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ABSTRACT
For Real-time Communication (RTC), Bandwidth Estimation (BWE)
is crucial for enhancing user Quality of Experience (QoE) by ensur-
ing efficient bandwidth utilization and low latency. Recent advance-
ments have shifted towards machine learning based algorithms,
particularly online reinforcement leanring (RL), to dynamically in-
fer future bandwidth using statistical data. However, challenges
such as dependency on training settings, the necessity for exten-
sive trial and error, and instability in complex state spaces hinder
their efficacy. To address these limitations, we propose Pioneer, a
novel offline RL framework for BWE in RTC systems. Unlike its
predecessors, Pioneer eliminates the need for real-time environ-
ment interaction during training and achieves good performance
through lightweight training. Our framework consists of a Trajec-
tory Sampler for state information preprocessing and a Bandwidth
Estimator based on offline RL model. Our test results on offline
datasets show that Pioneer can achieve better performance than
expert algorithms. We also tested Pioneer on online simulation
platforms, and Pioneer can improve QoE by 9% compared to other
offline algorithm, demonstrating good robustness.
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1 INTRODUCTION
In recent years, applications such as video conferencing and remote
technical support have played a significant role in people’s daily life.
Bandwidth estimation (BWE) is one of the hot topics in Real-time
Communication (RTC) technology. In the RTC system, the result
of BWE affects the encoding bitrate and the pacer sending rate,
to adapt to changing network environments. Therefore, accurate
BWE is crucial in enhancing bandwidth utilization while ensuring
low latency, which is of vital importance to improve users’ quality
of experience (QoE).

Many approaches have been proposed to tackle BWE challenge.
Basically, they all follow a common principle: adaptively obtain-
ing bandwidth estimation results through the statistical status of
data packets. These algorithms can be divided into two types: tradi-
tional heuristic algorithms and machine learning based algorithms.
Among heuristic algorithms, GCC[5] is the most representative
method, which uses two estimators distributed at both ends of the
peer to consider loss and delay together, and obtains bandwidth
estimation results through fixed rules and state machine switching.
However, heuristic algorithms use limited low-level information
and finite state machine , resulting in poor accuracy of results and
weak adaptive capabilities.

Therefore, researchers have drawn more attention to machine
learning based algorithms, especially reinforcement learning (RL).
R3Net[8], OnRL[24] and CLCC[16] propose different online RL
models to infer future bandwidth. They all use statistical infor-
mation as state and exact bandwidth or changing gain as action.
However, these algorithms also suffer from the basic problems of
RL. Firstly, model performance is closely related to the training
setting such as reward function. Meanwhile, online RL training re-
quires lots of trial, and may exhibit severe instability in the process,
especially when dealing with high-dimensional, nonlinear state
spaces. In order to adopt RL better, a common way to improve its
performance is to find a "mentor" for it. HRCC[21] and Bob[3] use
hybrid mechanisms to constrain the output of RL through heuristic
algorithms. On the other hand, Eagle[6], Dugu[14] and Loki[23] use
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Figure 1: Basic process of offline reinforcement learning: From training to deployment

Imitation Learning (IL) to learn policy by observing the behaviors
of experts. But IL depends on high-quality expert demonstrations,
and find the oracle of BWE task is virtually impossible. In addition,
all algorithms based on online RL face a huge challenge, which is
the need for continuous interaction with the environment, which
may be costly and time-consuming.

To break through the above limitations, offline methods Sage[22]
and Merlin[12] have recently been proposed. The learning process
of offline RL entirely based on pre-collected data sets rather than
through real-time interaction. This approach is particularly useful
in scenarios where real-time interaction is costly or risky.Sage is
the first framework to introduce data-driven RL to address TCP con-
gestion control problems. Sage generates a experience pool of tra-
jectories based on existing congestion control strategies (Cubic[13],
BBR[4], etc.) and employs the Actor-Critic architecture[15] for
model learning, which achieves better performance than its men-
tors. Merlin is the first to use offline imitation learning to estimate
bandwidth in RTC system. It collects behaviors from the expert
UKF and achieve better subjective quality, while it is still limited
by expert and lacks exploratory ability.

