
 key insights
	˽ As we move toward a future with trillions

of IoT devices, replacing batteries will
be both prohibitively expensive and
irresponsible.

	˽ Over the past decade, research produced
new energy-efficient programming
languages, compilers, runtime systems,
and architectural designs that enable
real-world applications of batteryless
devices.

	˽ Albeit exisitng work laid a foundation
for batteryless, energy-harvesting
computing, the field is arguably at a stage
where a much bigger leap is needed
for this technology to gain widespread
adoption. We discuss six fundamental
directions we maintain to be crucial for
the field to thrive.

I M AGI N E USI NG A health bracelet that tracks your blood
pressure and glucose level that you do not have to
charge for the next 20 years. Imagine sensors attached
to honeybees helping us understand how they interact
with their environment or bio-absorbable pacemakers
controlling heart rate for 6–8 months after surgery.

Whether submillimeter-scale “smart dust,”25
forgettable wearables, or tiny chip-scale satellites, the
devices at the heart of the future of the Internet of
Things (IoT) will be invisible, intelligent, long-lived,
and maintenance-free. Despite significant progress
over the last two decades, one obstacle stands in the

way of realizing next-generation IoT
devices: the battery.

Batteries provide the convenience
of a reliable energy supply but create
a host of problems. Batteries limit de-
vice lifetime and yield high mainte-
nance costs. As device size continues
to scale down, battery density scaling
has not kept pace. As IoT device appli-
cations demand more computational
capabilities, energy limits lifetime to
weeks or months. Even rechargeable
batteries have a limited lifetime, wear-
ing out after 300–500 charge cycles.

As we move toward a future with
trillions of IoT devices,a replacing
trillions of dead batteries and devices
will be both prohibitively expensive
and irresponsible. A future IoT with
trillions of new battery-powered de-
vices would create an environmental
catastrophe.

Most discarded batteries end up in
landfills—only 5% are recycled. Dis-
carded batteries release toxic fumes
into the air and disperse chemicals
in the soil as they break down. When
batteries are recycled, the process re-
leases contaminants into waterways.7

Batteryless devices and intermittent
executions. During the last decade, and
building on work from the decades pri-
or, research pushed toward a new kind
of system that is pervasively deployed,

a	 https://bit.ly/491LSNE

The
Internet of
Batteryless
Things

DOI:10.1145/3624718

Batteryless, energy-harvesting systems could
reshape the Internet of Things into a more
sustainable societal infrastructure.

BY SAAD AHMED, BASHIMA ISLAM, KASIM SINAN YILDIRIM,
MARCO ZIMMERLING, PRZEMYSŁAW PAWEŁCZAK,
MUHAMMAD HAMAD ALIZAI, BRANDON LUCIA, LUCA MOTTOLA,
JACOB SORBER, AND JOSIAH HESTER

64 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

https://dx.doi.org/10.1145/3624718
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624718&domain=pdf&date_stamp=2024-02-22

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 65

research

Figure 1. (a) Key components, and (b) Charge-recharge cycle.

Micro-Controller
(MCU) Super

Capacitor E
ne

rg
y

M
an

ag
em

en
t

H
ar

ve
st

er

E
nv

ir
on

m
en

ta
l E

ne
rg

y

compute

Send Sense

FRAM

Non-Volatile
Memory

Radio
Inertial

Measurement
Unit (IMU)

Microphone _ Sensor
of Type X

Peripheral

(a) Main components

(b) Charge-recharge cycle

Execution

t1 t2 t3

Off Threshold

On Threshold

Time

S
to

re
d

E
ne

rg
y

but also free from batteries. Like tradi-
tional sensing systems, compute bat-
teryless IoT devices feature sensing,
computing, and communication mod-
ules, as shown in Figure 1a. Instead of
batteries that store chemical poten-
tial energy, batteryless IoT devices use
small capacitors as energy buffers.

As harvested energy is highly vari-
able and unpredictable, and capaci-
tors are small, energy failures are fre-
quent. As energy scarcity is pushed to
an extreme, energy failures become
so frequent that the usual computa-
tion model is no longer attainable.
Batteryless IoT devices thus operate
intermittently, as energy is available.
Intermittent operation may prevent
computation to advance as usual be-
cause energy failures impede progress.

As applications often run on bare
hardware without proper operating sys-
tem support, in the absence of dedicat-
ed solutions for intermittent execution,
a programmer is often blissfully un-
aware of the problems lurking in their
code that may only surface after deploy-
ment. Programs written without con-
sidering intermittent behavior poten-
tially suffer from a multitude of issues.

Restartability and progress. A power
failure clears the device’s volatile state
(main memory, register file), compro-
mising progress not preserved in non-
volatile memory. A batteryless device
must resume execution instead of re-
starting when energy is back.32

Resuming often depends on restor-
ing volatile working states, and a sys-
tem must decide which volatile state
to preserve before an energy failure.
Higher memory preservation overhead
than available energy risks the forward
progress of the program.30

Memory consistency. Systems that
incorporate non-volatile memories
in their architecture risk memory
consistency during intermittent ex-
ecution as operations, especially with
write-after-read (WAR) dependencies,
might re-execute due to power fail-
ures.28,38 As non-volatile memory ma-
nipulation is non-idempotent, mean-
ing that when operations including
WAR dependencies re-execute, they
might leave a different result in non-
volatile memory, producing errone-
ous and inconsistent outputs.

Timeliness. The time between con-
secutive power failures in an intermit-

tent execution can range from hun-
dreds of microseconds to seconds, to
minutes or days, which often cannot
be measured by batteryless systems.12
Without the notion of time, cyber-phys-
ical systems sense redundant data,34
process stale samples,23 and provide
unusable results.24

Peripherals interact with the outside
world and can lead to a variety of errors
in intermittent execution. A power fail-
ure can leave a peripheral device in an
unrecoverable state, requiring periph-
eral recovery actions that depend on
what part of a program was executing
when power failed.6

State of the art. Over the past de-
cade, researchers have addressed these
challenges with advances that help de-
velopers design more sophisticated
and robust applications on batteryless
sensing devices. We have come a long
way with these advances. In recent
years, batteryless devices have been
launched into space,15 have emulated a
Nintendo Game Boy to play Super Ma-
rio Bros,13 have secured and monitored
ancient monuments,1 and have per-
formed image processing using ma-
chine learning.21 Figure 2 illustrates
some of these achievements.

