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ABSTRACT
Video streaming stands as the cornerstone of telecommunication 
networks, constituting over 60% of mobile data traffic as of June 
2023. The paramount challenge faced by video streaming service 
providers is ensuring high Quality of Experience (QoE) for users. 
In HTTP Adaptive Streaming (HAS), including DASH and HLS, 
video content is encoded at multiple quality versions, with an Adap-
tive Bitrate (ABR) algorithm dynamically selecting versions based 
on network conditions. Concurrently, Artificial Intelligence (AI) 
is revolutionizing the industry, particularly in content recommen-

dation and personalization. Leveraging user data and advanced 
algorithms, AI enhances user engagement, satisfaction, and video 
quality through super-resolution and denoising techniques.

However, challenges persist, such as real-time processing on 
resource-constrained devices, the need for diverse training datasets, 
privacy concerns, and model interpretability. Despite these hur-
dles, the promise of Generative Artificial Intelligence emerges as a 
transformative force. Generative AI, capable of synthesizing new 
data based on learned patterns, holds vast potential in the video 
streaming landscape. In the context of video streaming, it can create 
realistic and immersive content, adapt in real time to individual pref-
erences, and optimize video compression for seamless streaming in 
low-bandwidth conditions.

This research proposal outlines a comprehensive exploration at 
the intersection of advanced AI algorithms and digital entertain-
ment, focusing on the potential of generative AI to elevate video 
quality, user interactivity, and the overall streaming experience. The 
objective is to integrate generative models into video streaming 
pipelines, unraveling novel avenues that promise a future of dy-
namic, personalized, and visually captivating streaming experiences 
for viewers.
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1 INTRODUCTION
Video streaming is the most important service in telecommunica-

tion networks. According to the estimations provided in the Ericsson

Mobility Report, [1], video streaming accounted for more than 60%

of all mobile data traffic by June 2023. Given that such a vast portion

of the Internet’s traffic is associated with video content provision-

ing, video streaming service providers demand new techniques to

provide high Quality of Experience (QoE) to their customers, i.e.,
the users’ satisfaction while watching video content [2]. In HTTP

Adaptive Streaming (HAS) – includingDynamic Adaptive Streaming
over HTTP (DASH) [3] and HTTP Live Streaming (HLS) [4] – a video

content stored at the server is encoded at several quality versions,

each identified by a specific bitrate. Each version is then divided

into temporal segments of the same duration. This process gener-

ates a fixed number of segments for each quality representation of

the video. The client sends HTTP requests to fetch the segments

composing the video content sequentially. Based on the network

conditions, the Adaptive Bitrate (ABR) algorithm implemented at

the player selects the most suitable versions for the segments.

Artificial Intelligence (AI) is revolutionizing many industries,

offering significant benefits and driving advancements in various

areas. One notable area where AI excels is content recommenda-

tion and personalization [5]. By leveraging user data and applying

sophisticated algorithms, video streaming platforms can deliver tai-

lored content recommendations, enhancing user engagement and

satisfaction. AI algorithms also enhance video quality by utilizing

super-resolution, denoising, and frame interpolation, resulting in

improved visual experiences for viewers [6, 7, 8]. Moreover, AI is em-

ployed in optimizing content delivery and minimizing rebuffering

through adaptive bitrate algorithms that dynamically adjust video

quality based on network conditions. However, several challenges

lie ahead for AI in the video streaming industry. One challenge is

the ever-increasing demand for real-time video processing, particu-

larly on resource-constrained devices [9]. Developing efficient AI

models and algorithms that can operate within the limitations of

these devices is crucial. Another challenge is the need for large

and diverse datasets for training AI models effectively. Access to

high-quality, annotated datasets that capture the complexities of

video streaming scenarios can be a hurdle [10]. Additionally, en-

suring privacy and data security while utilizing user data for AI is

a growing concern that must be addressed [11]. Furthermore, the

interpretability and explainability of AI models in the video stream-

ing context are essential for building trust and transparency [12].

Lastly, the rapid evolution of AI techniques necessitates continuous

research and development efforts. The industry must stay updated

with the latest advancements, explore new algorithms, and refine

existing models to meet evolving user expectations and deliver

seamless video streaming experiences. Despite these challenges, AI

holds immense potential for the video streaming industry.

