
Variable-Based Fault Localization via Enhanced
Decision Tree

1st Jiajun Jiang
College of Intelligence and Computing

Tianjin University
Tianjin, China

jiangjiajun@tju.edu.cn

2nd Yumeng Wang
College of Intelligence and Computing

Tianjin University
Tianjin, China

jazz244008@tju.edu.cn

3rd Junjie Chen∗
College of Intelligence and Computing

Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

4th Delin Lv
College of Intelligence and Computing

Tianjin University
Tianjin, China

ldlmntq@tju.edu.cn

5th Mengjiao Liu
College of Intelligence and Computing

Tianjin University
Tianjin, China

mengjiaoliu@tju.edu.cn

Abstract—Fault localization, aiming at localizing the root cause
of the bug under repair, has been a longstanding research
topic. Although many approaches have been proposed in the
last decades, most of the existing studies work at coarse-grained
statement or method levels with very limited insights about
how to repair the bug (granularity problem), but few studies
target the finer-grained fault localization. In this paper, we
target the granularity problem and propose a novel finer-grained
variable-level fault localization technique. Specifically, we design
a program-dependency-enhanced decision tree model to boost the
identification of fault-relevant variables via discriminating failed
and passed test cases based on the variable values. To evaluate
the effectiveness of our approach, we have implemented it in a
tool called VARDT and conducted an extensive study over the
Defects4J benchmark. The results show that VARDT outperforms
the state-of-the-art fault localization approaches with at least
247.8% improvements in terms of bugs located at Top-1, and the
average improvements are 330.5%.

Besides, to investigate whether our finer-grained fault localiza-
tion result can further improve the effectiveness of downstream
APR techniques, we have adapted VARDT to the application
of patch filtering, where VARDT outperforms the state-of-the-
art PATCH-SIM by filtering 26.0% more incorrect patches. The
results demonstrate the effectiveness of our approach and it also
provides a new way of thinking for improving automatic program
repair techniques.

Index Terms—fault localization, decision tree, debugging

I. INTRODUCTION

Program bugs are inevitably introduced in programs, which
will potentially cause great financial losses and even disasters.
Therefore, fixing bugs timely when they occur is critical. In
particular, the first stage of program debugging is to locate the
root cause of bugs under repair, which is an expensive and
labor-intensive process. To facilitate this process, many au-
tomatic fault localization techniques have been proposed [1]–
[12] in the last decades, aiming at providing a list of candidate
locations that are most possibly faulty to aid the subsequent
program repair process.

∗Corresponding author.

Although great success has been achieved, the mainstream
fault localization techniques still suffer from two major lim-
itations. First, the fault localization precision is low, the
state-of-the-art techniques can only locate about 21% genuine
buggy statements as the top-1 returned results [13]. Inaccurate
fault localization results can be misleading and increase the
risk of generating incorrect patches due to the incomplete
specification [14]–[16]. Second, the granularity of existing
fault localization results is still coarse-grained at statement or
method levels, which provides few insights beyond locations
related to the root cause for repairing the bug. As a result,
even given the genuine faulty locations, the patch space
is still large, which aggravates the problem of generating
incorrect patches. As reported in existing studies [17], [18],
when providing genuine buggy statements, the state-of-the-art
automatic program repair (APR) techniques can still repair a
small number of bugs with generating many incorrect patches,
significantly affecting the usability of APR techniques. In this
paper, we call these two limitations precision and granularity
problems, respectively, in fault localization.

Over the years, the vast majority of existing studies mainly
focus on the precision problem, and have adopted different
techniques, such as mutation testing [19], machine learn-
ing [20], deep learning [21]–[23], etc., and incorporated di-
verse information like test coverage [24], program depen-
dency [25], [26], code changes [27] and program invari-
ants [28], to improve the precision. However, most of the
studies work at statement or method levels, but few works
target the granularity problem, especially in the scenario of
APR. Although some techniques have been designed at a finer-
grained level (e.g., variable level), they are either requiring the
intervention of developers [29], [30] or targeting a particular
type of variables [5], [31], [32], making them infeasible to
further the effectiveness of downstream APR techniques.

Aiming at significantly improving the effectiveness of fault
localization and thus boosting the subsequent program repair

ar
X

iv
:2

21
1.

11
52

6v
1

 [
cs

.S
E

]
 2

1
N

ov
 2

02
2

process, in this paper we propose a novel and general fault
localization technique, named VARDT, targeting the gran-
ularity problem by effectively identifying the fine-grained
fault-relevant variables via leveraging a program-dependency-
enhanced decision tree model. Intuitively, the basic idea of
VARDT is that fault-relevant variables may exhibit different
values in failed and passed test runs, and variables that have
higher discrimination ability have a larger possibility to be the
root causes of the failure. According to this intuition, we adopt
the decision tree model to aid the identification of the most
fault-relevant variables by building discrimination models for
failed and passed runs using candidate variables. However,
since the number of variables and their value space are usually
large in real-world programs, especially in industry-grade
programs, VARDT further incorporates the static program
analysis to improve its scalability and effectiveness, including
program slicing and dependency analysis. We will introduce
our approach detailedly in Section III.

To evaluate the effectiveness of our approach, we have
implemented a prototype of it as an automatic fault localiza-
tion tool, also named VARDT, and conducted an extensive
experiment on the widely-used Defects4J [33] benchmark.
The results show that VARDT successfully located the fault-
relevant variables at Top-1 position for 24.0% of bugs, which
significantly outperformed seven state-of-the-art baseline ap-
proaches. Particularly, the improvements are at least 247.8%,
and in average 330.5% regarding the bugs located at Top-1.
Moreover, to investigate whether our approach can further the
effectiveness of downstream APR techniques, we also adapted
VARDT to the application of patch filtering, where it correctly
filtered out 69.4% incorrect patches. Although not designed
as a comprehensive and standalone patch filtering technique,
it improves the state-of-the-art PATCH-SIM by 26.0%. The
results indicate that our finer-grained fault localization tech-
nique is indeed effective and promising to further improve the
effectiveness of downstream APR techniques.

In summary, this paper makes the following contributions:
• We propose a novel variable-based fault localization

technique, named VARDT, which identifies fault-relevant
variables via an enhanced decision tree model.

• We conduct an extensive study on the widely-used De-
fects4J benchmark in two distinct application scenarios.
The results demonstrate the effectiveness of our approach
by comparing it with existing state-of-the-art approaches.

• We provide a new way of thinking for improving APR
techniques – providing finer-grained fault localization
results to refine the patch space of APR tools.

• We have published all our experimental results and im-
plementation to facilitate future research for replication
and comparison.

II. MOTIVATING EXAMPLE

In this section, we will motivate our approach with a running
example. Listing 1 presents the patch code of Lang-27 in the
widely used Defects4J benchmark [33], where the lines leading
by “+” denote code to be added while “-” to be deleted.

Test str expPos str.length() Result

t1 “1l” -1 2 PASS
t2 “1111 ” -1 5 PASS
t3 “-1.1E200” 4 8 PASS
t4 “1eE” 4 3 FAIL

Test samples of Lang-27 and partial variable values in
the faulty method when running the corresponding test.

expPos

str.length() expPos=str.length()
expPos=2

str.length()=3

0 2

3

t4

No test
here

Fig. 1: Visualization of variable constraint estimation.

