Check for
Updates

Business
Applications

A Scheduling
Algorithm for a
Computer Assisted
Registration System

W.K. Winters*
University of Tennessee, Knoxville

This paper presents the scheduling algorithm used in
the Computer Assisted Registration System at the
University of Tennessee. Notation is defined and the
logic of the algorithm necessary to implement
educational policy is described. Results from the first
term’s implementation are presented.

Key Words and Phrases: computer assisted registration,
scheduling algorithm, timetable

CR Categories: 3.32, 5.39

1. Introduction

Scheduling students at a large university today is only
part of a much larger system which involves students,
faculty, and administration as well as the resources of
the institution. It is important to realize that any sched-
uling algorithm, if it is to be used realistically at an in-
stitution of higher education, must satisfy the goal of
implementing the kind of educational policy that is
chosen or already established at the institution [1].

‘What policy or policies should constitute the criteria
to be satisfied when an algorithm is developed? The pri-
mary goal of the institution is to provide all students
with the courses needed to work toward completion of
their educational program and to make an effective use
of the resources available to the institution [2]. With this
major goal in mind, the scheduling algorithm which
makes up the scheduling phase of the Computer Assisted
Registration System at the University of Tennessee is
described.

2. Notation to Describe the Algorithm

One of the phases of the Computer Assisted Registra-
tion System that is a necessary prerequisite to the sched-
uling phase is the timetable construction [3]. It is from
this timetable that students will make requests for classes.

166

It is therefore convenient to denote this timetable by C.
C can be practically described in a number of ways. The
most common timetable is composed of a time configura-
tion in which a class will meet. It will also have other
necessary class descriptors such as the course and sec-
tion numbers, the name of the course, the number of
credit hours, the place the class will meet, and the name
of the instructor teaching the class. The time configura-
tion will be specifically referred to as a time string in this
paper. The time configuration is of the form, for example,
MWF 8-8:50. That is, it is composed of a day sequence
and a time interval description.

A time string is composed of the elements of the set
{0, 1}. Each position of the string corresponds to a day
or time interval (usually in minutes). O or 1 being the
only allowable elements of the time string, the stringis a
binary bit string which uniquely defines the time at which
a class will be offered. For example, supposing that a
class has the time configuration MWF 8-8:50, the time
string (x1, X3, * -+, x16) would have the form

(er, ~+) Xe, X1, + -+, Xig) = (101010100000000),
where

1 if position i is occupied in the time

X; = configuration,
0 otherwise.
Positions i = 1, 2, ---, 16 will refer, respectively, to

Monday, Tuesday, - - - , Saturday, 8-8:50, 9-9:50, - - - |
5-5:50.

The algorithm to be described will attempt to satisfy
the set of students S and their request W for classes for
a coming term. To make this presentation more con-
crete the following notation will be introduced.

* Presentaddress: Oklahoma State Regents for Higher Education,
Oklahoma City, OK 73105

1 The rationale for the justification of this difficulty code is the fact
that the more sections that are available for a course the easier it is
to schedule a student in one of the sections of the source.

Communications March 1971
of Volume 14

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362566.362569&domain=pdf&date_stamp=1971-03-01

C is the set of all classes in the timetable of classes:
C = {c¢y | ¢;; is section j of course ;
i= 132, tee, N, .]= 1’27 "';ni}-

n is the number of courses in the timetable.

n; is the number of sections of the ith course in the time-
table.

N = Y. n:is the total number of classes in C.

S'is the set of all students to be scheduled:

S = {s:| s is the kth student; k = 1,2, -- -, m}.

m is the number of students to be scheduled.

t; is the total number of seats available for section j of

course i.

D 1,; is the total number of available seats for

the ith course.

ri; 1s the total number of students currently scheduled
for the jth section of course i.

R; = 2.7, ry is the total number of students currently
scheduled in the ith course.

d;; is the demand for section j of course i.

D; = Z,'-”;l d;; is the total student demand for course i.

1 if the kth student is scheduled in the jth

section of course i,

0 otherwise.

q:; is the number of seats remaining in section j, course i.

1 if the kth student requests the jth section

of course i,

0 otherwise.

To each ¢;; € C there is associated a “difficulty code.”
This code is computed for a course C; simply by
counting the number of unique time strings for
this course in the timetable.

p: is the difficulty code associated with the ith course C;.
The smaller the absolute value of p; the more dif-
ficult' it is to schedule the ith course.