Aided by low-cost microcontrollers,
more efficient solar panels, and new
energy harvesters, the emerging com-
munity around intermittent comput-
ing has developed new architectures
and hardware platforms, as well as
software systems and tools that allow
developers to design, debug, and de-
ploy intermittently powered sensing
devices in new and exciting applica-
tions that operate despite frequent en-
ergy failures.

In this article, we review the re-
search threads that gave birth to in-
termittent computing and articulate
the field’s critical future directions.
Specifically, we provide a guide to the
journey taken in the last decade to lay
the foundation for intermittent com-
puting. Moreover, we discuss open
challenges and future research direc-
tions, particularly as they pertain to
the IoT becoming a sustainable, in-
clusive, and accessible instrument for
societal benefit.

Enabling Batteryless Systems
Batteryless devices enable a unique set
of applications (as shown in Figure 2).

66 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

Figure 2. Left to right: Game Boy;13 Mithraeum of the Circus Maximum;1 nanosatellites;15 and FaceBit11 as example applications employing
the intermittent computing paradigm.

their multiple shortcomings; may it be
to reduce their data-reload overhead
at the time of system restoration8 or
enable them to handle asynchronous
events.40

Programming languages for inter-
mittent systems cannot ignore time
and how it relates to data. Without
custom language support, the appli-
cation code must timestamp data and
perform validity checks before each
access, which complicates program
logic. To this end, task-based systems
have been augmented with timing
constraints on the data generated by
each task.23 A program becomes a di-
rected data-flow graph, where nodes
are tasks and edges define the flow of
data and temporal constraints. Rep-
resenting a program as a task graph
allows developers to directly express
data movement structure and timing
without having to reason about in-
termittent behavior. Formal frame-
works and language support for data
freshness and temporal consistency
further empower developers to ex-
press timing properties in intermit-
tent systems.34

Compilers and software systems.
To support intermittent executions
using existing embedded languages,
such as C and Rust, extensive com-
piler and software support is needed
to provide a way to checkpoint and re-
store the application’s state after each
power failure and to safeguard the
execution from data and peripheral
inconsistencies.

A reactive approach to checkpoint-
ing relies on hardware support: an in-
terrupt is fired to save a single check-
point just before the power runs out.
It is critical for correctness that this

However, to develop such applications,
system support is required to ensure
intermittence-safe execution that al-
lows the programmer to build systems
that maintain memory consistency,
provide timely and accurate output,
and behave as the programmer expects
while making the best use of available
energy. Toward this end, the intermit-
tent computing research community
has developed new energy-efficient
programming languages, compilers,
runtime software systems, and archi-
tectural mechanisms that eliminate
challenges arising due to frequent in-
terruptions, allowing them to focus on
application development.

Here, we provide a whirlwind tour of
the last decade of work on intermittent
computing to address the challenges.

Programming languages designed
for intermittent computing provide ab-
stractions that simplify the program-
mer’s task of addressing progress, con-
sistency, timeliness, and peripherals.

A task-based programming model
allows a programmer to divide appli-
cations into semantically meaningful
execution units, such as sampling a
sensor or sending a packet.28 A task ei-
ther runs to completion or, if interrupt-
ed by a power failure, re-executes after
the power failure. These programming
models and their implementations en-
sure once program execution crosses
a task boundary, non-volatile memory
contains a consistent set of values re-
sulting from the task’s completion.
Tasks have transactional semantics:
the program’s state at a task boundary
is guaranteed to be consistent with the
completed execution of the previous
task. Task-based systems have contin-
uously evolved over the years to resolve

interrupt occurs when the remain-
ing energy is sufficient to checkpoint
every bit of work and that there is no
work done afterward.4 A proactive ap-
proach, instead, allows programmers
to reason about remaining energy and
dynamically capture a checkpoint.
Taking a checkpoint too early wastes
energy after the checkpoint that could
be used to perform meaningful work.
Existing literature in this area focuses
on striking a trade-off between post-
poning the checkpoint as long as pos-
sible; for example, in the hope the en-
vironment provisions new energy, and
anticipating the checkpoint to ensure
sufficient energy is available to com-
plete it.32 Checkpoint operations im-
pose a modest time and energy over-
head and minimizing this overhead
save energy for useful application
work. Code instrumentation tech-
niques have often been employed to
reduce the size of checkpoint data and
dynamically disable them to adapt to
energy conditions.30

Intermittent executions on sys-
tems with mixed volatility or com-
pletely non-volatile RAMs pose ad-
ditional memory consistency threats
due to the re-execution of non-idem-
potent code sections. These data in-
consistencies only manifest when a
power failure occurs between instruc-
tions involved in WAR dependency. A
compile-time analysis can be used to
break such WAR-dependencies in the
program by decomposing code into
idempotent sections and connect-
ing them with checkpoints of vola-
tile state.38 Although WAR-enforced
checkpoints effectively rid the pro-
gram from idempotence violations,
the overhead of such lazy approach

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 67

research

Figure 3. Example evolution of capacitor voltage and active state of two batteryless
devices (top and bottom plot) when attempting to communicate (taken from Geissdoefer
et al.18 Figure 2a.). Both devices need to wait for a long time until they are active within
the same short time window to exchange data. After their encounter, both devices im-
mediately desynchronize again because harvested energy to charge individual storage
capacitors depends on each device’s location.