452 Number createNumber(String str) throws Exception {
...

473 int decPos = str.indexOf(’.’);
474 int expPos = str.indexOf(’e’) + str.indexOf(’E’) +1;
475
476 if (decPos > -1) {
477
478 if (expPos > -1) {
479- if (expPos < decPos) {

+ if (expPos < decPos || expPos > str.length()){
480 throw new NumberFormatException(str + " is

not a valid number.");
481 }
482 dec = str.substring(decPos + 1, expPos);
483 } else {
484 dec = str.substring(decPos + 1);
485 }
486 mant = str.substring(0, decPos);
487 } else {
488 if (expPos > -1) {

+ if (expPos > str.length()) {
+ throw new NumberFormatException(str + " is

not a valid number.");
+ }

489 mant = str.substring(0, expPos);
...

Listing 1: Patch of Lang-27.

In this example, when providing an input string str,
the method createNumber(*) will transform it into a
java.lang.Number object, e.g., transforming “10” into
an Integer of 10. In this process, the method will au-
tomatically check the validity of the input and then de-
cide which type of number should be created. For example,
when the input string contains the character “e” (or “E”),
an exponential number is always expected. However, due
to the faulty code, when taking the illegal input “1eE”, a
StringIndexOutOfBoundsException was incurred at
line 489 (line 479 can be triggered by other inputs), while
actually a NumberFormatException was expected (see
Listing 1). The reason is that the method failed to check the
validity of the input when multiple “e/E”s exist.

To locate the root cause of the failure, existing approaches
typically return a ranked list of suspicious code lines (or
methods), such as the widely-used coverage-based fault lo-
calization techniques [3], [34]. However, existing approaches
can hardly locate the accurate faulty code in this example. In
fact, even providing the genuine faulty code line, there is still a
large search space (i.e., any syntax-valid expressions) to repair
the bug due to the coarse-grained fault localization results,
where incorrect patches may also be easily produced. On the
contrary, if the finer-grained fault-relevant variables expPos
and str.length() were known, the patch space would be
significantly reduced and thus incorrect patches would also be
effectively avoided.

However, accurately identifying the fault-relevant variables
is indeed challenging since the variable values can be di-
verse in different test runs (see the left table in Figure 1).
Besides, it is also common that we are required to capture
the complex constraints among multiple variables for isolating
failed from passed runs and understanding the root cause, e.g.,
expPos>str.length(). However, checking all possible
variable combinations is indeed time-consuming and even im-
possible in practice. Targeting this challenge, we hereby pro-
pose a novel variable-level fault localization technique based
on the decision tree model. The basic intuition of our approach
is that complex variable constraints can be estimated (or
even constructed) by combining multiple primitive constraints,
where only one variable is used in each individual constraint.
The reason is that each primitive constraint can discriminate
the failed test run from at least a subset of the passed runs
and their combinations may approximate the desired complex
constraint. For example, the primitive constraints expPos>=2
and str.length()<4 can discriminate t4 from {t1, t2}
and {t2, t3} respectively, and their combination can estimate
expPos>str.length() in the running example as shown
in Figure 1 (right-side figure). In the figure, the shaded area
denotes the constraint of expPos>str.length(), while
the gridded area represents the two primitive constraints.
Therefore, the failed (t4) and passed test cases (t1, t2 and t3)
can also be distinguished by the two primitive constraints. In
this way, the variables used, e.g., expPos, in those primitive
constraints have large possibility to be the indicator of the
test failure since it has the ability to isolate the failed tests
from the passed ones, and thus are potentially the fault-
relevant variables (defined in Section IV-C). However, since
there are usually many available variables that may produce a
large number of primitive constraints, how to combine them
and correctly locate the desired fault-relevant variables is still
non-trivial. According to the characteristics of this task, we
propose an enhanced decision tree model to aid the variable
identification and constraint building process since the decision
tree in nature performs a similar process to our task, i.e., using
multiple primitive constraints (branch conditions) to estimate
complex constraints for classification. We will introduce more
details in Section III by taking this bug as the running example.

III. FRAMEWORK

This section introduces the details of our approach. As
aforementioned, the basic idea of our approach is to use
variables to build constraints for distinguishing failed and
passed runs, where the variables that have higher discrimi-
nation ability have larger possibilities to be the fault-relevant
variables. Figure 2 shows the overview of our approach
(named VARDT). In general, it consists of two stages. When
given a program with at least one test case failed on it, VARDT
first collects the values of a set of variables in both failed
and passed test runs at some program checkpoints. Then, it
builds decision tree models using those collected variables to
distinguish failed and passed test runs, after which it identifies
the fault-relevant variables from those used for constructing the

branch conditions (i.e., constraints) in the models since they
exhibit the ability to discriminate failed and passed tests.

However, it is hard and even impossible to examine the com-
plete space of all program variables since it is usually huge,
especially for large-scale programs, which may involve tens of
thousands of variables. To overcome this challenge, VARDT
combines existing lightweight method-level fault localization
and adopts program slicing technique to identify a subset
of covered statements for inspection, which can improve the
efficiency and scalability of our approach. Specifically, in the
current implementation of VARDT, we utilize the widely-used
spectrum-based fault localization (SBFL) technique to locate
a list of the most suspicious methods. Particularly, we adopt
the implementation published by Jiang et al. [35]. Please note
that our approach is independent of this localization process,
and it can be easily replaced by other methods as long as the
output is an ordered list of suspicious faulty methods, such
as the latest deep-learning-based techniques [22], [23], which
can produce much better results than SBFL and potentially
can further improve the performance of VARDT.

A. Dynamic Program Slicing

By using the coarse-grained fault localization techniques,
we can obtain an ordered list of methods that are most likely
to contain bugs. In this way, we can just focus on the variables
used in these methods. However, it is intuitive that not all
statements and variables in these methods affect the output of
the failing tests. In order to further reduce the search space
of candidate variables for inspection and increase accuracy,
VARDT leverages dynamic program slicing techniques [25]
to filter out statements that are indeed irrelevant.

Specifically, when given a slicing criterion and a certain
test input, VARDT performs an intra-procedure slicing process
based on the data and control dependency relations along the
execution trace backwardly. Although less accurate compared
with the inter-procedure slicing, the intra-procedure slicing
is much more efficient without the need of heavy inter-
procedure analysis. As a consequence, the slicing process
in VARDT will be not affected by the scale of programs
under debugging but only affected by the size of a single
method. Regarding the slicing criterion, we pick the line of
code that was lastly executed by the failed test in the method
because it is usually the location of failures or the indicator
of finishing the complete functionality of the method and may
produce variables affecting the subsequent program execution
(e.g., return statements in many cases). For instance, recall
the example shown in Listing 1, the failed test run crashed
at line 489 (lastly executed), which directly depends on the
fault-relevant variables str and expPos, and thus they will
be included in the slicing while the variable mant in line
486 will be filtered out. In this way, a subset of statements
will be identified for further checking, highlighted in the gray
color in Listing 1 (Lines 473-476,488,489), while the other
statements and associated variables will be ignored.

Co
de
Co
deCODE

SBFL Slice Transform
p1-134: 2.0 fail
p2-157: “test” pass
p3-205: null pass
…

Profile

Analysis Guide

Rank

Build Models

Dependency
Graph

1 CO
DE
0.86
0.04
0.17

2 3 4

5

6

6

7

p1-134
p3-205
p8-67
…

Obtain coarse-
grained FL

Filter irrelevant
variables

Transform into
GSA form

Run tests and
collect values

Construct program
dependency graph

Dependency-guided
variable ranking

Construct tree model using
the collected variables

Rank variables
based on the model

Fig. 2: Overview of our approach VARDT

In our evaluation, we will also conduct an experiment to
discuss the impact of the slicing process on the effectiveness
of our approach in Section V.

