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ABSTRACT
Video codecs are crucial in video streaming systems. However, the
quantization operation in existing codecs introduces irreversible
jitters. Moreover, the common practice of fitting a single codec to
diverse video content lacks the flexibility to adapt the parameters
of a codec for specific content. They lead to the problem of quanti-
zation and content uncertainty. Our preliminary study shows an
ideal codec without uncertainty gains a significant advantage over
the conventional codec with uncertainty. However, realizing the
ideal codec presents tremendous challenges in the generalizability
and the costs of computation, transmission, and delay. In this pa-
per, we present Vesper, a video streaming system that innovatively
tackles uncertainty with two learning-based components, super-
precision and self-evolution. The super-precision module builds a
neural network that predicts original feature values from quantized
feature values, which effectively mitigates the impact of quantiza-
tion without inducing generalizability issues. The self-evolution
module performs content-aware adaptation on the encoder and re-
places non-content-aware video segments with content-aware ones
on the fly, which addresses content uncertainty without adding
significant costs to on-demand streaming. Evaluations demonstrate
Vesper’s superior Quality of Experience compared to streaming
systems built with state-of-the-art codecs.
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1 INTRODUCTION
Video streaming is a popular and dominant form of content de-
livery. According to Sandvine’s 2023 Global Internet Phenomena
Report [47], video streaming accounts for 65% of all internet traffic.
The video codec plays a key role in video streaming by ensuring
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bandwidth-efficient and high-quality transmission of the video. Tra-
ditional video codecs like H.264 [54] and H.265 [50] have achieved
great success and are widely adopted in industry platforms includ-
ing Netflix [24], Hulu [8] and HBO Max [9]. With the advancement
in deep learning [30], researchers have built learned video codecs
from deep neural networks [2, 37, 44, 60], which can dramatically
outperform traditional codecs.
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Figure 1: The uncertainty in video streaming stems from the
video codec due to the jitter caused by quantization (Q) and
the diverse unseen video content.

Despite the success of traditional and learned video codecs, both
referred to as “conventional codecs”, they struggle to effectively
handle the uncertainty present in video streaming, which ham-
pers their coding efficiency, i.e., the capability to represent a video
with high quality and low bitrates. This uncertainty encompasses
quantization and video content, as depicted in Figure 1.

• Quantization uncertainty results from the quantization opera-
tion in video encoding. Quantization maps continuous values to
a finite set of discrete values, which are necessary for entropy
coding [22, 55] and network delivery. However, the round() op-
eration, widely existing in quantization, maps values in a range
uniformly to a single value. This operation alters the video fea-
tures generated in encoding. The change of feature values is
termed the jitter. For instance, the round() operation in Python
maps feature values from the range of [−0.5, 0.5] to zeros, which
is equivalent to a jitter within [−0.5, 0.5].

• Content uncertainty arises from the common practice that con-
structs a codec to fit all types of video content, such as travel,
gaming, tutorial, and vlog videos [14]. Although this practice
offers great generalizability in video codecs, it lacks the flexibility
to adapt parameters in the codec to better fit a specific type of
content, i.e., content-aware adaptation.

To quantify the impact of uncertainty, we conduct preliminary
studies that contrast a conventional codec where quantization or
content uncertainty exists, and an “ideal” codec, whose uncertainty
is removed hypothetically. This study is conducted on a pre-trained
learned codec, which demonstrates an ideal codec without quan-
tization uncertainty reduces the training loss of the conventional
codec by 29%, and the ideal codec without content uncertainty
achieves a 49% decrease in bitrate while maintaining superior video
quality. These results quantitatively reveal the sub-optimality of
conventional codecs.
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While the preliminary study shows promising results of the
ideal codec without uncertainty, realistically implementing the
ideal codec poses non-trivial challenges. First, the derivation of
the ideal codec is equivalent to overfitting the conventional codec
to a specific case of quantization jitter, zero jitter. As a cost, the
ideal codec loses generalizability to other cases of jitters, making it
impractical for random quantization jitters in realistic cases. Second,
deriving an ideal codec with content-aware adaptation involves
computation costs to train the codec and transmission costs to
deploy the trained codec on the distributed encoder and decoder.
Additionally, content-aware adaptation takes a substantial amount
of time in training, which is likely to delay video streaming.

We present Vesper, a novel on-demand video streaming system
that tackles uncertainty with two key components: super-precision
and self-evolution. The super-precisionmodule involves a prediction
network to predict original feature values from quantized feature
values at the video decoder, a prediction loss to bridge the gap
between the predicted and original feature values, and a unique
training procedure optimizes the prediction network based on the
prediction loss. Such a design allows the video decoder to approxi-
mate the original feature values more closely than quantized feature
values, which mitigates the impact of quantization. As the codec is
trained with quantization, it maintains tolerance to quantization
jitters. The self-evolution module performs the content-aware adap-
tation of the encoder to improve coding efficiency on specific video
contents. It also applies on-the-fly segment replacement to upgrade
old segments with those produced by content-aware encoders at
the media server. As the self-evolution module involves only the
encoder, it runs on the media server, which requires no extra com-
putation at the end viewer and no transmission cost. In addition, by
running on-the-fly segment replacement, the on-demand serving
process of video segments experiences no extra delay.

Vesper outperforms video streaming systems with state-of-the-
art traditional and learned codecs in our evaluations. It improves
the average QoE by up to 9% and 31% compared to best-performing
learned and traditional approaches, respectively. In our case study,
Vesper showcases the ability to effectively reduce the bitrate of a
video by up to 45%, while simultaneously improving its quality by
1.4 dB in Peak Signal-to-Noise Ratio (PSNR).