Compared to offline IL, offline RL is guided by reward signals,
allowing model to identify and optimize for long-term goals. It does
not just learn to imitate the behaviors of experts, but also tries to
surpass these behaviors to achieve higher cumulative returns. In-
spired of Sage and Merlin, we proposed Pioneer, a novel offline RL
framework to estimate network bandwidth in RTC system. Pioneer
mainly consist of a Trajectory Sampler that pre-process the state
information and re-build experience pool, and a Bandwidth Estima-
tor based on offline reinforcement learning architecture[11][9]. By
learning from dataset of previously collected experiences, real-time
interaction with the environment is no longer required during the
training process. Pioneer is the first work to demonstrate and re-
alize the offline estimator. Besides, extensive testing is conducted
in emulated dataset and emulated environment. Compared with
benchmark estimators, the offline RL model Pioneer showed better
QoE. We release our final model and source code at [17].

2 CHALLENGE
As shown in Fig 1, the basic process of offline RL can be concluded
as three parts. It starts with data collection which is collecting
historical interaction data between expert strategies and the envi-
ronment. These data usually include state, action, and reward. All

data generated constitutes the experience pool. The next step is
to conduct offline strategy learning, using the data from the expe-
rience pool to train a decision model that can select the optimal
action to maximize long-term rewards under given states. After
obtaining the offline model, we can deploy the strategy into online
applications to guide decision-making. For bandwidth estimation,
the target of offline RL is to train a decision model based on pre-
collected network statistical data and expert estimator behavior,
which should maximize QoE and has high robustness for practical
RTC systems. To achieve the above goals, there are three challenges:

2.1 Data Collection
For offline RL, a high-quality experience pool is critically important.
Firstly, the pool must contain various characteristics. Although
the statistical analysis of network states typically revolves around
receiving rate, latency, and loss rate, each aspect should undergo
further processing. For instance, latency gradient is more directly
reflect changes in network conditions. Within the monitor interval
(MI) with a high proportion of video packets, the attenuation of
indicators will more severely damage the user experience.

Additionally, for time-series data, the contribution of different
timescales to rewards varies. In Sage[22], information from three
different MI is used to balance short-term target(rapidly tracking
changes in available bandwidth) with long-term objectives (TCP
friendliness).

Lastly, the dataset should be enriched with guidance from a well-
versed team of experts, ensuring comprehensive guidance for the
algorithm and preventing performance drift.

Considering these aspects, the 2024 ACM MMsys’ Grand Chal-
lenge provides an excellent dataset[18], which includes data from
18,859 calls and 9,405 emulated test calls. Observations contain 150
network features collected at two different timescales, along with
expert behaviors from UFK, GCC, and other ML-based strategies.
Pioneer is standing on the shoulders of this giant.

2.2 Behavior Learning
In traditional online RL, learning purely based on reward functions
may lead to high-variance value function estimation, especially
when the state and action space are high dimension or complex.
In offline RL for solving BWE problems, if only regard Q value
as optimization objective, the problem of policy being difficult to
converge will be more severe. First of all, the dimension of network
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features is very high, and the prediction value of bandwidth is
continuous. In this case, compared to a complete space of decision
sequences, the limited trajectories in the experience pool can be
considered sparse. Therefore, the agent cannot efficiently learn
what strategy will bring the highest returns, and it is easily misled
by some extreme situations.

All expert algorithms have been tested in practice and can pro-
vide RL agent with good guidance. Therefore, it can serve as a
constraint to prevent the model from deviating excessively from
these validated strategies. However, experts in the experience pool
specialize in different network environments and may not always
perform well. Therefore, it is necessary to design appropriate learn-
ing mechanisms to help RL agent to imitate and surpass experts.