B. Program Transformation and Profiling

By program slicing, a subset of statements that are most
likely to be the root cause of the test failure can be ob-
tained. Next, VARDT will collect the variable values in those
statements during the running of test cases by automatically
instrumenting output statements to the source code.

Particularly, in order to tackle programs of any forms,
VARDT further incorporates a program transformation pro-
cess that can transform source code into a GSA form [31],
where compound expressions will be implicitly decom-
posed into TAC (Three Address Code) format. For exam-
ple, the expression (a>b&&c>d) will be transformed into
(v=((v1=(a>b))&&(v2=(c>d)))) by inserting corre-
sponding temporary variable declarations on demand (i.e.,
v, v1 and v2). In this way, the intermediate computation
results of compound expressions can also be collected through
these temporary variables, such as the result of a>b. Specif-
ically, VARDT transforms expressions in three types of code
structures, i.e., conditional expressions, return expressions and
arguments of method calls. The reason is that conditional
expressions are error-prone in practice and many bugs are
caused by incorrect sub-conditions [17], [36], [37], while the
expressions in the latter two types take the responsibility of
value transmission and thus may potentially spread faulty
variable values to a broader range outside the method. As
a result, checking the values of these expressions is indeed
necessary for locating the root causes of program failures.

After program transformation, VARDT can only focus on
the variables (including temporary variables of expressions)
used by the statements in the slicing. Specifically, apart from
the concrete values exhibited by the (temporary) variables
used in the program, we have also defined several common
predicates that may be highly related to test failures, such as
checking whether an object is null. We have summarized
the details of values collected for different types of variables
in Table I. Based on this definition, the values that will be
collected at line 489 in Listing 1 include not only the primitive
variable values of expPos and mant, but also the predicate
values of str == null and str.length().

To collect the above variable values, we have implemented
a simple value profiling process in VARDT, which can au-

TABLE I: A description for variables considered by VARDT

Type Target Value Description

Primitive Actual Value Primitive value or ASCII code for char

Object

Null Check True if the variable is null, false otherwise
Type Check The value type of the variable. e.g., String

Fields Unfold the variable and output field values
Size/length Access size()/length()/length (if has)
Elements Primitive element values in collections

tomatically parse the type of fed variables and insert output
statements by using the Eclipse Java Development Toolkit
(https://www.eclipse.org/jdt/) for recording the corresponding
values defined in Table I during the running of test cases.

C. Tree Model Construction

As aforementioned, the basic idea of our approach is using
variables to construct (multiple) primitive constraints and
their combinations to distinguish passed and failed test runs,
where the variables that have higher discrimination ability
may have larger possibility to be fault-relevant. Based on
this, we propose a novel fault-relevant variable identification
technique by leveraging the decision tree model, which has
been well studied to be effective in many applications [38]–
[41]. Particularly, this model is suitable for our application
in two aspects. (1) Our application scenario actually can be
viewed as a binary classification task, where the labels are
“PASS” and “FAIL”, representing the testing results of test
cases. (2) The decision tree model has good interpretability,
where the branch conditions in the model explain how a given
input is classified to the particular class. The conditions in the
same tree path can be combined to form a more complex
constraint that is only satisfied by the data belonging to the
corresponding leaf node in the tree. That is, why an input
is classified to the corresponding class is traceable. Recall
that our ultimate target is to identify the variables that can
discriminate failed and passed tests, the interpretability and
traceability properties of the model satisfy our requirements.

Next, we will introduce the details of our tree model con-
struction process in VARDT. In general, it includes two sub-
processes, named Enhanced Variable Selection and Tree Model
Building. The former takes the responsibility to select proper
variables for branch condition building, while the latter then
uses the selected variables to construct concrete conditions
and divides test runs into different groups. For each group,
the same process will proceed until the tests in all groups
cannot be further divided, where a decision tree is built.

Algorithm 1: Variable Prioritization for Selection
Input: varList: a list of variables to be ranked. data: a set of program states

for each test case. graph: program dependency graph.
Output: varList: an ordered list of variables

1 Function prioritizeVars(varList, data, graph):
2 foreach var in varList do
3 var.score ← gainRatio(var) + correlation(var, data.labels)
4 dependency ← depScore(var, graph, varList)
5 var.score ← var.score × dependency
6 end
7 foreach var in varList do
8 foreach v in var.getEqualVars(graph) do
9 var ← aggregate(var, v)

10 if v.score > var.score then
11 var.score ← v.score
12 end
13 end
14 end
15 return varList.sort() // descending order by score

1) Enhanced Variable Selection: Unlike the features used
in traditional classification problems, variables collected by
VARDT naturally have clear and strong correlations, i.e.,
control dependency and data dependency, which reflect the
impacts of different variables to the execution results. For
example, in the patch code shown in Listing 1, the crashed
line 489 depends on the variable expPos defined in line 474,
which further depends on the input argument str. In other
words, though the program crashed due to the incorrect value
of expPos, the input str may also be the root cause of
the failure in practice. However, the general variable selection
algorithm in decision tree models do not consider such de-
pendency information, and may significantly affect the overall
effectiveness of fault-relevant variable localization since it may
cause the irrelevant variables located and decrease the fault
localization precision (refer to Section IV). To overcome this
limitation, we propose an enhanced variable selection strategy
depending on a novel variable prioritization algorithm which
takes the program dependency factor into consideration.

Intuitively, when a variable is depended on by more other
variables, its value will have higher possibility to affect the
final execution results in different execution paths, and thus
potentially affect more test cases. However, we observe that
usually a small number of test cases, e.g., one or two, will be
affected and failed in real-world buggy programs. In other
words, the faulty variables tend to affect test cases in a
small scale. Therefore, we introduce a dependency penalty
to incorporate such an observation through static analysis.
That is, a variable depended on by more other variables will
rank lower, i.e., less likely to be faulty. Formula 1 defines the
computation of the penalty for variable v when providing the
dependency graph g and a list of interested variables l in g.

depScore(v, g, l) = DEP FACTOR|S|

s.t. S = {x|x ∈ l ∧ g ` x ↪→ v}
(1)

In the formula, we use g ` x ↪→ v to represent that variable
x depends on variable v according to g, i.e., the node of v in
graph g is reachable from that of x. DEP FACTOR ∈ (0, 1.0]
is a constant penalty factor, indicating how much the depen-
dency affects the importance of variables.

Algorithm 2: Tree Model Building
Input: data: a set of program states for each test case.

graph: program dependency graph.
Output: trees: a set of decision trees.

1 Function buildModel(data, graph):
2 trees ← ∅
3 varSet ← {var — var is recorded in data }
4 while varSet is not empty do

/* build multiple trees with all variables */
5 tree ← buildTree(data, toList(varSet), graph)
6 if tree is not a leaf node then
7 trees ← trees ∪ tree
8 end
9 varSet ← varSet \ {var — var is used by tree}

10 end
11 return trees
12 Function buildTree(data, varList, graph):
13 tree ← leafNode(data)

/* size(data)>2 ∧ data include different labels */
14 if data can be classified then

/* prioritize different attributes */
15 varList ← prioritizeVars(varList, data, graph)
16 var ← varList.first // higher priority first
17 cond ← calculateCondition(data, var)

/* divide data into groups based on cond */
18 groups ← divide(data, var, cond)
19 tree ← internalNode(data) // root node of subtree
20 foreach g in groups do
21 tree.children.add(buildTree(g, varList))
22 end
23 end
24 return tree

Based on this definition, we present our variable prioritiza-
tion algorithm in Algorithm 1. Specifically, for each variable
var, its priority is determined by three parts (lines 3-5). The
dependency penalty has been defined in Formula 1, while the
function of correlation(*) returns the general Pearson correla-
tion coefficient [42] between variables and the testing results.
Finally, the gainRatio(var) is a builtin function in the C4.5
decision tree model [43] for computing how much confidence
can be gained by choosing the variable var to distinguish the
given data. In summary, a variable that has a smaller impact
to the program semantics (i.e., larger depScore(*)), a larger
correlation to the test results, and more confidence to be the
discriminator, will gain higher priority.