We summarize our contribution as follows.
1) We introduce Vesper, a novel video streaming system that tack-

les uncertainty with learning.
2) We design a super-precision module to tackle quantization un-

certainty via the co-design of the prediction network and pre-
diction loss.

3) We develop a self-evolution module to address content uncer-
tainty with content-aware encoder adaptation and on-the-fly
segment replacement.

4) We conduct comprehensive evaluations of Vesper and demon-
strate significant improvement compared to existing video stream-
ing systems.

2 BACKGROUND AND MOTIVATION
2.1 Background
Video streaming. As depicted in Figure 2, an on-demand video
streaming system consists of two main components: the media
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Figure 2: Canonical on-demand video streaming pipeline.

server and the end viewer. On the server, raw frames from the
video source are encoded offline into fixed-duration video segments.
Typically, multiple versions of the same video segment are encoded
at different bitrates and stored in the storage, ready for Dynamic
Adaptive Streaming over HTTP (DASH). The end viewer utilizes an
adaptive bitrate (ABR) algorithm to request and download encoded
segments of suitable bitrates from the video streamer. Once a seg-
ment is downloaded, it undergoes decoding to convert it from bits
into viewable frames. These reconstructed frames are then cached
in the buffer and presented to the viewer at an ideal real-time rate,
such as 30 frames per second (fps).
Metric. The primary objective of a video streaming system is to
provide users with a high-quality and seamless viewing experience.
Therefore, researchers have focused on modeling QoE in video
streaming, considering two main factors: video quality (𝑞) and
rebuffering (𝑟 ) [48]. Video quality is determined by the difference
between raw frames and reconstructed frames, typically measured
using the PSNRmetric. Rebuffering is quantified by the rebuffer rate,
which represents the ratio of rebuffer duration to the total streaming
session duration. The QoE metric can be defined mathematically as
shown in Equation 1.

𝑄𝑜𝐸 = 𝑞 − 𝛾𝑟, (1)

where 𝛾 is a parameter balancing 𝑞 and 𝑟 . The value of 𝛾 can be
derived based on the size and quality of video segments and the
max/min buffer levels according to BOLA [48].
Video codec. The video codec, which includes both the encoder and
decoder components in Figure 2, plays a crucial role in achieving a
high QoE. In its raw form, a video, such as RGB format, requires 24
bits to represent each pixel. However, modern video codecs have
the capability to encode the video using less than one bit per pixel
while maintaining a satisfactory level of video quality [50, 54]. This
ability to represent a video with high quality and low bit/bandwidth
consumption is referred to as coding efficiency.

The high coding efficiency of modern codecs, such as x264 [54]
and x265 [50], enables smooth video streaming with high quality.
With low bandwidth consumption, the likelihood of rebuffering
is reduced, resulting in a seamless viewing experience. As deep
learning techniques have emerged, researchers have started explor-
ing the representation of video codecs using deep neural networks,
such as SSF [2] and ELFVC [44]. These neural network-based codecs
have shown better coding efficiency compared to traditional codecs.

2.2 Intuitive Understanding of Limitations
Despite the success of existing video codecs [2, 44, 50, 54], they fail
to effectively handle the uncertainty inherent in video streaming.
This uncertainty can be categorized into two main types:
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1) Quantization uncertainty: Quantization is a crucial step in video
codecs that discretizes the feature values. The uncertainty stems
from the fact that quantization uniformly maps continuous val-
ues in a range to a single discrete value, causing irreversible
changes to the feature value, termed jitters. For instance, the
quantization of feature values from the range of [−0.5, 0.5]
to zero introduces jitters in the range of [−0.5, 0.5]. Such jit-
ter exists in the quantization of both traditional video codecs
and learned video codecs. More importantly, quantization ir-
reversibly alters the feature values and affects the coding effi-
ciency.

2) Content uncertainty: Video streaming systems need to accom-
modate diverse content types, which exhibit variations in color
distribution and spatial-temporal correlation. For example, travel
videos may have vibrant colors, while gaming videos could
have darker tones. Additionally, the temporal correlation may
be high in slow-motion tutorial videos but low in fast-motion
adventure vlog videos. However, existing video codecs adopt
the common practice of constructing a codec to fit all possi-
ble contents, without content-aware adaptation. Although this
practice offers good generalizability, it constrains the coding
efficiency that could be gained from content-aware adaptation.
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(a) An ideal codec without quantiza-
tion performs 29% better in terms of
training loss.

(b) An ideal codec with content-aware adapta-
tion consumes 49% less bandwidth and 0.2 dB
better PSNR.

Figure 3: The codec archives better performance when un-
certainty is ideally removed.

2.3 Quantitative Study of Limitation
The above description of the limitation is on an intuitive level. To
quantitatively understand the above limitation, we compare a con-
ventional codec to an ideal one, whose quantization or content
uncertainty is ideally removed. Designing an ideal codec requires
adapting its parameters under a different setting, which cannot
be trivially achieved with traditional video codecs whose param-
eters are handcrafted. To this end, we utilize the state-of-the-art
learned video codec, ELFVC [44], as the conventional codec in
the preliminary study, whose parameters are easily adaptable via
back-propagation. The ELFVC codec is pre-trained on the Vimeo-
90k dataset [57]. Next, we show how the quantization and content
uncertainty are ideally removed and the impact.
Quantization uncertainty. To ideally remove quantization un-
certainty, we fine-tune the pre-trained codec on the Vimeo-90k
dataset without quantization. In existing approaches [2, 37, 44],
the quantization in training is simulated by adding uniform noise
to the feature. Therefore, we remove the impact of quantization
by skipping the noise addition during training. In Figure 3(a), we
illustrate the training loss (orange curve), which evaluates both

