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Approximate computing is an emerging paradigm to improve the power and performance efficiency of error-
resilient applications. As adders are one of the key components in almost all processing systems, a significant
amount of research has been carried out towards designing approximate adders that can offer better efficiency
than conventional designs, however, at the cost of some accuracy loss. In this paper, we highlight a new class
of energy-efficient approximate adders, namely Heterogeneous Block-based Approximate Adders (HBAA),
and propose a generic configurable adder model that can be configured to represent a particular HBAA
configuration. An HBAA, in general, is composed of heterogeneous sub-adder blocks of equal length, where
each sub-adder can be an approximate sub-adder and have a different configuration. The sub-adders are mainly
approximated through inexact logic and carry truncation. Compared to the existing design space, HBAAs
provide additional design points that fall on the Pareto-front and offer a better quality-efficiency trade-off in
certain scenarios. Furthermore, to enable efficient design space exploration based on user-defined constraints,
we propose an analytical model to efficiently evaluate the Probability Mass Function (PMF) of approximation
error and other error metrics, such as Mean Error Distance (MED), Normalized Mean Error Distance (NMED)
and Error Rate (ER) of HBAAs. The results show that HBAA configurations can provide around 15% reduction
in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.
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1 INTRODUCTION
Nowadays, due to the high computational requirements of advanced applications, computing
systems are becoming more-and-more resource hungry. Moreover, because of the energy/power,
area, and cost requirement issues, most of the emerging applications cannot be deployed on
resource-constrained edge devices. Approximate computing has achieved notable attention due to
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its potential to increase computing efficiency in terms of performance, delay, power, and area [31],
specifically for error-resilient applications. Recent investigations have shown that approximate
computing can enable significant gains for error-tolerant applications, such as multimedia, image
processing, deep learning, and data mining, which do not necessarily need full-precision output [16].

Adders are essential arithmetic circuits, as they are one of the fundamental building blocks of other
arithmetic operations, such as multiplication, division, and subtraction. Hence, the approximation
of adders may significantly improve the performance and energy/power efficiency of any given
application at the cost of some accuracy loss. Research efforts in the field of approximate adders
have been directed toward designing efficient approximate adders that can offer better quality-
efficiency trade-offs [15, 16]. Note that the efficiency can be gauged based on essential evaluation
metrics, including power, area, or latency (critical-path delay), depending on the user’s preference.
Generally, these metrics increase rapidly with the increase in the bit-width (𝑁 ) of adders.
In general, state-of-the-art approximate adders are categorized into two main categories, i.e.,

low-latency approximate adders (LLAAs) and low-power approximate adders (LPAAs) [3]. LLAAs
offer better delay characteristics as they trade accuracy for latency improvements by employing
multiple sub-adder modules with smaller carry-chain lengths than the original design [8]. Almost
Correct Adder (ACA) [28], Gracefully Degrading Adder (GDA) [34], Generic Accuracy Configurable
Adder (GeAr) [26], Carry Cut-Back Adder (CCBA) [5] and Error Tolerant Adders (ETAs) [37][35][36]
are a few examples of LLAAs. The sub-adder modules in LLAAs can be disjoint or overlapping
depending on the type and configuration of the LLAA. Each sub-adder contains some Resultant
bits (𝑅 bits), which produce sum bits, and (optionally) some Prediction bits (𝑃 bits), which predict
carry-in for the resultant part. ACA [28], ETA-I, ETA-II [37], ETA-IIM [36] and ETA-III [35] offer
very restricted design space, as their 𝑅 and 𝑃 values are defined based on the type of the adder and
the user-defined sub-adder length. To address this limitation, GDA [34] and GeAr [26] designs have
been proposed. GDA employs disjoint modules of equal length, where each module is composed of
an adder unit, responsible for computing the sum bits, and a carry-in prediction unit, responsible
for predicting the carry-in for the subsequent module. Moreover, it employs multiplexers to offer
run-time reconfigurability, where each multiplexer is responsible for selecting carry-in for a module
either from its previous adder unit or from its previous carry-in prediction unit. Unlike GDA that
offers run-time reconfigurability, GeAr is a configurable adder model that covers an extended
design space of LLAAs, as it allows 𝑅 and 𝑃 to have any values given 𝑅 + 𝑃 ≤ 𝑁 . However, note
that, even in GeAr, all sub-adders must have the same 𝑅 and 𝑃 values. To overcome this limitation,
Quality-area optimal low-latency approximate Adder (QuAd) [13] proposed a model that allows
each sub-adder to have any number of 𝑅 and 𝑃 bits regardless of the number of 𝑅 and 𝑃 bits in
other sub-adders. The analysis in QuAd showed that, given a latency constraint, it is possible to
effortlessly select the optimal LLAA configuration from the whole design space of LLAAs. However,
QuAd overlooks a predominant class of approximate adders, i.e., LPAAs, which may offer a better
quality-efficiency trade-off.
Contrary to LLAAs, LPAAs are focused on offering better power/energy efficiency, which is

