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Identiication of the family to which a malware specimen belongs is essential in understanding the behavior of the malware

and developing mitigation strategies. Solutions proposed by prior work, however, are often not practicable due to the lack of

realistic evaluation factors. These factors include learning under class imbalance, the ability to identify new malware, and

the cost of production-quality labeled data. In practice, deployed models face prominent, rare, and new malware families.

At the same time, obtaining a large quantity of up-to-date labeled malware for training a model can be expensive. In this

paper, we address these problems and propose a novel hierarchical semi-supervised algorithm, which we call the HNMFk

Classiier, that can be used in the early stages of the malware family labeling process. Our method is based on non-negative

matrix factorization with automatic model selection, that is, with an estimation of the number of clusters. With HNMFk

Classiier, we exploit the hierarchical structure of the malware data together with a semi-supervised setup, which enables us

to classify malware families under conditions of extreme class imbalance. Our solution can perform abstaining predictions, or

rejection option, which yields promising results in the identiication of novel malware families and helps with maintaining

the performance of the model when a low quantity of labeled data is used. We perform bulk classiication of nearly 2,900 both

rare and prominent malware families, through static analysis, using nearly 388,000 samples from the EMBER-2018 corpus. In

our experiments, we surpass both supervised and semi-supervised baseline models with an F1 score of 0.80.

CCS Concepts: · Security and privacy→Malware and itsmitigation; ·Computingmethodologies→ Semi-supervised

learning settings; Non-negative matrix factorization; Topic modeling.

Additional Key Words and Phrases: malware, malware families, non-negative matrix factorization, semi-supervised, hierarchi-

cal, model selection, class imbalance, abstaining prediction, reject-option

1 INTRODUCTION

The objective of malware detection is to identify a given ile as benign or malicious, typically by using its run-time

behavior (dynamic malware analysis) and/or static information (static malware analysis). In contrast to malware

detection, malware family classiication assumes that any given sample is already known to be malicious, and we

want to know which family it belongs to [58]. New malware samples are created regularly by threat actors by
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various techniques, which create new versions of already existing malware specimens with identical functionality

[58]. Malware analysts regularly go through large quantities of malware samples to understand if a new specimen

in fact belongs to a previously known malware family. Classifying a new malware sample into a family can reduce

the number of iles analysts need to examine, and aid in understanding the behavior of the malware; this is in

turn helpful for estimating the severity of the threat, developing mitigation strategies, and building datasets [58].

The tools that can aid in malware detection and classiication are especially signiicant now as recent reports

point out that malware is one of the most frequent and costly cyber threats [15].

Approximately half a million new malware specimens are reported daily, which drives the increased utilization

of Machine learning (ML) based automated security systems to combat malware [41, 49, 55, 56, 65]. However,

the adoption of ML-based solutions against malware threats has been relatively slow despite the cost savings

[36]. Shortcomings in the existing solutions are perhaps contributing to this problem. The majority of prior

research for malware family classiication, over the past two decades, has not suiciently accounted for core

evaluation criteria in their work including learning under class imbalance, ability to identify new malware, and

the cost of production-quality labeled data [54, 58]. For example, the majority of ML solutions for malware family

classiication are unrealistically limited to identifying the top most populous families. This results in reports of

excellent performance on evaluation metrics that do not generalize to the real world, limited as they have been to

the analysis of łeasyž malware. At the same time, semi-supervised learning in the malware classiication ield has

not been widely explored despite its potential beneits [58]. With the ever-growing quantity of malware, attacks,

and their complexities there is an urgent need to improve existing solutions and their operational architectures

to drive the increased adaption of ML-based solutions.

In this work, we introduce a novel semi-supervised algorithm, named Hierarchical Non-Negative Matrix

Factorization with automatic model selection Classiier (or HNMFk Classiier). The HNMFk Classiier classiies

Windows Portable Executable (PE) format malware specimens (e.g. from the EMBER-2018 dataset) into families

using static malware analysis-based features [9]. Our method performs bulk classiication where the known

samples are used as a reference against the unknown specimens when performing hierarchical clustering, resulting

in a model with only an inference process (i.e. no training). Therefore, in comparison to the traditional ML

models which have separate training (slow) and prediction (fast) steps, our solution can be used outside the

real-time environments, such as early stages in the labeling process of the malware. HNMFk Classiier performs

hierarchical clustering using Non-Negative Matrix Factorization (NMF) with automatic model selection (NMFk)
[3, 4, 6, 7, 23ś25, 53], which helps us determine whatever hierarchical structure exists among the malware

specimens. With a semi-supervised setting, we obtain the ability to perform abstaining predictions (i.e. predicting

"I do not know"), in addition to answering either "Yes" or "No". Speciically, our model incorporates a reject option,

where it abstains from making a prediction (reject). Abstaining predictions aid in detecting novel malware, reduce

the need to include all malware families during factorization to achieve good generalizability to new malware,

and help our model to maintain its performance with a low quantity of labeled data.

In our experiments, we irst use a small subset of the dataset (in a setup that does not relect the real world)

to understand the efects of using diferent hyper-parameters in our model, conduct ablation studies, and to

observe the performance of our model with a decreasing quantity of labeled data. During our (more realistic)

larger scale experiments, we use 2,898 classes of malware families (numbering more than 388,000 samples) with

extreme class imbalance, and while including novel unknown malware samples during classiication. Our method

surpasses the supervised baseline models XGBoost and LightGBM [21, 42]. We further extend these baselines

with the SelfTrain algorithm to create strong semi-supervised models, which our approach still outperforms

[73]. We also achieve better classiication results compared to our Multilayer Perceptron (MLP) baseline [33].

To the best of our knowledge, we are the irst to perform malware family classiication over the EMBER-2018

corpus under realistic conditions such as the inclusion of the rare and novel families during our experiments, and
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our target number of family classes is around 29 times more than the previous work with the largest number of

classes [35]. Our contributions include:

• Introducing a novel semi-supervised hierarchical bulk classiier, the HNMFk Classiier, that can assist

analysts early in the malware family labeling process.

• Identifying Windows malware families using static malware analysis-based features, speciically using

malware meta-data and PE header features, under extreme class imbalance conditions.

• Utilizing abstaining prediction to enable our model to help identiication of novel malware families, and

maintain its accuracy as the amount of labeled data decreases.

• Achieving higher F1 scores compared to the baseline supervised and semi-supervised learners which prior

work used to report their benchmarks when classifying malware families in the EMBER-2018 corpus.

The remainder of the paper is organized as follows: we provide a summary of related work in Section 2. Section

3 includes a description of NMF (Section 3.1), automatic model selection with NMFk (Section 3.2), and hierarchical

NMF (Section 3.3). We then introduce our HNMFk Classiier in Section 3.4. Section 4 describes the dataset and the

features used in our experiments, pre-processing of the features, and the preparation of the experiments. Section

5 showcases our experimental results including a performance analysis over a subset of the data and how our

model preserves accuracy under the low quantity of labeled data in Section 5.1. Our results when classifying the

malware families under realistic conditions, and comparison to the baseline models, are shown in Section 5.2. We

justify the parts of our methodology with ablation studies in Section 5.3. Before concluding, we list potential

areas of future work to explore in Section 6.