2.3 Extrapolation Error
"Extrapolation error" [11]is a crucial issue that often arises when
the algorithm attempts to make predictions on state-action that are
not fully covered in the training data. In offline RL, the agent is
trained on a static dataset of previously collected experiences, and
it does not interact with the environment during training. Thus,
when a new state-action pair appears, the model unable to estimate
accurate value. Once the estimation of Q is too high, the agent will
learn a strategy that may benefit very poorly in actual interactions,
leading to a deterioration in the overall performance of the model.

This problem also exists when offline RL is applied to bandwidth
estimation. Even though our trajectories are collected from large
amount of real communication cases, the experience pool cannot
cover all network state - bandwidth action pairs, so there are still a
lot of unknown situations in the trajectory space. In addition, in
different applications, the physical condition of network and the
behaviors of users are irregular and vary greatly, which means there
is a serious disturbance shift problem. Therefore, it is very chal-
lenging for offline models to extract a robust representation from
existing data without any further interaction with the environment.

3 PIONEER
We proposed Pioneer, a offline RL based RTC bandwidth estimator.
Pioneer mainly conclude two components: a trajectory sampler and
a offline RLmodel. Themain purpose of the former is to sample from
observation vectors and expert actions, calculate returns, and obtain
training batch B. The latter is the actual bandwidth estimator, and
its design is inspired by both Batch-Constrained Deep Q-Learning
(BCQ)[11] and Twin Delayed Deep Deterministic policy gradient
algorithm with behavior clone (TD3+BC)[9].

3.1 Trajectory Sampler
As mentioned before, offline RL extracts the optimal policy from
expert trajectories. Agents need to understand the relationship
between states and actions, as well as how actions affect the envi-
ronment (i.e. transition of states) and rewards. Usually, agents need
to learn from the current state 𝑠 , rewards 𝑟 , expert behavior 𝑎, and
the next state 𝑠′ to transfer to. [𝑠 , 𝑎, 𝑠′] can be easily obtained from
the dataset, while 𝑟 needs to be customized.

Reward. The reward is considered as a scalar to evaluate the
effectiveness of the BWE schemes.The higher the packet delivery
rate perceived by the agent, usually means the better the audio and

video quality. Increased packet loss and latency will harm the user
experience, and the agent should be punished at this time. Based
on the above considerations and the experience of other research
work[21][16], we use following reward at timestep t:

𝑅𝑡 = 𝛼𝑈𝑡 − 𝛽𝐿𝑡 − 𝛾𝐷𝑡 (1)

where 𝑈𝑡 , 𝐿𝑡 , 𝐷𝑡 is the average receiving rate, packet loss rate and
queuing delay within the recent short-term MI (60ms). 𝛼 , 𝛽 , 𝛾 are
set to 0.5, 0.3, 0.3.

The Trajectory Sampler module extracts a batch of [𝑠, 𝑎] data
from the experience pool, and after the above calculation, output
[𝑠, 𝑎, 𝑟, 𝑠′] quadruples as batch B, which will be provided to the
offline RL model for training. In addition, this also provides a basis
for implementing more intelligent samplers in the future. For ex-
ample, in future work, this module can be used for data cleaning or
trajectory stratification.

3.2 Offline Reinforcement Learning Model
To address the challenges of applying offline RL to BWE, we build
Pioneer on top of BCQ[11]. The main advantage of Pioneer is mak-
ing the result of bandwidth estimation more accurate and robust
by restricting the state-action pairs selected by the policy to be
similar to the data existing in the sampled batch B. For a given
observation vector, Pioneer uses a generative model to generate a
set of bandwidth candidates similar to the distribution of batch, and
selects the one with the highest value through the Q network. In
addition, inspired of TD3+BC[9], we further add a behavior clone
term to assist in the learning of the actor network. This strategy can
effectively prevent the model from deviating excessively from these
validated strategies during the training process, especially when
dealing with such complex, high-dimensional network features and
continuous bandwidth estimation.

