities and clear advantages demonstrated through various examples, the SLR

method holds strong potential for broader DNN-training applications.
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