C
ap

ac
it

or
 V

ol
ta

g
e

[V
]

Time [s]

3.5

3.0

2.5

0.00 0.25 0.50 0.75 1.00 1.25 1.50

3.5

3.0

2.5

Device Active

Device Active Out of Sync AgainEncounter

vested energy to charge the individual
energy storage capacitor depends on
each devices’ location. As a result, two
devices also lose synchronization im-
mediately after an encounter, having
to wait again for a long time until the
next communication opportunity.

Solutions to achieve efficient and
reliable batteryless communication
despite the problem noted here in-
clude batteryless nodes encoding
their current storage capacitor voltage
into bursts of different frequencies
and lengths to inform their neighbors
about their energy levels and adapt
their rendezvous times.36 Another ap-
proach learns capacitor charge pat-
terns of neighboring devices to main-
tain long-running connections across
many consecutive encounters.18 To
break interleaved charging patterns
(see Figure 3), randomly delaying the
wake-up times of batteryless devices
and synchronizing to a common clock
signal, such as powerline flicker, has
been shown to be effective.17 A key
challenge for these approaches is op-
erating over long periods of time at a
large scale.

The intermittent communica-
tions stack also requires support
for network protocol state retention
and connection-oriented communi-
cation, which is a nascent research
area. Devices running standard pro-
tocols may be in any state, such as
connection request or connection es-
tablishment. However, power failures
may lead a device to lose its protocol
state, disrupting communication.
Thus, systems require support for re-
taining protocol state across power
failures without a high penalty for
re-establishing a connection. Recent
work has demonstrated network state
retention for intermittent Bluetooth
communication,14 saving and restor-
ing the Bluetooth state machine state
using non-volatile memory.

Today’s network protocol specifica-
tions are not a good match for inter-
mittent operation. For instance, the
Bluetooth specification forces a con-
nection reset after 32 seconds of inac-
tivity. This is a poor match for intermit-
tent operation as the time needed to
recharge the energy storage capacitor
may be longer than the reset period.
Our call to action for batteryless net-
working is that popular network proto-

machines to be replayed after reboot to
synchronize the peripheral state with
compute unit and recover the state be-
fore the last checkpoint.6

Wireless networking. To enable
batteryless communication, prior
work mainly focused on extremely
low-power solutions based on the
principle of backscatter. Backscat-
ter works by transmitting data as
modulated reflections of an incom-
ing radio signal. Backscatter works
well for batteryless devices because
it consumes very little energy. Back-
scatter shifts the energy-hungry parts
of a radio transmitter (for example,
power amplifier) to an external source
that generates signals for backscat-
tering. As a result, backscatter trans-
mitters may consume only picojoules
per bit, substantially outperforming
the nanojoules-per-bit active radios
transmitting via the same protocol.16
While appealing, backscatter has sev-
eral drawbacks, including reliance on
a costly external source and limited
communication range and through-
put. Therefore, network protocol de-
sign for batteryless systems using
active radios is a promising research
direction. Figure 3 illustrates one of
the fundamental problems, which
also applies to backscatter: Two de-
vices that intend to communicate may
require many charging cycles (up to
hundreds or thousands17) until they
are active within the same time win-
dow (encounter). This is because har-

linearly increases with the number
of WAR dependencies in the code. A
more energy-aware approach, howev-
er, can dynamically disable needless
checkpoints based on direct observa-
tions of the program progress and re-
maining energy.30

Embedded sensing workloads are
most often peripheral bound. Periph-
erals execute asynchronously with
respect to the computing unit. Their
functioning is characterized by their
own states, which are frequently up-
dated due to the execution of I/O in-
structions or the occurrence of exter-
nal events, such as the reception of
a packet. Information on peripheral
states is not automatically reflected in
main memory, neither it may be sim-
ply queried or restored as it is often the
result of non-trivial sequences of com-
mands issued to peripherals and their
answers. If peripheral states are not re-
stored when resuming executions after
a power failure, or this happens with-
out ensuring consistency with respect
to the state of the computing unit, ap-
plications may fail, or forward prog-
ress be compromised. Such peripheral
inconsistency issues are often mod-
eled as safety violations (executions
reach a fail state that is unreachable
in a continuous execution) and live-
ness violations (executions fail to reach
valid states that would eventually be
attained in a continuous execution).6
Solutions to these may include repre-
senting peripherals states using state

68 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

art often defeats the efficient perfor-
mance of each of these techniques
when deployed in a lab or used in isola-
tion. Second, lessons learned from real
deployments point to an acute trade-
off between generality and energy ef-
ficiency once in operation. In a setting
characterized by extreme resource
scarcity, there is not much to waste at
runtime in a quest to support multiple
different application scenarios or di-
verse requirements.

The natural conclusion is that ef-
forts should focus on complete devel-
opment environments that coherently
integrate the necessary techniques;
for example, by combining techniques
ensuring forward progress with pe-
ripheral correctness. Enabling this on
a larger scale requires gaining further
experiences from realistic scenarios,
and possibly exploring new applica-
tion domains.11,15

By the same token, crucial for re-
searchers to be motivated and invest
efforts in this direction is to gain the
proper recognition from academic con-
ferences, journals, and funding bodies
alike. This is arguably and unfortu-
nately not the case right now. We un-
derstand this issue is likely to cross the
boundaries of the specific area at stake,
and impact system research at large.
We also maintain, however, those deep-
ly embedded systems akin to the ones
we discuss here impose even greater ef-
forts in debugging and deploying at the
current prototyping stage.

Correctness. Battery-free systems
must operate correctly and yet, unfor-
tunately, intermittent systems lack a
formal foundation to reason on their
correctness. Correctness guarantees
make new applications possible: medi-
cal applications built around intermit-
tent devices remain infeasible in the
absence of correctness guarantees.
They will produce wrong results or fail
to produce results at all unless an in-
termittent hardware/software system
can be proven correct.