video reconstruction distortion and bitrate of the learned codec.
Every point represents the value of the loss function evaluated
at each epoch, representing a complete pass over the Vimeo-90k
dataset. The training loss at the beginning (epoch#0) characterizes
the performance of the conventional codec. The subsequent epochs
indicate how the training loss converges when the codec is gradu-
ally fine-tuned without quantization. The result indicates that the
removal of quantization reduces the training loss of the conven-
tional codec (epoch#0) by up to 29% after training for a sufficient
time.
Content uncertainty. To ideally remove content uncertainty, we
arbitrarily select the “Jocky” video from the UVG dataset [40].
Then, we perform content-aware adaptation by fine-tuning the pre-
trained codec on this specific video until convergence. Figure 3(b)
illustrates the test performance of the codec on the same video in
bit consumption (bits per pixel) and quality (PSNR). Epoch#0 de-
notes the conventional codec and the subsequent epochs represent
the ideal codec fine-tuned for different numbers of iterations. Each
epoch represents a complete pass over the entire video. The result
shows that removing content uncertainty drastically improves the
codec by reducing bit consumption by up to 49% and improving
PSNR by up to 0.2 dB.

Overall, quantization and content uncertainty noticeably con-
strain the performance of the codec.

2.4 Challenge, Intuition, and Solution
Bridging the gap between an ideal codec and a realistic one is non-
trivial. We describe the challenges involved with quantization and
content uncertainty and discuss our intuition and solution for them
as follows.

2.4.1 Quantization Uncertainty. An ideal codec trained without
quantization is equivalent to the conventional codec overfitted
to a special case of quantization jitter, zero jitter. As a result, the
ideal codec loses generalizability to other cases of quantization
jitters, making it impractical for the realistic scenario. Figure 3(a)
shows the result of applying the codec trained without quantization
on the UVG dataset [40] with realistic quantization. The test loss
(red curve) becomes divergent with more training epochs, which
indicates the loss of generalizability in the process of training (over-
fitting).
Intuition. Pixel values in a video provide information about its
content even if they are slightly altered. From a machine learning
perspective, it is shown that contents in blurred images can still
be classified and detected [34, 49], and the original image can be
reconstructed from a noisy image [21]. From a human perspective,
if an image is noisy because of the limitation of the capture device
or shaking while capturing, it is still possible to identify the object
or people in the image. Similarly, quantization can also be treated
as an operation that alters feature values with jitters, making it
possible to recover the original values even after quantization.
Solution. Based on the intuition above, we comprehensively design
a prediction network (§3.1.1) that predicts the original feature values
with the input of quantized feature values and a prediction loss
(§3.1.2) that models the gap between predicted and original feature
values. A unique training procedure (§3.3) minimizes the prediction
loss to ensure the predicted feature values approximate the original
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Figure 4: Vesper Overview.

feature values more precisely than the quantized feature values.
Hence, we could mitigate the impact of quantization uncertainty
without affecting the functionality of the codec.

2.4.2 Content Uncertainty. Content-aware adaptation incurs com-
putation costs due to model training and transmission costs to
deploy the trained codec to the distributed video encoder and de-
coder. Additionally, content-aware adaptation inevitably delays the
production of video segments, which potentially increases the delay
of video streaming.
Intuition. Learned codecs derived via back-propagation are flexi-
ble. Such flexibility allows the codec to benefit from training even
with a portion of its parameters fixed during optimization [26].
This observation allows us to selectively update parameters, avoid-
ing certain computation and transmission costs. Moreover, in on-
demand streaming, the production and serving of video segments
are asynchronous. When the serving proceeds with video segments
produced by a non-content-aware codec, we can replace the old
video segments with optimized ones without introducing any delay.
Solution.We leverage the flexibility of the codec to perform content-
aware encoder adaptation (§3.2.1), which optimizes parameters in
the encoder at the media server. Therefore, it requires no compu-
tation cost on the end viewer or server-viewer transmission cost.
Based on the asynchronous characteristic of on-demand streaming,
we apply on-the-fly segment replacement (§3.2.2) that replaces old
segments with those produced by content-aware encoders, which
seamlessly improves coding efficiency for on-demand streaming.

3 VESPER DESIGN
Vesper consists of an offline stage and an online stage. In the offline
stage, the super-precision module (§3.1) transforms the base codec
to better handle quantization uncertainty based on the design of
the prediction network and the prediction loss. Then, the video
encoder and decoder are offline trained (§3.3) and deployed to the
media server and the end viewer, respectively. After that, the video
encoder encodes the raw video into segments of varying bitrates
and saves it in storage for DASH streaming.

In the online stage, the video segments are fetched by the end
viewer based on the ABR algorithm from the DASH streamer. The
downloaded segments are decoded and cached in the buffer before
being displayed. Meanwhile, the self-evolution module (§3.2) per-
forms content-aware optimization on the encoder, which replaces
old video segments with those produced by content-aware encoders
on the fly.
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Figure 5: The super-precision module utilizes a prediction
network to derive the super-precision feature from quan-
tized values. The prediction loss is minimized to ensure the
super-precision feature well approximates the original fea-
ture. This process is equivalent to regaining the “lost preci-
sion” in quantization.

3.1 Super-Precision
Figure 5 describes the workflow of the super-precision module.
After the original feature is quantized, a prediction network (§3.1.1)
generates a super-precision feature from the quantized feature. The
distance between the super-precision feature and the original fea-
ture is quantified by the prediction loss (§3.1.2). The prediction loss
will be minimized in training (§3.3) to ensure the super-precision
feature is a better approximation of the original feature (than the
quantized feature).

