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Abstract
Current large language models (LLMs) can exhibit near-human levels
of performance on many natural language-based tasks, including
open-domain question answering. Unfortunately, at this time, they
also convincingly hallucinate incorrect answers, so that responses
to questions must be verified against external sources before they
can be accepted at face value. In this paper, we report two simple
experiments to automatically validate generated answers against a
corpus. We base our experiments on questions and passages from the
MS MARCO (V1) test collection, and a retrieval pipeline consisting
of sparse retrieval, dense retrieval and neural rerankers. In the first
experiment, we validate the generated answer in its entirety. After
presenting a question to an LLM and receiving a generated answer, we
query the corpus with the combination of the question + generated
answer. We then present the LLM with the combination of the
question + generated answer + retrieved answer, prompting it to
indicate if the generated answer can be supported by the retrieved
answer. In the second experiment, we consider the generated answer
at a more granular level, prompting the LLM to extract a list of
factual statements from the answer and verifying each statement
separately. We query the corpus with each factual statement and then
present the LLM with the statement and the corresponding retrieved
evidence. The LLM is prompted to indicate if the statement can be
supported and make necessary edits using the retrieved material.
With an accuracy of over 80%, we find that an LLM is capable of
verifying its generated answer when a corpus of supporting material
is provided. However, manual assessment of a random sample of
questions reveals that incorrect generated answers are missed by
this verification process. While this verification process can reduce
hallucinations, it can not entirely eliminate them.

CCS Concepts
• Information systems → Information retrieval; • Computing
methodologies → Natural language generation.

1 Introduction
There has been rapid progress in the field of Natural Language
Processing due to recent advancements in transformer-based large
language model (LLM)s [11, 14, 19, 28, 33]. These LLMs have
produced substantial improvements in text generation tasks such as
question answering, summarization, and machine translation [9, 18,
22, 24, 34, 38, 41]. However, despite the excitement created by these
improvements, the LLMs may confidently and convincingly generate
hallucinated results [3, 17]. Avoiding hallucinations is particularly

A preliminary version of this work appeared at the REML 2023 workshop. The
final version will appear at SIGIR-AP 2023.

important when LLM generated text is presented directly to users,
especially in critical circumstances, such as health and medicine [10].

Current LLMs lack the ability to self-detect hallucinations in
generated texts as they do not have access to an external source of
knowledge [3]. On the other hand, information retrieval methods have
been long studied and are now capable of rapidly locating the top
documents relevant to queries from arbitrarily large text corpora [31].
Attribution [5, 29, 40] focuses on connecting generated texts to
supporting evidence to make them more trustworthy. Retrieval-
augmented generation approaches [13, 20] attempt to ensure the
reliability of generated texts by conditioning the LLM’s generation
on retrieved material. However, such approaches still suffer from
hallucination and cannot guarantee attribution. The LLM may make
claims not found in the retrieved material [12] or contradictory to
the retrieved material [23].

As opposed to retrieval-augmented generation that performs re-
trieval before generation, more recent works such as RARR [16]
proposed to perform retrieval after generation. The proposed frame-
work suggests examining the produced text and making edits to align
it with the gathered evidence, while maintaining the overall structure
of the original text in case of any contradictions. Since our focus
is on self-detecting and correcting hallucinations, we also perform
retrieval after generation. However, unlike RARR which makes uses
of few-shot prompting [6] and external query-document relevance
model, our experiments use nothing else besides the LLM itself and
a retrieval pipeline. Substantial prompt engineering is not needed.

The LLM’s generated texts is often more than just a single and
atomic factual claim, it can be helpful to decompose a piece of
generated text into a series of factual claims. Many previous works
have studied decomposing long piece of text into atomic factual
claims [8, 25, 36]. While we took inspiration from these works, we
use solely the LLM itself to achieve such decomposition with no
training, no human intervention, and minimal prompt engineering.

In this paper, we investigate the ability for LLMs to self-detect hal-
lucinations by confirming its generated responses against an external
corpus. More specifically, we experimentally test the degree to which
an LLM hallucinates answers when performing an open-domain,
general question-answering task, and whether it can automatically
verify its responses when presented with a dataset containing known
correct answers, with the help of retrieval methods. Our experiments
include manual checks of comparisons made by the LLM. These
experiments demonstrate that the LLM can correctly detect its own
hallucinations in a majority of cases (an accuracy of over 80%),
with the help of retrieval methods. However, while our verification
process can reduce hallucinations, it can not entirely eliminate them.
One should still be cautious when depending on LLM-generated
answers, especially in critical circumstances.
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2 Experimental Setup
In our experiments, we choose gpt-3.5-turbo as the LLM rep-
resentative with the temperature set to 0, consistent with OpenAI
recommendations for classification tasks. We used the MS MARCO
(V1) passage collection1 [26] for questions and answer validation.
MS MARCO is a large-scale dataset with over 8 million passages for
the development and evaluation of machine reading comprehension
models. MS MARCO is accompanied by sparsely labeled queries as
its training set, development set and test set. In this paper, we run
experiments on the 6980 questions in the MS MARCO (V1) small
development set.