Correctness guarantees may also
make existing applications more effi-
cient or enable better resource usage:
pervasive infrastructure monitoring
sensors and tiny chip-scale satellites
may require more redundantly de-
ployed devices for reliable operation if
each device comes with no correctness
guarantee. But redundancy drives up

parallel intermittent execution sup-
port for data-intensive tasks.

Intermittent systems must adapt
to frequently changing environmen-
tal energy conditions to exploit the
available energy more efficiently.
Maximizing forward progress,2 in-
creasing output performance,24 and
adaptive heterogeneous architecture
(composed of cores with different en-
ergy consumption) are some of the
proposed adaptive architectures to in-
crease efficiency. Timely intermittent
execution23,40 requires low-power time-
keeping12 and accurate voltage mea-
surement circuits.39

Directions For the Future
The previous work laid a foundation
for the next phase of power failure-re-
silient, energy-harvesting computing.
The field is arguably at a stage where
a much bigger leap is needed for this
technology to gain widespread adop-
tion. We discuss six fundamental di-
rections we maintain to be most cru-
cial for the field to thrive.

Deployment matters. IoT systems
are designed and deployed to harvest
accurate and abundant data. How this
is concretely achieved in the absence of
traditional batteries—whether using
a programming system or low-power
hardware—is ultimately immaterial.
What matters is the system’s ability to
act as an efficient interface between
the physical and the digital world. The
field of intermittent computing is in
desperate need of making this a top
priority or the existing body of work
runs the concrete risk of being relegat-
ed to an academic exercise.

Understanding the real-world per-
formance of an intermittently com-
puting IoT system requires measuring
its performance in realistic deploy-
ments. Existing experiences are ex-
tremely limited and mostly the result
of intense one-off efforts. Large-scale
long-term deployments of intermittent
computing technology are rare,1 and
yet provide invaluable insights and di-
rections for future work that are not at-
tainable elsewhere.

First, the few existing efforts reveal
that no single technique among those
we surveyed earlier suffices to build a
fully functional system. The overhead
of combining and integrating dispa-
rate techniques from the state of the

cols, including Wi-Fi, should be modi-
fied to support intermittent operation
(with a minimum of modifications to
the protocol itself). An answer to this
call will make intermittent devices
compatible with existing network pro-
tocols and infrastructure.

Power systems and computer archi-
tecture. The performance of intermit-
tent systems (for example, throughput)
largely depends on the energy storage
capacity, processor and sensor power
consumption, and other architectural
characteristics. To illustrate, though
using a larger capacitor seems like a
solution to address high response time
due to increased power consumption,
large capacitors have longer charg-
ing time, which increases response
time and energy leakage. Checkpoint-
ing overheads heavily depend on the
choice of hardware and architecture,
for example, cache size and volatile
memory size.

To provide support for high-power
consumption while maintaining low
response time, several energy storage
architectures have been proposed over
time. A single large capacitor requires
tasks with low energy demand to wait
to execute until the capacitor is fully
charged despite having sufficient en-
ergy for the task.22 To address this,
re-configurable capacitor banks9 have
been proposed to dynamically select
the active energy storage size based
on the demand of the tasks. Support-
ing the diverse energy requirements
of the peripherals demands dedicated
energy storage for each peripheral pro-
viding energy isolation and reducing
unnecessary energy consumption.22

Non-volatile processors (NVP) have
non-volatile flip-flops and gates which
reduce checkpointing overhead and
leakage power by shutting down idle
systems with fast backup and retention
operations. However, they increase the
power (and area) requirements and in-
crease processing time.29 More highly
optimized von Neumann processors
(for example, with out-of-order execu-
tion) are unlikely to provide a benefit
to intermittent systems because they
trade higher power for higher perfor-
mance and demand more sophisticat-
ed backup policies.

Recent studies presented the in-
termittent inference on batteryless
edge,21,24 which creates a demand for

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 69

research

offer appealingly low power consump-
tion, simple ISAs with widespread
compiler support, and a typical von
Neumann execution model. Unfortu-
nately, these simple von Neumann ar-
chitectures do not offer high-energy ef-
ficiency, making them increasingly the
wrong choice as batteryless systems
perform steadily more computation.

Existing architectures are ineffi-
cient for two main reasons that both
stem from the von Neumann execu-
tion model: instruction supply and
data movement. The instruction’s
fetch and decode consume a large
amount of energy, often entailing
memory accesses.

To execute an operation, a von Neu-
mann core must configure internal
control signals on a per-instruction
basis and move input operands from
and store outputs to a register file or
memory. These overheads of instruc-
tion and data supply consume around
55% of total compute energy.20 When
efficiency matters, this overhead is un-
acceptable.

The future of computing in bat-
teryless devices lies in new computer
architectures that eliminate the over-
heads of von Neumann computing.
For the last decade, computer archi-
tects have improved efficiency through
hardware specialization, for example,
for some machine-learning computa-
tions. Specialized accelerators forfeit
general-purpose programmability but
achieve high efficiency by eliminating
most control overheads. Accelerators
are not likely to be the solution for
most long-lived deployments, due to
their inability to adapt to changing ap-
plication requirements. Additionally,
accelerator-based architectures are not
sustainable because they require new
silicon for each application and the
bulk of a chip’s carbon footprint is in
its manufacturing. Low-power FPGAs
offer reconfigurability but are difficult
to program and do not meet the effi-
ciency of specialized accelerators.

Recently, work on energy-minimal
computer architecture19,20 has devel-
oped new reconfigurable dataflow
architectures implemented in coarse-
grained reconfigurable arrays (CGRAs).
These CGRAs achieve high efficiency
while remaining fully programmable
from high-level languages like C and
Rust. Energy-minimal CGRA archi-

The problem is indeed difficult: bat-
teryless IoT cannot run mainstream se-
curity techniques and protocols with-
out incurring in huge performance
penalties.3 Dedicated hardware sup-
port, such as ARM TrustZone, provides
a steppingstone to address the security
challenge, yet intermittent executions
likely require ad-hoc specialized solu-
tions. A few works37 demonstrate hard-
ware support, porting the guarantees
of fully homomorphically encrypted
computing to low-end embedded de-
vices, possibly including intermittent
ones. How to blend these solutions
with existing intermittent computing
techniques is an open question: the
non-continuous execution flow, which
possibly includes re-executions of non-
idempotent code, creates new prob-
lems for security researchers.