One facet of AI, in particular, has emerged as a promising frontier

in video streaming: Generative Artificial Intelligence. Generative

AI encompasses a set of algorithms designed to generate new, syn-

thetic data based on patterns learned from existing datasets [13].
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In the context of video streaming, Generative AI offers a multitude

of possibilities. It can create realistic and immersive visual con-

tent by leveraging deep learning techniques [6]. Moreover, these

models can adapt in real time, tailoring content to individual pref-

erences and enhancing user engagement and satisfaction. Addi-

tionally, generative AI can optimize video compression techniques,

ensuring seamless streaming experiences even in low-bandwidth

conditions [14]. By exploring the intersection of advanced AI algo-

rithms and digital entertainment, we aim to unravel the potential

of generative AI in enhancing video quality, user interactivity, and

overall streaming experience. We plan to integrate generative mod-

els into video streaming pipelines and uncover novel avenues that

will shape the future of entertainment, offering viewers a more dy-

namic, personalized, and visually captivating streaming experience.

2 RESEARCH QUESTIONS
In our research, we investigate the following research questions:

RQ-1. How can AI generate recommendations for user
streaming engagement accurately? By leveraging the aforemen-

tioned AI advancements, in particular the combination of sequential

machine-learning models and digital twins, we want to improve

the modeling and prediction of user engagement. Literature re-

garding user sensitivities’ impact on video streaming artifacts and

anomalies is shallow, and we plan to offer a comprehensive model

that can explore user differences and leverage them to predict user

engagement. To do so, we will develop a digital twin-based model

that learns from a vast dataset of real user video streaming ses-

sions, models each user separately, and can act like the real user it

models to provide insight into their decisions and suggestions on

optimizing their experience.

RQ-2. How can AI techniques be leveraged in frame in-
terpolation to efficiently reduce video data transmission?
Generative AI allows us to remodel the main goals of video stream-

ing with novel approaches. For example, codecs have revolutionized

video transmission by greatly reducing the bandwidth required to

stream content over the Internet without sacrificing final quality.

An AI-based, intra-frame interpolation strategy could intelligently

predict and send specific portions of frames, minimizing data size

without spatial constraints, similar to HEVC spatial encoding but

with unprecedented flexibility. Key areas of the frame would receive

higher-quality rendering, optimizing bandwidth usage. Using syn-

chronized models on both the server and client sides could validate

real-time interpolations for accuracy before transmission, ensuring

top-notch quality. Simultaneously, an inter-frame interpolation ap-

proach would prioritize frame transmission based on importance.

By calculating frame significance concerning bandwidth estima-

tions, critical frames will be sent in full, moderately important ones

will employ advanced encoding methods, and the least crucial ones

will be omitted to be accurately reconstructed by the client. With its

innovative techniques and bidirectional AI-driven solutions, such

a project is poised to greatly reduce the bandwidth necessary for

video streaming.

RQ-3. How can AI techniques be leveraged in object inter-
polation to efficiently reduce video data transmission? Our
research uses advanced AI methodologies like video transformers

and generative adversarial networks to revolutionize object inter-

polation in video transmission. We employ generative AI models by

generating segments from initial frames andmovement data of iden-

tified objects. Moreover, we explore the feasibility of storing objects

locally on clients and transmitting interaction data, constructing

entire scenes from textual descriptions. To ensure generated video

quality, we propose a Synthetic Video metric, a novel evaluation

tool. This metric draws inspiration from established video QoE tools

like PSNR [15] and ITU-T P.1203 [16], complemented by subjective

tests where individuals assess synthetic videos. This comprehensive

approach will enable us to assess the efficiency of data transmis-

sion and the perceptual quality of reconstructed scenes, addressing

potential artifacts and peculiarities in synthetic videos.

3 RELATEDWORK
The following studies offer an overview of the current landscape

and possible new avenues:

RQ-1. The field of AI is currently experiencing rapid advance-

ments, driven by the introduction of innovative technologies such

as large language models [17, 6, 18], and digital twins [19, 20].

These technologies have already disrupted various domains and

gained significant attention from diverse audiences. While efforts

have been made to extend their applications to multiple industries,

progress in the domain of video streaming has been relatively lim-

ited. Huang et al. [20] employed a basic digital twin approach to

model personalized QoE for video streaming users. Wang et al. [21]

addressed a similar problem by utilizing a Transformer model in

conjunction with Deep Learning techniques to enhance QoE. Al-

though these studies have shown promising results, it is important

to note that this research direction is still in its early stages and lacks

the refinement exhibited by these technologies in their original do-

mains. Therefore, further endeavors are necessary to bridge the gap

and bring video streaming up to par with the current advancements

in ML.

RQ-2/3. In adherence to Moore’s Law, computational capabili-

ties have experienced exponential growth in recent times. Notably,

mobile devices have emerged as key contributors to this trend by

incorporating dedicated ML chips in recent years, significantly en-

hancing their capacity for AI applications [22]. Exploiting these

advanced chips, numerous studies have successfully transposed

applications that were traditionally confined to potent desktops or

servers onto mobile devices [23, 18]. Despite these strides, these

investigations are still in their nascent stages, warranting additional

endeavors, particularly in the realm of frame interpolation. This

involves predicting portions of frames [24] or entire frames [25,

26], a crucial aspect that demands further attention. By capitalizing

on the inherent redundancies present in video frames and leverag-

ing knowledge about the shapes and likely movement patterns of

objects, AI implemented on devices can adeptly reconstruct videos

from significantly reduced data feeds. This not only enhances com-

putational efficiency but also markedly diminishes the reliance on

network bandwidth.