We run our set of experiments with two different retrieval methods.
As the first retriever, we employ the Okapi BM25 [30] ranking
function, which is a well-known and widely-used baseline retrieval
method. For the BM25 function parameters, 𝑘1 is set to 0.82 and 𝑏

is set to 0.68, which are standard values tuned for the MS MARCO
passage retrieval task by grid search. Since BM25 requires exact
matching between query terms and document terms, we speculate
that it may perform well for answer verification by providing support
for the terms used in the generated answer.

The second retrieval method we adopt for our experiments is a
more modern neural retrieval method that emphasizes the quality of
the retrieved passages over retrieval efficiency. The pipeline com-
prises an initial retrieval stage followed by a reranking stage. For
the retrieval stage, we employ a combined pool of sparse and dense
retrieval. We use SPLADE [15] as the sparse retrieval method, and
ANCE [37] as the dense retrieval method. Both retrieval methods are
shown to be highly effective [32, 39]. We pool the top 100 documents
retrieved by both retrieval methods. For the reranking stage, we
use a combination of MonoT5 and DuoT5 neural rerankers [27].
We used MonoT5 to rerank the pooled documents from the re-
trieval stage, and we use DuoT5 to rerank the top 10 documents
selected by MonoT5. We select this multi-stage neural retrieval stack
(SPLADE+ANCE+MonoT5+DuoT5) as similar approaches have
shown excellent performance on the MS MARCO passage ranking
task. Executing our implementation of this neural retrieval pipeline
on the MS MARCO (V1) small development set achieves a MRR@10
of 0.40. All the aforementioned methods are implemented using the
Pyserini toolkit with default parameters2 [21].

3 Experiment 1
Our first experiment is essentially the simplest method that we
could envision for employing LLMs to self-verify against retrieved
passages. We first prompt the LLM to answer the question. We then
combine its generated answer with the original question and use the
result to query a corpus of passages expected to contain supporting
evidence. In order for the LLM to self-detect hallucinations, we then
present the question, the generated answer, and the potential evidence
to the LLM, prompting it to determine if the evidence supports the
answer.

3.1 Methodology
Figure 1 shows an overview of our proposed pipeline. Starting with
a question, we prompt the LLM to answer it (Figure 3). We direct

1https://github.com/microsoft/MSMARCO-Passage-Ranking
2https://github.com/castorini/pyserini/

Figure 1: Self-detecting hallucination in LLMs.

Figure 2: Stepped classification of a question-answers pair.

You are an expert in this field. Please answer the question as simply
and concisely as possible.

Question: {query}
Answer:

Figure 3: Prompt for answering question.

the LLM to act as an expert in order to set a more rigorous and less
casual tone for the response [35]. Then, inspired by query expansion
methods which have shown to be effective and help avoid topic
drift problems [1, 2, 4, 7, 42], we combine the original question
with the answer generated by the LLM for a second fact-checking or
confirmation phase. We execute the combined query over a collection
of passages to retrieve passages that are both relevant to the original
question and that may support the LLM’s generated answer. We then
combine the original question, the generated answer, and the retrieved
answer, and prompt the LLM to determine if the retrieved answer
supports the generated answer (Figure 2, Figure 4, and Figure 5). We
summarize our proposed strategy as follows:

(1) Prompt the LLM to answer the question.
(2) Combine the LLM’s answer with the original question.
(3) Execute the combined query on an external corpus (expected

to contain correct answers), retrieving the most relevant pas-
sage(s).

2
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I want you to act as an assessor of the answer. You will be given
a question and an answer, and you need to determine whether
the answer directly answers the question. Examples of non-direct
answers would be claiming it does not know or does not have
enough information, and provide some alternative ways to find
answers. Also note that if an answer claims that the question itself
is wrong, it also is a form of direct answer. Your response should
be ‘Yes’ if the answer actually answers the question, ad ‘No’ if the
answer does not actually answer the question. Please also include a
short and concise explanation of your classification.

Question: {query}
Answer: {answer}

Figure 4: Prompt for assessing whether the answer directly
addresses the question.

I want you to act as an assessor of the answer. You will be provided
with a question, an answer, and relevant evidence. Your task
is to assess whether the evidence provided supports the given
answer. If the evidence supports the answer, reply with a ’Yes’.
Otherwise, reply with a ’No’. Please also include a short and
concise explanation of your classification.

Question: {query}
Answer: {LLM answer}
Evidence: {Retrieved answer}

Figure 5: Prompt for validating generated answer.

I want you to act as a question-based summarizer for a set of
passages. Given a question and a passage containing answer to the
question, your task is to provide a clear and concise summary of
the passage that directly answer the question and contain minimal
extra information. Your summary should be easy to understand and
accurately represent the passage. Keep in mind that your summary
should be objective and avoid including personal opinions or
biases. If the passage does not answer, simply reply with ‘No An-
swer’, otherwise reply with just the summary itself and nothing else.