After computation, each variable will be assigned a priority
score (refer to lines 2-6 in Algorithm 1). Next, we aggregate
the equivalent variables appearing at different locations (i.e.,
no reassignment between them) into one as the representative
by removing the others according to the dependency relation
(lines 8-9), and the score of the representative variable will
be the maximal one of all its equivalent variables (lines 10-
11). The reason is that they are always having the same value
in a run, which may cause duplicate selection of the same
variable. For example, the variables of expPos appearing at
lines 474, 488 and 489 in Listing 1 are equivalent, then two of
them will be removed in the results returned by Algorithm 1.
Finally, variable with larger score will have higher priority to
be selected during the tree model building process.

2) Tree Model Building: According to the above variable
selection strategy, we present the details of our model building
process, which is shown in Algorithm 2. When providing the
values of a set of variables per test case (i.e., data) and the
dependency graph of the program, the tree model building

process (i.e., buildModel(*)) is iteratively proceeded. That is,
VARDT each time chooses a subset of variables to construct
a tree model (line 5) until using up all variables (line 4).
As shown in line 9, each variable can be used in no more
than one decision tree to avoid duplication and guarantee
this process always terminates. In other words, the output of
the model building process is a set of decision trees, each
of which can independently isolate the failed test runs from
the passed ones by using a subset of variables. In this way,
all variables will have the possibility to be located since the
fault-relevant variables can be multiple. Particularly, in each
iteration, the tree model is recursively constructed from the top
down using the provided variables by invoking the function
of buildTree(*). Specifically, each time the variable with the
highest priority (i.e., varList.first) will be selected to construct
a predicate for dividing the given data into different groups
(lines 15-18). If the selected variable var is nominal, the
predicate will be a switch-case-like multi-way condition, while
if numeric, a binary predicate, such as “≥” and “<” will be
generated. According to the predicate, data will be divided
into different groups. VARDT recursively performs the above
construction process (lines 20-22) for each group until the
input data do not require further discrimination (line 14).

Up to now, when providing the required data, tree mod-
els can be constructed according to Algorithms 1 and 2.
For example, recall the example shown in Listing 1, ac-
cording to Algorithm 1, the temporary variable representing
str.length() will receive the highest priority, and thus
will be first selected for building the branch condition as shown
in Figure 3. Specifically, according to its values in different test
runs (see Figure 1), a branch condition str.length()<4
will be constructed and divide tests into different groups1,
i.e., {t2, t3} and {t1, t4}. Recursively, in the second round
variable expPos will be selected and further divide the test
set {t1, t4} into {t1} and {t4}. By now, the failed test run (t4)
is completely isolated from the passed runs. From Figure 3 we
can also see that the constraints only satisfied by the failed test
runs are highly related to the root cause of the failure.

In particular, to improve the scalability and efficiency,
VARDT builds tree models for different methods indepen-
dently. That is, VARDT each time takes the profiled variable
data and the intra-procedure dependency graph within a single
method as the input and outputs a set of constructed models,
based on which it identifies the most fault-relevant variables
by a ranking strategy (to be presented in Section III-D).

D. Variable Ranking

According to the previous sections, when providing a buggy
program, VARDT can construct a set of tree models for each
candidate faulty method using the associated variables. In this
section, we further introduce the variable ranking strategy,
which provides a protocol to rank variables in different models
of different methods and obtain the list of the most suspicious

1Please note that the constant value “4” is automatically computed by the
default builtin function of decision tree model in Weka (https://www.weka.io).

t1, t2, t3, t4

str.length()

expPos

All Tests

Passed Tests

Passed Tests Failed Tests

t2, t3

≥ 𝟒

< 𝟐

< 𝟒

≥ 𝟐

t1 t4

Line: {452, 473, 474, 489}

Line: {474, 488,489} : Branch condition
(constraint)

: Test instances

: Splitting variable

: Constraint path
of failure

Fig. 3: A sketch of tree construction for Listing 1

variables that are fault-relevant. Please note that this ranking
strategy is different from the variable prioritization process
shown in Algorithm 1, where the latter aims to make the
most suspicious variables be chosen for model building by
estimating their capability of discriminating between failed
and passed tests, while the former ranking strategy to be
introduced in this section is to assign a global suspicious score
to each chosen variable according to the built models.

Specifically, we define a decision tree as a tuple of M =
(t, p,D,C), where t denotes the root node of the tree, p
denotes the predicate associated with the node t, and D is a
set of data (including tests and corresponding variable records)
associated with the node t. Finally, C is the set of subtrees of t.
Then, when providing the tree M built for a particular method,
we define the posterior discriminative score of variable v used
in the predicate p by Formula 2.

DS(v) =
(1−Gini(p))×

√
|D|

failNodeDist
+ depScore(v, g, l) (2)

where |D| denotes the number of test cases in D, we use its
square root to shrink the discrepancy of test numbers since it
can range from several to hundreds. Gini(p) represents the
general Gini index [44] of predicate p, denoting the impurity
of the tree rooted t. failNodeDist denotes the length of the tree
path from the root node t to the leaf node containing the failed
tests in M . The smaller the length is, the more specific to the
failed test the variable will be, and thus will be more fault-
relevant. The second part depScore(v, g, l) is the dependency
penalty of variable v defined by Formula 1. To sum up, the
score of variable v is determined by the discrimination ability
of the variable in the decision tree (the first part), and its
impact on the program semantics (the second part).

Then, the global ranking score of variable v from method
mv is computed by Formula 3, where methodScore(mv)
denotes the suspiciousness of method mv computed in the
first step of VARDT, i.e., the method-level fault localization.
In particular, we use the quadratic value of the suspiciousness
to weaken its impact on the final rank and thus strengthen the
importance of the variable discrimination ability (i.e., DS(v)).
The bigger the FS(v) is, the higher the variable v will rank.

FS(v) = DS(v)×methodScore(mv)
2 (3)

According to this ranking strategy, the fault-relevant variable
expPos at lines {474, 488, 489} was successfully ranked at
the Top-1 position. As shown in Figure 3, the built constraints
related to the failure can indeed estimate the desired complex
constraints as presented in Figure 1.

TABLE II: Subjects for fault localization

Project #Bugs Project #Bugs Project #Bugs

Math 23 JxPath 8 Compress 9
Chart 12 Cli 8 JacksonXml (JXml) 4
Lang 23 Gson 7 JacksonCore (JCore) 16
Time 12 Csv 5 Mockito 21
Codec 10 Jsop 18 JacksonDatabind (JDatabind) 28

TOTAL 204

IV. EXPERIMENT SETUP

To evaluate the effectiveness of our approach, we have
implemented it in a tool named VARDT, and conducted an
extensive study by comparing it with state-the-the-art fault
localization approaches. Besides, to investigate whether our
finer-grained fault localization results can further improve the
effectiveness of downstream APR approaches, we also adapted
our approach to the application of patch filtering. Specifically,
we address the following research questions in our evaluation.
• RQ1: How effective is VARDT for identifying fault-

relevant variables in real-world programs?
• RQ2: Does each component contribute to the effective-

ness of VARDT?
• RQ3: Can VARDT help to improve the results of auto-

matic program repair?