3.1.1 Prediction Network. Prediction of the original feature values
from quantized values resembles image denoising. One close ef-
fort is Model Diffusion [21], which has recently demonstrated its
strength in image denoising and holds the potential for mitigating
feature jitters induced by quantization. The approach is to apply U-
Net [45] several times to lower the noise in the image iteratively [21].
Here, U-Net is a neural network design constructed by convolution
layers, residual networks [20], and attention modules [52].
Challenge. Nevertheless, this approach usually requires apply-
ing U-Net up to 1000 times [21]. It makes the video decoding
computation-intensive and real-time video streaming impractical.
Single-pass denoising. In a recent study, it is shown that the
first pass of U-Net brings substantially more improvement in im-
age coding efficiency than subsequent passes [38]. Leveraging this
observation, it is reasonable to apply U-Net [45] once to denoise
the quantized feature, which remains effective without introduc-
ing too much computation overhead. Based on this intuition, we
denote the prediction network as 𝑄𝑅 , which takes the quantized
feature as input and outputs the predicted feature. The predicted
feature, termed super-precision feature 𝑦𝑡 , serves as a more precise
approximation of the original feature than the quantized feature.
This process is formulated in Equation 2.

𝑦𝑡 = 𝑄
𝑅 (Q(𝑦𝑡 )), (2)

169



Vesper: Learning to Manage Uncertainty in Video Streaming MMSys ’24, April 15–18, 2024, Bari, Italy

Here,Q represents the quantization operation, while𝑦𝑡 corresponds
to the quantized feature.

3.1.2 Prediction Loss. To optimize the prediction network, a crucial
step is to devise an appropriate loss function that bridges the gap
between the original feature and the super-precision feature.
Challenge.While uniformly suppressing the difference between
the original feature and the super-precision feature with mean
square error (MSE) is straightforward, we find it marginally im-
proves or even hampers coding efficiency. The reason is potentially
minimizing the MSE of features is not equivalent to maximizing
the coding efficiency.
L2-norm-based loss. Seeking a loss function that could lead to
better coding efficiency, we narrow down our options to four com-
monly used functions to measure distance: the L1 norm [28], the
L2 norm [41], the Smooth L1 norm [18], and the cosine similar-
ity [46]. Empirically, we utilize these terms to measure the differ-
ence between the original feature and the super-precision feature
in the codec. Our empirical studies indicate that the L2 norm yields
the best overall performance. Consequently, we incorporate an L2
norm-based prediction loss term in training (detailed in Equation 4).
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Figure 6: The self-evolution module first optimizes the en-
coder for every target video with back-propagation. Then, it
replaces old segments in the media server on the fly. Coding
efficiency continuously improves for all videos in on-demand
serving.

Figure 6 presents an overview of self-evolution. Given a raw
video, it optimizes a temporary encoder, copied from the offline-
trained video encoder (§3.2.1). This step produces content-aware
encoders per video. After that, the content-aware encoder produces
video segments with optimized coding efficiency, which will update
the old segments in the media server on the fly (§3.2.2).

3.2.1 Content-aware Encoder Adaptation. To avoid the impact on
the video decoder, we freeze parameters in the video encoder that
are shared by the video decoder. By minimizing the loss function
in §4, we update non-sharable parameters, i.e., the motion encoder
and the residual encoder. As such, we ensure no communication
and viewer-side computation is required for self-evolution.
Challenge. After selecting parameters to update, the natural ap-
proach is to simultaneously optimize all non-freeze parameters.
However, we observed that this approach results in minimal or
negative improvements and is slow. The reason is likely that the
prediction network is susceptible to the statistical distribution of
the original features, as described in §3.3. Such a property affects
the optimality and convergence of the model. Nevertheless, the

greedy training strategy like §3.3 does not apply to content-aware
encoder adaptation where the whole network architecture is fixed.
Progressive optimization. To tackle this challenge, the key ob-
servation is that, in contrast to optimizing all parameters simulta-
neously, optimizing parameters either before or after quantization
can better improve the training loss. Based on this observation, we
device content-aware encoder adaptation to optimize non-freeze
parameters progressively. Specifically, we first optimize parameters
in the motion encoder until convergence. Then, we continue with
parameters in the residual encoder.

3.2.2 On-the-fly Segment Replacement. To replace the video seg-
ments, it is straightforward to optimize the codec until conver-
gence and then update the old segments with ones produced by the
content-aware encoder.
Challenge. However, the benefits of self-evolution cannot be en-
joyed by the viewers until the optimization converges, which re-
quires iterating the video tens of times.
Immediate storage update.To overcome this downside, we choose
to perform an immediate storage update. Specifically, the temporary
encoder’s coding efficiency is continuously tracked after a complete
pass of a video. Whenever the encoder’s training performance is
improved, we produce the video segments with the adapted encoder
and update the corresponding segments in the storage. This tech-
nique ensures the benefits of content-aware encoder adaptation
can be swiftly reflected on the viewer side before self-evolution is
completed.

3.3 Offline Training
With the expression in Equation 2, gradients in the network cannot
be properly back-propagated as the quantization operation 𝑄 is
non-differentiable. Inspired by the straight-through estimator [6],
we rewrite the super-precision feature for training, as indicated in
Equation 3.

𝑦𝑡 = 𝑑 (𝑦𝑡 − 𝑦𝑡 ) + 𝑦𝑡 , (3)

where 𝑑 (𝑥) represents the “detach” function of PyTorch [42] that
stops calculating gradients for 𝑥 .
Challenge. To train a learned video codec with super-precision,
the initial thought is to train the entire network in an end-to-end
manner. However, the training can hardly converge with this ap-
proach. We speculate the reason is that the prediction network,
unlike traditional tasks, e.g., classification, detection, and denoising,
whose input is continuous, takes quantized values as input more
susceptible to the statistical distribution of the original features.
For instance, an input value of 1 should probably yield the output
of 1.4 in one distribution but 0.6 in another, which makes a huge
difference.