Question: {query}
Passage 1: {passage1}
Passage 2: {passage2}
Passage 3: {passage3}

Figure 6: Prompt for reader task.

(4) Prompt the LLM to compare its generated answer against the
retrieved results from the combined query, with the goal of
self-detecting hallucinations.

In the following subsections, we elaborate on individual components
of this pipeline.

3.1.1 Retrieved Answer We experiment with three different types
of retrieved answer:

• BM25 retrieved answer: the most relevant passage retrieved
using the Okapi BM25 ranking function.

• Neural retrieved answer: the most relevant passage retrieved
using the multi-stage neural retrieval stack (SPLADE +ANCE
+ MonoT5 + DuoT5).

• Reader extracted answer: obtained by prompting the LLM to
act as a reader and extract a more concise answer from the
top three passages retrieved by the multi-stage neural retrieval
stack.

There can be multiple ways to address the same question, and
the answers provided by the model may span various perspectives.
Consequently, we experiment with retaining the top three retrieved
passages. However, simply concatenating these passages without any
refinement may lead to abrupt shifts, repetitions, or excessive length.
Hence, we utilize a reader to perform a question-based summary of
the top three retrieved passages, resulting in a summary that aligns
better with the concise and direct nature of the LLM’s generated
answer. To do so, we prompt the LLM to act as a reader with the
prompt shown in Figure 6.

3.1.2 Validating Generated Answer In order to validate generated
answer against retrieved answer, we perform a stepped classification
of each pair of question, generated answer, and retrieved answer as
shown in Figure 2. The first step is prompting the LLM with the
prompt shown in Figure 4 for it to decide if the generated answer
and the retrieved answer actually address the question or not. In the
second step, we classify the question, generated answer and retrieved
answer pair. If the LLM classifies either one of the generated answer
and the retrieved answer as not answering the question, we classify
the question-answers pair as ‘Not Related’. Only if both answers are
classified as direct answers to the question, we prompt the LLM to
classify if the generated answer is supported by the retrieved answer
with the prompt shown in Figure 5.

We categorize the outcome of the LLM’s decision into three
different classes:

• We interpret the “Yes” class as indicating that there is no
hallucination since the retrieved passages provide supporting
evidence to the LLM’s answer;

• We interpret the “No” class as indicating there is likely
hallucination since the retrieved passages fail to support the
LLM’s answer;

• We interpret the “Not Related” class to indicate the LLM
responded with a clarification request or claims it does not
know the answer (For example, “I would need more context
to provide a specific answer...”, “I’m sorry, but I don’t have
access to ...” or “I do not know. It’s best to check ...”) or the
retriever failed to retrieve relevant passage. In either case,
the question-answers pair will be irrelevant for the task of
hallucination detection.

In addition, we also experiment with qrel passages, which are
passages deemed highly relevant to the question by human annotators.
By default, we assume these passages actually address the question

3



Table 1: LLM’s classifications of the answers.

Does the LLM’s
generated
answer directly
answer the
question?

Does the reader
extracted
answer directly
answer the
question?

Does the neural
retrieved
answer directly
answer the
question?

Does the BM25
retrieved
answer directly
answer the
question?

Yes 6,512 (93.30%) 5,292 (75.82%) 4,202 (60.20%) 2,698 (38.65%)
No 468 (6.70%) 1,688 (24.18%) 2,778 (39.80%) 4,282 (61.35%)

Table 2: Results of manually verifying LLM’s classifications.

LLM’s
Classification

Labeller’s
Opinion

Does the
LLM’s
generated
answer
directly
answer
the
question?

Does the
reader
extracted
answer
directly
answer
the
question?

Does the
neural
retrieved
answer
directly
answer
the
question?

Does the
BM25
retrieved
answer
directly
answer
the
question?

Yes
Correct 98 99 99 92
Incorrect 2 1 1 8

No
Correct 82 58 38 62
Incorrect 18 42 62 38

without prompting the LLM with the prompt shown in Figure 4.
Since these passages cannot be obtained free of human intervention,
this is irrelevant to the main task of exploring the LLM’s ability
to automatically validate generated answers against a corpus. It is
included to gain more insights into the effectiveness of our approach
of combining the original question with the generated answer to
curate a combined query for the fact-checking step.

3.2 Results
3.2.1 Step 1: Classifying Answers Table 1 shows how LLM classi-
fies different types of answers. According to the LLM’s classifications,
the generated answer provided by LLM adequately addresses the
question in the majority of cases (approximately 93% of the time).
The order of relevance for the retrieved answers, from most to least
relevant to the question, is as follows: the reader-extracted answer,
the neural retrieved answer, and the BM25 retrieved answer, which
aligns with the expectation.

To further investigate the reliability of these classifications, we
manually examine and carefully inspect 100 randomly selected
samples from each cell of Table 1. In other words, for each of the
four types of answers (generated answer, reader extracted answer,
neural retrieved answer, and BM25 retrieved answer), we randomly
select 100 samples where the LLM classified as direct answers and
100 samples where the LLM classified as non-direct answers. The
manual inspection results are shown in Table 2.