Recent work31 studies how ambient
energy harvesting may be used as an at-
tack vector in intermittent computing.
The authors demonstrate that by ex-
erting limited control on the ambient
supply of energy to the system, one can
create situations of live lock, denial of
service, and priority inversion, without
requiring physical access to a device.
Using machine learning and concepts
of approximate computing, they design
an attack detection technique with
92%+ accuracy and limited run-time
overhead. Much greater efforts are re-
quired, however, to investigate to what
extent energy provisioning may be used
to maliciously drive intermittent execu-
tions and what detection and mitiga-
tion techniques are to be put in place to
counteract these occurrences.

Energy-minimal computer architec-
tures. In designing a computer archi-
tecture for a batteryless system, energy
efficiency is the most important design
concern. Harvesting energy rate limits
device operation if the harvestable in-
put power is substantially lower than
computational operating power. A bat-
teryless system in this operating re-
gime should maximize the amount of
computational work that it does with
its energy, optimizing primarily for
efficiency, rather than focusing on im-
proving performance or reducing oper-
ating power (both of which sometimes
may impose a cost in efficiency. Many
battery-free devices use simple micro-
controllers to compute, (for example,
the Texas Instruments MSP430), which

costs. The solution is to build up the
formal foundations of intermittent
computing to provide formal defini-
tions of correctness. A good starting
point is to use the machinery of pro-
gramming language research to pro-
vide correctness guarantees for inter-
mittently computing software runtime
systems and applications.5,35

Further questions, however, do re-
quire an answer. For example, should
formal correctness models of intermit-
tent operation include models of phys-
ics-based power and energy, arbitrary
peripheral devices, or user behavior
and the operating environment?

Further, what are the formalisms
and semantics models best suited to
express the correctness requirements
developers are interested in, and how
do these possibly enable automated
verification of such requirements?
Each of these variations on the model-
ing problem presents its own challeng-
es and benefits.

One example modeling challenge
that is particularly valuable, yet un-
solved in general, is building a model
of energy consumption for an arbi-
trary region of code. A solution to
this problem allows a programmer
to directly reason about the location
or likelihood of a power failure at a
particular program point. Such a so-
lution also strengthens the link be-
tween supplied power behavior and
program behavior, supporting new
program analyses that help program-
mers understand how energy con-
sumption varies across executions
of their program. Finally, although
power and energy are physical quanti-
ties and vary for reasons outside of the
closed world of software, probabilis-
tic programming languages research
may play an important role in model-
ing such physically influenced, distri-
butional behavior.10

Security. Provided the battery-free
system is proven correct, data inside
and around the system is useless in the
absence of security. Because of their
deeply embedded nature and relation
with the surrounding physical environ-
ment, IoT systems are at risk of security
attacks, and intermittently computing
ones are no exceptions. Rather, extreme
resource constraints and peculiar ex-
ecution patterns increase the attack
surface and enable new attacks.

70 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

issue: the absence of a well-defined,
agreed-upon yardstick to compare the
performance of systems, namely, a set
of benchmarks and the mechanisms
to run them repeatably and at scale.
Despite the performance claims in
several papers, even in the many cases
where these claims are substantiated
by rigorous evaluations, the extent to
which the results for one system hold
in the setup of another is unclear at
best. This situation is not just meth-
odologically flawed from a scientific
standpoint; it also may also have dis-
torting effects on the industrial adop-
tion of research artifacts.

This is a typical hurdle for any field
as it emerges into the mainstream.
First, we need a common, agreed-upon
benchmark against which the perfor-
mance of systems can be measured.
This approach is widespread among
many fields of science, for instance,
applied in testing machine learn-
ing systems for image classification.
A benchmark typically defines input
parameters representative of several
application cases, output metrics
quantifying the performance of the
benchmarked systems, and the re-
quired experimental setup.

In our case, a benchmark might in-
clude harvested energy traces as well as
common computational tasks. Battery-
less system would then produce output
based on the input data, such as the
number of packets in a unit of time. The
harvested energy traces have a special
purpose for testing intermittent com-
puting systems as energy represents a
program input for intermittent com-
puting systems. The specific energy pat-
terns the system is exposed to, for exam-
ple, determine how many interruptions
the program experiences. It is therefore
crucial to collect energy traces that are
both diverse as not to bias the results
towards specific techniques and be able
to exercise the various program paths.
Although in other fields, the availabil-
ity of benchmarks may result in over-
fitting system designs, benchmarks
for batteryless intermittent computing
systems must be varied, broad, and fre-
quently updated.

Second, one needs definitive plat-
forms, tools, datasets, and testbeds,
to enable benchmarks at scale. Bench-
marks without a well-defined (and
easy-to-acquire) hardware platform

tectures implementing ordered data-
flow19,20 consume a few hundred micro-
watts of power and perform hundreds
of billions of operations per second per
watt. The key to the efficiency of these
architectures is that they eliminate vir-
tually all instruction control overheads
and streamline data movement via ef-
ficient on-chip dataflow networks.

The concrete benefits show the
promise of CGRAs to batteryless system
designers. The SNAFU19 architecture
reports efficiency running linear alge-
bra in software that is within a factor of
2–3× of a fixed purpose accelerator im-
plementing the same computation. The
RipTide20 compiler fully automatically
compiles complex DNN inference code
with sparse data and irregular control
flow to a dataflow fabric that runs that
code using 1900× less energy and 146×
less time than a TI MSP430. As soft-
ware programming support improves
and embedded non-volatile memories
become available, reconfigurable data-
flow architectures are a highly appeal-
ing option for batteryless devices.