Such susceptibility makes training unstable. Specifically, a slight
change in the parameters of the video encoder would alter the dis-
tribution of the original feature values, which might significantly
degrade the performance of the prediction network. The degra-
dation of the prediction network would require an update of its
parameters, which affects the video encoder again and changes the
distribution of original feature values. As a result, a vicious cycle is
established, where the prediction network and the codec constantly
fail to converge, hindering the overall training process.
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Greedy training. To prevent the vicious cycle, we have to stabilize
the original feature values when training the prediction network.
This can be accomplished by 1) training all modules without the
prediction network and 2) freezing the modules responsible for
generating the feature values before applying and training all other
parameters. Here, freezing a module means keeping its parameters
constant while optimizing the parameters of other modules. As
such, both the codec and the prediction network can be optimized
in a stable way.

Considering that the video codec sequentially generates two
types of feature values, motion and residual, the above technique
needs to be performed twice. Hence, we propose a greedy train-
ing procedure that involves three stages: warmup, motion super-
precision (𝑀𝑆𝑃 ), and residual super-precision (𝑅𝑆𝑃 ).
(1) Warmup stage: All codec modules are trained simultaneously

without super-precision.
(2) 𝑀𝑆𝑃 stage: The codec components generating the motion fea-

tures are frozen to ensure stability. The quantized motion fea-
tures are enhanced with super-precision and all parameters
except those of the motion encoder are optimized.

(3) 𝑅𝑆𝑃 stage: The codec modules generating the residual features
are frozen. Both the motion and residual features are enhanced
with super-precision and all parameters except those of motion
encoder, motion decoder, and residual encoder are optimized.

Such a training procedure allows for a successful convergence and
improved performance of the codec.

4 IMPLEMENTATION
Codec. To support ABR algorithms that require different bitrates,
it is essential to compress videos at different compression levels,
denoted as 𝑙 = 1, 2, ..., 𝐿. However, the rate-distortion trade-off
of many learned video codecs is typically fixed, determined by a
training hyper-parameter [2, 37, 60]. To overcome this limitation,
our base codec adopts the ELFVC approach [44], where the com-
pression level is treated as a configurable input to the learned codec.
The concept involves converting compression levels into one-hot
vectors, spatially tiling them, and concatenating them to the input
of various neural network modules.
Loss function. The loss function used in super-precision and self-
evolution is presented in Equation 4.

L =

𝐾∑︁
𝑘=1
E
𝑙
[𝜆𝑙D(𝑥𝑘 , 𝑥𝑘𝑙 ) + 𝑟 (𝑏𝑙𝑘 ) + 𝛼

∑︁
𝑦∈S




𝑦𝑙𝑘 − 𝑦𝑙𝑘𝑙


2] . (4)

In this equation, the variable 𝑙 (ranging from 1 to 8) represents the
compression level, while 𝜆𝑙 determines the trade-off between rate
and distortion for different compression levels. The parameter 𝐾
corresponds to the number of P frames in a Group of Pictures (GOP).
The I frame, denoted as 𝑥0, undergoes encoding and decoding using
the Better Portable Graphics (BPG) image codec [5]. Following
the approach of DVC [37], we set the smallest trade-off parameter
to 𝜆0 = 256, with subsequent 𝜆 values being twice the previous
one (𝜆𝑙 = 256 × 2𝑙 ). This range of 𝜆 values covers a sufficient
range of bitrates for ABR streaming. The distortion between the
original frame 𝑥𝑘 and the frame reconstructed at level 𝑙 , 𝑥𝑙

𝑘
, is

evaluated using the MSE and denoted by D(𝑥𝑘 , 𝑥𝑙𝑘 ). The estimated

bits per pixel of frame 𝑘 at level 𝑙 is represented by 𝑏𝑙
𝑘
. The set

S = {𝑦 (𝑓 ) , 𝑦 (𝑟 ) } comprises the motion and residual feature values.
The variables 𝑦𝑙

𝑘
and 𝑦𝑙

𝑘
denote the feature values produced at

compression level 𝑙 and frame 𝑘 before and after quantization,
respectively. The hyper-parameter 𝛼 controls the learning rate of
the prediction network.
Offline training configurations. Offline training minimizes the
loss function in Equation 4. The levels in each training sample
are randomly and iteratively generated like [44]. We employ the
Adam optimizer [27] with an initial learning rate of 10−4. The
learning rate is reduced by a factor of 10 after convergence until it
reaches 10−6. We utilize the Vimeo-90k dataset [57] for the training,
consisting of over 70k training samples. Each sample includes seven
images, with the first image as the I frame (𝑘 = 0) and the remaining
images as P frames (𝐾 = 6). The training sequences are randomly
cropped and resized to 256 × 256 resolution with a batch size of
𝐵 = 8 following [44]. Training lasts approximately 10 epochs for
warmup, and 15 epochs each for𝑀𝑆𝑃 and 𝑅𝑆𝑃 , taking around 150
hours on an NVIDIA RTX 3090 Ti GPU. Considering that training
is conducted offline and only once, the cost is reasonable.
Self-evolution configuration. Self-evolution adopts most of the
offline training configuration except that i) the training video is
resized to a resolution of 256 × 256 without random cropping, ii)
each training sample is a 16-frame GOP, following [44], (𝐾 = 15 and
𝐵 = 1), and iii) we report the results obtained with a single-epoch
self-evolution unless specified otherwise.
Streaming. In Vesper, we employ BOLA (Buffer-Based Optimized
Linear Algorithm) [48], an industrial-level Adaptive Bitrate (ABR)
algorithm [12]. BOLA determines the bitrate for each segment
download based on the buffer status. The segment size is set to
5 seconds following the approach in [13]. The streaming client is
implemented on a Linux desktop equipped with an AMD Ryzen
9 5900X CPU running at 4.95GHz and an NVIDIA RTX 3090 Ti
GPU. This configuration ensures a real-time decoding frame rate
for 2k videos. According to common practice, The lowest buffer
level, below which to download from the lowest bitrate, and the
maximum buffer level allowed by the system are set to 10 and 25
seconds, respectively.