E = {é, ¢, ---, ¢} is the set of unique time strings in
the timetable C. ef; is the kth time string associ-
ated with the jth section of the ith course. It is of
the form ef; = (x1, X2, -~ -, X15).

y is the total number of time strings in C.

W = {wy, wa, - -+, wg} is the request set for a student.
(The w; are chosen from the available classes de-
fined by C.)

We={wi,wy,

T;

Uik =

Vijr =

<, wi, | is the subset of W consisting
of the scheduled sections in the request set.

? 7 ’ . .«
W.={wj , Wiy, -, wj,} is the subset of W consisting

]

of the unscheduled courses in the request set.
¢ is the number of scheduled courses in the request set.
g is the number of unscheduled courses in the request
set.
9=q+ ¢q.

There are several assumptions which must be made.
The set of students S will be scheduled in a sequence.
The sequence is determined from the students level. Let
Se¢, Sz, Ss, Sr, Sr denote, respectively, the sets of
graduate students, seniors, juniors, sophomores, and

167

freshmen. That is, if

Se = $1,58, S,

Sg = So415 Sg25 05 Sry
Sy = Sei1, Sriz, 000, Siy
Sp = Sit1y Sipz, 0ty Sp,

SF = Sptly Spt2, " 81y
then the input sequence for scheduling is
Sty 3 Sgs Sgtly 0t 3 Sy Seqdy 0, S5y
Sitly "y Spy Spry v, 81
Students make section requests for courses from the
timetable of classes. There is a ¢;; corresponding to each
w; unless the student has not made an invalid request
from C. Each section j of course i has a unique value
with no course having a unique value unless it is a single

section course; that is, n; = 1 for C;.

3. The Scheduling Algorithm

The algorithm to be presented was developed with
some very specific objectives to be satisfied. It was first
decided that students were to be given the opportunity
to request the time and instructor that they wanted. This
immediately results in the requirement that section re-
quests will be made as opposed to course requests. As-
suming that resources (such as classrooms and staff) are
limited, there may be many courses C; € C for which
D; > T;. It is therefore a requirement for the algorithm
to have a section balancing feature [4, 5].

Later, in Section 4, we will describe some of the
means by which the resource assignments can be altered
so that a greater number of students can receive com-
plete schedules when the condition D; > T is satisfied
for many C;in C.

Phase I of the Algorithm

1. a=24a', a = a (o' anda’ are fixed values for « and a. For the
resultsin Table I, o’ = 0.8, a’ = 300.)

2. Obtain arequest set .

3. Toeach request w; in W obtain all sections ¢;; of course C; in
the timetable C.

4. Tag as an invalid request any w; for which there is not an exact
match Cij inC.

5. Any section ¢;; for which r;; > at;; is dropped.

6. Consideringallsectionsci ,ci2, -+ ,Cin; Of course C; theremay
be multiple sections with the same time string e*. Denote these
multiple sections as having unique time strings e*1,e %2, ...,
ekt where t < n;. Obtain ci; associated with mini,, .-,
i {riin, Fig o0, Fiig)

7. Thereisone exceptiontoStep 6. Foranysection ¢;; correspond-
ing to request w;, for which the associated r; > min
{risx, riia, - -+, riie} the exact original request c; is retained.
Note. As a result of Steps 4-7 there is at most one

section for any given course for each unique time string

number €.

8. Attempt to schedule the student in exactly the sections he
requested, the {ci;, , ¢2j5, -+, Cq4,} corresponding to the
{wi, wa, -+, wgi, or else schedule him in a section with the
same time string e, . That is, associated with each c;;; is the
corresponding #;;, , and a section c¢?; is chosen with the same

. . k . '
time string e;;,; for which ri; < rij; .

Communications March 1971
of Volume 14
the ACM Number 3

If the student is enrolled at this time he has received
exactly the times that were requested.

9. Any courses not scheduled as requested are scheduled next.
Course in request: C,C,GCy, -, Cyy .
Scheduling difficulty code: pi,p2, ps, -+, Par -

The courses are ordered by scheduling difficulty from

most difficult to easiest, p,, < pi;, £ -+ £ Pig, - An at-

tempt is first made to schedule the yet unscheduled

course, C*, with the smallest percent of its capacity

filled, that i’s, the C* associated with min; s, - - < i R/,

R2I’) th}‘

10. If C* will not fit, remove C* from {C,, C;, --- , Cg}. Denote
C* = ¢® and then try ¢ associated with min; {R/, Ry -- -,
R’.,}. Continue until all sections have been tried or the section
is scheduled.

