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D E S C R I P T I O N  : 

The par t i t ion ,  when expressed as a K- tup le  IX1 , • • ", XK), may 
be t hough t  of as a K-digi t  number  in the  base V number  system. 
The  procedure CIRPI t hen  funct ions as a counter  which generates  
successive K-dig i t  numbers  in the  base V number  system. How- 
ever,  since all K-digi t  numbers  do not  correspond to circular  
par t i t ions ,  i t  is possible to have  the  procedure generate  only a 
subset  of K- tuples  for considerat ion,  using the  following cr i ter ia :  

(a) The  digits are constra ined to sum to V, consequent ly,  the  
K digits are not  independent .  Thus  the procedure need only 
operate  on the K - 1 most  significant  digits,  the  least  s ignificant  
digit  being an easily computable  funct ion  of the  o ther  K -- 1 digits. 

(b) Since the  numbers  are sequent ia l ly  increasing,  a g iven 
number  is a cyclic pe rmuta t i on  of a previously genera ted  number  
if a cyclic ro ta t ion  of its digits produces a number  wi th  a smaller  
value. Thus  the  mos t  significant digit ,  X1 , provides an effective 
min imum value for any of the  digits. 

(c) Given  t h a t  the  digits  mus t  sum to V and the  min imum value 
for any digi t  is Xt  , the  value  V - X1 * (K -- 1) provides an  effec- 
t ive max imum for any  digit.  

(d) Since the  maximum and m i n i m um  values depend on the  
most  significant  digit ,  Xz , the  procedure is finished when  X~ has 
increased to the poin t  where the  min imum digi t  size exceeds the  
maximum digit  size, i.e. when  X~ > V - X~ * (K - 1). This  
easily reduces to X~ > V/K, providing an easy me thod  for termi-  
na t ing  the K- tuple  genera t ion  as ear ly as possible. 

Therefore,  the procedure efficiently generates  the to ta l i ty  of 
circular  par t i t ions  since it  can great ly  res t r ic t  the  number  of K-  
tuples t h a t  mus t  be considered. 
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A L G O R I T H M  : 

SUBROUTINE CIRRI  (V~ K, X) 
C 
C THIS  SUBROUTINE GENERATES ALL K-TUPLES SUCH THAT . . . . .  
C A) THE SUM OF THE K ELEMENTS OF THF K-TUPL E IS Vt  
C B) EACH OF THE ELEMENTS IS  AN INTEGER GREATER THAN 0~ AND 
C C) NO K-TUPLE IS A CYCLIC PERMUTATION OF ANY OTHER K-TUPLE° 
C THE K-TUPLE 1S STORED IN  THE ARRAY Xt  WITH ONE ELEMENT 
C PER ARRAY ELEMENT* EACH K-TURLE IS PROCESSED BY THE USER 
C IUSING THE SUBROUTINE ePROCESI! BEFORE THE NEXT K-TUPLE IS 
C GENERATED. THE SUBROUTINE 'PROCES t MUST NOT CHANGE THE 
C CONTENTS OF THE ARRAY X. 
C 

INTEGER X I K I e  Vt V ie  VZt  Ce SUM 
V I  ffi V - K + I  
V2 = V / K  
K L  = K - L  
K2 = K--~ 
SUM : KI 

C 
C I N I T I A L I Z E  THE ARRAY X WITH THE FIRST K - I U P L E .  
C 

DO LOO I = | t  K l  
X | l )  = 1 

lOB CONTINUE 
GO TO 115 
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C 
C GENERATE THE NEXT K-TUPLE WHICH SATISFIES THE GIVEN 
C CONDITIONS, A) - C) .  
C 

l l O  C = t 
SUM = X l l l  

00 1 [ 3  I = I e  K2 
IL = K- I  
X I I I I  = X I I I ) + C  
1F I X l l l l  . L T .  V l l  GO TO 111 

X I I I )  = X ( I I  
GO TO 112 

I l l  C = O 
112 SUM = SUM~XIII)  
113 CONTINUE 

IF  IC .EQ. O) GO TO 115 
X ( l )  = X I l ) ÷ l  
IF I X l t )  .GT. V2} RETURN 

DO [ I 4  11 = Z. K[ 
X I I I I  = X I I I  

I l L  CONTINUE 
SUM = X I I I * K I  
Vl = V-SUM 

115 SUM = V-SUM 
IF ISUM . L T .  X l l ) )  GO TO l l O  

XIK |  = SUM 
C 
C CHECK TO SEE IF THE K-TUPLE IS A CYCLIC PERMUTATION OF 
C ANY PREVIOUSLY GENERATED K-TUPLES. 1F IT IS.  GENERATE THE 
C NEXT CANDIDATE, OTHERWISE, CALL THE SUBROUTINE ~PROCES t TO 
C PROCESS THE K-TUPLE BEFORE GENERATING THE NEXT ONE, 
C 