From Table 2 we see that in general there are far more false
negatives than false positives. Furthermore, for the samples where
the LLM classified as non-direct answers, its only achieves high
accuracy for the generated answer but is only slightly better than
random guesses (50%) for all types of retrieved answers. This

Question: what is the weather in powell wy
Generated Answer: I’m sorry, as an AI language model, I don’t
have access to real-time weather information. However, you can
check current weather conditions in Powell, WY by searching online
or checking a weather app.
LLM’s Classification: Yes, the answer directly answers the question
by acknowledging its limitations and offering an alternative solution
to finding the information requested.

Figure 7: False positive example of generated answer classifica-
tion.

Question: who sang delta dawn?
Reader Extracted Answer: Summary: Delta Dawn was originally
recorded by Alexander Harvey in 1972 and later became a country
hit for Tanya Tucker. Helen Reddy also had a number-one hit with
the song in 1973.
LLM’s Classification: No. The answer does not directly answer the
question "who sang delta dawn?" Instead, it provides information
about multiple artists who have recorded the song "Delta Dawn."
While it does mention Tanya Tucker and Helen Reddy, who both
had hits with the song, it doesn’t specifically state who originally
sang it.

Figure 8: Example of LLM’s failures to identify synonymous
expressions.

suggests that perhaps different prompt is needed for classifying the
retrieved answers.

In the following subsections, we will present specific instances
and interesting patterns observed where the labeller and the LLM
disagree.

3.2.1.1 Classify Generated Answer An illustrative example of
false positive errors when the LLM classifies generated answer
can be observed in Figure 7, despite the prompt clearly stating
that “Examples of non-direct answers would be ... and provide
some alternative ways to find answers”, the LLM still makes an
incorrect classification and explains its choice by “the answer directly
answers the question by acknowledging its limitations and offering
an alternative solution”. This example demonstrates that such errors
cannot be rectified by simply stating the desired outcome in the
prompt. Instead, better prompt engineering or fine-tuning of the
LLM may be needed.

3.2.1.2 Classify Reader Extracted Answer When classifying
reader extracted answers, we observe a common type of mistakes
where the LLM fails to recognize synonymous expressions as shown
in Figure 8. In the example, the LLM fails to recognize that “someone
sangs a song” is the same as “a song is recorded by someone”. Or, it
might be overly stringent in demanding the exact terms to be provided
in the response to consider it as a direct answer.

4



Question: which function automatically counts cells that meet
multiple conditions
Retrieved Passage: To count cells that aren’t blank, use the
COUNTA function. To count cells using multiple criteria, use
the COUNTIFS function. See a video on how to use the COUN-
TIFS function. The SUMIF function adds only the values that meet
a single criteria. The SUMIFS function adds only the values that
meet multiple criteria
LLM’s Classification: No, the answer does not directly answer the
question. While the answer does mention a function that counts
cells based on multiple conditions (COUNTIFS), it also provides
information about other functions like COUNTA, SUMIF, and
SUMIFS that are not relevant to the question. The answer should
have simply stated that the function which automatically counts
cells that meet multiple conditions is the COUNTIFS function.

Figure 9: Example of error caused by excessive details in retrieved
passage.

Question: hp envy size
Retrieved Passage: New HP Envy laptops go big. Along with 14
and 15-inch models, the revamped Envy line highlights a rare new
17-inch laptop. [MUSIC] Wide variety of new high end back to
school laptops, I’m Dan Ackerman, and this the new HP Envy
line for 2015. Envy is the higher end of HP’s PC line, and here
we’ve got New 14 inch, 15 inch, and 17 inch models. They’re all
going to be available with current Gen Intel or AMD processors.
LLM’s Classification: No. The answer does not directly answer
the question about the size of the HP Envy. Instead, it provides
information about the availability of different models and processors
without specifying the exact size of the HP Envy laptop.

Figure 10: Example of the LLM fails to recognize implied infor-
mation in retrieved passage.

3.2.1.3 Classify Neural or BM25 Retrieved Answer When man-
ually investigating classifications of retrieved passages, we observe
that many false negative errors are caused by excessive details in
the retrieved passages. As shown in Figure 9, the LLM justifies
its classifications by acknowledging that the passage does provide
relevant information, but they also provide information about other
functions or characteristics not asked by the question, thus does not
directly answer the question. In other words, the LLM interprets
“direct” as straight to the point and no other information, but we intend
it to mean it does not provide alternative ways to find the answer.
Even though our intention is explained in the prompt, more sophisti-
cated prompt-engineering or choice of word is perhaps needed. It is
natural for passages from the MS MARCO (V1) dataset to include
additional detail than what the question asks for, since none of the
passages is tailored to specific questions. Similarly, in reality, the
evidence or supporting materials should frequently encompass more
information than the claim being verified. This might be fixed by
using a separate prompt to classify the retrieved passages, or using

Table 3: LLM’s classifications of the question-answers pairs.

Does the reader
extracted
answer support
the LLM’s
generated
answer?