Specifically, Pioneer includes the following three components:
VAE Network. The Variational Autoencoder (VAE) network

𝐺𝜔 = {𝐸𝜔1 , 𝐷𝜔2 }, including an Encoder 𝐸𝜔1 and a Decoder𝐷𝜔2 .
The encoder learns the representation of network feature vectors
and network estimation results [𝑠, 𝑎], proving the mean 𝜇 and stan-
dard deviation 𝜎 of the Gaussian distribution 𝑁 (𝜇, 𝜎). Furthermore,
the encoded feature embedding can be constantly decoded into re-
coverable observations by decoder. By learning latent spaces, VAE
can help agents better understand and generalize to unseen states.

Actor Network. Firstly the VAEmentioned above is a part of the
actor. By learning the data distribution within the batches, a basic
prediction result 𝑎 is decoded based on the current observations. In
addition, a perturbation network 𝜉𝜙 is added, using a two-layer fully
connected network to further perturb the output of the VAE to the
range of [−Φ + 𝑎,Φ + 𝑎], which can be seen as a slight exploration.
As for now, the policy 𝜋 of Pioneer can be represented as (2). In our
work, we set the Φ = 0.05, while controlling the final action after
perturbation to remain between [0,1], to ensure that a bandwidth
estimation of [10𝐾, 8𝑀]bps can be obtained through the inverse
mapping of (4).

𝜋 (𝑠) = argmax
𝑎𝑖+𝜉 (𝑠,𝑎𝑖 ;Φ)

𝑄𝜃 (𝑠, 𝑎𝑖 + 𝜉 (𝑠, 𝑎𝑖 ;Φ)), {𝑎𝑖 ∼ 𝐺𝜔 (𝑠)}𝑛𝑖=1 (2)

308



MMSys ’24, April 15–18, 2024, Bari, Italy Bingcong Lu, Keyu Wang, Jun Xu, Rong Xie, Li Song, and Wenjun Zhang

Training Phase

E D

VAE

update

Actor Critic

update

Figure 2: Pioneer Training Part. Pioneer follows the basic Actor-Critic architecture. The Actor first uses VAE to learn the
data distribution and generates output candidates with similar distribution; then it performs slight exploration through the
perturbation network to obtain the final result. Critic network uses two value networks for Q-value estimation.

On this basis, we add an additional behavior clone term to the
actor. The actor loss we ultimately determined is shown as (3),
where 𝑎 is current action and 𝑎 is the expert’s behavior. The main
purpose is to ensure that the actor does not deviate too much
from the guidance provided by experts while striving to maximize
returns. With this limitation, the training process of the model
accelerates convergence, and the output stability of the model is
greatly improved.

𝐿𝑎 = −𝑄𝜃 (𝑠, 𝑎𝑖 + 𝜉 (𝑠, 𝑎𝑖 ;Φ)) +
1
𝑛

𝑛∑︁
𝑖=1
(𝑎𝑖 + 𝜉 (𝑠, 𝑎𝑖 ;Φ) − 𝑎𝑖 )2 (3)

Critic Network. The critic network of Pioneer is used to eval-
uate the value of state-action pairs . Our model is based on the
Clipped Double Q-learning algorithm[10], which trains two action
value networks 𝑄𝜃1 , 𝑄𝜃2 and takes their minimum values as the
estimation of action values, avoiding overestimation of 𝑄 .

In training phase, the model architecture is shown in Figure 2 and
the detailed process is shown as Algorithm 1. Batch data B sampled
by trajectory sampler is firstly sent into VAE to learn the distribution
of current data, and generate similar actions. Actors will pursue
maximum returns under the guidance of expert behavior. That is
to learn how to make reasonable network bandwidth estimation
based on the current network observations, in order to achieve the
best rate-delay performance. Critic will be committed to learning
how to correctly evaluate current actor performance.

