
 key insights
	˽ As we move toward a future with trillions 

of IoT devices, replacing batteries will 
be both prohibitively expensive and 
irresponsible.

	˽ Over the past decade, research produced 
new energy-efficient programming 
languages, compilers, runtime systems, 
and architectural designs that enable 
real-world applications of batteryless 
devices.

	˽ Albeit exisitng work laid a foundation 
for batteryless, energy-harvesting  
computing, the field is arguably at a stage 
where a much bigger leap is needed 
for this technology to gain widespread 
adoption. We discuss six fundamental 
directions we maintain to be crucial for 
the field to thrive.

I M AGI N E USI NG A health bracelet that tracks your blood 
pressure and glucose level that you do not have to 
charge for the next 20 years. Imagine sensors attached 
to honeybees helping us understand how they interact 
with their environment or bio-absorbable pacemakers 
controlling heart rate for 6–8 months after surgery.

Whether submillimeter-scale “smart dust,”25 
forgettable wearables, or tiny chip-scale satellites, the 
devices at the heart of the future of the Internet of 
Things (IoT) will be invisible, intelligent, long-lived, 
and maintenance-free. Despite significant progress 
over the last two decades, one obstacle stands in the 

way of realizing next-generation IoT 
devices: the battery.

Batteries provide the convenience 
of a reliable energy supply but create 
a host of problems. Batteries limit de-
vice lifetime and yield high mainte-
nance costs. As device size continues 
to scale down, battery density scaling 
has not kept pace. As IoT device appli-
cations demand more computational 
capabilities, energy limits lifetime to 
weeks or months. Even rechargeable 
batteries have a limited lifetime, wear-
ing out after 300–500 charge cycles.

As we move toward a future with 
trillions of IoT devices,a replacing 
trillions of dead batteries and devices 
will be both prohibitively expensive 
and irresponsible. A future IoT with 
trillions of new battery-powered de-
vices would create an environmental 
catastrophe.

Most discarded batteries end up in 
landfills—only 5% are recycled. Dis-
carded batteries release toxic fumes 
into the air and disperse chemicals 
in the soil as they break down. When 
batteries are recycled, the process re-
leases contaminants into waterways.7

Batteryless devices and intermittent 
executions. During the last decade, and 
building on work from the decades pri-
or, research pushed toward a new kind 
of system that is pervasively deployed, 

a	 https://bit.ly/491LSNE
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Figure 1. (a) Key components, and (b) Charge-recharge cycle.
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but also free from batteries. Like tradi-
tional sensing systems, compute bat-
teryless IoT devices feature sensing, 
computing, and communication mod-
ules, as shown in Figure 1a. Instead of 
batteries that store chemical poten-
tial energy, batteryless IoT devices use 
small capacitors as energy buffers.

As harvested energy is highly vari-
able and unpredictable, and capaci-
tors are small, energy failures are fre-
quent. As energy scarcity is pushed to 
an extreme, energy failures become 
so frequent that the usual computa-
tion model is no longer attainable. 
Batteryless IoT devices thus operate 
intermittently, as energy is available. 
Intermittent operation may prevent 
computation to advance as usual be-
cause energy failures impede progress.

As applications often run on bare 
hardware without proper operating sys-
tem support, in the absence of dedicat-
ed solutions for intermittent execution, 
a programmer is often blissfully un-
aware of the problems lurking in their 
code that may only surface after deploy-
ment. Programs written without con-
sidering intermittent behavior poten-
tially suffer from a multitude of issues.

Restartability and progress. A power 
failure clears the device’s volatile state 
(main memory, register file), compro-
mising progress not preserved in non-
volatile memory. A batteryless device 
must resume execution instead of re-
starting when energy is back.32

Resuming often depends on restor-
ing volatile working states, and a sys-
tem must decide which volatile state 
to preserve before an energy failure. 
Higher memory preservation overhead 
than available energy risks the forward 
progress of the program.30

Memory consistency. Systems that 
incorporate non-volatile memories 
in their architecture risk memory 
consistency during intermittent ex-
ecution as operations, especially with 
write-after-read (WAR) dependencies, 
might re-execute due to power fail-
ures.28,38 As non-volatile memory ma-
nipulation is non-idempotent, mean-
ing that when operations including 
WAR dependencies re-execute, they 
might leave a different result in non-
volatile memory, producing errone-
ous and inconsistent outputs.