A. Subjects

In the evaluation of fault localization (RQ1&RQ2), we adopt
the Defects4J (version 2.0) benchmark [33], which is widely-
used in previous studies [17], [24], [34]–[37]. Specifically,
we conducted our experiment on a subset of the benchmark
according to the following two constraints. First, the genuine
faulty method can be located within the Top-10 returned
results by the method-level fault localization in the first step
of VARDT as shown in Figure 2. The reason is that the state-
of-the-art approach can correctly locate more than 80% bugs
in Top-10 [23]. Therefore, targeting this portion of bugs can
be significant for practical use and also reduce the overhead of
variable profiling. Second, the faulty method has to be covered
by at least three (at least one failed and one passed) test cases
so as to the decision tree model in VARDT can work normally.
The details of the subjects used in our experiment are listed
in Table II. Regarding the patch filtering application (RQ3),
we adopt the dataset constructed by Xiong et al. [15] and use
all the patches for bugs included in Table II.

B. Baseline and Configuration

In the experiment of fault localization, following the latest
research [31], we compare the effectiveness of our approach
with five state-of-the-art variable-level fault localization tech-
niques: UniVal [31], the latest approach that uses causal infer-
ence and machine learning to integrate information about both
predicate outcomes and variable values to estimate the effects
of variables to test failures; NUMFL [45] (specifically the two
variants NUMFL-QRM and NUMFL-DLRM), locating vari-
ables by combining causal and statistical analyses to charac-
terize the causal effects of individual numerical expressions on
output errors; ESP [46], locating variables via measuring the

difference between an assigned variable in the failed run and
its average value in all test runs; and Baah2010 [47], locating
variables by using a linear regression model to measure the
confounding bia among variables. Specifically, we adopt their
open-source implementation published by Küçük et al. [31] to
perform the experiment. Besides, we also adapt two represen-
tative and most widely-used spectrum-based fault localization
techniques to work at variable level, i.e., Ochiai [48] and
DStar [49], which were proved to perform well [24], [50].

Regarding the configurations of VARDT, we set the Top-10
most suspicious methods as the interested ones as explained
in Section IV-A, and set the default value of DEP FACTOR
as 0.8 for computing the dependency penalty in Formula 1,
whose impact will be further investigated in our evaluation. In
addition, to evaluate the effectiveness of each component in
our approach, we also create a set of variants of VARDT.

VARDTslice : removes the dynamic program slicing compo-
nent in VARDT and considers variables in all statements
covered by the failed tests within the interested methods.

VARDTtree : removes the tree model in VARDT. As a result,
the variables are basically ranked according to the depen-
dency penalty and the method suspicious score.

VARDTdep : removes the dependency penalty used for vari-
able ranking from both model building and variable
ranking processes, while keeps the others unchanged.

VARDTms : removes the method score in the final variable
ranking process of VARDT, i.e., FS(v) = DS(v).

Particularly, since our approach is not designed as a stan-
dalone patch filtering tool, we further adapt it to this scenario.
Specifically, we perform this process by simply using the
located fault-relevant variables to filter patches directly. If
no fault-relevant variable is involved in the patch, i.e., not
modified or inserted, the patch will be filtered, otherwise
regarded as correct. In this study, we compare the results of
our approach with PATCH-SIM [15], the state-of-the-art patch
filtering technique based on generating new test cases.

To ease the replication of our experimental results and
promote future studies in this research area, we have published
all our experimental data and the implementation of VARDT
at https://github.com/ssmingz/VarDT.

C. Measurement

Although several variable-level fault localization techniques
have been proposed as introduced in the Introduction, there is
still no clear definition of fault-relevant variables, the ground
truth employed by different studies may also be diverse.
For example, Küçük et al. [31] only focus on numerical
assignments and predicates, while Liblit et al. [5] locates
the variables in return statements or on the left side of an
assignment. To provide a fair comparison and make our results
reproducible in future studies, we first provide a definition of
fault-relevant variables from the perspective of program repair.
Specifically, we define a variable (which can be a temporary
variable of a predicate expression in the GSA form) as fault-
relevant if it satisfies one of the following conditions:

1) Variables that are directly modified (i.e., replaced or
deleted) or inserted to the code for repairing the bug, such
as the variable v in the code change of “v>0→v’>0”
or the temporary predicate variable v=exp’ in the code
change of “if(exp||exp’){}→if(exp){}”.

2) Variables whose values are directly affected by the newly
inserted statement, such as the variable v in the code
change of “v=exp;→if(cnd){v=exp;}”.

3) If a data-flow-breaking statement (e.g., return) is
deleted or inserted, the temporary variable corresponding
to the surrounding branch condition (if exists) since it is
the indicator of the bug, such as variable v in the code
change of “if(v=cnd){}→if(v=cnd){return;}”

4) If all the statements in the body of an if statement are
modified/deleted or an If statement is deleted, indicating
a special condition is incurred, the temporary variable of
the condition, such as variable v in the code changes
of “if(v=cnd){exp;}→if(v=cnd){exp’;}” and
“if(v=cnd){exp;}→exp;”. Please note that if only
a portion of statements are modified in the body, the
failures are more likely to be caused by the incorrect
statements themselves but unlikely related to the condi-
tion. In such cases, the first rule can be applied.

The basic intuition of our definition is to locate vari-
ables that will be directly modified or are indicators that
produce the bug. For example, the variables expPos and
str.length() are both fault-relevant in the running exam-
ple. Particularly, a buggy program may have multiple fault-
relevant variables. On the basis of this definition, we have
manually identified the fault-relevant variables for each bug
used in our experiment, which will play as the ground truth
and may also provide a standard for promoting future research
(published in our open-source repository). Specifically, there
are in average 4 fault-relevant variables per each bug in our
studied dataset. As it will be presented in Section V-C that
correctly locating these fault-relevant variables indeed can
boost existing automatic program repair techniques, further
demonstrating the reliability of the ground truth.

1) Metrics: Following previous studies [4], [22]–[24], [34],
[48], we employ three metrics in the fault localization ex-
periment. Recall at Top-N: computes the number of bugs
that have at least one fault-relevant variable correctly located
within the Top-N position in the ranked list (aka., precision).
We set N∈ {1, 3, 5, 10} like existing studies [34], [35]. Mean
First Rank (MFR): denotes the average rank of the first
located fault-relevant variables for multiple bugs. Mean Aver-
age Rank (MAR): When a bug has multiple fault-relevant
variables, the MAR denotes the average rank of all these
variables, while for multiple bugs, this metric denotes the
average MAR of them. Following existing studies [34], [35],
we adopt the average rank for variables in a tie. Please note
that if the candidate variable list of an approach includes no
fault-relevant variable, the corresponding bug will be removed
when calculating the MAR and MFR for the approach to
mitigate the bias of different predicates. Besides, we do not
use the metric of Exam Score used in statement-level fault

localization [24], [34], [35]. The reason is that it requires the
total number of candidate variables in different approaches to
the same for a fair comparison, which cannot be satisfied in
our experiment.

In the application of patch filtering, we adopt two
metrics following previous studies [15], [51], i.e., Preci-
sion=Nfi/(Nfi +Nfc) and Recall=Nfi/(Nfi +Nni), where
Nfi denotes the number of incorrect patches filtered, Nfc

denotes the number of correct patches filtered, and Nni

denotes the number of incorrect patches not filtered.