Does the neural
answer support
the LLM’s
generated
answer?

Does the BM25
answer support
the LLM’s
generated
answer?

Does the qrel
answer support
the LLM’s
generated
answer?

Yes 4,703 (92.02%) 3,794 (93.93%) 2,535 (95.62%) 5,465 (83.92%)
No 408 (7.98%) 245 (6.07%) 116 (4.38%) 1,047 (16.08%)
Not Related 1,869 2,941 4,329 468

Table 4: Results of manually verifying LLM’s classifications of
the question-answers pairs.

LLM’s
Classification

Labeller’s
Opinion

Does the
reader
extracted
answer
support
the LLM’s
generated
answer?

Does the
neural
answer
support
the LLM’s
generated
answer?

Does the
BM25
answer
support
the LLM’s
generated
answer?

Does the
qrel
answer
support
the LLM’s
generated
answer?

Yes
Correct 85 82 77 63
Incorrect 15 18 23 37

No
Correct 96 90 89 92
Incorrect 4 10 11 8

a reader to extract more concise answers from the passages before
making classifications.

Another common type of observed error is that the LLM often
fails to recognize the answer is implied, as shown in Figure 10. In
particular, the LLM fails to recognize HP Envy laptops having “14
inch, 15 inch, and 17 inch model” means the possible sizes of HP
Envy is 14, 15 and 17 inch. This implies that there is still potential
for improvement in the LLM’s language comprehension ability.

3.2.2 Step 2: Classifying Question-answers Pair One of our main
objectives is to investigate how many of the LLM’s answers suffer
from hallucinations. Table 3 shows how LLM classifies its own
answer against evidence. All of the percentages shown in Table 3
have excluded the “Not Related” cases as we interpret the “Not
Related” class as not relevant for the task of validating the generated
answer. Overall, after excluding the “Not Related”, the LLM asserts
that the retrieved material supports its own answer for about 93% of
questions.

To further investigate the reliability of these classifications, we
manually examine and carefully inspect 100 randomly selected
samples from each cell in the first two rows of Table 3. In other
words, for each of the four types of answers that we compared the
generated answer against (reader extracted answer, neural retrieved
answer, BM25 retrieved answer, and qrel answer), we randomly
select 100 samples where the LLM claims the generated answer is
supported and 100 samples where the LLM claims the generated
answer is not supported. The manual inspection results are shown in
Table 4.

First of all, we observed that the qrel passages are not as reliable
as sources of evidence for validating the generated answer, as they
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Question: how did van gogh paint
LLM’s Answer: Vincent van Gogh painted in a unique style
characterized by bold brushstrokes, strong colors, and thick impasto.
He often painted outdoors (en plein air) and used his emotions and
personal experiences as inspiration for his work.
Evidence: Vincent Van Gogh painted mainly using oil paint on
canvas and was famous for his thick use of paint, adhering to the
impasto technique which involves laying down a thick layer of paint
in a particular segment of the canvas to make brushstrokes more
visible and add texture.

Figure 11: Example of partially supported generated answer.

often present varying perspectives compared to the generated answer.
This is also evident from Table 3 and Table 4, which shows that the
qrel passages tend to have worse performance. This observation is
in favor of our approach of using both the original question and the
generated answer to curate a combined query for fact-checking.

We observed an average accuracy of about 80% for samples that
the LLM classified as “Yes” and 90% for samples that the LLM
classified as “No”. In all cases, we observed slightly more false
positives than false negatives.

The primary reason behind these false positives is that the gener-
ated response includes many different assertions, and only a portion
of them are supported by the retrieved answer. As shown in Figure 11,
the “thick impasto” claim is certainly supported by the retrieved
answer, but “strong colors”, “often painted outdoors”, and “used his
emotions and personal experiences as inspiration” are not supported
by the retrieved answer. Although the misclassification of partially
supported answer may be solved by prompt engineering, it will not
help finding evidence that covers more aspect of the generated answer.
This observation leads to our second experiment discussed later in
Section 4.

Another commonly observed type of error seems to arise from
the time disparity between the answer and the evidence. As shown in
Figure 12, the population in 2015 says nothing about the population
in 2019, unless a percentage increase or decrease is also provided.
However, the LLM mistakenly interprets this as implicitly indicating
an increase in population over time, when the evidence did not
provide any support for it. On the other hand, one should be able to
infer the age of someone in 2021 given their age in 2010. However,
the LLM failed to recognize such connection. The LLM struggles
to differentiate between what can be inferred and what cannot be
inferred from the evidence from a different point in time than the
answer.