120 DO t 2 2  I = Z. K 
IF I x ( I )  . G T .  x ( 1 ) )  GO TO I22  

IF I X { I )  oLT.  X ( l I }  GO TO [ [ 0  
I1  = I ÷ [  
00 [ 2 i  12 = ? ,  K 

IF I l l  . G T .  K )  I I  = I [ - K  
IF I X ( l l )  . G T .  X ( 1 2 ) )  GO TO 12~ 
IF ( X ( I I }  . L T .  X K I 2 ) )  GO TO l I B  
I1 = I I + l  

121 CONTINUE 
GO TO 130 

[ 22  CONTINUE 
I3O CALL PROCES I X i  K) 

GO TO l i d  
END 
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D E S C R I P T I O N  : 

C GAMMA evaluates  in single precision the  gamma func t ion  
for complex arguments. The method of evaluation is similar to the 
one employed by A. M. S. Filho and G. Schwachheim in evaluating 
the gamma function with arbitrary precision for real arguments 
[1]. First the real part of the argument of the gamma function is 
increased by some integer M, if necessary, so that Stirling's 
asymptotic series for the logarithm of the gamma function may 
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be used with  high precision and a small  number of terms. Then the 
recursion formula for the gamma funct ion 

r (z )  = r ( z  + 1)/Z 

is used to step down to the original gamma function. 
The conditions on the value of T = Z + M used in Stirling's 

asymptot ic  series are: 
1. Real(T) > 10 
2. Arg(T) = arctan(Imaginary(T)/Real(T)) _< ~r/4 
This  second condition ensures that  the error incurred in using 

Stirling's asymptot ic  series wi th  a finite number of terms is less 
than the value of the next term in the series [2]. 

The  only  condition on the argument Z is that  it  must  not be 
too close to a pole of the gamma function,  i.e. Z = 0, - 1 ,  - 2 ,  . . . .  
A rough empirical relation was found between the number of 
significant figures obtained by Stirling's asymptot ic  series and 
the distance ~ in the complex plane from Z to the nearest pole by  
approaching the poles at 0 and - 1  from several  directions.  If  
= 10-" (n an integer _> 3) this relation is (minimum number of 
significant figures) = 7 - n. With ~ = 10 -4, for instance,  Stirling's 
asymptot ic  series gives three or more significant figures depend- 
ing on the direction of Z from the pole. The upper l imit on the 
size of Z for which CGAMMA will  work is a function of the com- 
puter system.  For the IBM 360 sys tem where the largest size 
number that  can be handled is about 1075 the upper l imit  for real 
Z is about ± 5 7 ,  for Z on the line Imaginary (Z) = ±Real(Z)  it is 
(63 ± 63i),  for Real(Z) > 0 and ( - 3 2  ± 32i) for Real(Z) < O, 
and for Z on the imaginary axis it is ±107 i .  

CGAMMA has been tested in several ways.  The  reflection 
formula 

71" 

r ( z ) r 0  - z)  = sin(q-z) 

and the relation 

r ( n  + 1) = nI (n integer) 

have been employed as checks. Also log(gamma(Z)) has been 
compared with  tabulated valued in reference [2] for a number of 
values of Z. These  tests  lead us to conclude that  CGAMMA gives 
four to five significant figures for Z outside disks of radius $ = 
10 -8 centered on the poles. If  the subroutine is wri t ten  in double 
precision, we have found that  about eight more signif icant figures 
will  be obtained everywhere for an IBM 360 sys tem,  and near the 
poles 

(minimum number of significant figures) = 15 -- n 

where $ = 10-". The  range of the subroutine remains the same. 
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ALGORITHM : 

[Warning. System dependent  constants  are used in assigning 
values to IOUT, PI, TOL, S U M - - L . D . F . ]  

FUNCTION CGAMMA(Z) 
COMPLEX Z~ZMvTtTT~SUM,TERMtDEN*CGAMMA,PI~A 
DIMENSION C( I2)  
LOGICAL REFLEK 

C SET lOUT FOR PROPER OUTPUT CHANNEL OF COMPOTER SYSTEM FOR 
C ERROR MESSAGES 

lOUT = 3 
PI = (3.141593,0.0)  
X = REAL(Z) 
Y = AIMAGIZI 

C TOL = LIMIT OF PRECISION OF COMPUTER SYSTEM IN SINGLE PRECISION 
TOL = I .OE-7 
REFLEK = ,TRUE. 