Timeliness. The time between con-
secutive power failures in an intermit-

tent execution can range from hun-
dreds of microseconds to seconds, to 
minutes or days, which often cannot 
be measured by batteryless systems.12 
Without the notion of time, cyber-phys-
ical systems sense redundant data,34 
process stale samples,23 and provide 
unusable results.24

Peripherals interact with the outside 
world and can lead to a variety of errors 
in intermittent execution. A power fail-
ure can leave a peripheral device in an 
unrecoverable state, requiring periph-
eral recovery actions that depend on 
what part of a program was executing 
when power failed.6

State of the art. Over the past de-
cade, researchers have addressed these 
challenges with advances that help de-
velopers design more sophisticated 
and robust applications on batteryless 
sensing devices. We have come a long 
way with these advances. In recent 
years, batteryless devices have been 
launched into space,15 have emulated a 
Nintendo Game Boy to play Super Ma-
rio Bros,13 have secured and monitored 
ancient monuments,1 and have per-
formed image processing using ma-
chine learning.21 Figure 2 illustrates 
some of these achievements.

Aided by low-cost microcontrollers, 
more efficient solar panels, and new 
energy harvesters, the emerging com-
munity around intermittent comput-
ing has developed new architectures 
and hardware platforms, as well as 
software systems and tools that allow 
developers to design, debug, and de-
ploy intermittently powered sensing 
devices in new and exciting applica-
tions that operate despite frequent en-
ergy failures.

In this article, we review the re-
search threads that gave birth to in-
termittent computing and articulate 
the field’s critical future directions. 
Specifically, we provide a guide to the 
journey taken in the last decade to lay 
the foundation for intermittent com-
puting. Moreover, we discuss open 
challenges and future research direc-
tions, particularly as they pertain to 
the IoT becoming a sustainable, in-
clusive, and accessible instrument for 
societal benefit.

Enabling Batteryless Systems
Batteryless devices enable a unique set 
of applications (as shown in Figure 2). 
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Figure 2. Left to right: Game Boy;13 Mithraeum of the Circus Maximum;1 nanosatellites;15 and FaceBit11 as example applications employing  
the intermittent computing paradigm.

their multiple shortcomings; may it be 
to reduce their data-reload overhead 
at the time of system restoration8 or 
enable them to handle asynchronous 
events.40

Programming languages for inter-
mittent systems cannot ignore time 
and how it relates to data. Without 
custom language support, the appli-
cation code must timestamp data and 
perform validity checks before each 
access, which complicates program 
logic. To this end, task-based systems 
have been augmented with timing 
constraints on the data generated by 
each task.23 A program becomes a di-
rected data-flow graph, where nodes 
are tasks and edges define the flow of 
data and temporal constraints. Rep-
resenting a program as a task graph 
allows developers to directly express 
data movement structure and timing 
without having to reason about in-
termittent behavior. Formal frame-
works and language support for data 
freshness and temporal consistency 
further empower developers to ex-
press timing properties in intermit-
tent systems.34

Compilers and software systems. 
To support intermittent executions 
using existing embedded languages, 
such as C and Rust, extensive com-
piler and software support is needed 
to provide a way to checkpoint and re-
store the application’s state after each 
power failure and to safeguard the 
execution from data and peripheral 
inconsistencies.

A reactive approach to checkpoint-
ing relies on hardware support: an in-
terrupt is fired to save a single check-
point just before the power runs out. 
It is critical for correctness that this 

However, to develop such applications, 
system support is required to ensure 
intermittence-safe execution that al-
lows the programmer to build systems 
that maintain memory consistency, 
provide timely and accurate output, 
and behave as the programmer expects 
while making the best use of available 
energy. Toward this end, the intermit-
tent computing research community 
has developed new energy-efficient 
programming languages, compilers, 
runtime software systems, and archi-
tectural mechanisms that eliminate 
challenges arising due to frequent in-
terruptions, allowing them to focus on 
application development.

Here, we provide a whirlwind tour of 
the last decade of work on intermittent 
computing to address the challenges.

Programming languages designed 
for intermittent computing provide ab-
stractions that simplify the program-
mer’s task of addressing progress, con-
sistency, timeliness, and peripherals.