2 RELATED WORK

Malware classiication is a challenging task, and the quantity and complexity of malware continues to increase

rapidly. This makes the ML-based malware classiication an important ield of study. Raf et al. surveys over 200

research articles on ML-based malware analysis [58]. This survey of the ield emphasizes that the standard ML

model evaluation technique, where the dataset containing malware families are divided into training and test sets,

is lawed when it comes to the malware family classiication problem in the real-life case, since previously unseen

malware families will continue to appear. To this end, they recommend that the ability to perform abstaining

prediction can assist analysts in identifying novel malware. However, prior work has not widely studied this

open problem area for malware classiication. In our experiments, we evaluate the performance of our solution

by including a set of malware families that were not present in the known set. Additionally, Raf et al. discuss

the challenges in malware data gathering, and the expensive and time-consuming process of ile labeling. Their

survey found that semi-supervised solutions are not yet fully explored, although they can help when faced with

only a small quantity of labeled data. In support of this inding, we show that our solution continues to maintain

its performance with the decreasing amount of labeled malware in our small-scale experiment in Section 5.1.

Finally, Raf et al. also point out the relatively small amount of prior work on the problem of class imbalance. This

issue was also emphasized by Nguyen et al. since much prior work has unrealistically evaluated their solutions

over the top most populous malware families [54]. Our study addresses this problem by including both the rare

and prominent classes of malware families during the large-scale experiment in Section 5.2.

Several previous works have looked at malware family classiication, however, they tend to use only the most

common malware families, did not consider novel malware families, or used manually balanced datasets when

reporting their results [1, 11, 27, 32, 40, 47, 63, 71, 75]. In contrast, when comparing to the baseline models, we

report our results when classifying specimens belonging to the whole ensemble of malware families present in

the EMBER-2018 dataset with an imbalanced setup which also includes novel unknown specimens (Section 5.2).

This setup allows our results to be more like what malware analysts would see in the real world. Several prior

works also considered class imbalance, however, they still targeted a small number of top malware families, and
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rare specimens are mapped to a single "others" class [47, 50]. To the best of our knowledge, the most realistic

and the largest malware family classiication work was done by Huang et al. [35], which targeted 100 classes

where two of the classes include the one for benign samples and another for the rare specimens. This type of

setup, although it considers class imbalance, limits the classiication capabilities to only a handful of malware

families. In contrast, we do not map the rare specimens into a single class, but rather recognize all 2,898 malware

families as individual classes. Furthermore, supervised methods used in prior work often poorly generalize to rare

specimens as also pointed out by Loi et al [47]. Loi et al. reports that their false positives are heavily represented

by the families collected within the "others" class due to the supervised method’s inability to learn the patterns of

these families from a rare number of specimens. We use a semi-supervised approach, which has an added beneit

of improved generalizability and ability to work with a low quantity of labeled data compared to the supervised

models. A number of these prior works did consider benign-ware as a class in their analysis [47, 50, 71], but

we assume the samples are already known to be malware and perform only malware family classiication. We

summarize the mentioned prior work and show how they compare to our research in Table 1.

Table 1. The comparison of prior and our work in dataset size, number of classes, consideration of imbalanced data and

novel malware families, and the method used. Custom refers to the proprietary datasets, or the custom build datasets by the

authors.

Reference Dataset(s) Dataset Size Num. Classes Imbalanced Data Novel Malware Method

Ours EMBER-2018 [9] 388k 2,898 ✓ ✓ Semi-supervised

[35] Custom 6.5m 100 ✓ Ð Supervised

[40] Drebin [10] 5k 40 Ð Ð Supervised

[71] Malimg [52] & Custom 9k & 10k 25 & 10 Ð Ð Supervised

[11] Custom 10k 14 ✓ Ð Unsupervised

[75] EMBER-2018 [9] 750k 21 Ð Ð Supervised

[47] EMBER-2017 [9] 500k 21 ✓ Ð Supervised

[63] VirusShare [26] 2.7k 12 Ð Ð Supervised

[1] Malimg [52] 21k 9 Ð Ð Supervised

[50] Custom 115k 8 ✓ ✓ Supervised

[32] Custom 31k 5 Ð Ð Supervised

Non-negative Matrix Factorization, or NMF, has also been applied to the malware/benign-ware classiication

problem. Ling et al. derive similarity scores of structural patterns extracted with NMF to detect metamorphic

malware (malware with the capability to modify its code during run-time) using static analysis features [46]. In

their experiments, they choose a ixed number of components for NMF where the number of components � is

selected as � (� +�) < ��. A single application of NMF misses the patterns hidden in malware sub-groups, and

using a ixed number of components can result in missing important information (under-itting) or including noise

(over-itting) in the results. Unlike Ling et al., we perform malware family classiication by applying hierarchical

NMF to discover the sub-groups and utilize NMFk as a heuristic to determine the number of components or

clusters. Prior work outside the malware analysis ield has demonstrated that hierarchical NMF can be used

to achieve good clustering of the data [29, 66]. Gillis et al. show that using rank-two factorization at each step

(i.e. split the data into two at each stage, � = 2) yields good clustering results when applied with hierarchical

NMF [29]. We use hierarchical rank-two NMF in our ablation studies and show that estimating the number of

components via NMFk produces better classiication results, although extracting two clusters at each factorization

does yield good classiication results that surpass our baseline models.
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3 METHODS

Our work draws on prior advances in standard and hierarchical NMF methods, and automatic model selection. In

this section, we give a brief summary for each of these methods, then we introduce our HNMFk Classiier. The

summary of the notations used throughout the paper is provided in Table 2.

Table 2. Summary of the notation styles used in the paper.

Notation Description

� Scalar

x Vector

X Matrix

XXX Tensor

x� �th element in the vector

X� � Entry located on row � and column �

X�: �th row

X:� �th column

XXX::� �th slice along the third dimension

XXX:::� �th slice along the fourth dimension

XXX
name Superscript name used as an identiier

∗ Dot product

3.1 Non-negative Matrix Factorization (NMF)

NMF is an unsupervised learning method based on a low-rank matrix approximation. NMF represents an observed

non-negative matrix,X ∈ R�×�+ , as a product of two (unknown) non-negative matrices,W ∈ R�×�+ , andH ∈ R�×�+ ,

where usually � ≪�,�. Here, � is the number of samples, and� is the number of features. This approximation

is performed via non-convex minimization with a given distance, | |...| |���� , constrained by the non-negativity of

W and H: min| |X� � −
∑�

�=1 W��H� � | |���� . NMF relies on a generative statistical model predetermined by the choice

of the distance | |...| |���� . For example, if the Frobenius norm is chosen as a distance, NMF can be treated as a

Gaussian mixture model [28]. If KL-divergence is chosen, we have a generative Poisson model [19], equivalent to

latent Dirichlet allocation under uniform Dirichlet prior [22]. In both cases, the number of latent features of the

superimposed components is equal to the size of the small dimension � , and NMF minimization is equivalent to

the expectation-minimization (EM) algorithm. In this probabilistic interpretation of NMF, the observables are the

rows of X generated by latent variables, the rows of the matrix W, with weights (the basis patterns), represented

by the columns of matrix H. Thus, each row X�: of X is generated from a probability distribution with mean

X�: =
∑�

�=1 H��W� :.

3.2 Automatic Model Selection: NMFk

The NMF minimization requires prior knowledge of the latent dimensionality, � (the number of latent features),

which is usually unavailable. It is known that choosing too small a value of � leads to a poor approximation

of the observables in X (under-itting), while if � is chosen to be too large, the extracted features are not easily

explainable because they also it the noise in the data (over-itting). In other words, choosing � is equivalent to

estimating the number of parameters of the model, which is a diicult and a well-known problem.

In general, the existing partial solutions of this problem are heuristic. Among these solutions is Automatic

Relevance Determination (ARD) [48] which was irst modiied for Principal Component Analysis [14], and then
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for NMF [51, 64]. Another approach is based on an assumed stability of the NMF solution, and was proposed to

identify the number of stable clusters in the observational matrix X [18]. A recent model selection technique,

called NMFk [3], has been successfully used to decompose the largest collection of human cancer genomes [6].