Actor

D

Critic

Selector

Evaluation Phase

Figure 3: Pioneer Evaluation Part.

Algorithm 1: Training Algorithm of Pioneer
Input: input batch B(𝑠, 𝑎, 𝑟, 𝑠′) , horizon 𝑇 , target network

update rate 𝜏 ,weighting rate 𝜆,max perturbation Φ,
sampling numbers 𝑛

Initialize Q-networks 𝑄𝜃1 , 𝑄𝜃2 , perturbation network 𝜉𝜙 ,
VAE 𝐺𝜔 = {𝐸𝜔1 , 𝐷𝜔2 } with random parameters 𝜃1, 𝜃2, 𝜙, 𝜔
, and target networks 𝑄𝜃 ′1

, 𝑄𝜃 ′2
, 𝜉𝜙 ′ with

𝜃 ′1 ← 𝜃1, 𝜃 ′2 ← 𝜃2, 𝜙 ′ ← 𝜙 .
for t=1 in 𝑇 do

1. update VAE : from the transitions B(𝑠, 𝑎, 𝑟, 𝑠′) obtain
the target action distribution
𝜇, 𝜎 = 𝐸𝜔1 (𝑠, 𝑎), 𝑎 = 𝐷𝜔2 (𝑠, 𝑧) , 𝑧 ∼ N(𝜇, 𝜎)
𝜔 ← argmin

𝜃

∑(𝑎 − 𝑎)2 + 𝐷𝑘𝑙 (N (𝜇, 𝜎) | |N (0, 1)) ;

2. sample n actions :
{𝑎′

𝑖
= 𝐺𝜔 (𝑠′)}𝑛𝑖=1 ;

3. perturb each action :
{𝑎𝑖 = 𝑎′𝑖 + 𝜉𝜙 ′ (𝑠, 𝑠

′,Φ)}𝑛
𝑖=1;

4. set value target y :
𝑦 = 𝑅𝑖 + 𝛾 max

𝑎𝑖
[𝜆 min

𝑗=1,2
𝑄𝜃 ′

𝑗
(𝑠′, 𝑎𝑖 ) + (1 − 𝜆) max

𝑗=1,2
𝑄𝜃 ′

𝑗
(𝑠′, 𝑎𝑖 )]

5. update critic network with 𝜃 :
𝜃 ← argmin

𝜃

∑(𝑦 −𝑄𝜃 (𝑠, 𝑎))2 ;

6. update actor network with 𝜙 :
𝜙 ← argmin

𝜙

∑ [(𝑎 − 𝑎)2 +𝑄𝜃1 (𝑠, 𝑎 + 𝜉𝜙 (𝑠, 𝑎,Φ))];

7. update target networks :
𝜏 ′ ← 𝛾𝜃 + (1 − 𝜏)𝜃 ′, 𝜙 ′ ← 𝜏𝜙 + (1 − 𝜏)𝜙 ′

end

In evaluating phase, Pioneer first repeats the input 𝑛(𝑛 = 100)
times and sends it to the Actor to generate 𝑛 actions, then selects
the action with the highest value through Critic to execute. This
process is to give a set of possible bandwidth values under the
current status, and select the value that can maximize user QoE as
the final output. The model architecture is shown in Figure 3.
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4 IMPLEMENTATION
We implement Pioneer by using Pytorch, and further export Pioneer
to ONNX model. We use all data of testbed dataset and 80% data of
emulated dataset as training input. Another 20% data of emulated
dataset are used to evaluate. Note that In order to maintain the
consistency of the data length in the batch and minimize data
discarding, unlike random sampling methods, we first sort the
sequences in order of length to make the data length within a batch
as close as possible, and crop the sequences based on the shortest
length. The use of cropping instead of padding zeros is to prevent
the agent from learning incorrect state transitions at the end stage.