A task-based programming model 
allows a programmer to divide appli-
cations into semantically meaningful 
execution units, such as sampling a 
sensor or sending a packet.28 A task ei-
ther runs to completion or, if interrupt-
ed by a power failure, re-executes after 
the power failure. These programming 
models and their implementations en-
sure once program execution crosses 
a task boundary, non-volatile memory 
contains a consistent set of values re-
sulting from the task’s completion. 
Tasks have transactional semantics: 
the program’s state at a task boundary 
is guaranteed to be consistent with the 
completed execution of the previous 
task. Task-based systems have contin-
uously evolved over the years to resolve 

interrupt occurs when the remain-
ing energy is sufficient to checkpoint 
every bit of work and that there is no 
work done afterward.4 A proactive ap-
proach, instead, allows programmers 
to reason about remaining energy and 
dynamically capture a checkpoint. 
Taking a checkpoint too early wastes 
energy after the checkpoint that could 
be used to perform meaningful work. 
Existing literature in this area focuses 
on striking a trade-off between post-
poning the checkpoint as long as pos-
sible; for example, in the hope the en-
vironment provisions new energy, and 
anticipating the checkpoint to ensure 
sufficient energy is available to com-
plete it.32 Checkpoint operations im-
pose a modest time and energy over-
head and minimizing this overhead 
save energy for useful application 
work. Code instrumentation tech-
niques have often been employed to 
reduce the size of checkpoint data and 
dynamically disable them to adapt to 
energy conditions.30

Intermittent executions on sys-
tems with mixed volatility or com-
pletely non-volatile RAMs pose ad-
ditional memory consistency threats 
due to the re-execution of non-idem-
potent code sections. These data in-
consistencies only manifest when a 
power failure occurs between instruc-
tions involved in WAR dependency. A 
compile-time analysis can be used to 
break such WAR-dependencies in the 
program by decomposing code into 
idempotent sections and connect-
ing them with checkpoints of vola-
tile state.38 Although WAR-enforced 
checkpoints effectively rid the pro-
gram from idempotence violations, 
the overhead of such lazy approach 

MARCH 2024  |   VOL.  67  |   NO.  3  |   COMMUNICATIONS OF THE ACM     67



research

Figure 3. Example evolution of capacitor voltage and active state of two batteryless 
devices (top and bottom plot) when attempting to communicate (taken from Geissdoefer 
et al.18 Figure 2a.). Both devices need to wait for a long time until they are active within 
the same short time window to exchange data. After their encounter, both devices im-
mediately desynchronize again because harvested energy to charge individual storage 
capacitors depends on each device’s location.
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vested energy to charge the individual 
energy storage capacitor depends on 
each devices’ location. As a result, two 
devices also lose synchronization im-
mediately after an encounter, having 
to wait again for a long time until the 
next communication opportunity.

Solutions to achieve efficient and 
reliable batteryless communication 
despite the problem noted here in-
clude batteryless nodes encoding 
their current storage capacitor voltage 
into bursts of different frequencies 
and lengths to inform their neighbors 
about their energy levels and adapt 
their rendezvous times.36 Another ap-
proach learns capacitor charge pat-
terns of neighboring devices to main-
tain long-running connections across 
many consecutive encounters.18 To 
break interleaved charging patterns 
(see Figure 3), randomly delaying the 
wake-up times of batteryless devices 
and synchronizing to a common clock 
signal, such as powerline flicker, has 
been shown to be effective.17 A key 
challenge for these approaches is op-
erating over long periods of time at a 
large scale.

The intermittent communica-
tions stack also requires support 
for network protocol state retention 
and connection-oriented communi-
cation, which is a nascent research 
area. Devices running standard pro-
tocols may be in any state, such as 
connection request or connection es-
tablishment. However, power failures 
may lead a device to lose its protocol 
state, disrupting communication. 
Thus, systems require support for re-
taining protocol state across power 
failures without a high penalty for 
re-establishing a connection. Recent 
work has demonstrated network state 
retention for intermittent Bluetooth 
communication,14 saving and restor-
ing the Bluetooth state machine state 
using non-volatile memory.

Today’s network protocol specifica-
tions are not a good match for inter-
mittent operation. For instance, the 
Bluetooth specification forces a con-
nection reset after 32 seconds of inac-
tivity. This is a poor match for intermit-
tent operation as the time needed to 
recharge the energy storage capacitor 
may be longer than the reset period. 
Our call to action for batteryless net-
working is that popular network proto-

machines to be replayed after reboot to 
synchronize the peripheral state with 
compute unit and recover the state be-
fore the last checkpoint.6