NMFk integrates classical NMF-minimization with custom clustering and Silhouette statistics [61], and combines

the accuracy of the minimization and robustness/stability of the NMF solutions, when a bootstrap procedure

(i.e., generation of a random ensamble of slightly perturbed input matrices) is applied to estimate the number

of latent features, see for example, [7]. Recently, NMFk was applied to a large number of synthetic datasets

with a predetermined number of latent features, and it was demonstrated its superior performance of correctly

estimating � in comparison to the other known heuristics [53]. The superior performance of NMFk method as

a model selection was also demonstrated in identifying mutational genome signatures in a large set of cancer

genomes, both in practice [5] and in large set of synthetic cancer genomes with predetermined number of latent

features [37]. In addition, it was shown that NMFk performs better than spherical k-means and other methods

for topic extraction [69]. Our numerical experiments here demonstrate that NMFk performs better than the

predetermined k=2 case. Therefore, we use NMFk as the core factorization method with automatic model selection

needed to extract the right clusters of malware, after the NMF dimension reduction. In this work, we are making

extensive use of NMFk, and for completeness we provide the pseudocode for it in Algorithm 1 and a description

of it, as follows:

Algorithm 1 NMFk(X, ���� , ���� ,� , ����_�ℎ� = 0.8)

Require: : X ∈ R�×�+ , ���� , ���� , �

1: for � in ���� to ���� do ⊲ Start and end process for NMFk

2: for � in 1 to� do ⊲ Num. of Perturbations on each k

3: XXX::� = Perturb(X) ⊲ Resampling X to create a random ensemble

4: WWW::�� ,HHH::�� = NMF(XXX::� ,k)

5: end for

6: WWW
���=[WWW::�1,. . . ,WWW::�� ] andHHH���=[HHH::�1,. . . ,HHH::�� ]

7: Ŵ̂ŴW, Ĥ̂ĤH = customCluster(WWW��� ,HHH��� )

8: W̃̃W̃W::� = medians( Ŵ̂ŴW)

9: HHH
���

::�
= NNLS(X,W̃::� ) ⊲ Column-wise regression of H with W̃ and column of X

10: s� = clusterStability(Ŵ̂ŴW)

11: errk = reconstructErr(X,W̃::� , H
���

::�
) ⊲ Column-wise reconstruction error for L-statistics

12: end for

13: err���=[err���� ,. . . ,err���� ]

14: ���� = PvalueAnalysis(err��� ,���� ,���� ,s� ,����_�ℎ� ) ⊲ Predicted k value using Wilcoxon

15: return W̃̃W̃W::���� ,HHH
���

::����
, ����

Ensure: � = ���� ,W̃̃W̃W::���� ∈ R
�×�
+ ,HHH

���

::����
∈ R�×�+ , X = W̃̃W̃W::���� HHH

���

::����

(1) Resampling: Based on the observable matrix, X, NMFk creates an ensemble of � random matrices,

[XXX::�]�=1,...,� , with means equal to the original matrix X. Each one of these random matrices XXX::� is

generated by perturbing the elements of X by a small uniform noise, such that:XXX� �� = X� � + � , for each

� = 1, ..., � , where � is the small error.

(2) NMF minimization: We use the Frobenius norm-based multiplicative updates (MU) algorithm [44] to explore

diferent numbers of latent features, � , in an interval [����, ���� ], for each one of the generated� random

matrices.
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(3) Custom clustering: For each � ∈ [����, ���� ], NMF minimizations of the� random matrices, [XXX::�]�=1,...,� ,

results in � pairs [WWW::�� ;HHH::��]�=1,...,� . Further, NMFk clusters the set of the � ∗ � latent features, the

columns of WWW::�� . The NMFk custom clustering is similar to k-means, but it holds in each one of the

clusters exactly one column from each of the� NMF solutions. This constraint is needed since each NMF

minimization gives exactly one solutionWWW::�� with the same number of columns, � . In the clustering, the

similarity between the columns is measured by the cosine similarity metric.

(4) Robust W and H for each � : The medians of the clusters, W̃̃W̃W::� , are the robust solution for each explored � .

The corresponding mixing coeicientsHHH
���

::�
are calculated by regression of X on W̃̃W̃W::� .

(5) Cluster stability via Silhouette statistics: NMFk explores the stability of the obtained clusters, for each � , by

calculating their Silhouettes [61]. Silhouette statistics quantify the cohesion and separability of the clusters.

The Silhouette values range between [−1, 1], where −1 means an unstable cluster, while +1 means perfect

stability.

(6) Reconstruction error: Another metric NMFk uses is the relative reconstruction error, � = | |X −XXX
���
::�

| |/| |X| |,

where XXX���
::�

= W̃̃W̃W::� ∗HHH
���

::�
, which measures the accuracy of the reproduction of initial data by a given

solution and the number of latent features � .

(7) L-statistics: NMFk uses L-statistics [68] to automatically estimate the number of latent features. To calculate

L-statistics for each � , NMFk records the distributions of the column reconstruction errors, e� = ∥X:� −

XXX
���
:��

∥/∥X:� ∥; � = 1, ...,�. L-statistics compares the distributions of column errors for diferent � by a

two-sided Wilcoxon rank-sum test [34], which evaluates whether two samples are taken from the same

population.

(8) NMFk inal solution: The number of latent features, ���� , is determined as the maximum number of stable

clusters corresponding to a good accuracy of the reconstruction. The Wilcoxon rank-sum test determines

the p-value of the given ���� . NMFk is "looking" for a distribution of the column errors such that the next

distributions (each one with bigger �) are statistically the same, and the model is itting the noise. The

L-statistics used in conjunction with the condition that the minimum Silhouette be greater than 0.80. The

threshold of 0.80 is selected to place the predicted ���� prior to a steep decline in the minimum Silhouette.

The corresponding W̃̃W̃W::���� andHHH
���

::����
are the robust solutions for the low-rank factor matrices.

We provide a sample Silhouette score and relative error plot produced by NMFk for two factorizations, to

demonstrate the selection of � , in Figure 1. The presented NMFk framework estimates the latent feature count

based on two criteria, namely a high minimum Silhouette score, and a low relative reconstruction error, which

corresponds to a stable NMF solution. The number of features with lower minimum Silhouette scores correspond

to overlapping clusters or scattered clusters. On the other hand, the relative reconstruction error decreases

monotonically with the number of latent features. This decrease is more prominent up to the estimated number of

topics followed by a reduced change in the error. As observed in Figure 1, with the further increase in the number

of latent features past the estimated � , there is a sudden decline in the Silhouette score due to the over-itting

phenomenon as the model tends to it noise.

3.3 Hierarchical Non-Negative Matrix Factorization

The NMF and Hierarchical NMF [31, 43] strategies have been used successfully for document clustering [20, 72],

and topic modeling [30, 62, 70]. Here we use NMFk to compute clusters of malware specimens by applying it

in a hierarchical manner, where successive node expansions focus on the subset of X obtained from the parent

cluster. Here the clusters are determined using the columns ofW viaW-clustering that cluster the specimens’

coordinates in the reduced space (i.e. the rows of the matrixW) [68], a topic we address in Section 3.4. When

going deeper in the graph towards the leaves, we investigate diferent characteristics of the specimens in the

same group, and achieve better separability of the malware specimens.
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X(n,615) X(d,615)

Fig. 1. Sample Silhouete and relative error graphs obtained from NMFk is shown for the matrices X(�,615) and X(�,615)

which are formed using 1,000 malware specimens from 10 families. X(�,615) consist of samples extracted from a single cluster

ater the the first NMFk procedure on X(�,615) .