5 EVALUATION
We evaluate Vesper regarding streaming performance and coding
efficiency. Here are the key highlights of our findings:
(1) Superior QoE: Vesper demonstrates exceptional QoE compared

to systems utilizing learned and traditional codecs, achieving
improvements of up to 9% and 31% on average (Figure 7).

(2) Enhanced Rate-Distortion Trade-off: Vesper significantly im-
proves the rate-distortion trade-off of both learned and tradi-
tional codecs (Figure 10).

(3) Super-precision Benefits: The application of super-precision
leads to coding efficiency improvements, with up to a 0.4 dB
increase in medium PSNR without additional bit consumption
(Figure 13).

(4) Self Evolution Advantages: Self-evolution further enhances
coding efficiency, resulting in up to a 0.8 dB improvement in
medium PSNR and up to an 8% reduction in medium bits per
pixel (bpp) (Figure 16).
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(b) QoE CDF with limited bandwidth
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(c) QoE CDF with adequate bandwidth

Figure 7: End-to-end QoE. Vesper’s QoE is up to 9% and 31% better than the best-performing learned and traditional approaches,
respectively. Vesper improves the QoE of the second-best performing approach at medium by 9% and 8% at medium in the
network with limited and sufficient bandwidth, respectively.

Limited BWAdequate BW0.00

0.25

0.50

0.75

N
or

m
al

iz
ed

 Q
ua

lit
y

B
etter

Vesper
ELFVC
SSF
x264f
x264m
x264s
x265f
x265m
x265s

(a) Quality (PSNR)

Limited BWAdequate BW0.0

0.2

0.4

N
or

m
al

iz
ed

 R
eb

uf
fe

r R
at

e

B
et

te
r Vesper

ELFVC
SSF
x264f
x264m
x264s
x265f
x265m
x265s

(b) Rebuffer Rate

Figure 8: Vesper has higher video quality (PSNR) than others at similar rebuffer rates.
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Figure 9: Ablation study of Ves-
per’s QoE.

Baselines. In our evaluation, we consider state-of-the-art tradi-
tional codecs, namely x264 [54] and x265 [50], as well as learned
video codecs, including SSF byGoogle [2] and ELFVC byOneWave [44],
as baselines. For the traditional codecs, we utilize the FFmpeg [51]
implementation and configure each codec with three modes: very-
fast, medium, and veryslow. These modes are denoted as x264-
veryfast (x264f), x264-medium (x264m), x264-veryslow (x264s),
x265-veryfast (x265f), x265-medium (x265m), and x265-veryslow
(x265s). Regarding the learned codecs, we employ the Compres-
sAI [4] implementation for SSF. As ELFVC does not have an open-
source implementation, we faithfully implement it based on the
CompressAI framework. All these baselines are run on the same
client machine as Vesper, with the traditional codecs primarily
utilizing the CPU and the learned codecs mainly using the GPU.
We compress videos with these learned codecs at eight compres-
sion levels, similar to Vesper, to ensure that their segments cover a
sufficient range of bitrates.
Network traces. We utilize network traces obtained from the
Federal Communications Commission (FCC) [16]. Randomly se-
lecting 1,000 traces from two tests conducted for “video streaming”
and “http get” scenarios, these traces represent a range of diverse
network scenarios. The "video streaming" traces have an average
bandwidth of 3.9 Mbps, indicating limited bandwidth availability,
while the "http get" traces exhibit an average bandwidth of 15.8
Mbps, indicating more adequate bandwidth for streaming purposes.
Video datasets. In our study, we merge two video datasets, namely
the UVG dataset [40] and the MCL-JCV dataset [53], to create a
unified dataset. This unified dataset comprises 37 videos, each with
a resolution of 2K and operating at a frame rate of 30 frames per

second. The total runtime of this merged dataset is approximately
5 minutes.
Metrics.We compare the streaming performance of different ap-
proaches in terms of QoE (Equation 1), which is averaged over all
videos in UVG and MCL-JCV and all network traces. In QoE, the
video quality and rebuffering are evaluated by PSNR and rebuffer
rate, respectively. Each metric is averaged over all videos in the
dataset and all network traces, normalized with the maximum and
minimum values mapped to 1 and 0, respectively. The error bar
in our evaluation represents the standard deviation of the met-
ric calculated over different network traces. While we assess the
video quality by PSNR, a widely adopted quality metric, our system
is generic to other video quality metrics, e.g., SSIM and VMAF,
like ELFVC [44]. The only requirement is that the metric can be
back-propagated. Moreover, we examine the coding efficiency by
analyzing the trade-off between video quality (PSNR) and bitrate
(bpp), which are averaged on all videos in UVG and MCL-JCV.

5.1 End-To-End Results
QoE. In Figure7(a), Vesper’s average QoE is compared to other ap-
proaches. Vesper’s normalized QoE surpasses the best-performing
learned and traditional approaches by up to 9% and 31%, respec-
tively. This result proves the effectiveness of Vesper and shows the
advantage of learned video codecs in video streaming. The variance
in QoE caused by bandwidth conditions results from varying em-
phasis on different sections of the rate-distortion curve, as shown
later in Figure 10. As such, learned codecs have more advantages
when the bitrate is higher, leading to a better QoE. Figures 7(b)
and 7(c) demonstrate the QoE CDF of different approaches on two
network traces. Vesper outperforms the second-best approach by
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Figure 10: Vesper’s coding efficiency
compared to other codecs.
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Figure 12: Vesper’s frame rate com-
pared to other codecs.