V. RESULT ANALYSIS

A. RQ1: Overall Effectiveness of VARDT

As introduced, we conducted our experiment over 204 real-
world bugs from Defects4J benchmark and compared the
results with seven baseline approaches. Table III presents
the experimental results of different approaches. From the
table, we can see that our approach significantly outperforms
the baselines. Specifically, VARDT successfully located the
desired fault-relevant variables for 24.0%, 39.7%, 49.0% and
65.7% of bugs within the Top-1/3/5/10 positions, respectively.
The improvements over the baseline approaches range from
247.8% to 515.4% regarding the Top-1 recall, and the average
improvements are 330.5%. Particularly, VARDT significantly
outperforms the latest state-of-the-art UniVal by 247.8% with
respect to the Top-1 recall. The results demonstrate that
our approach is much more effective. Though effective, the
absolute number of bugs located at Top-1 is still small (i.e.,
24.0%) for VARDT. A major reason is the inaccuracy of the
coarse-grained fault localization results used by VARDT. As
will be presented later (see Figure 4), when providing accurate
method-level FL results, the effectiveness of VARDT can be
significantly improved. Please note that the results of the
compared approaches in our experiment are much worse than
those results reported in the previous study [31]. To ensure the
correctness of the results, we further carefully checked them
manually. In addition, since the results were produced using
the virtual machine published by the authors, we believe they
should be reliable. We guess the decline may be caused by the
different definitions of ground-truth variables, but they were
not published by the authors, and thus we cannot reproduce
their results.

Furthermore, we also reported the detailed Top-1 results of
different approaches on each project in Table IV. According to
the results, VARDT performs consistently well over different
projects, and always outperforms the baselines, indicating
the generalizability of our approach. Regarding the metrics
of MAR and MFR shown in Table III, our approach also
outperforms the competitors with at least 77.3% and 71.5%
improvements, and the average improvements are 78.8% and
73.6%, respectively. The results further demonstrate the superi-
ority of our approach. Please note that though VARDT depends
on the decision tree building process compared with baselines,
the cost of it is relatively small, i.e., 1.9s in average.

TABLE III: Experimental result summary of all approaches

Metric VARDT UniVal Baah
-2010 ESP NUMFL

-DLRM
NUMFL
-QRM Ochiai Dstar

(Star=2)

Top-1 24.0% 6.9% 5.9% 6.4% 4.4% 3.9% 6.4% 6.9%
Top-3 39.7% 12.3% 10.3% 9.8% 8.8% 11.8% 14.2% 14.2%
Top-5 49.0% 15.2% 15.2% 12.3% 12.8% 16.2% 18.6% 18.1%

Top-10 65.7% 19.6% 18.1% 15.7% 17.2% 20.6% 21.1% 20.6%

MFR 8.0 28.2 29.9 44.0 29.5 28.6 28.5 28.1
MAR 11.2 49.3 53.2 65.6 52.0 49.5 52.5 51.4

TABLE IV: Top-1 results of all approaches

Project VARDT UniVal Baah
-2010 ESP NUMFL

-DLRM
NUMFL
-QRM Ochiai Dstar

(Star=2)

Compress 11.1% 11.1% 11.1% 0.0% 11.1% 0.0% 11.1% 11.1%
Gson 42.9% 14.3% 14.3% 0.0% 0.0% 0.0% 14.3% 14.3%
Codec 20.0% 0.0% 0.0% 0.0% 10.0% 10.0% 0.0% 0.0%
Csv 20.0% 20.0% 20.0% 20.0% 0.0% 0.0% 20.0% 20.0%
Lang 26.1% 13.0% 4.4% 17.4% 8.7% 4.4% 0.0% 0.0%
JXml 25.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Chart 25.0% 8.3% 8.3% 8.3% 0.0% 0.0% 0.0% 0.0%
JCore 6.3% 6.3% 0.0% 0.0% 0.0% 0.0% 6.3% 6.3%
Jsoup 16.7% 5.6% 0.0% 5.6% 5.6% 0.0% 0.0% 0.0%
JxPath 12.5% 0.0% 0.0% 0.0% 0.0% 12.5% 0.0% 0.0%
Math 26.1% 13.0% 13.0% 17.4% 13.0% 13.0% 13.0% 13.0%
JDatabind 32.1% 3.6% 10.7% 3.6% 0.0% 0.0% 17.9% 17.9%
Time 25.0% 0.0% 8.3% 0.0% 0.0% 8.3% 0.0% 8.3%
Cli 37.5% 12.5% 0.0% 12.5% 12.5% 12.5% 0.0% 0.0%
Mockito 28.6% 0.0% 0.0% 0.0% 0.0% 0.0% 4.8% 4.8%

TOTAL 24.0% 6.9% 5.9% 6.4% 4.4% 3.9% 6.4% 6.9%

B. RQ2: Contribution of Each Component

In order to evaluate the effectiveness of each component
in VARDT, we have conducted an ablation study with a
set of variants of VARDT, which have been introduced in
Section IV-B. Figure 4 presents the results of each variant
regarding the metrics of Top-N recall, MFR and MAR. Ac-
cording to the results, all components in VARDT largely
contributed to the overall effectiveness of VARDT since a large
drop on the Top-N recall was incurred when removing any one
of them. Specifically, regarding the metric of Top-1 recall,
the dynamic program slicing contributed 25.7% higher effec-
tiveness (vs VARDTslice), the tree model contributed 144.9%
(vs VARDTtree), the dependency penalty contributed 32.6% (vs
VARDTdep), and the use of method score for variable ranking
contributed 103.4% (vs VARDTms), respectively. However, all
of them always outperform the baseline approaches. In partic-
ular, the core novel component (i.e., tree model) in VARDT
makes the largest contribution. In summary, the ranking of
component contributions is tree model > method score >
dependency penalty > program slicing regarding Top-N.

Since the method score largely affects the effectiveness of
VARDT, a question may naturally raise: Whether VARDT
can be further improved by providing a more accurate fault
localization result (e.g., providing the genuine faulty method).
Therefore, we empirically evaluated the fault localization
results of VARDT in the circumstance where the faulty method
was known, for which we created another variant VARDTmk.
The results of VARDTmk are also presented in Figure 4.
VARDTmk successfully located the desired variables for 37.8%
of bugs at Top-1, the improvements over VARDT are about
57.5%. Moreover, the Top-10 recall is as high as 80.4%, indi-
cating the promise of incorporating a more effective method-

Fig. 4: Results of VARDT and its variants

Fig. 5: Effects of different values of dependency factor

level fault localization technique into VARDT.
Then, we further investigated the impact of the configuration

for DEP FACTOR, which represents the strength of depen-
dency penalty. According to Formula 1, the smaller the value
is, the larger the penalty will be (i.e., the variable will be
less likely to be selected). Figure 5 presents the results when
taking different values, where 0.8 is the default value. From
the figure, we can see that VARDT achieved the best overall
result when taking the value in [0.6, 0.8], and the impact of
this configuration is relatively small. Specifically, when taking
0.6, VARDT achieved the highest Top-1 recall as 24.5%,
whereas it achieved the lowest Top-1 recall as 18.1% when
taking 1.0. The result indicates that VARDT is insensitive to
this configuration although it is indeed important according
to the result of VARDTdep, which completely removes the
dependency penalty component.

Finally, we also investigated the impact of program slicing
in depth on the space reduction of candidate variables.
The result shows that the reduction ratio ranges from 18.5%
to 42.2% over different projects, and in average is 31.9%,
denoting the necessity of it for improving efficiency.