Let us consider a simple example from hierarchical document clustering. We assume three well-curated clusters

in a text corpus of news articles about sports, technology, and the economy. If we cluster these documents with

NMFk andW-clustering we can obtain three "super" clusters for sports, technology, and the economy. We can

further divide the cluster containing sport articles into sub-topics, such as soccer, football, tennis, skiing etc. by

applying additional iterations of NMFk. In our analysis, we choose to select back the specimens corresponding

to each one of the super clusters and apply NMFk again. This is the idea behind the hierarchical approach, and

consequently a hierarchical approach is used in the HNMFk Classiier to further separate more heterogeneous

clusters based on the known (or labeled) malware instances.

In our semi-supervised setting, the experimental setup contains data with labeled (known) and unlabeled

(unknown) malware specimens. This allows us to choose a scoring function, not based on information gain

(such as normalized discounted cumulative gain from information retrieval [39]) [43] or a ixed threshold using

the number of specimens in the cluster [31] to determine which node to take further. Instead, we use a cluster
uniformity score that measures the stability of the cluster, based on the known specimens in the cluster, as the

node expansion criteria for a cluster. We will further explain how we calculate the cluster uniformity score in

Section 3.4. In general, the application of NMFk to semi-supervised data will place into each of the inal clusters

both labeled and unlabeled malware specimens. This allows us to continue to build the hierarchical graph until

the further expansion of a particular node is stopped if no unlabeled or labeled samples are present in this node,

or if the cluster uniformity score calculated based on the known samples passes the provided threshold.

We provide an example visualization of the latent factors obtained from NMFk with a hierarchical setting in

Figure 2. Here, we apply dimensionality reduction using t-SNE [67] to each latent factorW to plot the clusters.

Each point in the embedding of W is colored based on the family to which the specimen belongs. Here the

clusters are expanded until all the samples in the cluster belong to a single class. The t-SNE visualization show

how the hierarchical clusters of malware families are formed, and how the clusters become more homogeneous

as we perform additional applications of NMFk.
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Fig. 2. The path of the hierarchical graph formed by the NMFk is shown using 1,000 malware specimens containing a total

of 10 malware families. Ater each factorization, the clustering is visualized by reducing the dimensions ofW using t-SNE.

Dashed arrows are used to indicate the existence of an another sub-tree from the node. Since we are obtaining ����� subsets

of specimens from current X at each stage, � > � ≥ � ≥ � ≥ � > � ≥ � ≥ � > � ≥ ℎ.

3.4 HNMFk Classifier

In this section, we describe how our NMFk based hierarchical bulk classiier works. Our model recursively

analyzes the known and unknown specimens, factorizing only the subset of data from the previous cluster at

each iteration.

The hyper-parameters of our model are the hyper-parameters needed for NMFk, and the cluster uniformity

threshold � . The user speciies the maximum number of iterations for NMF, number of perturbations, the error

rate, and the range to search for the � heuristic. When performing classiication, HNMFk Classiier is provided
with the data matrix X ∈ R�×�+ , where � is the number of malware samples and� is the number of features,

which includes both the known and unknown specimens that we want to perform inference on. We also provide

a vector y containing the labels for each specimen. The �th sample, where 1 ≥ � ≥ �, has the family label

y� ∈ {−1, 1, 2, . . . ,�} for a dataset with � classes. Notice that the unknown specimens are labeled with −1.

Our algorithm proceeds with the irst factorization, given X, y, the speciied NMFk hyper-parameters, and

cluster uniformity threshold � as input. After NMFk identiies the number of clusters ���� , we obtain the latent

factorsW ∈ R�×�
���

+ and H ∈ R�
��� ×�

+ . HNMFk Classiier usesW latent factor to perform clustering, which we

call W-clustering. Here each � sample is assigned to one of ���� clusters by taking the maximum value along the

second axis:

cluster(�) = argmax
0≤ �≤����

(W� � ) (1)

where cluster(�) returns the cluster assignment of a given sample � . If a cluster � , where � ∈ {1, 2, . . . , ���� }, does

not contain any known samples, all the unknown specimens in the cluster � are predicted abstaining. If a cluster

� only has known specimens, we do not proceed with the samples in that cluster further, as there are no more

unknown specimens to label. On the other hand, if a cluster � has a mix of known and unknown samples, we

calculate the uniformity of the cluster based on the known specimens. Our cluster uniformity score is deined by
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the fraction of the most dominant class present in the cluster �:

� �
=

|max (������) |

|������ |
(2)

where� � is the cluster uniformity score for the cluster � , |������ | is the number of known samples in the cluster,

and the numerator is the number of samples that belongs to the most dominant known class in � .� � speciies

how uniform the given cluster � is based on the labeled data.

If the cluster uniformity score � � is more than the threshold � , then we proceed to assign unknown specimens

family labels in a semi-supervised fashion. That is, all the unknown samples are predicted to be the most dominant

class in the cluster based on the known specimens (max (������)). If, however, the cluster uniformity score is less

than the threshold � for a given cluster � , we form a new X
′
∈ R

|� |×�
+ that only contains the malware specimens

present in that cluster (both known and unknown). Finally, X
′
is factorized again with NMFk. In the proceeding

NMFk, � search range selected to be [1, ���� ] with the step-size of 1. The above procedure is repeated until all the

unknown samples are classiied. In this setting, our leaf nodes in the hierarchical graph are the positions where

at least one of the following exit conditions are met: no known specimens in the cluster (abstaining prediction),

no unknown specimens are in the cluster (nothing to classify), or� � ≥ � is true and we classify all samples in the

cluster in a semi-supervised manner. The aforementioned procedure is summarized in Algorithm 2 and Figure 3.

X::1
Featur e 1

Featur e 1

Featur e 2 Featur e 3

Begin with  
Mode 1  

Unfolding

Wopt

Hopt

Cluster  
malwar e families

cluster quality >
threshold?

Subset in X corr esponding to
samples in the cluster

pr edict the unknown  
based on the known  

?

1

2

3

kopt
?

?

?

 

for each        clusters kopt

No

NMFk

Y es

Curr ent X

argmax  
along second

axis of W
If no known 

samples in the cluster , 
pr edict abstaining

X::2
X::3 

X

1

2 3

4

5
X::1 X::3 X::2

Fig. 3. Overview of the HNMFk Classifier framework. NMFk is wrapped around an hierarchical (or recursive) semi-supervised

architecture. Begin with the initial data X (1). Use NMFk to estimate the number of clusters and obtain the latent factor

W (2). Extract the clusters via argmax along the second axis ofW (3). For each cluster, perform abstaining prediction if no

known samples are present in the cluster, or predict the unknown specimens in a semi-supervised manner if the cluster

uniformity score is satisfied (4). Form the new matrices X with the specimens from the clusters that does not meet the cluster

uniformity threshold (5). For each new X, apply NMFk again (2).