Other common forms of error seem to be caused by the LLM
confusing the answer with the evidence. As shown in Figure 13,
LLM thinks that the evidence mentions “an anchor in literature is
a recurring symbol or object that represents a character’s values,
beliefs, or memories.” and “is used to ground the character and
provide continuity throughout the story.”, while both of these are the
exact phrases used in the answer. In the LLM’s justification of its
classification, it sometimes mistakenly took what is in the answer as
also appearing in the evidence, despite it not being the case. This
may be considered a form of LLM’s hallucination, or that it is bad at

Question: population of bartholomew county indiana
LLM’s Answer: As per the US Census Bureau, the estimated
population of Bartholomew County, Indiana as of 2019 is 83,779.
Evidence: The population of Bartholomew County, Indiana as of
2015 is 81,162.
LLM’s Classification: Yes. Explanation: The evidence provided
states the estimated population of Bartholomew County, Indiana
as of 2015 is 81,162. Since the answer states that the estimated
population as of 2019 is 83,779, and the evidence supports that the
population in 2015 was smaller, it indicates an increase in pop-
ulation over time. Therefore, the evidence supports the given answer.

Question: how old is bill gates wife
LLM’s Answer: Melinda Gates was born on August 15, 1964. As
of 2021, she is 57 years old.
Evidence: As of 2010, Melinda Gates, Bill Gates’ wife and co-chair
of the Bill and Melinda Gates foundation, is 46 years old. She was
born in Dallas, Texas in the United States of America. Please see
the related links for details.
LLM’s Classification: No. The evidence provided does not support
the answer. The evidence states that as of 2010, Melinda Gates was
46 years old. However, it does not provide any information about
her current age or indicate that she is 57 years old in 2021.

Figure 12: Examples of generated answer and supporting evi-
dence from disparate time frames.

Question: anchor definition in literature
LLM’s Answer: In literature, an anchor is a recurring symbol or
object that represents a character’s values, beliefs, or memories. It
is used to ground the character and provide continuity throughout
the story.
Evidence: Summary: An anchor, usually made of metal, is a device
attached to a ship or boat by a cable and cast overboard to hold
it in a specific location. It has a fluke that digs into the bottom
for stability. In literature, an anchor can also refer to a reliable or
principal support, serving as a mainstay or backbone, providing
emotional stability and support.
LLM’s Classification: Yes. Explanation: The evidence provided
explains the definition of an anchor in the context of literature. It
mentions that an anchor in literature is a recurring symbol or object
that represents a character’s values, beliefs, or memories. It also
states that it is used to ground the character and provide continuity
throughout the story. This aligns with the given answer, which
accurately describes what an anchor means in literature.

Figure 13: Example of the LLM confuses the generated answer
with the evidence.

clearly defining the boundary between the answer and the evidence
in the input.
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Figure 14: Overview of fact-based self-detecting hallucination in
LLMs.

4 Experiment 2
Labellers observed that the generated answer usually contains multi-
ple factual claims, and that a single piece of retrieved passage usually
fails to address all of these aspects (Figure 11). Therefore, we attempt
to examine the generated answer at a more granular level in our
second experiment. Inspired by FActScore [25] and RARR [16], we
propose to break the generated answer into a list of factual statements,
and then prompt the LLM to validate and post-edit each statement
separately.

4.1 Methodology
Figure 14 shows an overview of our proposed pipeline, and Figure 15
shows an example. Starting with a question, we prompt the LLM
to answer it (Figure 3). Instead of directly verifying this generated
answer as in the previous experiment, we ask the LLM to extract from
the generated answer a list of factual statements worth validating in
the context of the question (Figure 16). For each factual statement, we
execute it over the collection of passages to retrieve passages relevant
to the statement. We then prompt the LLM to validate and correct
each factual statement using its corresponding retrieved evidence
(Figure 17 and Figure 18). In the end, we can recompose a final
answer, which ideally would be free of hallucinations, with each
assertion attributed to its supporting evidence. We summarize our
strategy as follows:

(1) Prompt the LLM to answer the question.
(2) Prompt the LLM to extract a list of factual statements from

the LLM’s answer.
(3) Combine each factual statement with the original question.

Execute the combined query on an external corpus, one at a
time, retrieving the most relevant passage.

(4) Prompt the LLM to validate each factual statement against
the retrieved passage, with the goal of self-detecting and
self-correcting hallucinations.

To validate and correct factual statements, we first prompt the
LLM with the prompt shown in Figure 17 and ask the LLM to decide
if the factual statement is supported by the retrieved evidence. We
categorize the outcome of the LLM’s decision into three different
classes:

• We interpret the “Supported” class as indicating there is no
hallucination since the retrieved passage provides supporting
evidence to the factual statement;

Figure 15: Example of fact-based self-detecting hallucination in
LLMs.

I want you to act as a language expert. Your task is given a question
and a proposed answer, extract concise and relevant factual
statements from the proposed answer. Include only statements that
have a truth value and are worth validating, and ignore subjective
claims. You should generate a bullet list of statements that are
potentially true or false based on the question and proposed answer.
Please only reply with the bullet list and nothing else.

Question: {question}
Proposed Answer: {proposed answer}

Figure 16: Prompt for extracting factual statements.