C. RQ3: Performance in Patch Filtering

To evaluate whether our finer-grained variable-level fault
localization results can further the effectiveness of downstream
APR techniques, we adapted VARDT to the task of patch filter-
ing and compared the result with the state-of-the-art PATCH-
SIM. The details have been introduced in Section IV-B.

Table V presents the experimental results. Specifically, we
list the number of all plausible and correct patches per each
project in the left part of the table, while list the filtering
results in the right part. Particularly, DTTop-N represents that we
use the Top-N variables located by VARDT to filter patches.

TABLE V: Experimental results in patch filtering

Project #All(Correct) DTTop-1 DTTop-3 DTTop-5 DTTop-10 PATCH-SIM

Math 24(3) 22(2) 22(2) 20(1) 14(0) 15(0)
Lang 10(2) 10(2) 10(2) 10(2) 9(1) 2(0)
Chart 14(2) 14(2) 8(1) 7(1) 6(1) 4(0)
Time 8(1) 7(1) 6(0) 6(0) 6(0) 6(0)
Mockito 2(1) 1(0) 1(0) 1(0) 1(0) -

TOTAL 58(9) 54(7) 47(5) 44(4) 36(2) 27(0)

Precision 87.0% 89.4% 90.9% 94.4% 100.0%
Recall 95.9% 85.7% 81.6% 69.4% 55.1%

In each cell, X(Y) denotes the corresponding approach in
total filtered X patches, in which Y patches were correct
patches. According to the result, although our approach was
not designed as a comprehensive and standalone patch filtering
technique, it still could filter out about 69.4% incorrect patches
using the Top-10 results of VARDT, while PATCH-SIM only
filtered 55.1%. That is, VARDT outperforms PATCH-SIM
by 26.0% in terms of incorrect patches filtered. Particularly,
the patch precision (the percentage of correct patches over
all patches) increased to 31.8% and 29.0% from 15.5% by
DTTop-10 and PATCH-SIM respectively after filtering. The
result indicates the performance of VARDT and the feasibility
of boosting automatic program repair techniques by filtering
incorrect patches using a finer-grained fault localization. It also
reflects the reliability of our ground truth since it is indeed
closely related to the repair of the bug. Besides, designing new
automatic program repair techniques based on the variable-
level fault localization potentially can further improve the
number of correct patches since many incorrect patches can
be avoided to be generated in the online repair process, and
thus correct patches will have more possibility to be generated.
More studies can be conducted in this direction.

Though effective, our approach tends to incorrectly filter
out correct patches compared with PATCH-SIM. For example,
two correct patches were filtered out by DTTop-10 while none
by PATCH-SIM. Particularly, with the decrease of variable
numbers (i.e., from Top-10 to Top-1), although more incorrect
patches can be filtered out, the precision of filtering will also
sharply drop. When using the Top-1 result (i.e., only one
candidate variable for each bug), 7 out of 9 correct patches will
be filtered due to the inaccuracy of VARDT. Particularly, after
further analyzing the results of the two approaches, we found
that there were only 19 incorrect patches that were commonly
filtered out by both DTTop-10 and PATCH-SIM. In other words,
(34+27)-19=42 incorrect patches and 2 correct patches could
be filtered by combining these two, leaving the precision and
recall of filtering as 95.5% and 85.7%, respectively, and the
patch precision will also increase to 50%. The result reflects
that they complement each other.

VI. DISCUSSION

Limitation: As explained in Section IV-A, VARDT requires
that at least three test cases (including at least one failed and
one passed) cover the faulty method, which may affect the
usability of our approach in practice since the accompanied
test suite tend to be weak [14], [15]. In such cases, the state-of-

the-art test generation approaches [52]–[54] may be potentially
combined to overcome this limitation.
Internal threats: The threats to internal validity mainly lie in
the implementation and ground truth used in our experiment.
In order to ensure the reliability of our implementation, two
authors have carefully checked its correctness through code
review, which can mitigate this threat. Regarding the ground
truth, we have provided a clear definition of fault-relevant
variables, based on which we manually analyzed the source
code. Therefore, we believe it is reliable. Additionally, the
evaluation result of VARDT in the patch filtering application
also improves our confidence. Finally, we have published all
our data and implementation to ease the replication.
External threats: The threats to external validity mainly lie
in the used subjects. In our experiment, we only adopted a
subset of the bugs from the Defects4J benchmark according
to the constraints introduced in Section IV-A. However, since
the studied bugs are from 15 different real-world projects,
we believe it can be representative to some extent. The
effectiveness of VARDT on a wider range of projects beyond
Defects4J remains to be studied.
Future Work: As can be observed, the fault-relevant variables
and their constraints indeed can provide possible hints for
program repair according to the example shown in Figure 3
and the results in patch filtering. In the future, we plan to
further investigate the performance of VARDT for assisting
human developers in the manual repair process.

VII. RELATED WORK

A. Variable-based Fault Localization

Our approach targets the variable-based fault localization,
the most related techniques are UniVal [31], NUMFL [45],
ESP [46], and Baah2010 [47], which have been introduced
in Section IV-B. Different from them, our approach locates
fault-relevant variables by leveraging decision trees to build
variable constraints for discriminating failed and passed test
runs, which is the first time as far as we are aware. Besides, the
statistical debugging [32] and its following work [7]–[9], [11],
[12], [46] are also related to our approach, which depends on
test coverage to compute the importance of a set of pre-defined
predicates. On the contrary, our approach uses a dependency-
enhanced tree model to identify fault-relevant variables, but
not simply their coverage. In addition, existing studies also
employed decision tree [55] or random forest models [56] in
fault localization. However, they were designed for improving
the statement-level fault localization, whereas our approach
targets the variable level and additionally incorporates the
dependency factor for model building.

Besides locating fault-relevant variables directly, several
studies use variable/value profiles to boost statement-level fault
localization. For example, a set of studies devoted to improving
statement-level fault localization by replacing the values of
certain expressions with alternative values in order to make the
failed test pass [57]–[59]. Recent studies [4], [19] incorporated
mutation analysis to improve fault localization. Shen et al. [60]

combined statistical localization with directed fuzzing to over-
come the over-fitting and estimation bias problem in fault
localization. Different from them, our work aims at locating
the finer-grained fault-relevant variables directly.

Finally, there are also some interventional fault localization
approaches depending on variable values [29], [30], Com-
pared with them, our approach is fully automatic. The latest
studies also employed different models to combine the strength
of multiple techniques [20], [22], [34], [35]. These techniques
can be further combined with our approach and boost its
effectiveness by providing a more precise method-level fault
localization result. In turn, our approach may also improve
existing techniques by integrating it into them.

B. Automatic Patch Filtering

In order to improve the patch quality (i.e., precision) in au-
tomatic program repair, researchers have proposed a series of
patch filtering techniques. Among them, test-generation-based
techniques are the most widely studied, and the core challenge
is the lack of test oracles. Facing this challenge, existing
studies employed different strategies. Yang et al. [61] proposed
Opad, which filters patches that cause program crashes or pro-
duce memory errors. Xin and Reiss [51] proposed DiffTGen
which depends on human experts to provide the test oracle.
While Xiong et al. [15] proposed PATCH-SIM that estimates
the test results by measuring the execution similarity of test
cases before and after repair. On the contrary, Tan et al. [62]
pre-defined a set of anti-patterns that easily produce incorrect
patches for patch filtering. Recently, Ye et al. [63] proposed to
employ a machine learning method to classify the correctness
of patches, while Wang et al. [64] proposed a deep-learning-
based approach. Different from existing approaches, our work
focuses on improving the fault localization effectiveness by
providing finer-grained results, which can also aid the patch
filtering process but from a different perspective, and thus is
orthogonal to them.