Furthermore, inspired by previous work[3][12], the output rep-
resentation is set between [10K, 8M]bps, because the bandwidth
within this range can cover various RTC scenarios such as simple
audio calls and high-definition (HD) video conferencing. We further
use the formula (4) to map actions to the [0,1] interval.

𝑎log =
log(𝑎) − log(𝑏min)

log(𝑏max) − log(𝑏min)
(4)

where 𝑏max is set to 8000000 and 𝑏min equals to 10000.
Offline training. Pioneer is trained with batch size of 25. In

each epoch, we traverse all the training data, which means 1055
batch will be sampled. The learning rate of Actor is 10−4 and Critic
is 10−8. Through the methods we mentioned before to improve
training efficiency, Pioneer has very low training costs and fast
inference speeds. Pioneer can perform well after only 11 epochs of
training. After pre-loading all training data into memory, Pioneer
only needs 30 minutes to train on the NVIDIA GeForce RTX 4090.
The stable model we ultimately chose trained 258 epochs, which
takes about 11 hours.

Online Testing. To verify the robustness and practicality of
Pioneer, we tested it using a emulated RTC platform, AlphaRTC[7].
AlphaRTC will conduct a real one-way RTC communication, trans-
fer local files to the client, and save the received media data as files.
This allows us not only to evaluate the performance of the network
layer based on the statistical information of the data packets, but
also to measure the actual media quality.

We use one 1280x720 video conference scene video FourPeo-
ple.yuv fromXiph.org[1] as input (without audio), useMahimahi[20]
as the network emulator and adopt 22 LTE traces observed from
the real world[2]. Each call lasts 60s. We conducted the same ob-
servation collection according to the data instructions published
by the organizers of the challenge[18], which means AlphaRTC
will provide feedback on the same 150 network state statistics after
each feedback duration (200 ms).

5 EVALUATION
We test Pioneer through two different methods: offline and online.
Through offline testing, we seek to answer the following question:
If Pioneer can surpass the limitations of experts and provide more
accurate estimation that can maximize QoE.

Benchmarks. We compare Pioneer with two different kind
mechanisms.

(1) Expert-policy are strategies that provided for each sample in
the dataset, obtained from UKF, GCC, and other ML based
algorithms;

(2) Merlin [12] is a offline, data-driven solution based on imita-
tion learning. We retrained Merlin using the network struc-
ture provided in their paper.

Metrics. Due to the fact that we can only obtain bandwidth
offline, we evaluate the performance in the following two aspects:

(i) Average Bandwidth utilization𝑈𝑎𝑣𝑔 : It is defined as the ratio
between the average estimation of Pioneer and the average
true capacity.

(ii) Overshoot ratio 𝑅𝑜𝑠 : [12] states that overshoot poses greater
harm to QoE than undershoot. To measure whether the algo-
rithm blindly increases bandwidth and leads to amounts of
overshoots, we define this indicator 𝑅𝑜𝑠 refers to the propor-
tion of actions where the predicted value is higher than the
actual bandwidth capacity among all decisions in one call.

For online testing, we try to find if the model trained offline
can still have stable and superior performance when applied to
actual RTC system.

Benchmarks. We compare Pioneer with Merlin and BoB[3].
BoB is a hybrid estimator with combined RL model with heuristic
algorithm, which is the SOTA scheme on the AlphaRTC benchmark.

Metrics. We compute overall QoE of Pioneer during online
testing. The design of QoE is given by ACM MMSys’21 Grand
Challenge[19]. As shown in (5), Network score is a combination
of throughput , packet delay and loss rate. Video score is based on
VMAF.