Wireless networking. To enable 
batteryless communication, prior 
work mainly focused on extremely 
low-power solutions based on the 
principle of backscatter. Backscat-
ter works by transmitting data as 
modulated reflections of an incom-
ing radio signal. Backscatter works 
well for batteryless devices because 
it consumes very little energy. Back-
scatter shifts the energy-hungry parts 
of a radio transmitter (for example, 
power amplifier) to an external source 
that generates signals for backscat-
tering. As a result, backscatter trans-
mitters may consume only picojoules 
per bit, substantially outperforming 
the nanojoules-per-bit active radios 
transmitting via the same protocol.16 
While appealing, backscatter has sev-
eral drawbacks, including reliance on 
a costly external source and limited 
communication range and through-
put. Therefore, network protocol de-
sign for batteryless systems using 
active radios is a promising research 
direction. Figure 3 illustrates one of 
the fundamental problems, which 
also applies to backscatter: Two de-
vices that intend to communicate may 
require many charging cycles (up to 
hundreds or thousands17) until they 
are active within the same time win-
dow (encounter). This is because har-

linearly increases with the number 
of WAR dependencies in the code. A 
more energy-aware approach, howev-
er, can dynamically disable needless 
checkpoints based on direct observa-
tions of the program progress and re-
maining energy.30

Embedded sensing workloads are 
most often peripheral bound. Periph-
erals execute asynchronously with 
respect to the computing unit. Their 
functioning is characterized by their 
own states, which are frequently up-
dated due to the execution of I/O in-
structions or the occurrence of exter-
nal events, such as the reception of 
a packet. Information on peripheral 
states is not automatically reflected in 
main memory, neither it may be sim-
ply queried or restored as it is often the 
result of non-trivial sequences of com-
mands issued to peripherals and their 
answers. If peripheral states are not re-
stored when resuming executions after 
a power failure, or this happens with-
out ensuring consistency with respect 
to the state of the computing unit, ap-
plications may fail, or forward prog-
ress be compromised. Such peripheral 
inconsistency issues are often mod-
eled as safety violations (executions 
reach a fail state that is unreachable 
in a continuous execution) and live-
ness violations (executions fail to reach 
valid states that would eventually be 
attained in a continuous execution).6 
Solutions to these may include repre-
senting peripherals states using state 
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art often defeats the efficient perfor-
mance of each of these techniques 
when deployed in a lab or used in isola-
tion. Second, lessons learned from real 
deployments point to an acute trade-
off between generality and energy ef-
ficiency once in operation. In a setting 
characterized by extreme resource 
scarcity, there is not much to waste at 
runtime in a quest to support multiple 
different application scenarios or di-
verse requirements.

The natural conclusion is that ef-
forts should focus on complete devel-
opment environments that coherently 
integrate the necessary techniques; 
for example, by combining techniques 
ensuring forward progress with pe-
ripheral correctness. Enabling this on 
a larger scale requires gaining further 
experiences from realistic scenarios, 
and possibly exploring new applica-
tion domains.11,15

By the same token, crucial for re-
searchers to be motivated and invest 
efforts in this direction is to gain the 
proper recognition from academic con-
ferences, journals, and funding bodies 
alike. This is arguably and unfortu-
nately not the case right now. We un-
derstand this issue is likely to cross the 
boundaries of the specific area at stake, 
and impact system research at large. 
We also maintain, however, those deep-
ly embedded systems akin to the ones 
we discuss here impose even greater ef-
forts in debugging and deploying at the 
current prototyping stage.

Correctness. Battery-free systems 
must operate correctly and yet, unfor-
tunately, intermittent systems lack a 
formal foundation to reason on their 
correctness. Correctness guarantees 
make new applications possible: medi-
cal applications built around intermit-
tent devices remain infeasible in the 
absence of correctness guarantees. 
They will produce wrong results or fail 
to produce results at all unless an in-
termittent hardware/software system 
can be proven correct.

Correctness guarantees may also 
make existing applications more effi-
cient or enable better resource usage: 
pervasive infrastructure monitoring 
sensors and tiny chip-scale satellites 
may require more redundantly de-
ployed devices for reliable operation if 
each device comes with no correctness 
guarantee. But redundancy drives up 

parallel intermittent execution sup-
port for data-intensive tasks.

Intermittent systems must adapt 
to frequently changing environmen-
tal energy conditions to exploit the 
available energy more efficiently. 
Maximizing forward progress,2 in-
creasing output performance,24 and 
adaptive heterogeneous architecture 
(composed of cores with different en-
ergy consumption) are some of the 
proposed adaptive architectures to in-
crease efficiency. Timely intermittent 
execution23,40 requires low-power time-
keeping12 and accurate voltage mea-
surement circuits.39

Directions For the Future
The previous work laid a foundation 
for the next phase of power failure-re-
silient, energy-harvesting computing. 
The field is arguably at a stage where 
a much bigger leap is needed for this 
technology to gain widespread adop-
tion. We discuss six fundamental di-
rections we maintain to be most cru-
cial for the field to thrive.