11. If no section will fit in the students schedule this course is
tagged as being unscheduled. The second most difficult course
is attempted by the same process. If need be, all unscheduled
courses will be tried.

12. If a complete schedule results then we proceed to the next stu-
dent. If an incomplete schedule results, then we enter Phase II.

Phase II of the Algorithm

1. We record the schedule W, that has been given to the student
thus far from Phase I: Ws = {w1, wa, -+- , wg,}.

2. The courses yet unscheduled are W. = {w, i, =<+, Wypa,)-
The set W, is ordered by difficulty code p; from easiest to
hardest. That is, the w; , ---, wy, for which the associated
py 2 0 2 Dig - The set W, is ordered from hardest to
easiest, that is, w;,, wj,, -+, Wig, for which the associated
pi; <pi, L+ £ Pig, - We know that for the first unscheduled
course, w;, , no section of this course will fit because of Phase 1.

3. We remove w;, from the schedule and try all sections of w;,
in order to place it in the schedule. If no section of wj, fits, we
place w;, back into the schedule.

4. We continue until all scheduled sections {w:,, wiy, - -, w"‘h}
have been tried. If, during the procedure, a section w; from
W., will fit in the schedule, all sections of the removed scheduled
course w; are tried. When the attempts result in failure, the
scheduled courses w; tried are tagged as unusable combination.

5. After enumerating all w; , a check is made to see if any courses
remain unscheduled.

6. With unscheduled courses still remaining, steps 3 and 4 are
repeated with the modification that two scheduled courses are
removed one at a time.

7. If need be, steps 3 and 4 are be repeated with three, four, etc.,
scheduled courses removed until all possible combinations
have been tried. If a complete schedule has not been found at
this point, a complete schedule does not exist for the given
timetable C. The student is given the best incomplete schedule
to date by the process.

Notice that in the Phase I of the algorithm Steps 1-
3 constitute initialization of the algorithm. Steps 4-
7 may be considered editing or bookkeeping steps.
Step 8 is the first attempt at a schedule for the student.
Steps 9-12 involve further attempts at finding a
complete schedule subject to the criterion of section
balancing. In actual practice, most students would be
scheduled in Phase I of the algorithm. It is not until a
great majority of the students have been scheduled and
the section availabilities g;; become scarce that Phase II
of the algorithm is entered.

Notice in Phase 1I that the following criterion is ad-
hered to. When a student is to receive an incomplete
schedule, the partial schedule that he does receive should
be as close to his original request set W as possible.

168

4. Strategies in Altering the Timetable C

For a fixed timetable C, it is apparent that the re-
sults from a scheduling pass may not be satisfactory. In
any event, it is necessary to be able to evaluate the re-
sults of a scheduling pass. If the results are deemed un-
acceptable then another pass should be made. A new
scheduling pass can then be made with a new timetable
C'. The procedure then for improving scheduling re-
sults can be described as a feedback process where, from
observing the results of a pass, decisions can be made
for altering the resources of the timetable and a new pass
can be made.

What then is the means for evaluating the timetable
C in order to determine where resources should be al-
tered or increased? In C associated with each section j of
course i, ¢; will be the following accumulated data at-
tributes. We will have computed the demand d;; tor each
section along with the enrollments r;;. In the predeter-
mined timetable, the available seats ¢;; for each section
are already known. We therefore have, for each c;,
cij : tiy, di;, ri; . We can also sum over all sections for
each courseto get C; : T;, D;, R;. Another way to look
at this is to consider the scheduling input sequence
S, S2, -+, S» and, if we made a pass through all m
students, for a section to be adequate to satisfy the stu-
dent demand for it,

2 i <t (1)
k=1

The inequality (1) implies that the total number of stu-

dents scheduled in section j of course i is less than or

equal to the seats made available in timetable C for c;;.
For the course C; to be adequate, if we find

L; = Z tij,)
=1

then we must also have

Z Z Uisk S Li . (3)

k=1 j=1

That is, there are enough seats available for course iin C.

Another valuable quantity is the number of seats re-
maining, g,; , in a section of a course after a pass. We see
that

m

iy =t — 2 Uik . (4)
k=1

Assuming that no more students are added to set S after

any pass using the scheduling algorithm, we see that the
demand d;; on any pass is

dij = 2 Vige. ()
k=1

There are four cases to consider in possible strategies for
altering the timetable C.