I want you to act as a language expert and assist in determining the
relationship between a factual statement and a piece of evidence.
Here’s how you should handle it: If the evidence supports the
statement, reply with only the word ’Supported’. If the evidence
contradicts the statement, reply with only the word ’Contradictory’.
If the evidence is not relevant to the statement (neither supports nor
contradicts it), reply with only the word ’Neither’. Your response
should be a simple label ’Supported’, ’Contradictory’, or ’Neither’,
followed by a short and concise explanation of your classification.

Statement: {statement}
Evidence: {passage}

Figure 17: Prompt for validating a factual statement.

• We interpret the “Contradictory” class as indicating there
is hallucination since the retrieved passage contradicts the
factual statement;

• We interpret the “Neither” class as indicating the retrieved
passage is not close enough to the factual statement for
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I want you to act as a language expert and assist in post editing a
false statement using a given piece of evidence. Your objective is to
make minimal changes to the original statement while correcting it.
Be concise. If the original false statement is one sentence, your
corrected statement should also only be one sentence. Do not add
more facts to the original statement, but only correct the wrong
part of the original false statement. Please only reply with the
corrected statement and nothing else.

Statement: {statement}
Evidence: {passage}

Figure 18: Prompt for post-editing factual statement.

Question: what are the monuments in washington dc
LLM Answer: Washington DC is home to several monuments
including the Washington Monument, Lincoln Memorial, Jefferson
Memorial, ...
LLM’s Extracted Factual Statements:

• Washington DC is home to the Washington Monument.
• Washington DC is home to the Lincoln Memorial.
• Washington DC is home to the Jefferson Memorial. ...

Figure 19: Example of helpful extraction of factual statements.
Extraction of factual statements is particularly valuable when
the LLM answer contains a list.

one to draw a definitive conclusion about whether the factual
statement is supported or contradicted by the retrieved passage.

If a statement-evidence pair is classified as “Contradictory”, we
then prompt the LLM to post-edit the statement using the retrieved
evidence with the prompt shown in Figure 18. Assuming everything
works out, one can recompose a final answer free of hallucination
and each factual claim in it can be linked to supporting evidence.
This final answer can be constructed by simply concatenating all
“Supported” statements and post-edited version of all “Contradictory”
statements, and linking each statement to its corresponding retrieved
passage.

4.2 Results
First of all, we examined the quality of the list of factual statements
extracted. Out of the 6980 question-answer pairs, the LLM failed to
extract any factual statement at all from 61 of them (similar to the
“Not Related” class in the first experiment, where the LLM did not
provide a direct answer).

The LLM generally decomposes the generated answer in an useful
manner. For example, as shown in Figure 19, one piece of retrieved
material likely would not contain exactly this list of monuments, so
it can be helpful to validate each monument separately. However,
the LLM also tends to generate a list of factual statements that may
appear too detailed, as shown in Figure 20. In the context of the
question “who sings the song rise up”, “The song ‘Rise Up’ exists.”

Question: who sings the song rise up
LLM’s Answer: Andra Day sings the song "Rise Up".
LLM’s Extracted Factual Statements:

• The song "Rise Up" exists.
• There is a singer named Andra Day.
• Andra Day performs the song "Rise Up".

Figure 20: Examples of extraction of factual statements at an
excessively detailed and repetitive level.

Table 5: LLM’s classifications of the statement-evidence pairs.

LLM’s Classification
Neural method
retrieved evidence

BM25 method
retrieved evidence

Supported 20,990 (83.14%) 20,158 (79.85%)
Contradictory 3,128 (12.39%) 3,241 (12.84%)
Neither 1,128 (4.47%) 1,847 (7.32%)
Average % supported per query 81.73% 78.59%
Average % contradictory per query 13.93% 14.15%
Average % neither per query 4.33% 7.26%
# of fully supported responses 4,241 (61.29%) 3,726 (53.85%)
# of none supported responses 364 (5.26%) 373 (5.39%)
# of none contradictory responses 4,761 (68.81%) 4,595 (66.41%)

Table 6: Results of manually verifying LLM’s classifications of
the statement-evidence pairs.

LLM’s
Classification

Labeller’s
Opinion

Neural method
retrieved
evidence

BM25 method
retrieved
evidence

Supported Correct 83 72
Incorrect 17 28

Contradictory Correct 61 48
Incorrect 39 52

Neither Correct 90 87
Incorrect 10 13

and “There is a singer named Andra Day.” are unnecessary as they
are already implied. The LLM still has room of improvement to
achieve the optimal level of granularity when extracting the list of
factual statements.

One of our main objectives is to investigate the degree to which
LLM generated answers suffer from hallucination. Table 5 shows how
LLM classifies its factual claims against retrieved evidence. Overall,
after excluding the “Neither” cases where the retrieved passage
cannot be used to determine whether the factual claim hallucinates
or not, the LLM believes the retrieved material supports about 85%
of its claims. The average percentage of claims supported per query
is also about 80%. Our automatic pipeline did not discover any
hallucination for about 70% of generated responses. Furthermore,
according to the LLM’s classifications, the evidence retrieved using
the neural method does appear to be slightly better than the evidence
retrieved using the BM25 method.
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LLM’s Extracted Factual Statement: A dentist in the United
States can expect to earn between $120,000 to $200,000 per year
on average.
Evidence: Conclusion about forensic pathologist salary. The foren-
sic pathologists in the United States usually earn from between
$75,000 – $200,000 per year however an average annual pay ranges
from around $80,000 – $120,000 per year. 1 Share on Facebook.2
Share on Twitter.
LLM’s Classification: contradictory. the evidence provided contra-
dicts the factual statement. the evidence discusses the salary range
of forensic pathologists in the united states, which is different from
the statement about dentists’ earnings. therefore, the evidence is
not relevant to the statement and contradicts it.