Deployment matters. IoT systems 
are designed and deployed to harvest 
accurate and abundant data. How this 
is concretely achieved in the absence of 
traditional batteries—whether using 
a programming system or low-power 
hardware—is ultimately immaterial. 
What matters is the system’s ability to 
act as an efficient interface between 
the physical and the digital world. The 
field of intermittent computing is in 
desperate need of making this a top 
priority or the existing body of work 
runs the concrete risk of being relegat-
ed to an academic exercise.

Understanding the real-world per-
formance of an intermittently com-
puting IoT system requires measuring 
its performance in realistic deploy-
ments. Existing experiences are ex-
tremely limited and mostly the result 
of intense one-off efforts. Large-scale 
long-term deployments of intermittent 
computing technology are rare,1 and 
yet provide invaluable insights and di-
rections for future work that are not at-
tainable elsewhere.

First, the few existing efforts reveal 
that no single technique among those 
we surveyed earlier suffices to build a 
fully functional system. The overhead 
of combining and integrating dispa-
rate techniques from the state of the 

cols, including Wi-Fi, should be modi-
fied to support intermittent operation 
(with a minimum of modifications to 
the protocol itself). An answer to this 
call will make intermittent devices 
compatible with existing network pro-
tocols and infrastructure.

Power systems and computer archi-
tecture. The performance of intermit-
tent systems (for example, throughput) 
largely depends on the energy storage 
capacity, processor and sensor power 
consumption, and other architectural 
characteristics. To illustrate, though 
using a larger capacitor seems like a 
solution to address high response time 
due to increased power consumption, 
large capacitors have longer charg-
ing time, which increases response 
time and energy leakage. Checkpoint-
ing overheads heavily depend on the 
choice of hardware and architecture, 
for example, cache size and volatile 
memory size.

To provide support for high-power 
consumption while maintaining low 
response time, several energy storage 
architectures have been proposed over 
time. A single large capacitor requires 
tasks with low energy demand to wait 
to execute until the capacitor is fully 
charged despite having sufficient en-
ergy for the task.22 To address this, 
re-configurable capacitor banks9 have 
been proposed to dynamically select 
the active energy storage size based 
on the demand of the tasks. Support-
ing the diverse energy requirements 
of the peripherals demands dedicated 
energy storage for each peripheral pro-
viding energy isolation and reducing 
unnecessary energy consumption.22

Non-volatile processors (NVP) have 
non-volatile flip-flops and gates which 
reduce checkpointing overhead and 
leakage power by shutting down idle 
systems with fast backup and retention 
operations. However, they increase the 
power (and area) requirements and in-
crease processing time.29 More highly 
optimized von Neumann processors 
(for example, with out-of-order execu-
tion) are unlikely to provide a benefit 
to intermittent systems because they 
trade higher power for higher perfor-
mance and demand more sophisticat-
ed backup policies.

Recent studies presented the in-
termittent inference on batteryless 
edge,21,24 which creates a demand for 
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offer appealingly low power consump-
tion, simple ISAs with widespread 
compiler support, and a typical von 
Neumann execution model. Unfortu-
nately, these simple von Neumann ar-
chitectures do not offer high-energy ef-
ficiency, making them increasingly the 
wrong choice as batteryless systems 
perform steadily more computation.

Existing architectures are ineffi-
cient for two main reasons that both 
stem from the von Neumann execu-
tion model: instruction supply and 
data movement. The instruction’s 
fetch and decode consume a large 
amount of energy, often entailing 
memory accesses.

To execute an operation, a von Neu-
mann core must configure internal 
control signals on a per-instruction 
basis and move input operands from 
and store outputs to a register file or 
memory. These overheads of instruc-
tion and data supply consume around 
55% of total compute energy.20 When 
efficiency matters, this overhead is un-
acceptable.

The future of computing in bat-
teryless devices lies in new computer 
architectures that eliminate the over-
heads of von Neumann computing. 
For the last decade, computer archi-
tects have improved efficiency through 
hardware specialization, for example, 
for some machine-learning computa-
tions. Specialized accelerators forfeit 
general-purpose programmability but 
achieve high efficiency by eliminating 
most control overheads. Accelerators 
are not likely to be the solution for 
most long-lived deployments, due to 
their inability to adapt to changing ap-
plication requirements. Additionally, 
accelerator-based architectures are not 
sustainable because they require new 
silicon for each application and the 
bulk of a chip’s carbon footprint is in 
its manufacturing. Low-power FPGAs 
offer reconfigurability but are difficult 
to program and do not meet the effi-
ciency of specialized accelerators.