4 PROPOSED METHODOLOGY
The process that will be followed when researching is based on de-

sign science research principles enunciated in [27], and is composed

of the following steps:
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(1) Problem identification and motivation: In the first step, we

choose the research question to tackle. We identify the scope

of content encoding, provisioning, content delivery, or end-

to-end solution. We then justify the importance of our prob-

lem for the research audience to accept the results.

(2) Objectives of a solution: After determining the problem, we

produce an achievable goal for that model. In the context

of ML for adaptive video streaming, this typically means

identifying the target metric of interest that the system will

try to optimize for.

(3) Design and development: At this stage, we compare alterna-

tives and determine the optimal model or paradigm for the

identified goal, based on ML best practices and current state

of the art. We proceed to design the development process,

from data gathering, to processing, to model implementation

and interpretation of its results.

(4) Demonstration: The model will then be implemented in a

HAS pipeline, and extensive experiments on a wide range of

test data and/or context conditions will be conducted.

(5) Evaluation: The proposed solutions will be compared with

other state-of-the-art approaches to show their performance.

(6) Communication: Finally, we will offer insight and observa-

tions about the proposed architecture, its results both as a

stand-alone and in comparison with state of the art, espe-

cially regarding the tradeoffs among different alternatives,

and offer guidance towards the next steps in the research.

5 ONGOING AND FUTUREWORK
To address RQ-1, specifically regarding the digital twin technology,

we propose DIGITWISE: Digital Twin-based Modeling of Adap-

tive Video Streaming Engagement, which has been accepted to

the MMSys’24 conference. This paper focused on the modeling of

users’ sensitivities with respect to video streaming artifacts and

issues, such as stalls and quality changes, to predict the percentage

of video that will be watched after only the first few minutes of

session data. Results show that this model can consistently predict

user engagement with performance on par with state-of-the-art

models while allowing for flexibility and opening the door to vari-

ous applications, among which the possibility for content providers

to change streaming parameters like video codec or bitrate ladder

and simulate with precision the impact of the change on a selected

user group’s viewing time. DIGITWISE is planned to be expanded

with an online version that offers the same key benefits while being

integrated into the streaming player and updating its predictions

in real-time via time-sensitive models such as Transformers [17] or

LSTMs [28]. Furthermore, this model will expand the digital twin

modeling capabilities, by allowing the model to predict user actions

such as pausing and seeking.

With regards to RQ-2, we plan to develop an AI-driven intra-

frame interpolation model, which predicts and transmits specific

frame portions without spatial constraints, similar to HEVC spatial

encoding but with increased flexibility. This targeted transmission

optimizes bandwidth utilization by prioritizing critical frame areas

for higher-quality rendering. Additionally, synchronized models

on both server and client ends validate real-time interpolations

before transmission, ensuring video quality. Concurrently, an inter-

frame interpolation method prioritizes frame transmission based

on their significance, considering bandwidth estimations. This nu-

anced approach enables the transmission of crucial frames intact,

implements advanced encoding for moderately important frames,

and omits the least important frames for accurate client-side re-

construction. Such an approach has the potential to greatly reduce

bandwidth requirements for video streaming while maintaining

content integrity and quality.

Finally, for RQ-3, we plan on leveraging advanced AI techniques,

including video transformers [29] and generative adversarial net-

works [30], to redefine object interpolation in video transmission.

Our approach involves utilizing generative AI models to create

segments based on initial frames and object movement data. Addi-

tionally, we investigate the viability of storing objects locally on

client devices and transmitting interaction data, constructing entire

scenes from textual descriptions. To evaluate the quality of the gen-

erated videos, we would introduce a novel assessment tool called

the Synthetic Video metric. Inspired by established video quality

evaluation methods like PSNR and ITU-T P.1203 [16], this metric is

further enhanced through subjective tests, where individuals assess

synthetic videos. By adopting this comprehensive methodology,

we aim to assess both the efficiency of data transmission and the

perceptual quality of reconstructed scenes. This approach allows

us to identify and address potential artifacts and peculiarities in

synthetic videos, paving the way for improved object interpolation

techniques in video streaming applications.

6 TIME PLAN AND TARGET PUBLICATION
VENUES

Table 1 shows the time plan for the thesis and Table 2 the possible

target venues for future publications together with the correspond-

ing quality factors
123

.
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