C DETERMINE WHETHER Z IS TOO CLOSE TO A POLE 
C CHECK WHETHER TOO CLOSE TO ORIGIN 

IF(X.GE.TOLI GO TO 20 
C FIND THE NEAREST POLE AND COMPOTE DISTANCE TO IT 

XDIST = X- INT(X- .S)  
ZM = CMPLXIXDIST,Y) 
IF(CABSIZMI.GE.TOLI GO TO I0 

C IF Z IS TOO CLOSE TO A POLEt PRINT ERROR MESSAGE AND RETURN 
C WITH CGAMMA = (I,ET,O.OEOI 

WRITEIIOUT,900) Z 
CGAMMA = (I.ET~O. EO) 
RETURN 

C FOR REAL(Z) NEGATIVE EMPLOY THE REELECTION EORMULA 
C G A M M A ( Z )  = PI/ (SINIPI~Z)*GAMMA(I-Z))  
C AND COMPUTE GAMMA(I-Z). NOTE REFLEK IS A TAG TO INDICATE THAT 
C THIS RELATION MUST BE USED LATER. 
I0 IFIX.GE.O,O) GO TO 20 

REFLEK = ,FALSE. 
Z = ( I .O ,O.O) -Z  
X = I . O - X  
Y = -y  

C IF Z IS NOT TOO CLOSE TO A POLE, MAKE REALIZ)>IO AND ARGIZI<PI/4 
20 M = 0 
40 IF(X.GE. IO. )  GO TO 50 

X = X + 1.0 
M = M + I  

GO TO 40 

50 IF(ABSIYI .LT.XI  GO TO 60 
X = X + I . O  
M = M + I  
GO TO 50 

60 T = CMPLX(X~Y) 

TT = TaT 

DEN = T 
C COEFFICIENTS IN STIRLING'S APPROXIMATION FOR INIGAMMAITI) 

C ( I I  = Ioi12. 

C(2I : - 1 o 1 3 6 0 .  
C(3) = I . / 1 2 6 0 .  
C(4) = - l . / 1 6 8 0 .  
C(5) = l . l l I 8 B .  
C(6) = -691./3b0360. 

CIT) = Io/156o 

C(8) = -3617./122400. 
C(9) = 4 3 8 6 7 ° / 2 4 4 1 8 8 .  
C(10I = -174611 . /125400 .  
C ( I I )  = 77683 , /5796 .  
SUN = (T-(.5,0.OII*CLOGITI-T+CMPLX(.5~ALOGI2.~3.14159),O.OI 
J = I  

70 TERM = CIJI/DEN 
C TEST REAL AND IMAGINARY pARTS OF LNIGAMMAIZ)) SEPARATELY FOR 
C CONVERGENCE. IF Z IS RFAL SKIP IMAGINARY PART OF CHECK. 

IF(ABS(REALiTERM)/REAL(SUM)).GE.TOL) GO TO 80 
IFIY.EQ.O.OI GO TO 100 
IFIABS(AIMAG(TERM)/AIMAG(SUM)),LT.TOL) GO TO I00 

80 SUM = SUM + TERM 
J = J + l  

DEN = OEN~TT 
C TEST FOR NONCONVERGENCE 

I F ( J . E O . I 2 I  GO TO 90 
GO TO 70 

C STIRLING=S SERIES DID NOT CONVERGE, PRINT ERROR MESSAGE AND 
C PROCEDE, 
90 W R I T E ( I O U T , 9 1 0 I  Z 
C RECURSION RELATION USED TO OBTAIN LNIGAMMAIZ)) 
C L N ( G A M M A I Z I I  = LNIGAMMA(Z+N) / (Z~(Z+I ) * . . .~ (Z+M- I ) ) )  
C = LN(GAMMA(Z÷M)-LNIZ)-LNIZ+I) - . . . -LNIZ÷M-I)  
100 IFIM.EO.O) GO TO 120 

O0 II0 I = I,M 

A = CMPLXI I~ I . - I . ,O .O I  
llO SUM = SUM-CLOG(Z+A) 
C CHECK TO SEE IF REFLECTION FORMULA SHOULD BE USED 
120 IF IREFLFK)  GO TO 130 

SUM = CLDG(PI/CSIN(PI~ZI)-SUM 
Z = ( I . 0 , 0 . 0 )  -Z 

130 CGAMMA = CEXP(SOM) 
RETURN 

900 FDRMAT(IXt2EI4*7,10X,49HARGUMENT OF GAMMA FUNCTION IS TOO CLOSE TO 
I A POLE) 

910 FORMAT(44H ERROR - STIRLINGIS SERIES HAS NOT CONVERGED/14X~4HZ = , 
12E14.7) 
EN[) 
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