Recently, work on energy-minimal 
computer architecture19,20 has devel-
oped new reconfigurable dataflow 
architectures implemented in coarse-
grained reconfigurable arrays (CGRAs). 
These CGRAs achieve high efficiency 
while remaining fully programmable 
from high-level languages like C and 
Rust. Energy-minimal CGRA archi-

The problem is indeed difficult: bat-
teryless IoT cannot run mainstream se-
curity techniques and protocols with-
out incurring in huge performance 
penalties.3 Dedicated hardware sup-
port, such as ARM TrustZone, provides 
a steppingstone to address the security 
challenge, yet intermittent executions 
likely require ad-hoc specialized solu-
tions. A few works37 demonstrate hard-
ware support, porting the guarantees 
of fully homomorphically encrypted 
computing to low-end embedded de-
vices, possibly including intermittent 
ones. How to blend these solutions 
with existing intermittent computing 
techniques is an open question: the 
non-continuous execution flow, which 
possibly includes re-executions of non-
idempotent code, creates new prob-
lems for security researchers.

Recent work31 studies how ambient 
energy harvesting may be used as an at-
tack vector in intermittent computing. 
The authors demonstrate that by ex-
erting limited control on the ambient 
supply of energy to the system, one can 
create situations of live lock, denial of 
service, and priority inversion, without 
requiring physical access to a device. 
Using machine learning and concepts 
of approximate computing, they design 
an attack detection technique with 
92%+ accuracy and limited run-time 
overhead. Much greater efforts are re-
quired, however, to investigate to what 
extent energy provisioning may be used 
to maliciously drive intermittent execu-
tions and what detection and mitiga-
tion techniques are to be put in place to 
counteract these occurrences.

Energy-minimal computer architec-
tures. In designing a computer archi-
tecture for a batteryless system, energy 
efficiency is the most important design 
concern. Harvesting energy rate limits 
device operation if the harvestable in-
put power is substantially lower than 
computational operating power. A bat-
teryless system in this operating re-
gime should maximize the amount of 
computational work that it does with 
its energy, optimizing primarily for 
efficiency, rather than focusing on im-
proving performance or reducing oper-
ating power (both of which sometimes 
may impose a cost in efficiency. Many 
battery-free devices use simple micro-
controllers to compute, (for example, 
the Texas Instruments MSP430), which 

costs. The solution is to build up the 
formal foundations of intermittent 
computing to provide formal defini-
tions of correctness. A good starting 
point is to use the machinery of pro-
gramming language research to pro-
vide correctness guarantees for inter-
mittently computing software runtime 
systems and applications.5,35

Further questions, however, do re-
quire an answer. For example, should 
formal correctness models of intermit-
tent operation include models of phys-
ics-based power and energy, arbitrary 
peripheral devices, or user behavior 
and the operating environment?

Further, what are the formalisms 
and semantics models best suited to 
express the correctness requirements 
developers are interested in, and how 
do these possibly enable automated 
verification of such requirements? 
Each of these variations on the model-
ing problem presents its own challeng-
es and benefits.

One example modeling challenge 
that is particularly valuable, yet un-
solved in general, is building a model 
of energy consumption for an arbi-
trary region of code. A solution to 
this problem allows a programmer 
to directly reason about the location 
or likelihood of a power failure at a 
particular program point. Such a so-
lution also strengthens the link be-
tween supplied power behavior and 
program behavior, supporting new 
program analyses that help program-
mers understand how energy con-
sumption varies across executions 
of their program. Finally, although 
power and energy are physical quanti-
ties and vary for reasons outside of the 
closed world of software, probabilis-
tic programming languages research 
may play an important role in model-
ing such physically influenced, distri-
butional behavior.10

Security. Provided the battery-free 
system is proven correct, data inside 
and around the system is useless in the 
absence of security. Because of their 
deeply embedded nature and relation 
with the surrounding physical environ-
ment, IoT systems are at risk of security 
attacks, and intermittently computing 
ones are no exceptions. Rather, extreme 
resource constraints and peculiar ex-
ecution patterns increase the attack 
surface and enable new attacks.
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issue: the absence of a well-defined, 
agreed-upon yardstick to compare the 
performance of systems, namely, a set 
of benchmarks and the mechanisms 
to run them repeatably and at scale. 
Despite the performance claims in 
several papers, even in the many cases 
where these claims are substantiated 
by rigorous evaluations, the extent to 
which the results for one system hold 
in the setup of another is unclear at 
best. This situation is not just meth-
odologically flawed from a scientific 
standpoint; it also may also have dis-
torting effects on the industrial adop-
tion of research artifacts.