(a) PSNR (b) Bpp

Figure 13: CDF of PSNR and bpp with and without super-
precision. Super-precision improves PSNR at medium by 0.4
dB with negligible impact on bpp.

(a) PSNR (b) Bpp

Figure 14: Impact of the compression level in super-precision.
PSNR is increased by up to 0.5 dB on average. Bpp gets higher
at some levels but decreases at others.

9% and 8% at medium in the network with limited and sufficient
bandwidth, respectively. These results the advantage of Vesper is
consistent under both limited and sufficient bandwidth.
QoE breakdown. In Figure 8, the QoE breakdown (quality and re-
buffering) of various approaches is depicted. Vesper’s QoE benefits
most from the advantage in quality (PSNR). It achieves a superior
average PSNR compared to other approaches, with improvements
of up to 15% and 47% over the best-performing learned and tradi-
tional methods, respectively. In terms of the rebuffering rate, Vesper
performs similarly to most other approaches. SSF shows slightly
higher rebuffering rate than others.
Ablation. In Figure 9, a comparison is made between Vesper’s
QoE with different configurations: Vesper with both self-evolution
and super-precision (“Vesper”), Vesper without self-evolution (“w/o
SE”), and Vesper with only the base codec (“w/o SE+SP”). The
results demonstrate the effectiveness of super-precision (§3.1) and
self-evolution (§3.2) designs. The impact of self-evolution on QoE is
more significant, which highlights the uncertainty in video content
is better handled by Vesper than the uncertainty in quantization.
Frame rate. Figure 12 compares the frame rate of Vesper to other
approaches. Though Vesper is not as fast as others mainly due to the
super-precision module, it can attain a sufficient frame rate (77 fps)
for streaming. In contrast to ELFVC, Vesper achieves nearly half
the frame rate by adding single-pass denoising. It means that U-Net
involves a substantial computation cost even if applied once, which
must be applied with careful consideration of the computation
constraints of the system.
Computation cost. The speed of self-evolution is 25 fps on average.
While self-evolution takes 9 to 23 iterations of a video to complete,
it does not stall video serving by running on the fly. As we show

in Figure 15, self-evolution reflects on the viewer side immediately
after one epoch, which achieves near-optimum performance for
all videos. Considering the length of these videos being 300 to 600
frames, self-evolution only takes 12 to 24 seconds to reflect on the
view side.

5.2 Coding Performance
Coding efficiency. Figure 10 illustrates the coding efficiency of
Vesper, consistently surpassing systems driven by traditional and
learned codecs. This advantage is more significant at higher bitrates.
We speculate that Vesper can effectively exploit correlations when
more information is encoded in feature values using a larger number
of bits.
Ablation study. Figure 11 shows the coding efficiency of the default
configuration (“Vesper”) outperforms Vesper without self-evolution
(“w/o SE”). Vesper without self-evolution also outperforms Vesper
with only the base codec (“w/o SE+SP”). The results demonstrate
that both self-evolution and super-precision contribute consider-
ably to improving the coding efficiency of Vesper. Notably, self-
evolution has a relatively more significant impact.

5.3 Super-precision
Analysis. In Figure 13, super-precision’s effect on PSNR and bpp
is depicted. The result shows that super-precision enhances PSNR
by 0.4 dB at medium, indicating that super-precision better ap-
proximates original feature values than quantized features. We
also notice the bpp metric remains largely unchanged. This is be-
cause super-precision is applied to quantized data, which minimally
affects bit consumption. Moving on to Figure 14, it explores the
impact of compression level on super-precision in terms of PSNR
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Figure 15: Case study of self-evolution using seven videos from the UVG dataset.
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Figure 16: CDF of PSNR and bpp with and without self-
evolution. Self evolution improves the medium PSNR by 0.8
dB while reducing the medium bpp by 8%.

(a) PSNR (b) Bpp

Figure 17: Impact of the compression level in self-evolution.
Video quality (PSNR) and bit consumption are improved and
saved by up to 0.7 dB and 14%, respectively.

Figure 18: The reduction of feature jitter by super-precision
in motion and residual auto-encoders.

and bpp. Higher compression levels correspond to higher video
quality in terms of PSNR. Super-precision consistently enhances the
average PSNR by up to 0.5 dB, with more substantial improvements
observed at higher compression levels.
Jitter reduction. Figure 18 shows a reduction of up to 18% and 9%
in feature jitter, measured by the L2 norm of motion and residual
features at different compression levels. The motion and residual
features are the output ofmotion and residual auto-encoders, respec-
tively. The result demonstrates the effectiveness of super-precision
in jitter reduction. Such reduction is more significant for the motion
than the residual features. The reason is that motion features in
a video are commonly spatially correlated, making it possible to

leverage spatial correlation in the prediction of super-precision.
Conversely, residual features, being the difference between raw and
predicted frames, are more randomized and hard to predict.

5.4 Self-Evolution
Analysis. In Figure 16, the impact of self-evolution on PSNR and
bpp is depicted. It demonstrates that self-evolution improves the
medium PSNR by 0.8 dB while reducing the medium bpp by 8%.
This indicates that self-evolution effectively enhances both video
quality (PSNR) and bit consumption, resulting in a more efficient
encoding process. Figure 17 explores the influence of compression
level on self-evolution. It reveals a consistent improvement in video
quality (PSNR) and reduction in bit consumption by up to 0.7 dB
and 14%, respectively. Notably, the improvement in PSNR is more
pronounced at higher compression levels. In terms of speed, self-
evolution processes videos at a frame rate of 25 fps on an NVIDIA
RTX 3090 Ti GPU.
Case study. Figure 15 illustrates the improvement achieved by
Vesper in seven videos (Figure 15(a)) from the UVG [40] dataset. The
compression level is set to 1 for clarity. Each point in Figure 15(b)
and Figure 15(c) represents the attained bpp and PSNR, respectively,
after a certain number of epochs, i.e., a complete pass of the video.
The number of points indicates the number of epochs required for
the optimization of a video to converge.