In summary, looking at Figure 3 we can conclude that HNMFk Classiier is a wrapper to the NMFk algorithm,

which exploitsNMFk’s ability to estimate the number of latent components, and performs factorization recursively

to create a hierarchical graph where the semi-supervised classiication is done at each leaf node. When our model
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Algorithm 2 HNMFk Classiier(X, y, ���� , ���� , � , � ) - Semi-supervised Hierarchical Classiier

1: known_samples= argwhere(y != -1)

2: unknown_samples = argwhere(y == -1)

3: W, H, ���� = NMFk(X, ���� , ���� , � )

4: clusters = argmax(W, axis=1)

5: for cluster in clusters do ⊲ iterate over ���� clusters

6: known_samples_c = intersect(known_samples, cluster)

7: unknown_samples_c = intersect(unknown_samples, cluster)

8: if len(known_samples_c) == 0 then ⊲ no unknown samples to make prediction

9: continue

10: end if

11: if len(unknown_samples_c) == 0 then ⊲ abstaining prediction

12: continue

13: end if

14: class_counts = count(known_samples_c)

15: cluster_uniformity = max(class_counts) / sum(class_counts)

16: if cluster_uniformity < t then

17: X_new = X[cluster] ⊲ subset in X, samples in the cluster

18: y_new = y[cluster] ⊲ labels for the samples in the cluster

19: ���� = min(����+1, min(X.shape))

20: y[cluster] = HNMFk_Classiier(X_new, y_new, ���� , ���� , r, t)

21: else

22: classify_label = max(class_counts) ⊲ dominant known class in the cluster

23: y[unknown_samples_c] = classify_label

24: end if

25: end for

26: return y

inishes classiication, any unknown samples that are left with the label −1 are said to be abstaining predictions,

i.e. the model does not know their classes or rejects to make a prediction.

We also provide a toy example illustrating how HNMFk Classiier works in Figure 4. In this igure, we have a

matrix X ∈ IR9 x 3 (9 malware samples with 3 features). After factorizing X with NMFk, we get the latent factors

W ∈ R9×�
���

+ and H ∈ R�
���×3

+ , with the estimated number of clusters ���� = 4. Samples 5 and 6 are assigned to

cluster 2. Sample 6, an unknown sample, is classiied as family �. Cluster 3 contains only 2 unknown samples.

Therefore, we classify samples 2 and 7 as abstaining. Cluster 1 contains the sample 1 (family �), 3 (family �), and

8 (unknown). Because this cluster has samples belonging to two diferent families (assuming that our cluster

uniformity threshold is � = 1, i.e. threshold is met only when all the known samples in the cluster belongs to

a single class), we create a new subset with these samples, such that X
′
∈ R3×3+ . We apply NMFk again on X

′
,

which estimates ���� = 2, and sample 8 is classiied as family �. When all samples are predicted, the computation

is complete.

4 DATASET

Collection of malware data has challenges such as copyright issues, labeling diiculty, and security precautions.

Therefore, compared to other ML ields with abundant data (such as text and images), the malware identiication
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Fig. 4. A toy demonstration of how HNMFk Classifier operates in a hierarchical fashion, and how the semi-supervised

classification of the unknown malware specimens is performed via the clustering on the latent� matrices using the known

samples.

community has lacked a benchmark dataset suicient to enable reproducibility and comparison of new methods.

To address this issue, Anderson et al. released the EMBER-2018 dataset [8], which we use in our experiments.

Since its release, EMBER-2018 has become a popular benchmark dataset for ML-based malware analysis methods.

EMBER-2018 is a collection of PE header and meta-data information extracted from 1.1 million benign and

malicious Microsoft Windows Portable executable binaries, out of which 800,000 have labels. The family labels in

the dataset are obtained using AVClass. Therefore, classes are weakly labeled as AVClass contains inaccuracies in

family labeling [76]. AVClass does not ilter out all generic family names, it can be inconsistent in its use of aliases

for malware families, and errors in any antivirus signatures can efect AVClass’ accuracy. Despite the imperfect

labeling, AVClass is currently the best available option for obtaining a large quantity of malware family labels.

Throughout our analysis, we only use the malware instances for which AVClass could determine a family label.

The inal dataset includes a default train and test split, where the training set consists of over 289,000 specimens

from 2,730 malware families, and the test portion of the dataset includes around 99,000 samples from 916 malware

families. The details of the dataset sample and family statistics are shown in Table 3. In this paper, we refer to the

training set as known data, and testing set as unknown data in the context of semi-supervised learning and bulk

classiication (i.e. we use the known data as a reference to label the unknown data).

One advantage of using the EMBER-2018 dataset is that the distribution of the family classes resembles

real-world cases. The known portion of the dataset contains malware families that do not exist in the unknown
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Table 3. EMBER-2018 dataset default train and test set split and malware family and sample counts are displayed. Novel

families for the known (or train) set are the families that only exist in the training set. The novel families for unknown (or

test) set are the families that only exist in the test set (i.e. we do not see these families during inference, or we do not have

known specimens for reference). Min Family and Max Family columns show the minimum and maximum number of samples

exist for a family in the dataset. For instance, there are malware families with single sample in both known and unknown

sets. Samples/Family column shows the average number of samples per family. We used all the malware instances with a

family label from EMBER-2018, which contains the rare and novel families, making the classification task complex.

Set Families Samples Novel Families Novel Samples Min Family Max Family Samples/Family

Known (Train) 2,730 289,026 1,982 11,157 1 16,689 105.87

Unknown (Test) 916 99,216 168 363 1 19,260 315.53

portion of the data. Similarly, the unknown set contains novel malware families, or the malware families that do

not exist in the known set. This is also shown in Table 3. 1,982 of the malware families, making over 11 thousand

samples, are not seen again in the unknown set. There are 168 novel families, forming 363 samples, that we

do not have any reference of in the known set. At the same time, malware family classes in EMBER-2018 are

extremely imbalanced. Figure 5 shows the distribution of the malware families for both the known and unknown
set. For instance, there are malware families that consist of single samples, including the specimens from the

novel families (which can also be seen at the right side of Figure 5 with red-dashed line). In fact, the majority of

the malware families in the dataset consist of less than 10 samples. We next proceed to the pre-processing of the

features to remove the outliers.

Malware Family
100
101
102
103
104

C
ou

nt

Set
Known
Unknown

Fig. 5. Distribution of the malware families in EMBER-2018 dataset. Count of family classes are shown in log scale for both

the known and unknown set. Both the known and unknown sets has an extremely imbalanced classes of malware families,

and the unknown set of contains set of novel malware families.

4.1 Pre-processing

During our experiments, we represent each ile in the dataset as a collection of features from both general ile

meta-data as well as PE header information. Each of the features are concatenated horizontally to form the inal

features matrix. This is equivalent to forming an 11 dimensional tensor, with the dimensions Samples × Feature 1
× Feature 2 × ... × Feature 10, and taking the mode-1 unfolding of the tensor. Speciically, we use the following

features:

(1) byte histogram: a vector of size 256 where each entry represents the number of times a certain byte occurs

in the ile.

(2) byte entropy: normalized joint distribution of entropy and byte values.

(3) print table distribution: distribution of characters obtained from printable strings with minimum of 5

consecutive printable characters in the binary.

(4) strings entropy: measure of randomness of printable strings present in the malware.
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(5) number of strings: number of printable strings.

(6) ile size: size of the binary in bytes.

(7) number of exports: number of functions exported by the malware.

(8) number of imports: number of functions imported by the malware.

(9) code size: size of .text or code section of the PE header in bytes.

(10) number of sections: number of sections present in PE header.

Our dataset consists of heterogeneous features containing outlier values. Since NMF is susceptible to outliers

(extremely large or small values in the columns of initial data), see for example [74], we normalize the features

used in our analysis. This normalization prevents the larger values in the columns of the initial data to bias/skew

the NMF optimization procedure by favorizing some of the columns in X, see details in Ref.[37]. Note that the

case of outliers afecting NMF optimization is distinct from the characteristics makeup of a novel malware family:

After the normalization, the novelty of the malware belonging to unknown (or never seen before) family relects

on the shape of its latent signature (the columns of matrixW). A possible classiication of malware families based

on their latent signatures will be discussed elsewhere.