This is a typical hurdle for any field 
as it emerges into the mainstream. 
First, we need a common, agreed-upon 
benchmark against which the perfor-
mance of systems can be measured. 
This approach is widespread among 
many fields of science, for instance, 
applied in testing machine learn-
ing systems for image classification. 
A benchmark typically defines input 
parameters representative of several 
application cases, output metrics 
quantifying the performance of the 
benchmarked systems, and the re-
quired experimental setup.

In our case, a benchmark might in-
clude harvested energy traces as well as 
common computational tasks. Battery-
less system would then produce output 
based on the input data, such as the 
number of packets in a unit of time. The 
harvested energy traces have a special 
purpose for testing intermittent com-
puting systems as energy represents a 
program input for intermittent com-
puting systems. The specific energy pat-
terns the system is exposed to, for exam-
ple, determine how many interruptions 
the program experiences. It is therefore 
crucial to collect energy traces that are 
both diverse as not to bias the results 
towards specific techniques and be able 
to exercise the various program paths. 
Although in other fields, the availabil-
ity of benchmarks may result in over-
fitting system designs, benchmarks 
for batteryless intermittent computing 
systems must be varied, broad, and fre-
quently updated.

Second, one needs definitive plat-
forms, tools, datasets, and testbeds, 
to enable benchmarks at scale. Bench-
marks without a well-defined (and 
easy-to-acquire) hardware platform 

tectures implementing ordered data-
flow19,20 consume a few hundred micro-
watts of power and perform hundreds 
of billions of operations per second per 
watt. The key to the efficiency of these 
architectures is that they eliminate vir-
tually all instruction control overheads 
and streamline data movement via ef-
ficient on-chip dataflow networks.

The concrete benefits show the 
promise of CGRAs to batteryless system 
designers. The SNAFU19 architecture 
reports efficiency running linear alge-
bra in software that is within a factor of 
2–3× of a fixed purpose accelerator im-
plementing the same computation. The 
RipTide20 compiler fully automatically 
compiles complex DNN inference code 
with sparse data and irregular control 
flow to a dataflow fabric that runs that 
code using 1900× less energy and 146× 
less time than a TI MSP430. As soft-
ware programming support improves 
and embedded non-volatile memories 
become available, reconfigurable data-
flow architectures are a highly appeal-
ing option for batteryless devices.

Another promising direction is 
to exploit in-memory processing on 
emerging non-volatile memory tech-
nologies to process part or entire 
data in situ in memory to accelerate 
data-intensive computing tasks in in-
termittent systems, for example, ma-
chine learning and signal processing. 
Data backup happens atomically and 
immediately in these systems since 
they exploit non-volatile memory tech-
nology. For instance, Resch et al.33 
presented intermittent computing 
on a magnetic tunnel junction-based 
computational RAM, a highly energy-
efficient processing element. Despite 
its advantages, CRAM programming 
is significantly more difficult than 
programming our general-purpose 
batteryless platforms. Filling the pro-
gramming gap for in-memory process-
ing will bring significant benefits to 
intermittent computing.

Foundation experimental infra-
structure. For intermittent computing 
to thrive, we argue it is essential to de-
velop a foundational set of infrastruc-
ture: (that is, tools, testbeds, hardware 
platforms, benchmarks, and datasets) 
enabling a sound scientific investiga-
tion. Unlike other fields of computing 
and communications, intermittent 
computing is plagued by one major 

The future of 
computing in 
batteryless 
devices lies in 
new computing 
architectures 
that eliminate 
the overheads 
of von Neumann 
computing. 
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Alternative designs are also possible 
where, for example, intermittence is 
made explicitly visible to program-
mers and users rather than hidden 
from them. Striking an effective trade-
off is anything but trivial and likely 
requires researchers in intermittent 
computing and closely related fields to 
let their efforts be influenced by other 
disciplines. Major publication venues, 
on the other hand, should increasingly 
reward multidisciplinary efforts, cre-
ating the incentive required to make 
progress in this direction.