Case 1. There are not enough sections of a course C;
offered in C to accommodate the demand for the course.
In order to detect this condition we can inspect course C;
to see if

D, >T;. (6)
If (6) is the case and, further, if
D;—T;> (1/n)T;,)]

then as a general rule it would be advisable to add one
more section for each Q; = (1/n,;)T; seats that are un-
available.

Case 2. There are too many sections of a course C;
offered with too few students in some or all of the sec-
tions. This condition arises when

D;KLT;. (8)

A rule of thumb for the number of sections to drop in the
case of (8) is the following. If

Iri— D; < (2/71«;)T¢, (9)

then drop one section for each (2/n;)7; additional seats
that are available,

Case 3. There are not enough seats available for a
section of course i. (In most instances this will be a single
section course.) We have in this case

di; > 1. (10)

To satisfy the deficiencies of this condition it is advisable
to add d;; — t;; seats to this section provided d;; — #;; <
t;;. If di; — ti; > t;;, we can resort to case 1.

Case 4. There is insufficient demand for a section j of
course C, to warrant that the section be taught. In this
case,

di; < ti; .

In fact, when ¢;; — di; < %t;;, consideration should be
given to whether it is feasible to offer the section of this
course.

5. An Example

To illustrate some of the mechanics involved in the
algorithm, the following example has been constructed.
The first part of the example illustrates a schedule gen-
erated as requested. The second part illustrates a com-
plete schedule but one with only two sections remaining
as requested.

Assume that student, ss5, is to be scheduled. Since
s35 can also be assumed to be less than s, , the student is a
graduate student at the beginning of the scheduling se-
quence sy, ---, §;. For the first pass through the al-
gorithm, we will further assume that each section of each
course, ¢;;, will be allowed to fill only to 80 percent of
capacity. Therefore, in Step 1 « = 0.8 and a = 300
iterations will be allowed in letting the algorithm cycle

169

in its procedures for finding a complete schedule. In
Step 2 the request set W is obtained for si; . We further
assume that

W = {w, ws, ws, s} = {Cuz, Cis2.5, Cro81.3, Cs3.1}

are the requests made by student s;; from timetable C.
Step 3 requires that all sections of Cy, Cisz, Cios1, Css be
obtained. Say that the following n; are associated with
each course C, : C14 , By = 3; C182 , Mige = 5; Cmgl , Mgt =
3; Css, 1z = 1. All the w; have a corresponding valid
¢;; ; therefore, Step 4 requires no tagging.

The following illustrates the condition of the time-
table for courses C14, C1081 , C182 , C53 at the time S35 is
being scheduled.

13

i j i ri; aly tip e (X1, , x16)

14 1 cuq 3 32 40 ek 1010000001000000
2 cue 1 32 40 el: 0101000001000000
3 ces 1 32 40 el 0000110010000000

182 1 cuweq 2 12 15 elna 1010101000000000
2 cigee 1 12 15 eime 1010101000000000
3 cies 4 12 15 elges 0101011000000000
4 cuea 2 12 15 elsze 0101010100000000
5 cuwes 10 12 15 efges 1010100100000000

1081 1 croma O 16 20 el 0000100000011100
2 cuse 1 16 20 ebom.z 0010000000011100
3 cis,s 1 16 20 elos1,3 0010100001100000

53 1 eaq 5 8 10 efa: 1110000000011000

In Step 5, all sections are retained since for each section
in the request set all 7;; < 0.8¢;; . In Step 6, as a matter of
observation, ¢ig2 1 and c¢ige 2 have the same time string e’
Further, for course Cy, min {rui, Frus, rusl =
min {3, 1, 1} = 1, with the associated section being cu,s .
For C182, min {7‘182.1, Fig2,2, Ti82,3, V1824, "182,5} =
min {2, 1, 4, 2, 10} = 1 and the associated section is
Ciz22. For Cusi and Cg, min {rigi,1, #osie, Posis) =
min {0, 0, 1} = 0 and min {rs:} = min {5} = 5 with
the associated sections being cis1,1 (O Cyws1,2) and css .1 -

In Step 7 note that for courses ¢is2 and cyos the origi-
nal requests iz 5 and cus 3 are retained even though
sections Cizo 2 and Cysy,1 (OT Cios1,2) are less filled than the
original request. This illustrates the fact that section
balancing does not occur until a section j of course i is
filled in excess of at;; .