Another promising direction is
to exploit in-memory processing on
emerging non-volatile memory tech-
nologies to process part or entire
data in situ in memory to accelerate
data-intensive computing tasks in in-
termittent systems, for example, ma-
chine learning and signal processing.
Data backup happens atomically and
immediately in these systems since
they exploit non-volatile memory tech-
nology. For instance, Resch et al.33
presented intermittent computing
on a magnetic tunnel junction-based
computational RAM, a highly energy-
efficient processing element. Despite
its advantages, CRAM programming
is significantly more difficult than
programming our general-purpose
batteryless platforms. Filling the pro-
gramming gap for in-memory process-
ing will bring significant benefits to
intermittent computing.

Foundation experimental infra-
structure. For intermittent computing
to thrive, we argue it is essential to de-
velop a foundational set of infrastruc-
ture: (that is, tools, testbeds, hardware
platforms, benchmarks, and datasets)
enabling a sound scientific investiga-
tion. Unlike other fields of computing
and communications, intermittent
computing is plagued by one major

The future of
computing in
batteryless
devices lies in
new computing
architectures
that eliminate
the overheads
of von Neumann
computing.

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 71

research

Alternative designs are also possible
where, for example, intermittence is
made explicitly visible to program-
mers and users rather than hidden
from them. Striking an effective trade-
off is anything but trivial and likely
requires researchers in intermittent
computing and closely related fields to
let their efforts be influenced by other
disciplines. Major publication venues,
on the other hand, should increasingly
reward multidisciplinary efforts, cre-
ating the incentive required to make
progress in this direction.

Notwithstanding, lowering the bar-
rier to entry for non-trained develop-
ers is thus just half of the story—the
other half is the proper setting of the
user interaction with an intermittently
computing device. Therefore, efforts
should be invested in understanding—
from a technical but also psychologi-
cal perspective—how to develop the
unfolding relationship between users
and intermittently computing devices.
One option, for example, is to let users
merely accept the idea they cannot con-
tinuously rely on a system. Although
simple to realize, this may likely limit
the applicability of intermittent com-
puting (battery-free) technology. A dif-
ferent option is rather to engage the
user in energy provisioning,13 explic-
itly or implicitly; for example, through
some form of reward or “gamification”
of the energy provisioning tasks that
creates an incentive for the user to look
for the right conditions to make the
system continue the work.

Reasoning on this matter cannot be
oblivious to the specific application at
hand. For example, listening to music
on a device that powers off a couple of
times per minute is unacceptable, yet
playing puzzle games on such devices
should be doable and enjoyable.

These devices can go beyond en-
tertainment, to actuating within the
physical environment—for example,
harvesting the action from mechani-
cal motions like door openings and
closing to power sensing and occu-
pancy readings. They could be inte-
grated into a user’s shoe, clothing, or
even prosthetic, where the action of
walking compressed a spring that cap-
tured energy to power strain sensing
and health monitoring for the limb. In
summary, understanding the human-
interaction angle of intermittent com-

are much less useful. Benchmarks
need standard tools and programs to
be able to run, that are both energy
harvesting and power failure aware. To
scale up benchmarking and replicable
science, to enable access to the broad-
er community, and to ease testing and
comparisons, foundational infrastruc-
ture is necessary.

What about the users? No matter
how sophisticated the technology is,
chances are that any system may stop
operating. In an AC power socket-
powered system, this is a rare occur-
rence and is generally considered as a
failure. In a regular battery-powered
system, operation failure is more prob-
able. Nonetheless, users are conscious
of this potential operation stop, they
know how to handle it, and they con-
sider it a part of the system’s lifetime.
In a battery-free IoT system—and es-
pecially an intermittently executing
one—the relationship between the
end user and a device that stops and re-
sumes the execution (even on sub-sec-
ond time scales) is all to be explored.

Development environments like Ar-
duino are now considered major mile-
stones in the development of the IoT.
They enable nontrained programmers
to quickly prototype fully functional
IoT systems and are fundamental
tools for communities that extend well
beyond the borders of traditional com-
puter science and engineering. These
movements are, often and interesting-
ly, a cradle of innovation that builds on
the skills and expertise of people with
diverse backgrounds.

Unfortunately, intermittent com-
puting is very far from such a situation.
A few recent works represent timid at-
tempts at lowering the barrier to en-
try for non-trained people outside of
computer science and engineering.26,27
Instead, using the vast majority of sys-
tems and techniques discussed earlier
requires expertise and skills that not
even every computer engineer is nec-
essarily equipped with—let alone re-
searchers and practitioners outside of
this discipline.

The key question is whether (or how)
to mask the distinctive features of in-
termittent computing. The battery-
free Game Boy,13 for example, takes
a specific stand: users are required
to contribute to energy provisioning
to tame the intermittent executions.

Efforts should
be invested in
understanding—
from a technical but
also psychological
perspective—
how to develop
the unfolding
relationship
between users
and intermittently
computing devices.

72 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

2015). ACM, 575–585; 10.1145/2813885.2737978.
29.	 Ma, K. et al. Architecture exploration for ambient

energy harvesting nonvolatile processors. In
Proceedings of HPCA (Burlingame, CA, USA, Feb. 7–11,
2015). IEEE, 526–537; 10.1109/HPCA.2015.7056060.

30.	Maeng, K., Colin, A. and Lucia, B. Adaptive dynamic
checkpointing for safe efficient intermittent
computing. In Proceedings of OSDI (Carlsbad, CA,
USA, Oct. 8–10, 2018). USENIX, 129–144;
https://www.usenix.org/system/files/osdi18-maeng.pdf.

31.	 Mottola, L., Hameed, A. and Voigt, T. Energy Attacks
in the Battery-Less Internet of Things, 2023;
https://arxiv.org/abs/2304.08224.