Figure 21: Example of falsely classifying “Neither” sample as
“Contradictory”.

To further investigate whether the LLM is capable of correctly
validating a factual claim against retrieved evidence, we manually
inspected 100 randomly selected statement-evidence pairs from each
cell of Table 5. In other words, for each retrieval method (BM25 and
Neural), we randomly select 100 samples where the LLM believes the
claim is supported by the retrieved evidence, 100 samples where the
LLM believes the claim is contradicted by the retrieved evidence, and
100 samples where the LLM believes the claim is neither supported
nor contradicted by the retrieved evidence. The results are shown
in Table 6. From Table 6, we observe that the LLM’s classification
can achieve an average accuracy of about 80% using neural method
retrieved evidence. However, it tends to perform noticeably worse
for the samples that it predicted to be in the “Contradictory” class.

One common type of error observed is that the LLM falsely
classified “Neither” sample as “Contradictory”, and it explains its
classification using the definition of the “Neither” class in the prompt.
As shown in the example in Figure 21, the LLM recognizes that
forensic pathologists’ salary is irrelevant to dentists’ salary, but
it classifies this sample as “Contradictory” on the basis that “the
evidence is not relevant to the statement and contradicts it”. However,
in the prompt (Figure 17), we clearly defined “Neither” as “If the
evidence is not relevant to the statement (neither supports nor
contradicts it), reply with only the word ‘Neither’”.

Furthermore, it is noteworthy that although the LLM falsely
classified many samples as “Contradictory”, later in the post-editing
phase it often returns the original statement. When the classification
is correct, the post-edited statement is usually of reasonable quality.

5 Limitations
We recognize several important limitations of this research, specifi-
cally:
(1) Our experiments used only a single language model, which we
choose for its convenient and inexpensive API (gpt-3.5-turbo).
(2) We kept our prompts simple and natural, with minimal prompt
engineering. We feel that excessive prompt engineering can harm the
reproducibilty of the experiments. With simple and natural prompts,
future language models could be expected to preform reasonably.

Nonetheless, we follow what we perceive to be current “best practice”
for example, by framing the context of requests by indicating that
the LLM should act as an expert.
(3) The entirety of the MS MARCO collection, including all ques-
tions and passages, may have been included in the training data for
the model. Given the size and scope of the training data for the
OpenAI GPT models, we assume it has, but we do not know for sure.
(4) We chose MS MARCO because it is a relatively large collection
of questions with a corpus known to contain answers. In future work,
we plan to explore other benchmark collections.
(5) All questions have answers in the corpus, although not necessarily
the answers that are consistent with those generated by the LLM.

Different models, including later generations of the GPT family, and
additional prompt engineering may improve the ability to predict
hallucinations. Theoretically, if the questions and answers are in-
cluded in the training data, the LLM could recognize the questions
and respond with answers based on the MS MARCO passages, re-
ducing the potential for hallucinations. If the corpus and questions
are included the training data for the LLM, and all questions are
answered by the corpus, the current experiment may be viewed as a
“best case” scenario.

6 Conclusion
In this paper, we investigate the LLM’s ability to self-detect hal-
lucinations in its generated texts with the help of an information
retrieval system to retrieve supporting evidence. The methodology
we proposed in the first experiment (Figure 1) is perhaps the simplest
possible for this purpose. Based on observations made when manu-
ally labelling the data, we proposed another experiment (Figure 14).
The second experiment aims to resolve the frequently occurring
problem in the first experiment, which is the evidence only partially
supports the texts to be validated. In addition, the second experiment
further attempts to produce a final fully-attributed output free of
hallucination. Generally, in over 80% of cases, the LLM is able to
verify its generated texts when provided with relevant supporting
material. However, when we manually examine its decisions, we
observed that the LLM sometimes behave unreasonably. For example,
it acts contrary to the given prompt, fabricates evidence to support
statement or answer, and misses obvious or implied connections.
These observations opens up a room for further research in this
area. Nevertheless, one cannot solely rely on this approach to detect
hallucinations because the LLM is observed to make more false pos-
itive errors than false negative errors when checking if the generated
answer is free of hallucination.

In the future, we plan to experiment with more prompts or train
specific language model for each specific task. We may also experi-
ment with different LLMs, especially those with access to predicted
token probabilities. Overall, we believe that validation by retrieving
supporting evidence has the potential to provide a simple and reliable
solution for detecting and ameliorating LLM hallucinations.
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