VIII. CONCLUSION

In this paper, we have proposed a variable-level fault
localization technique, named VARDT, in which we designed
a novel program-dependency-enhanced decision tree model
to aid the identification of fault-relevant variables. We have
evaluated the effectiveness of VARDT in both fault localization
and patch filtering applications by comparing with the state-
of-the-art techniques. The results demonstrate that VARDT
significantly outperformed the baseline approaches, where the
improvements are at least 247.8% and 26.0% regarding bugs
located within Top-1 and the number of incorrect patches fil-
tered, respectively in the aforementioned applications, demon-
strating the effectiveness of our approach.

REFERENCES

[1] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in ICSE, 2002.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in ASE, 2005, pp. 273–282.

[3] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION, 2007, pp.
89–98.

[4] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in ICST, 2014, pp. 153–162.

[5] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in PLDI, 2005, pp. 15–26.

[6] P. Arumuga Nainar and B. Liblit, “Adaptive bug isolation,” ser. ICSE,
2010, pp. 255–264.

[7] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical
debugging using compound boolean predicates,” ser. ISSTA, 2007, pp.
5–15.

[8] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
“Holmes: Effective statistical debugging via efficient path profiling,” ser.
ICSE, 2009, pp. 34–44.

[9] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
debugging: Simultaneous identification of multiple bugs,” ser. ICML,
2006, pp. 1105–1112.

[10] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: Statistical
model-based bug localization,” ser. ESEC/FSE-13, 2005, pp. 286–295.

[11] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” TSE, vol. 32, no. 10, pp. 831–848,
2006.

[12] L. Jiang and Z. Su, “Context-aware statistical debugging: From bug
predictors to faulty control flow paths,” ser. ASE, 2007, pp. 184–193.

[13] M. Zeng, Y. Wu, Z. Ye, Y. Xiong, X. Zhang, and L. Zhang, “Fault
localization via efficient probabilistic modeling of program semantics,”
in ICSE, 2022.

[14] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in ISSTA, 2015, pp. 257–269.

[15] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in ICSE, 2018.

[16] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in FSE, 2015,
pp. 532–543.

[17] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in ISSTA, 2019.

[18] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in ESEC/FSE,
2021.

[19] M. Papadakis and Y. Le Traon, “Metallaxis-fl: Mutation-based fault
localization,” Softw. Test. Verif. Reliab., pp. 605–628, Aug. 2015.

[20] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in ICSME, 2014, pp. 191–200.

[21] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” no. OOPSLA, pp. 92:1–92:30, 2017.

[22] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization with code coverage
representation learning,” in ICSE, 2021, pp. 661–673.

[23] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” ser. ESEC/FSE, 2021.

[24] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
ser. ICSE, 2017, pp. 609–620.

[25] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” ser. PLDI,
1990, pp. 246–256.

[26] X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with
confidence,” ser. PLDI, 2006, pp. 169–180.

[27] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to improve
fault localization,” ser. ISSTA, 2017, pp. 273–283.

[28] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in ISSTA, 2016,
pp. 177–188.

[29] A. Zeller, “Isolating cause-effect chains from computer programs,” ser.
SIGSOFT ’02/FSE-10, 2002, pp. 1–10.

[30] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” TSE, pp. 183–200, 2002.

[31] Y. Küçük, T. A. D. Henderson, and A. Podgurski, “Improving fault
localization by integrating value and predicate based causal inference
techniques,” in ICSE, 2021.

[32] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” in PLDI, 2003, pp. 141–154.

[33] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in ISSTA,
2014, pp. 437–440.

[34] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[35] J. Jiang, R. Wang, Y. Xiong, X. Chen, and L. Zhang, “Combining
spectrum-based fault localization and statistical debugging: An empirical
study,” in ASE, 2019, pp. 502–514.

[36] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018.

[37] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in ICSE, 2018.

[38] X. Deng, Y. Li, J. Weng, and J. Zhang, “Feature selection for text
classification: A review,” Multimedia Tools and Applications, vol. 78,
no. 3, pp. 3797–3816, 2019.

[39] A. Gupta, S. Sharma, S. Goyal, and M. Rashid, “Novel xgboost tuned
machine learning model for software bug prediction,” in ICIEM, 2020,
pp. 376–380.

[40] Y. Xiong and B. Wang, “L2s: A framework for synthesizing the
most probable program under a specification,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 3, 2022.

[41] S. Tizpaz-Niari, P. Cerny, B.-Y. E. Chang, and A. Trivedi, “Differential
performance debugging with discriminant regression trees,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[42] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[43] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[44] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification

And Regression Trees, 1984.
[45] Z. Bai, G. Shu, and A. Podgurski, “Numfl: Localizing faults in numerical

software using a value-based causal model,” in ICST, 2015, pp. 1–10.
[46] R. Gore, P. F. Reynolds, and D. Kamensky, “Statistical debugging with

elastic predicates,” in ASE, 2011, pp. 492–495.
[47] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for

statistical fault localization,” in ISSTA, 2010.
[48] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An evaluation of

similarity coefficients for software fault localization,” ser. PRDC, 2006,
pp. 39–46.

[49] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
no. 1, pp. 290–308, March 2014.

[50] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” Journal of
Software: Evolution and Process, vol. 26, no. 2, pp. 172–219, 2014.

[51] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through
test case generation,” in ISSTA, 2017.

[52] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in SEC/FSE, 2011, pp. 416–419.

[53] H. Zhang, W. Dong, and J. Lin, “A partial-lifting-based compiling
concolic execution approach,” in CSP, 2021, pp. 123–128.

[54] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies, 2020.

[55] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in ISSRE, 2007.

[56] R. Widyasari, G. A. A. Prana, S. A. Haryono, Y. Tian, H. N. Zachiary,
and D. Lo, “XAI4FL: Enhancing spectrum-based fault localization with
explainable artificial intelligence,” in ICPC, 2022, pp. 499–510.

[57] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in ICSE, 2006, pp. 272–281.

[58] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value
replacement,” in ISSTA, 2008.

[59] S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic debugging,”
in ICSE, 2011.

[60] S. Shen, A. Kolluri, Z. Dong, P. Saxena, and A. Roychoudhury,
“Localizing vulnerabilities statistically from one exploit,” in ASIA CCS,
2021, p. 537–549.

[61] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better
automated program repair,” in FSE, 2017, pp. 831–841.

[62] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in FSE, 2016.

[63] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus, “Automated
classification of overfitting patches with statically extracted code fea-
tures,” IEEE Transactions on Software Engineering, 2021.

[64] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin,
“Automated patch correctness assessment: How far are we?” in ASE,
2020.

	I Introduction
	II Motivating Example
	III Framework
	III-A Dynamic Program Slicing
	III-B Program Transformation and Profiling
	III-C Tree Model Construction
	III-C1 Enhanced Variable Selection
	III-C2 Tree Model Building

	III-D Variable Ranking

	IV Experiment Setup
	IV-A Subjects
	IV-B Baseline and Configuration
	IV-C Measurement
	IV-C1 Metrics

	V Result Analysis
	V-A RQ1: Overall Effectiveness of VarDT
	V-B RQ2: Contribution of Each Component
	V-C RQ3: Performance in Patch Filtering

	VI Discussion
	VII Related Work
	VII-A Variable-based Fault Localization
	VII-B Automatic Patch Filtering

	VIII Conclusion
	References