32.	 Ransford, B., Sorber, J. and Fu, K. Mementos: System
support for long-running computation on rfid-scale
devices. In Proceedings of ASPLOS (Newport
Beach, CA, USA, Mar. 5–11, 2011). ACM, 159–170;
10.1145/1950365.1950386.

33.	 Resch, S. et al. MOUSE: Inference in non-volatile
memory for energy harvesting applications. In
Proceedings of MICRO (Athens, Greece, Oct.
17–21, 2020). ACM/IEEE, 400–414; 10.1109/
MICRO50266.2020.00042.

34.	 Surbatovich, M., Jia, L. and Lucia, B. Automatically
enforcing fresh and consistent inputs in intermittent
systems. In Proceedings of PLDI (Virtual event,
June 20–25, 2021). ACM, 851–866; 10.1145/
3453483.3454081.

35.	 Surbatovich, M., Lia, L. and Lucia, B. Towards a formal
foundation of intermittent computing. In Proceedings
of ACM OOSPLA 4, (Nov. 2020), 163:1–163:31;
10.1145/3428231.

36.	 Torrisi, A., Yıldırım, K.S. and Brunelli, D. Reliable
transiently-powered communication. IEEE
Sens. J. 22, 9 (May 2022), 9124–9134; 10.1109/
jsen.2022.3158736.

37.	 van der Hagen, M. and Lucia, B. Client-optimized
algorithms and acceleration for encrypted compute
offloading. In Proceedings of ASPLOS (Lausanne,
Switzerland, Feb. 28–Mar. 4, 2022). ACM, 683–696;
10.1145/3503222.3507737.

38.	 van der Woude, J. and Hicks, M. Intermittent
computation without hardware support or
programmer intervention. In Proceedings of OSDI
(Savannah, GA, USA Nov. 2–4, 2016). ACM, 17–32;
https://www.usenix.org/system/files/conference/
osdi16/osdi16-van-der-woude.pdf.

39.	 Williams, H., Moukarzel, M. and Hicks, M. Failure
sentinels: Ubiquitous just-in-time intermittent
computation via low-cost hardware support for
voltage monitoring. In Proceedings of ACM/IEEE
ISCA (Valencia, Spain, June 14–18, 2021), 665–678;
10.1109/ISCA52012.2021.00058.

40.	Yıldırım, K.S. et al. Ink: Reactive kernel for tiny
batteryless sensors. In Proceedings of SenSys
(Shenzhen, China, Nov. 4–7, 2018). ACM, 41–53;
10.1145/3274783.3274837.

Saad Ahmed, Georgia Institute of Technology, Atlanta,
GA, USA.

Bashima Islam, Worcester Polytechnic Institute,
Worcester, MA.

Kasim Sinan Yildirim, University of Trento, Trentino-Alto
Adige, Italy.

Marco Zimmerling, TU Darmstadt, Hesse, Germany

Przemyslaw Pawelczak, Delft University of Technology,
Delft, The Netherlands.

Muhammad Hamad Alizai, Lahore University of
Management Sciences, Lahore, Pakistan.

Brandon Lucia, Carnegie Mellon University, Pittsburgh,
PA, USA.

Luca Mottola, Politecnico di Milano, Italy.

Jacob Sorber, Clemson University, Clemson, SC, USA.

Josiah Hester, Georgia Institute of Technology, Atlanta,
GA, USA.

© 2024 Copyright held by the owner/author(s).

OOPSLA (Amsterdam, The Netherlands, Oct. 30–Nov.
4, 2016). ACM, 514–530; 10.1145/2983990.2983995.

9.	 Colin, A., Ruppel, E. and Lucia, B. A reconfigurable
energy storage architecture for energy-harvesting
devices. In Proceedings of ASPLOS (Williamsburg,
VA, USA, Mar. 24–28, 2018). ACM, 767–781;
10.1145/3296957.3173210.

10.	 Collin, A. and Lucia, B. Termination checking and task
decomposition for task-based intermittent programs.
In Proceedings of CC (Vienna, Austria, Feb. 24–25,
2018). ACM, 183:1–183:31; 10.1145/3178372.3179525.

11.	 Curtiss, A. et al. Facebit: Smart face masks platform.
ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 4
(Dec. 2021), 151:1–151:44; 10.1145/3494991.

12.	 de Winkel, J. et al. Reliable timekeeping for
intermittent computing. In Proceedings of ASPLOS
(Lausanne, Switzerland, Mar. 16–20, 2020). ACM,
53–67; 10.1145/3373376.3378464.

13.	 de Winkel, J. et al. Battery-free game boy. ACM
Interact. Mob. Wearable Ubiquitous Technol. 4, 3
(Sept. 2020), 111:1–111:34; 10.1145/3411839.

14.	 de Winkel, J. et al. Intermittently-powered bluetooth
that works. In Proceedings of MobiSys (Portland,
OR, USA, Jun. 25–Jul. 1, 2022). ACM, 287–301;
10.1145/3498361.3538934.

15.	 Denby, B. and Lucia, B. Orbital edge computing:
Nanosatellite constellations as a new class of
computer system. In Proceedings of ASPLOS
(Lausanne, Switzerland, Mar. 16–20, 2020). ACM,
939–954; 10.1145/3373376.3378473.

16.	 Ensworth, J.F. and Reynolds, M.S. Every smart phone
is a backscatter reader: Modulated backscatter
compatibility with bluetooth 4.0 low energy devices.
In Proceedings of RFID (San Diego, CA, USA, Apr. 15–
17, 2015). IEEE, 78–85; 10.1109/rfid.2015.7113076.

17.	 Geissdoerfer, K. and Zimmerling, M. Bootstrapping
battery-free wireless networks: Efficient neighbor
discovery and synchronization in the face of
intermittency. In Proceedings of NSDI (Renton, WA,
USA Apr. 12–14, 2021). USENIX, 439–455; https://
www.usenix.org/system/files/nsdi21-geissdoerfer.pdf.