mainly achieved through logic simplification of the underlying modules. IMPACT designs [9], Low-
power digital signal processing using approximate adders [11], Inexact designs for approximate
low power addition by cell replacement [2], and XOR/XNOR-based approximate adders (AXA) [33]
are a few of the well-known approximate adder designs that fall under the LPAA category.
Key Limitations and Associated Challenges: The following points highlight the key lim-

itations of state-of-the-art works and also present the associated challenges towards identify-
ing/designing a superior class of approximate adders that can offer better quality-efficiency trade-off
than conventional LLAAs as well as LPAAs.
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Fig. 1. Novel contributions. (a) A few of the proposed configurations for a 4-bit approximate adder block. (b)
The flow of the proposed concepts for generating and selecting HBAA configurations.

• 𝑄𝑢𝐴𝑑 [13] claims that adders composed of disjoint sub-adders of equal length, specifically
𝑄𝑢𝐴𝑑𝑜 configurations, offer the best quality-latency trade-off out of all the LLAAs. Moreover,
LPAAs are known to offer better quality for power/area efficiency trade-off. Although both
LLAAs and LPAAs have been widely explored in the literature, hybrid designs that offer better
latency as well as power and area characteristics without significant accuracy degradation,
have not been explored. Towards this, it is important to identify the class and configurations
of adders that can offer superior results to other predominant approximate adders.

• Analyses in works like PEMACx [14] have highlighted that, based on the given scenario, a
specific set of configurations can dominate the complete design space of LPAAs. Therefore, it
is important to identify the LPAA configurations that can offer better results than all other
LPAA designs under the given conditions and help construct optimal hybrid approximate
adders.

• Selecting the most efficient configuration, which offers the lowest area, power, and delay
while meeting the user-defined accuracy constraints, is a challenging design space exploration
problem, specifically when the number of potential configurations is huge. To select the most
efficient configuration for a pre-defined accuracy constraint, different adder configurations
have to be compared. However, efficient exploration requires fast yet accurate analytical mod-
els to estimate the quality as well as efficiency metrics of approximate adders. Therefore, such
analytical models would be necessary for the newly identified class of hybrid approximate
adders as well.

Overview of Our Novel Contributions: This paper focuses on building hybrid approximate
adder designs that can offer better latency, power and area characteristics than conventional LLAAs
and LPAAs. Considering the analysis in 𝑄𝑢𝐴𝑑 [13], we focus on disjoint block-based approximate
adders to achieve optimal quality-latency trade-off, while to achieve high power and area gains, we
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HBAA configurations that
offer better quality-efficiency
trade-off than state-of-the art
approximate adder designs.