A consistent reduction of bpp by up to 45% (Figure 15(b)) and an
improvement in PSNR by up to 1.5 dB (Figure 15(c)) are observed.
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Although not all videos experience improved PSNR, the significant
reduction in bpp ensures an overall enhancement in coding effi-
ciency. Notably, the “HoneyBee” and “Jocky” videos demonstrate
the highest reductions in bpp (39% and 45%) and improvements
in PSNR (1.5 dB and 1.4 dB). This could be attributed to the pres-
ence of repetitive patterns such as purple-color flowers and green
lawns, which are uncommon in regular videos but can be optimized
through self-evolution to enhance coding efficiency. The reason
for low PSNR improvement in certain content is the complexity of
the content. For instance, the facial details and hair motions are
challenging to exploit by Vesper in the “Beauty” video, with only a
0.2 dB reduction in PSNR. Nevertheless, self-evolution manages to
reduce its bpp by 11%.

6 RELATEDWORKS
Video codecs. Video codec standards, such as MPEG-2 [29], H.264
[54], and H.265 [50], have traditionally relied on handcrafted meth-
ods. However, recent advancements in deep learning have paved the
way for DNNs to enhance the coding efficiency of these traditional
codecs. Deep learning techniques have been employed to replace
operations in traditional codecs [1, 3, 10, 11, 35, 43, 56] and serve as
hints to assist video codecs [15, 33]. Moreover, there have been pro-
posals for end-to-end learned codecs [2, 19, 31, 36, 37, 44, 59, 60]. An-
other category of learned approaches, exemplified by SWIFT [13],
integrates DNN and progressive coding to enhance the QoE in
streaming by leveraging available bandwidth to download more
data. Among these learned video codecs, ELFVC [44] stands out as
the state-of-the-art approach, greatly improving both speed and
coding efficiency compared to prior works. However, existing video
codecs fall short when handling the uncertainty of content and
quantization, which undermines their coding efficiency. In this
context, Vesper presents a novel approach by leveraging proactive
learning to tackle the challenges posed by content and quantization
uncertainty, achieving superior performance.
Streaming systems. Enhancing the quality of video streaming
has been the focus of numerous systems, typically classified into
three categories: push-based, pull-based, and video super-resolution
(VSR). Push-based strategies analyze playback statistics from clients
and deliver videos of suitable bitrates to each client from a central
server. Various studies [7, 17, 23, 32] have investigated the effective-
ness of these approaches. In contrast, pull-based strategies guide
clients to download videos with appropriate bitrates from the server
based on predicted bandwidth or buffer level [39, 48, 58, 62, 64, 65].
Additionally, VSR techniques can be employed to enhance video
streaming quality by applying super-resolution models to increase
the resolution of downloaded segments [25, 61, 63]. Our approach
operates at the codec level of a streaming system, making it easily
integrated into these distinct designs.

7 DISCUSSION AND FUTUREWORK
Integration with existing CDN infrastructure. While the exist-
ing CDN infrastructures might not exhibit the computation power
to perform any model training in self-evolution, Vesper can still
be seamlessly integrated with them. Specifically, the self-evolution
can run on powerful video-processing servers and update video
segments with optimized segments on CDN servers. Therefore,

little computation is required on the CDN server. Moreover, on
video-processing servers, as self-evolution is independent among
different videos, Vesper can be further scaled via parallelization
of the self-evolution of different videos. Although there will be an
additional transmission delay between the video-processing server
and the CDN server, such a delay would be amortized by the serving
duration and the number of served users in on-demand streaming.
Compatibility with streaming protocols and ABR algorithms.
In video streaming, Vesper upgrades the content of video segments
with better coding efficiency. Since there is no change in the data
format of the segments, Vesper is easily compatible with the stream-
ing protocols and ABR algorithms that determine how to deliver
these segments.
Extensibility to other learned codecs.The proposed self-evolution
and super-precision modules do not make particular assumptions
about the base codec as long as it is learning-based and involves
quantization. Thus, these modules can be applied as general ex-
tensions to most existing learned codecs besides our base codec
without a major change in principle.
Generalizability to different video contents. The design of
Vesper is generic to the video content. While the specific content
may affect the QoE gain from Vesper, our experiments demonstrate
Vesper’s consistent effectiveness.
Live video streaming.Vesper encounters challenges in live stream-
ing, particularly due to the introduction of additional latency caused
by self-evolution in the video encoding process. This latency is ac-
ceptable in on-demand streaming situations since it occurs on the
fly, but this latency would become a critical concern in real-time live
video streaming where encoding must happen without delay. As
a result, the latency associated with self-evolution directly affects
the end viewer, potentially leading to a negative impact on QoE.
Video heterogeneity. In this work, we assume every video is
equally important and perform self-evolution to different video
content in random order. However, videos may have different pop-
ularity in different applications. This factor could be utilized to
perform self-evolution on more popular content first, which could
further improve the QoE.

8 CONCLUSION
In this paper, we identify quantization uncertainty and content
uncertainty that affect performance in video streaming. We present
Vesper, a video streaming system that tackles uncertainty through
learning-based modules of self-evolution and super-precision. Our
experiments demonstrate the superior performance of Vesper in
comparison to streaming systems built with state-of-the-art codecs,
validating the effectiveness of handling uncertainty with learning.
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