The schedule generated for s was as requested. In
this particular case, the algorithm updated the timetable
totals for r; and Steps 1-8 cleared s3 for a schedule
exactly as requested. As can be seen from Table I, on the
first pass 71.79 percent of the sections requested were
granted. This translates into 35 percent of the student
body receiving schedules exactly as requested. In terms
of cycling through the algorithm, this means that over
one third of the schedules for the entire student body
were generated by cycling through Steps 1-8 of the
algorithm,

Next, let us modify this example to illustrate the case
of a schedule that is generated by cycling through Steps
1-12 of Phase 1. Assume first that this student is
also a graduate student, but that he is down the se-
quenced input stream to position 1321—that is, s .

Communications March 1971
of Volume 14
the ACM Number 3

The request set of this student is W = {wy, wa, wy, wy}
= {C14,2 s C182,2, C1081,3 C53,1} . It is similar to S35’S request
set except for course Cig, . By this point in the sequence
assume the condition of these courses in the timetable is
as follows:

i J o ci ri; aly; L
14 1 ¢ 30 32 40
2 C14,2 28 32 40
3 cus 34 32 40
182 1 C182,1 3 12 15
2 C182,2 13 12 15
3 cuzs 15 12 15
4 Cisz4 12 12 15
5 cies 13 12 15
1081 1 C1081,1 12 16 20
2 cum,2 13 16 20
3 coms 17 16 20
53 1 C53,1 7 8 10

Tracing the algorithm through Steps 1-8, we see
that cu. and ¢z, are granted as requested. Cige iS
granted, instead of cis 5 since it has the same time string,
and C182,2 has Figap > 0.8t159 2 .

It requires cycling through Steps 9-12 to see that
Cusz,1 is scheduled. In Step 10, C* = Cug, and since
cios1,1 18 the section least filled (rim,; = 12), it is included
in the schedule. The schedule is complete for sz and is
{cus, ciwa1, Cros11, €31}

6. Results from the First Implementation of the System

In Table I the results from the first implementation
of the system are presented. Notice that there are ag-
gregate figures which display the number and percent of
complete schedules. One can see from the algorithm in
Section 3 that a “complete schedule” means the follow-
ing. If a student receives all courses in his original re-
quest set W, he has a complete schedule. An “exact
schedule” is one for which all classes granted are at the
same time as the classes in the request set W.

There are two ways in which to evaluate the results
of a scheduling pass. The first is to look at the total
number of students with complete schedules. A large
number of incomplete schedules leads to time-consum-
ing clerical follow-up procedures termed “drop and add”
procedures [2]. A second way to evaluate the overall re-
sults is to look at the total number of sections granted
compared to the total number of sections requested.

Greater emphasis should be placed with the number
of students with complete schedules. It is at least the at-
tempt of each large publicly supported institution to
furnish each and every student with the courses he needs
for any given term.

7. Relationship of the Scheduling Algorithm to
Other Approaches

There is one key policy decision that must be made at
the beginning before using an already available algo-
rithm or implementing one’s own. That decision is