Fig. 2. Design space of an 8-bit approximate adder

employ logic simplification concepts from LPAAs. As replacing the Full-Adders (FAs) at the least-
significant locations with approximate variants have the least impact on the accuracy, we consider
all the configurations in which the least significant FAs in each sub-adder block are replaced with
approximate FAs as a part of our new design space. We assume that each sub-adder can have a
different number of bits approximated, regardless of the number of bits approximated in other
sub-adders. We mainly use OR gate-based approximations, i.e., replacing FAs with simple OR gates.
Moreover, we allow arbitrary carry prediction length within sub-adders to predict the carry-in
for accurate FAs present at the significant locations. As each sub-adder block in the proposed
designs can have a different configuration (different from other sub-adders in the adder), we call
these Heterogeneous Block-based Approximate Adders (HBAAs). Figure 1a shows some of the
possible configurations for 4-bit sub-adder blocks that can be used to construct larger HBAAs.
Figure 1b shows how such configurations can be combined to generate the complete design space
of HBAAs. To show the superiority of the proposed configurations over the state-of-the-art adders,
Figure 2 plots the complete set of 8-bit HBAAs over𝑄𝑢𝐴𝑑𝑜 configurations and LPAA configurations
generated using the designs presented in [11] and [2]. The figure clearly shows that various HBAA
configurations offer better results than 𝑄𝑢𝐴𝑑𝑜 and conventional LPAA configurations. Note, for
these results, we used Mean Error Distance (MED) as the main quality metric.
Key Novel Contributions: Figure 1b presents our novel contributions in the form of a flow.

The contributions are summarized as follows:

• We propose a new class of approximate adders called Heterogeneous Block-based Approx-
imate Adders (HBAAs) that can offer better latency, power and area characteristics than
conventional LLAA and LPAA designs. These adders mainly employ disjoint sub-adders to
offer better quality-latency trade-off and logic simplifications in FAs to achieve higher area
and power efficiency. For logic simplification, we replace FAs with OR gates, as they offer the
best quality-efficiency trade-off when it comes to logic simplifications.

• We propose a generic accuracy-configurable adder model to represent HBAA configurations.
The model enables us to build analytical models that can easily be used to estimate the error
and hardware characteristics of HBAA configurations.

• We also present an analytical model for efficiently computing the PMF of error of HBAA
configurations. The model facilitates convenient comparison of different adder configura-
tions without requiring time-consuming and resource-hungry Monte-Carlo simulations, and
thereby enables fast design space exploration of HBAA designs. Apart from the analytical
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model for error estimation, we also present analytical models for estimating the delay, power
and area characteristics of HBAA designs.

Paper Organization: The remainder of the paper is organized as follows: Section 2 provides a
brief overview of approximate adders. Then, Section 3 presents a generic model for representing
HBAAs. The proposed methodology for computing the PMF of error of HBAA configurations
is presented in Section 4. Section 5 then presents the analytical models for estimating hardware
metrics of HBAA configurations. Towards the end, Section 6 presents the results of the proposed
methodology and Section 7 concludes the paper.

2 RELATEDWORKS
Approximate adder designs span a wide range of research efforts, i.e., from circuit level all the
way to architectural level. In the earlier approaches, researchers mainly focused on transistor-level
modifications to approximate adder circuits [9][10][25]. Over time techniques such as voltage
over-scaling (VOS) [17]-[20] and clock gating [18] have also been employed to approximate circuits.
However, the most prominent works in designing approximate adders are based on architectural-
level modifications.
As discussed in Section 1, approximate adders can be classified into two main categories, i.e.,

LPAAs and LLAAs.
Low-Power Approximate Adders (LPAAs): The primary approximate adder designs that

fall in this category are IMPACT adders [9][11], which are generated by simplifying the FA by
reducing the number of transistors. Recently, researchers have focused on designing LPAAs through
gate-level and architecture-level modifications. The approximate adders that fall in this category
are inexact designs for approximate low-power addition by cell replacement [2] and approximate
XOR/XNOR-based adders for inexact computing (AXA) [33]. Truth tables of some of the widely
used LPAAs are presented in Table 1, where Types 1-5 correspond to IMPACT designs [9][11]
achieved through transistors-reduction technique while Types 6-7 correspond to the inexact designs
in [2] achieved through gates-reduction technique.