18.	 Geissdoerfer, K. and Zimmerling, M. Learning to
communicate effectively between batt ery-free
devices. In Proceedings of NSDI (Renton, WA, USA,
Apr. 4–6, 2022). USENIX, 419–435; https://www.
usenix.org/system/files/nsdi22-papergeissdoerfer.pdf.

19.	 Gobieski, G. et al. Snafu: An ultra-low-power,
energy-minimal cgra generation framework and
architecture. In Proceedings of ISCA (Valencia, Spain,
Jun. 14–18, 2021). ACM/IEEE, 1027–1040; 10.1109/
ISCA52012.2021.00084.

20.	 Gobieski, G. et al. Riptide: A programmable energy-
minimal dataflow compiler and architecture. In
Proceedings of MICRO (Chicago, IL, USA, Oct. 1–5,
2022), ACM; 10.1109/MICRO56248.2022.00046.

21.	 Gobieski, G., Lucia, B. and Beckmann, N. Intelligence
beyond the edge: Inference on intermittent
embedded systems. In Proceedings of ASPLOS.
(Providence, RI, USA, 2019). ACM, 199–213;
10.1145/3297858.3304011.

22.	 Hester, J., Sitanayah, L. and Sorber, J. Tragedy of
the coulombs: Federating energy storage for tiny,
intermittently-powered sensors. In Proceedings of
SenSys (Seoul, South Korea, Nov. 1–4, 2015). ACM,
5–16; 10.1145/2809695.2809707.

23.	 Hester, J., Storer, K. and Sorber, J. Timely
execution on intermittently powered batteryless
sensors. In Proceedings of SenSys (Delft, The
Netherlands, Nov. 6–8, 2017). ACM, 17:1–17:13;
10.1145/3131672.3131673.

24.	 Islam, B. and Zygarde, N.S. Time-sensitive on-device
deep inference and adaptation on intermittently-
powered systems. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 3 (Sept. 2020), 82:1–82:29;
10.1145/3411808.

25.	 Kahn, J.M., Katz, R.H. and Pister, K.S.J. Next century
challenges: Mobile networking for “smart dust.” In
Proceedings of MobiCom (Seattle, WA, USA, 1999).
ACM, 271–278; 10.1145/313451.313558.

26.	 Kortbeek, V. et al. Bfree: Enabling battery-free sensor
prototyping with python. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 4 (Dec. 2020), 135:1–111:39;
10.1145/3432191.

27.	 Kraemer, C., Guo, A., Ahmed, S. and Hester, J.
Batteryfree makecode: Accessible programming for
intermittent computing. ACM Interact. Mob. Wearable
Ubiquitous Technol. 6, 1 (Mar. 2022), 18:1–18:35;
10.1145/3517236.

28.	 Lucia, B. and Ransford, B. A simpler, safer programming
and execution model for intermittent systems. In
Proceedings of PLDI (Portland, OR, USA, June 13–17,

puting and a batteryless IoT is crucial,
programmer facing tools for easing
development, interfaces, and designs
that mask or work with power failures,
and novel applications and integration
points for energy harvesting, are all
part of the next phase of research.

Conclusion
Bell’s Law of Computing Classes states
that a lower-priced, and more numer-
ous, computer class emerges approxi-
mately every decade that requires en-
tirely new methods of programming
networking, and interfacing resulting
in wholly new applications. After cell-
phones, IoT appears to be this new
class—the results of the research dis-
cussed in this article point to a way to
scale responsibly with this new class.
The first lights of interesting, enabled
applications have already emerged,
and further research will explore
where long-term, low-cost, massive-
scale sensing is essential including
healthcare (wearable and body sensor
networks), ecology, horticulture, ag-
riculture, infrastructure, and public
utilities monitoring. This Internet of
Batteryless Things is a step toward the
sustainable future of computing. While
it is flourishing, its progress is ham-
pered by major challenges in terms
of testbeds, tools, security, and appli-
cations. There is a need to grow the
community around the vision of inter-
mittent computing and more strongly
advocate its need for the future.	

References
1.	 Afanasov, M. et al. Battery-less zero-maintenance

embedded sensing at the mithræum of circus maximus.
In Proceedings of SenSys (Virtual event, Nov. 16–19,
2020). ACM, 368–381; 10.1145/3384419.3430722.

2.	 Ahmed, S. et al. Intermittent computing with dynamic
voltage and frequency scaling. In Proceedings of
EWSN (Lyon, France, Feb. 17–19, 2020). ACM, 97–107;
https://dl.acm.org/doi/10.5555/3400306.3400319.

3.	 Asad, H.A. et al. On securing persistent state in
intermittent computing. In Proceedings of ENSsys
(Virtual event, Nov. 6, 2020). ACM, 8–14;
10.1145/3417308.3430267.

4.	 Balsamo, D. et al. Hibernus: Sustaining computation
during intermittent supply for energy-harvesting
systems. IEEE Embedded Sys Lett. 7, 1, (Ma.2015),
15–18; 10.1109/les.2014.2371494

5.	 Bohrer, R. and Islam, B. Cyber-physical verification
of intermittently powered embedded systems. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 41, 11
(Nov. 2022), 4361–4372; 10.1109/TCAD.2022.3197541

6.	 Branco, A., Mottola, L., Alizai, M.H. and Siddiqui, J.H.
Intermittent asynchronous peripheral
operations. In Proceedings of SenSys (Virtual
event, Nov. 10–13, 2019). ACM, NY, USA, 55–67;
10.1145/3356250.3360033.

7.	 Church, C. and Wuennenberg, L. Sustainability and
second life: the case for cobalt and lithium recycling,
2019; https://www.iisd.org/publications/sustainability-
and-second-lifecase-cobalt-and-lithium-recycling

8.	 Colin, A. and Lucia, B. Chain: Tasks and channels for
reliable intermittent programs. In Proceedings of

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
batteryless-things

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 73