In our normalization, Z-scores are used to remap the outliers that are more than or less than 3 standard

deviations away from the mean. These outliers are mapped to the point that is exactly 3 standard deviations

away from the mean. In Figure 6, we show the histogram of feature values for pre- and post-processing. The

normalization was most prominent among the features byte histogram, byte entropy, and print table distribution.
Finally, we scale the values to be between 0 and 1.
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Fig. 6. Static malware analysis based features from PE header files and malware meta-data used in the analysis shown before

and ater the mapping of the outliers, defined by � = 3 statistical score, for both training (known specimens) and test sets

(unknown specimens).

4.2 Preparation of the Experiments

We conduct our experiments using two diferent dataset setups. With the irst setup, we use a subset of data

utilizing only the top populous malware families to perform performance analysis of our method under diferent

conditions in Section 5.1. This setup is also used in our ablation studies in Section 5.3. We use a smaller subset of

the data to reduce the computation time of our experiments and to enable testing of our method under number

of diferent settings. Although this setup allows us to gain insights into how our method works, it does not yield

results that can generalize to real-world. Therefore, in Section 5.2 we test our method under realistic conditions

and compare to other baseline models.

In our small dataset setup, we chose the 10 most populous malware families in the entire dataset (adposhel,

emotet, fareit, installmonster, ramnit, sality, vtlooder, xtrat, zbot, zusy). We then randomly sample the dataset to

extract 1,000 specimens for each family without replacement, forming a small subset of the dataset with 10,000

samples. We form 10 of these random subsets, and apply our experiments on each of the 10 subsets, to see if
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our results are statistically signiicant. In our large scale analysis, we used all of the malware families present in

the EMBER-2018 dataset, and use the default split present in EMBER-2018 to separate the known and unknown

specimens.

4.3 System Configuration

We ran the experiments on a High Performance Computing (HPC) cluster named Dracarys, located at the Los

Alamos National Laboratory (LANL). Dracarys uses the Intel(R) Xeon(R) Platinum 8280M processor, which is

a cascade lake architecture operating at a clock speed of 2.70GHz. There are 28 physical CPU cores which are

multi-threaded to 56 threads providing 112 virtual processors, and total physical RAM of 2.71 TeraBytes (TBs).

The system also comprises 3 NVIDIA Quadro RTX8000 GPUs with VRAM memory of 48 GigaBytes (GBs) each.

5 EXPERIMENTS

We perform experiments targeting the following tasks: analyzing the performance of our model with diferent

hyper-parameters and, as the amount of known malware decreases, and testing our method under realistic

conditions. We compare our results to those obtained by the baseline models, taking advantage of the abstaining

prediction ability to detect novel malware, and using ablation studies to justify the need for the parts of our

model.

5.1 Methodology Performance Analysis

In this section we look at the performance of our method for diferent cluster uniformity thresholds, unknown

malware fractions, and NMFk hyper-parameter selections. Similar to prior work, we use a small subset of the

dataset (an unrealistic data setup), as described in Section 4.2, during our analysis in this section. Each experiment

is run 10 times on diferent random subsets of the dataset, to verify if the results are statistically signiicant using

hypothesis testing. To this end, we report our results with a 95% conidence interval (CI) for each experiment.

5.1.1 Cluster Uniformity Threshold. We use a threshold value � , which measures how many labeled (known)

specimens are needed to claim that all unknown specimens in this cluster are uniform, that is, from the same

labeled malware family. This threshold allows us to determine whether to proceed further with clustering of the

current data in the node with additional applications of NMFk. The left side of Figure 7 shows the percent of
abstaining predictions, execution time, and the maximum graph depth (maximum number of edges between the

root and a leaf node) as the cluster uniformity threshold � is changed. As � increases, the percent of abstaining

predictions rises, since the solution needs increasingly cleaner clusters. This reduces the number of specimens

that we can classify with high certainty, and results in a higher number of abstaining predictions. The maximum

graph depth also increases, alongside the higher execution time, since achieving cleaner clusters requires an

increased number of separations. We show how the F1 score changes for each malware family in Figure 8. As

the cluster threshold increases, the performance of the model improves for each malware family, and the results

become more certain, as indicated by the narrowing conidence interval. Although the computation time increases,

a higher threshold yields better inference results. Therefore, during the experiments in Section 5.2 we set the

threshold to be � = 1.

5.1.2 Unknown Malware Fraction. The process of labeling malware is expensive [58]; therefore, semi-supervised

learning can help with obtaining good performance results when using a low quantity of labeled data. We

investigate this by looking at how our model performs as the unknown malware fraction increases. Figure

9 displays the average F1 score for each malware family as the unknown malware fraction rises. Since our

model can perform abstaining predictions, as the unknown malware fraction increases, the performance of the

model remains relatively stable. A lesser number of known malware samples means that our model to have a
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Fig. 7. HNMFk Classifier’s performance for abstaining prediction, execution time, and the maximum depth is shown as the

cluster uniformity and the unknown malware fraction changes.
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Fig. 8. The performance of HNMFk Classifier is measured with the F1 score as the cluster uniformity threshold is changed.

Each experiment is performed on 10 diferent random subset of the EMBER-2018 dataset, average is ploted with the 95%

confidence interval.

lesser number of references that can be used to classify the unknown samples. This results in higher number of

abstaining predictions which in return helps with maintaining the performance (this can be seen at the right top

of Figure 7). In Figure 9, we can also see that two malware families, Sality and Ramnit, yield lower F1 scores in

comparison to the other families. Possible reasons for diminished performance on Sality and Ramnit include the
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fact that they are both łile infectorsž (a category of malware which copies its code into other executables). It

may be more diicult to classify this type of malware using the selected features, since some of the original PE

metadata/ile contents may not be changed when a ile is infected.
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Fig. 9. The performance of the HNMFk Classsifer, measured with F1 score, remains relatively stable for each malware family

as the unknown malware fraction increases (or the number of known samples decreases). Each experiment is run on 10

random subset of the dataset.

The average F1 scores obtained by the HNMFk Classiier with the changing unknown specimen fraction are

also compared to the vanilla baseline models in Figure 10. Here, the unknown malware fraction point where the

HNMFk Classiier begins to outperform a baseline model is shown with a vertical line. We use the supervised

baseline models XGBoost and LightGBM, and a semi-supervised model LightGBM+SelfTrain. These traditional ML

models do not have the ability to perform abstaining predictions. Therefore, they rely on an abundance of labeled

data to perform well during testing. The HNMFk Classiier surpasses the average F1 score of LightGBM+SelfTrain
at 0.64 unknown malware fraction. XGBoost is outperformed at unknown malware fraction 0.94, and LightGBM
at 0.97. We also note that these models continue to perform relatively well as the known malware fraction drops

because we are using a small and balanced subset of the dataset which contains the most populous malware

families, making the problem easier. We will be further analyzing the performance of the baseline models and

our approach with a realistic dataset setup in Section 5.2. The experiments under real-world like setup will reveal

that the performance diference between the baseline models and our method is even greater.

5.1.3 NMFk Hyper-parameter Analysis. In addition to the cluster uniformity threshold hyper-parameter of the

HNMFk Classiier, we also provide our model with the hyper-parameters of NMFk. In Figures 11 and 12 we show

that changes in the number of perturbations and NMF iterations do not have a large efect on the performance of

our method. Figure 13 displays the change in F1 score as the maximum � is increased for the � search of irst

NMFk. In this experiment, we choose the � step-size of 1, and begin searching at � = 1. The performance of the

model continues to increase as the predicted � is approached. After the estimated ���� is reached, the F1 score

does not change, since we will always choose the same ���� in the irst NMFk. These experiments indicate that

we need to choose the initial � search range to be large enough to obtain a good initial clustering.