Notwithstanding, lowering the bar-
rier to entry for non-trained develop-
ers is thus just half of the story—the 
other half is the proper setting of the 
user interaction with an intermittently 
computing device. Therefore, efforts 
should be invested in understanding—
from a technical but also psychologi-
cal perspective—how to develop the 
unfolding relationship between users 
and intermittently computing devices. 
One option, for example, is to let users 
merely accept the idea they cannot con-
tinuously rely on a system. Although 
simple to realize, this may likely limit 
the applicability of intermittent com-
puting (battery-free) technology. A dif-
ferent option is rather to engage the 
user in energy provisioning,13 explic-
itly or implicitly; for example, through 
some form of reward or “gamification” 
of the energy provisioning tasks that 
creates an incentive for the user to look 
for the right conditions to make the 
system continue the work.

Reasoning on this matter cannot be 
oblivious to the specific application at 
hand. For example, listening to music 
on a device that powers off a couple of 
times per minute is unacceptable, yet 
playing puzzle games on such devices 
should be doable and enjoyable.

These devices can go beyond en-
tertainment, to actuating within the 
physical environment—for example, 
harvesting the action from mechani-
cal motions like door openings and 
closing to power sensing and occu-
pancy readings. They could be inte-
grated into a user’s shoe, clothing, or 
even prosthetic, where the action of 
walking compressed a spring that cap-
tured energy to power strain sensing 
and health monitoring for the limb. In 
summary, understanding the human-
interaction angle of intermittent com-

are much less useful. Benchmarks 
need standard tools and programs to 
be able to run, that are both energy 
harvesting and power failure aware. To 
scale up benchmarking and replicable 
science, to enable access to the broad-
er community, and to ease testing and 
comparisons, foundational infrastruc-
ture is necessary.

What about the users? No matter 
how sophisticated the technology is, 
chances are that any system may stop 
operating. In an AC power socket-
powered system, this is a rare occur-
rence and is generally considered as a 
failure. In a regular battery-powered 
system, operation failure is more prob-
able. Nonetheless, users are conscious 
of this potential operation stop, they 
know how to handle it, and they con-
sider it a part of the system’s lifetime. 
In a battery-free IoT system—and es-
pecially an intermittently executing 
one—the relationship between the 
end user and a device that stops and re-
sumes the execution (even on sub-sec-
ond time scales) is all to be explored.

Development environments like Ar-
duino are now considered major mile-
stones in the development of the IoT. 
They enable nontrained programmers 
to quickly prototype fully functional 
IoT systems and are fundamental 
tools for communities that extend well 
beyond the borders of traditional com-
puter science and engineering. These 
movements are, often and interesting-
ly, a cradle of innovation that builds on 
the skills and expertise of people with 
diverse backgrounds.

Unfortunately, intermittent com-
puting is very far from such a situation. 
A few recent works represent timid at-
tempts at lowering the barrier to en-
try for non-trained people outside of 
computer science and engineering.26,27 
Instead, using the vast majority of sys-
tems and techniques discussed earlier 
requires expertise and skills that not 
even every computer engineer is nec-
essarily equipped with—let alone re-
searchers and practitioners outside of 
this discipline.

The key question is whether (or how) 
to mask the distinctive features of in-
termittent computing. The battery-
free Game Boy,13 for example, takes 
a specific stand: users are required 
to contribute to energy provisioning 
to tame the intermittent executions. 

Efforts should 
be invested in 
understanding—
from a technical but 
also psychological 
perspective—
how to develop 
the unfolding 
relationship 
between users 
and intermittently 
computing devices. 
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puting and a batteryless IoT is crucial, 
programmer facing tools for easing 
development, interfaces, and designs 
that mask or work with power failures, 
and novel applications and integration 
points for energy harvesting, are all 
part of the next phase of research.

Conclusion
Bell’s Law of Computing Classes states 
that a lower-priced, and more numer-
ous, computer class emerges approxi-
mately every decade that requires en-
tirely new methods of programming 
networking, and interfacing resulting 
in wholly new applications. After cell-
phones, IoT appears to be this new 
class—the results of the research dis-
cussed in this article point to a way to 
scale responsibly with this new class. 
The first lights of interesting, enabled 
applications have already emerged, 
and further research will explore 
where long-term, low-cost, massive-
scale sensing is essential including 
healthcare (wearable and body sensor 
networks), ecology, horticulture, ag-
riculture, infrastructure, and public 
utilities monitoring. This Internet of 
Batteryless Things is a step toward the 
sustainable future of computing. While 
it is flourishing, its progress is ham-
pered by major challenges in terms 
of testbeds, tools, security, and appli-
cations. There is a need to grow the 
community around the vision of inter-
mittent computing and more strongly 
advocate its need for the future.	
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