170

Table 1. Scheduling Results for Winter Term 1969

Pass number

Number of students scheduled

Number of students with com-
plete schedules

Percent of students with com-
plete schedules

Number of students that re-
ceived exact schedules

Percent of students that re-
ceived exact schedules

Number of students with par-
tial schedules due to closed
section

Percent of students with par-
tia} schedules due to closed
section

Number of students with par-
tial schedules due to con-
flicts

Percent of students with par-
tial schedules due to con-
flicts

Number of students with par-
tial schedules due to exces-
sive iterations

Percent of students with par-
tial schedules due to exces-
sive iterations

Number of students with com-
plete schedules but no lunch

Percent of students with com-
plete schedules but no lunch

Number of sections requested

Number of sections granted as
requested

Percent of sections granted as
requested

Number of sections granted at
requested time

Percent of sections granted at
requested time

Number of minutes to run

Number of schedules per
minute

Number of minutes per
schedule

Number of sections considered

Number of sections granted

Percent of sections granted

1
16147
10762

66.6
5650
35.0

4323

26.8

1040

6.46

22

0.14

15
0.09

88111
63259

71.79
65312
74.12

293.12
55

0.0182
88111

80110
90.9

2
16293
12304

75.4
6019
36.9

3047

18.7

906

5.58

36

0.22

17
0.10

88969
64266

72.23
66968
75.27

286.58
57

0.0175
88969

83800
94.2

16346
12606

77.2
6020
36.8
2804

17.11

915

5.62

21

15
0.09

89355
64621

72.32
67446
75.48

291.93
56

0.0178
89355

84702
94 .8

whether a student body shall be allowed to make course
requests or to make section requests. This seemingly un-
important decision decides both the technical details in-
volved in the scheduling process and the administrative
manner in which the registration process will be con-
ducted. It is hard to compare algorithms where one al-
gorithm accepts course requests as input and the other
accepts section requests as input. One reason for this is
the fact that the algorithm that accepts course requests
must develop a complete schedule for a student inde-
pendent of any knowledge about the type of schedule the
individual student may want. One example of this type
of scheduling algorithm is the one used at Purdue Uni-
versity as described by Abell [6]. This means that this
type of algorithm is designed in such a manner as to sec-
tion every course in the student’s request set of courses.
On the other hand, the algorithm that accepts section re-
quests allows the student a preference of both instructor
and time which means he may express the type of sched-
ule he desires. In terms of the technical mechanics of the
algorithm this means that section balancing can only be-
gin after a section has filled to at;; of its capacity ;.
The way in which sections of courses are allowed to fill is
different for this type of algorithm than for course re-
quest algorithms.

For section preference algorithms it is the logical pro-
cedure that occurs after the courses have filled to a pre-
specified level that provides the differences in the tech-
nical details. In [4, 5], the authors have proposed means
for balancing sections of the same course. The main dif-
ference between the algorithm presented here and that
one is the fact that our algorithm deals with the question
of incomplete schedules as an acceptable means of al-
locating all resourses available in the best possible man-
ner. It was assumed when this algorithm was first imple-
mented with a live student body that incomplete sched-
ules were acceptable since a follow-up administrative
manual procedure would handle any special situations.

The results presented in Table I are live results for an
actual institution. All other formally published al-
gorithms [4, 5] have been only experimentally produced
(nonlive) data. Without comparisons using the same
data, it is unrealistic to compare the results of the al-
gorithm in this way.

The results in Table I should be evaluated on their
own merit in the following way. First, in the case of this
algorithm, specific measures such as the percent of com-
plete schedules received and the percent of sections
granted given knowledge of the number of sections re-
quested are two criteria that can be prespecified by the
administration as goals to be met for a particular term.
In combination with the feedback procedure described
in Section 4, it is possible to modify the resource mix in
the timetable in order to attain these goals.

As opposed to previous manual systems, the use of
this algorithm provides an objective way in which cri-
teria can be set to achieve prespecified goals for a com-
ing term’s registration and enrollment. Implementing
this algorithm term after term can provide a historical

171

record of the required proper mix of resources in the
timetable and a historical record of results in producing
schedules. Successive improvements in timetable con-
struction and in the scheduling process can lead to ac-
ceptable results by the administration and student body
alike. The real task of the administration is to provide in
a timetable of classes the resources of the institution in
such a way as to provide the classes needed by all stu-
dents in the student body. The real desire of the student
is to obtain a schedule so that he can attend and receive
credit for the classes he needs to complete his program of
study.

Received October 1970

References

1. Winters, W. K. Implementation of a computer assisted
registration system. Proc. of the Eighth Annual Southeastern
Regional Meeting of the acm, Huntsville, Ala., June 12-14,
1969, pp. 1-9.

2. —— . The plan and method for implementing computer
assisted registration at the University of Tennessee. Rep. 2, U. of
Tennessee Computer Assisted Registration System, Oct. 1, 1968,
pp. 1-55.

3. ——. An investigation of several algorithms for solving the
timetable problem. Rep. 6, U. of Tennessee Computer Assisted
Registration System, Knoxville, Tenn. July 8, 1969, pp. 1-48.

4. Macon, N., and Walker, E. E. A Monte Carlo algorithm for
assigning students to classes. Comm. ACM 9, 5 (May, 1966),
339-340.

5. Busam, V. A. An algorithm for class scheduling with section
preference. Comm. ACM 10, 9 (Sept. 1967), 567-569.

6. Abell, V. A. Purdue academic student scheduling.
Mimeographed, 1965, Purdue U., Lafayette, Ind.

Communications March 1971
of Volume 14
the ACM Number 3