5.2 Malware Family Classification Under Realistic Conditions

Now that we have gained understanding into how our method performs with diferent hyper-parameters and

settings, we will next use the more realistic data setup to show how our approach fares far better under real-world

constraints. When ML-based malware defense and analysis solutions are used outside the research environment,
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Fig. 10. Average F1 score when classifying 10 malware families is compared to other baseline models as the fraction of

unknown malware increases. Each experiment is run on 10 random subset of the dataset.
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they often encounter extreme class imbalance. At the same time, analysts do not have access to all possible

malware samples, and threat actors continuously develop new pieces of malware. Therefore, ML-based systems

are exposed to malware that has never been seen before. To this end, we analyze the performance of our method

under a real-world like setting by exposing our model to prominent, rare, and novel malware families. In this

section, we utilize all the malware families present in the EMBER-2018 dataset to conduct our experiment, as

described in Section 4.2. The performance of HNMFk Classiier is compared to the supervised baseline models

LightGBM, XGBoost, and MLP. We also create strong semi-supervised versions of LightGBM and XGBoost by
wrapping them with SelfTrain. During the hyper-parameter tuning of LightGBM and XGBoost, we use the Python
package Optuna to get the hyper-parameter suggestions for each trial [2], and for the construction of an optimal

neural net-based classiier, MLP, we employed a HyperBand Tuner as an accelerated tuning algorithm [45]. The

hyper-parameters of LightGBM was tuned using a stratiied 20% subset of the training set over 65 trials and 3-fold

stratiied cross-validation. We used a stratiied subset of the dataset because using the entire dataset for this model
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resulted in each trial taking approximately 2 days during tuning (it would have taken approximately 100 days to

complete 50 trials for tuning). We used the objectivemulticlass with a 500 maximum number of iterations, and gbdt
boosting type. The following hyper-parameters were tuned (ranges are shown in parenthesis): min_data_in_leaf
(5-100 in log scale), max_depth (2-7), bagging_freq (0-5), bagging_fraction (.5-1.0), learning_rate (.001-.1 in log

scale), and feature_fraction (.1-.7). For LightGBM, we have also tried the recommended hyper-parameters from

the EMBER-2018 dataset [8], which did not yield better results when compared to our best trained model.

XGBoost was tuned using the entire dataset over 25 trials with stratiied 3 fold cross-validation. We used

maximum boosting rounds of 500 with the multi-class softmax objective function. The following hyper-parameters

were tuned: max_depth (2-10), eta (.003-0.5 in log scale), subsample (.2-.7), rounds (10-300), colsample_bytree
(.3-1.0), colsample_bylevel (.5-1.0), and lambda (.1-2.0).

The HyperBand framework has been widely used in the deep learning community for estimating the optimal

parameters in a short amount of time. HyperBand is a variation of random search with explore-exploit theory to

estimate best conigurations within a given allocated time. The hyper-parameters utilized for model selection of

the MLP were the number of depths of the neural network (1-10), number of nodes on each layer (1024-16000),

optimization algorithm (SGD, Adam, RmsProp), and the learning rate (1e-4, 1e-1). We employed early stopping

criteria on validation loss to avoid over-itting.

Since our method’s performance does not change dramatically with the change in hyper-parameters as shown

in Section 5.1.3, we choose the hyper-parameters without tuning with 20 perturbations, 500 number of iterations,

and k-range to be 1 through 100 with the step-size of 1 for the irst iteration. We did verify, by inspecting the

plot of the initial NMFk (similar to the Figure 1), that the estimated number of components was less than 100. If

it had been close to 100, we would have re-started our experiment with a higher range. Finally, we chose the

cluster uniformity threshold � to be 1, i.e. each cluster should have a single known class to be able to perform

semi-supervised classiication.

Table 4 compares our method to the baseline models. The HNMFk Classiier, a semi-supervised solution,

outperforms all of the state-of-the-art models, which we used as baselines, with an F1 score of 0.80. Our approach

outperforms the supervised methods, with the potential beneit of better generalizability and the need for less

labeled data, due to the semi-supervised setting. We also surpass the strong semi-supervised version of XGBoost
with SelfTrain. Notice that these baseline models were used to report benchmarks by prior studies. However, our

experiment reveals the performance of these models under realistic conditions.

Table 4. HNMFkClassifier is compared against the state-of-the-art supervised classifiers. HNMFkClassifier, a semi-supervised

method, surpasses the previous state-of-the-art models, which are supervised, in malware family classification. Weighted

F1, Precision, and Recall scores are provided for multi-class classification with imbalanced data. The F1 scores of HNMFk

Classifier and HNMF2 Classifier does not include the abstaining predictions (score includes the specimens where the

prediction was not rejected)

.
Model F1 Precision Recall Tune Time Train&Predict Time

HNMFk Classiier (semi-supervised) 0.80 0.85 0.77 5.77 days 7.91 days

HNMF2 Classiier (semi-supervised, ablation study) 0.77 0.82 0.74 5.77 days 2.83 days

XGBoost+SelfTrain (semi-supervised) 0.76 0.78 0.73 2.06 days 4.72 hours

XGBoost (supervised) 0.74 0.77 0.72 2.06 days 2.93 hours

LightGBM (supervised, tuned on stratiied subset) 0.65 0.74 0.64 11.09 days 3.02 hours

MLP (supervised) 0.72 0.76 0.71 1.02 days 30 minutes

LightGBM+SelfTrain (semi-supervised) 0.64 0.69 0.61 11.09 days 9.44 hours

Additionally, our method utilizes abstaining predictions (rejection to make a prediction), which other baseline

models do not perform. We provide the metrics for the abstaining predictions in Table 5. The models that do
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not perform abstaining predictions always predict the novel specimens incorrectly since these samples belongs

to a new class. The proposed ability to predict novel samples as "other" may still require the model to have

seen the given specimen in the "other" class, which is not as efective as rejecting to make a prediction, which

incorporates uncertainty in the model. In addition, as pointed out by Loi et al. [47], predicting specimens as

"other" class often results in false predictions due to supervised models’ common inability to learn patterns from

a small number of samples. Our method novel ability to reject making a prediction yields promising results in

identiication of novel malware. Interestingly, around 22% of the malware which we saw in the known set were

also predicted as abstaining by the HNMFk Classiier. This 22% we referred as false-abstaining, since the specimens

here belongs to classes that we had labels for. Importantly, around 42% of the novel malware (i.e. the malware

which we did not see in the known set), are classiied as abstaining. This 42% is referred as true-abstaining since

our model did not have a reference label for these specimens in the known set. We also note that both true and

false abstaining predictions would be caused by signatures or patterns extracted by NMFk being distinct from the

labeled samples. Hence, it is possible that a detailed investigation and utilization of latent signatures can help to

reveal characteristics that difer given specimen from the known samples (similar to the prior work in latent

mutational cancer signatures [5]) and result in improvement of the abstaining predictions, as also shown by the

follow-up work [23].

In Table 5, for completeness, we also provide F1 scores for each baseline that is calculated only of the specimens

that HNMFk Classiier did make a predictions (i.e. it did not abstain). Notice that the F1 scores of our baselines

increase, even surpass our model in some cases, when the rejection to make predictions is not included in the

score calculations. This result points out that the abstained samples are hard to correctly classify since our

baselines yield lower scores when they are included (see the scored reported in Table 4). While the baselines

falsely predicted the families for the harder specimens, HNMFk Classiier rejected to make a prediction and

managed to maintain higher performance.