𝑆delay = 100 × 𝑑max − 𝑑95th
𝑑max − 𝑑min

𝑆loss = 100 × (1 − 𝐿)
𝑆rate = 100 ×𝑈

𝑆network = 0.2𝑆delay + 0.3𝑆loss + 0.2𝑆rate
𝑆video = VMAF

(5)

where 𝑑max, 𝑑min, 𝑑95th, 𝐿,𝑈 respectively denote the maximum, the
minimum and the 95th percentile queuing delay, packet loss ratio
and bandwidth utilization. The overall QoE is defined as:

QoE = 0.5𝑆network + 0.5𝑆video (6)

5.1 Offline Testing
We tested Pioneer andMerlin on valid dataset, predicting bandwidth
from 1881 call records. The𝑈𝑎𝑣𝑔 and 𝑅𝑜𝑠 results are shown in Table
1. Note that, when calculating the average bandwidth utilization,
the portion exceeding 100% is uniformly counted as 100%. Results
show that Pioneer and Merlin achieve almost same accuracy as
Expert, which means both algorithms have learned well on offline
datasets. Besides, due to our setting of the BC item, even though
Pioneer designed the reward to pursue higher bandwidth, there
was no problem of blind increase.

We also provided 4 samples to further demonstrate Pioneer’s
performance. As shown in Figure 4, Pioneer can achieve good per-
formance in different bandwidth environment. Although Pioneer’s
behavior is still obviously influenced by expert, it can approach
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Figure 4: The bandwidth estimation results of Pioneer for different network profiles.

Figure 5: The online testing results of Pioneer. The first graph shows the average score of the schemes on the metrics, and the
three graphs on the right show the cumulative distribution of each metric.

bandwidth more closely overall. And Pioneer’s results are more
stable, which can avoid following the abnormal behavior of experts
(burr-like values) to some extent.

Table 1: The offline testing results on average bandwidth
utilization and overshoot ratio.

Metric Expert Merlin Pioneer

𝑈𝑎𝑣𝑔 ↑ 81.98% 81.77% 81.94%
𝑅𝑜𝑠 ↓ 23.26% 21.76% 22.61%

5.2 Online Testing
We apply Pioneer, Merlin and BoB on the emulated platform Al-
phaRTC for one-way RTC communication based on local video
files, and the network conditions were set by 22 different network
profiles collected in real-world. In particular, during actual RTC
transmission, if the value provided by the estimator is too small,
the connection will be interrupted. So in this test, the lower limit
of the estimator output is 300Kbps. The experimental results are
shown in Figure 5. It can be found that Pioneer shows excellent
performance in actual RTC applications. The average QoE score of
Merlin, BoB and Pioneer are(63.91, 68.46, 69.84), so Pioneer obtains
a QoE gain of (9.2%,2.0%) with respect to Merlin and BoB. Further-
more, as can be seen from the Figure 5, the improvement of QoE
is not a trade-off, but rather win-win cooperation in video quality
and latency. Besides, through the CDF charts, we can observe that
Pioneer’s performance is stable in the new environment and can
be well maintained at a high level.

As two offline algorithms, Pioneer and Merlin, there is a signifi-
cant difference in the distribution of the data we tested compared to

the training data. IL-basedMerlin has poor adaptability to unknown
environments, while Pioneer can adapt well to this domain shift due
to its use of batch constrained architecture. Even in the face of an
unseen network environment, it can provide the same stability as
the heuristic algorithm. Compared to RL-based algorithms BoB, the
performance of Pioneer trained on offline datasets is also relatively
better, and our training costs are much lower. It can be believed
that as we further increase the scale of training data or introduce
Bob as an expert to guide Pioneer, the performance of Pioneer can
be further improved.

6 CONCLUSION
We proposed Pioneer, a offline RL framework based on some ex-
cellent models of predecessors. Pioneer is a successful application
of offline RL in BWE problems, from setting states, actions, and
rewards, to offline training based on pre-collected datasets, and
finally to practical deployment in online real-time communication.
Pioneer is the first work to complete above demonstration. The
evaluation of Pioneer in both emulated datasets and environments
showcases its ability to significantly enhance the Quality of Ex-
perience (QoE) for users. The findings underscore the potential
of offline RL in improving the adaptability and accuracy of BWE
mechanisms, suggesting a promising direction for future research
and development in RTC technologies.
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