Table 5. HNMFk Classifier is compared against the state-of-the-art supervised classifiers. The ability of the HNMFk to

discover novel families is shown. F1 - (Non-reject) column shows the F1 scores for the specimens that HNMFk Classifier did

make a prediction on. Not applicable (NA) used at the cells where the case does not apply to the given model. Abstaining

Seen refers to false-abstaining predictions, samples that belong to known classes that were seen in the training set. Diferently,

Abstaining Novel shows the true-abstaining predictions, where the specimen belongs to a class that were not seen before.

Model Abstaining Seen (%) Abstaining Novel (%) F1 - (Non-reject)

HNMFk Classiier (semi-supervised) 22.06 42.70 0.80

HNMF2 Classiier (semi-supervised, ablation study) 16.96 34.16 0.77

XGBoost+SelfTrain (semi-supervised) NA NA 0.81

XGBoost (supervised) NA NA 0.80

LightGBM (supervised, tuned on stratiied subset) NA NA 0.74

MLP (supervised) NA NA 0.79

LightGBM+SelfTrain (semi-supervised) NA NA 0.70

We also apply our ablation study, where the number of cluster selection heuristic is turned of and rank-two

factorization is used (i.e. � = 2 at each node). In table 4, we can see that the HNMF2 Classiier does perform
better than our baseline models. However, the HNMFk Classiier outperforms this method, which points out

that carefully choosing the number of clusters improves the separability and the overall performance during

prediction. HNMF2 Classiier also reduces the percent of abstaining predictions, including the reduced percent of

abstaining predictions on novel malware. We show additional results for ablation study on the automatic model

selection below at Section 5.3.2.
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Finally, note that in Table 4 we have also included the tuning time comparison between the HNMFk Classiier
and the baseline models. The 5.77 days of tuning time listed for HNMFk Classiier comes from our performance

analysis on selecting the cluster uniformity threshold � and understanding the efects of diferent hyper-parameter

values of NMFk. We selected � = 1 for higher performance based on what we learned from the results of our

experiments discussed in Section 5.1.1, and showed that the hyper-parameters of NMFk has a minimal afect on

the model’s performance in Section 5.1.3. Note that the � selection procedure of HNMFk Classiier, which comes

from the NMFk algorithm, is not a hyper-parameter adjustment, but a model selection, which is integrated in

the algorithm [38]; therefore, it is not included in the tuning time. Instead, it is reported as the model training

time. Our method takes about 8 days to complete running, which is signiicantly longer than our baseline models.

In comparison to the traditional ML methods (in our case, the baseline models used in the experiments), our

method is not a fast predictor. Instead, HNMFk Classiier is a bulk-classiication method. The aforementioned 8

days computation time is the total inference time for the HNMFk Classiier. Therefore, our model is not suitable

for real-time solutions, that is, for analysing of a single specimen at the time it comes in the system. Our method

rather can be used for an accurate malware classiication early in the labeling process. We have investigated the

use of latent signatures for a real-time solution in our follow-up work [23].

5.3 Ablation Studies

In our ablation studies we investigate the beneit of performing bulk classiication and carefully choosing the

number of clusters. To this end, during the irst study we change the bulk classiier structure of our approach to

form a more classical model, which we call the HNMFk Classical Classiier. During the second study, we ablate the
automatic model selection heuristic from our method. The small subset of the EMBER-2018 dataset, as described

in Section 4.2, is also used in our ablation studies in this section. As mentioned above, we use the top 10 malware

families in the dataset with 1,000 specimens, each randomly sampled. Each experiment is run 10 times using a

diferent random subset each time.

5.3.1 Bulk Classification. To show that there is a beneit to doing bulk classiication for our methodology, we

compare the performance of the HNMFk Classiier to the HNMFk Classical Classiier, a model that does not

perform bulk classiication. This model also uses the known samples to form the hierarchical graph. We then

predict the unknown samples separately over the hierarchical graph by following the edges, and computing

similarity scores at nodes. For each of the � unknown malware samples, we obtain the cluster assignment by

comparing the features ��: (�th sample) to the rows of the latent factor H using cosine-similarity score:

cluster(�) = argmax
0≤ �≤����

(1 − cosine-distance(H�� ,X�:)) (3)

We follow each sub-clusters, comparing the features vector for the �th sample to H at each step, until we reach a

leaf where we predict the label of the specimen � in a semi-supervised fashion. In Figure 14 we compare the F1

scores obtained from our ablation studies to HNMFk Classiier as the fraction of unknown samples change. From

the igure, it can be seen that performing classiication with HNMFk Classical Classiier yields unstable results,
and our method HNMFk Classiier outperforms this model. This shows that bulk classiication is beneicial in

obtaining stable and accurate inference results.

5.3.2 Determination of the Number of Clusters. The HNMFk Classiier utilizes the estimated number of compo-

nents predicted by the NMFk algorithm to achieve good separability of malware families. For the next ablation

study, we look at the beneit of estimating � , or the number of clusters. During this study, we form another

classiier named the HNMF2 Classiier, based on the previous work of Gillis et al. [29], which chooses � = 2 at

each node, i.e. separate the data into two clusters at each step, until each known sample falls in separate leaf

nodes.
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Fig. 14. The performance of the HNMFk Classifier is compared to the other variants of our method from the ablations

studies, as the fraction of the unknown malware is changed.

In Figure 14, we also provide the results for the HNMF2 Classiier. Choosing � = 2 at each step performs almost

as well as our approach. As also argued in [29], this result points out the beneit of hierarchical setting. Even if

we make a bad separation of the samples due to rank-two factorization, the hierarchical approach will ix the

separations in the proceeding splits. However, although slightly, our model outperforms the HNMF2 Classiier,
which shows that choosing the number of components carefully using a heuristic is beneicial.

6 FUTURE WORK

The HNMFk Classiier has a signiicantly longer process time than the other ML methods which we used for

comparison. The main cause for the increased computation time is the search of the number of clusters. NMFk
performs this search in a sequential manner, where each value of � is tried, one after another. However, each rank

� factorization is independent from one another. Therefore, future work can consider parallelization of this task,

or a distributed version of this task utilizing High-Performance Computing (HPC) environments [12, 13, 16, 17].

Another future work includes the manual analysis of the specimens that fall in each cluster in the graph.

It would be interesting to see which malware families are clustered together as we look at diferent nodes in

the graph. This can help us understand if malware is clustered by type at irst (such as botnet, backdoor, etc.),

and then begin to separate into the families as we continue deeper in the graph. Future work can also include

benign-ware as a class similar to [47, 50, 71].

We can also try to accelerate the computation time for clustering techniques via similarity-based approaches

such as LZJD [57, 60] or BWMD [59] by using theHNMFk Classiier as a pre-processing step to obtain a hierarchical
graph, where we then apply similarity comparisons only in the sub-trees instead of the entire dataset.

7 CONCLUSION

In this paper, we introduced a novel semi-supervised classiier named the HNMFk Classifer, that is capable
of performing accurate bulk classiication of thousands of malware families under extreme class imbalance

conditions using the latent features extracted via NMFk, which is used to perform automatic model selection, i.e.

to estimate the number of clusters. Our method’s ability to perform abstaining predictions allows it to maintain

its accuracy when using a small amount of labeled data and when performing inference over novel malware

families. In our experiments, we classiiedWindows malware using static malware analysis based features.HNMFk
Classifer is compared against the state-of-the-art baseline supervised and semi-supervised solutions, on which

the prior work reported benchmarks, and surpassed their performance under the realistic experiment setting.
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Our new solution can be used to assist reverse engineers and malware analysts in the labeling process of malware

families, outside the real-time environments.
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