Low-latency Approximate Adders (LLAAs): A few adder designs that fall under the LLAAs
category are: Almost Correct Adder (ACA-I) [28], Carry-Skip Approximate Adder (CSAA) [19] and
Gracefully Degrading Adder (GDA) [34].

Table 1. Truth table of state-of-the-art LPAAs. The erroneous output are marked as red.

Inputs Accurate FA LPAA Type 1 LPAA Type 2 LPAA Type 3 LPAA Type 4 LPAA Type 5 LPAA Type 6 LPAA Type 7
𝐴 𝐵 𝐶𝑖𝑛 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 −1 1 1 2 1 0 0
0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 −1 1 0 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 −1 1 0 −1 0 1 0 1 1 1
1 0 0 1 0 0 0 0 −1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 −2 0 1 0
1 1 1 1 1 0 1 1 0 0 1 −1 0 1 −1 1 1 0 1 1 0 1 1 0 1 1 0

Apart from the above-mentioned adder designs, Zhu et al. proposed four different variants of
error-tolerant LLAAs, i.e, ETA I and ETA II [37], ETA III [35], ETA IIM [36]. Another LLAA has been
proposed in [8] for energy-efficient applications. In this design, the non-overlapping sub-adders
use a carry predictor unit and a selector unit to decide whether the carry-out of each sub-adder is
propagated or not. Generic Accuracy Configurable Adder (GeAr) is proposed in [26], which utilizes
redundant blocks leading to excessive hardware overhead. The Reverse Carry Propagate Adder
(RCPA) [24] propagates the carry-in in a counter-flow manner from the MSB to the LSB. The RCPA
is not efficient in terms of energy. In general, it should be noted that these methods have fixed
configurations with limited flexibility and a massive error value.
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(a) LPPA type 5 (b) LPPA type 6

Fig. 3. An example of gate reduction LPPAs

On the other hand, some methods contribute to flexibility in design by supporting multiple
configurations. QuAd [13] is an enhanced model of GeAr with flexibility. In the QuAd adder, the
sub-adders can have different sizes as well as different carry prediction lengths. A reconfigurable
approximate adder is proposed in [1], and it employs the carry look ahead (CLA) method. The adder
is split into two disjoint segments, i.e., the approximate part and the augment part. The adder design
enables the user to switch between accurate and approximate operations by using a multiplexer.
This technique imposes some hardware overheads. Xu et al. proposed another reconfigurable adder
called Simple Accuracy-Reconfigurable Adder (SARA) [32]. In SARA, the adder is divided into 𝐾
disjoint sub-adders. Moreover, it uses an error recovery circuit to reduce the error, which imposes
additional hardware overheads. Additionally, the utilized ripple carry adder in the sub-adder causes
a long critical path. Note that in [13], [1] and [32], the flexibility offered by design comes with
additional hardware cost, and these designs only consider homogeneous blocks.
Analytical Models for Error Estimation: For selecting the most efficient design for a given

application, we need to conduct a comparative analysis that takes into account error metrics, critical
path delay, design area, and energy consumption. Error metrics analysis is typically performed
using computer simulations. However, as the size of the adder increases, the exhaustive simulation
time increases exponentially. So, the exhaustive simulation technique becomes time-consuming
and thus impractical. Therefore, research efforts have been directed towards proposing analytical
models to facilely assess error metrics of different types of approximate adders. An analytical
model for homogeneous overlapping blocks is proposed in [23]. In addition to proposing a generic
methodology for error probability estimation, the paper also presented a method to evaluate the
PMF of error value. Another analytical model is proposed in [6]. The paper focuses on error metrics
of adders with two segments, one accurate and the other inaccurate segment. In [7], error metrics
are obtained based on an analytical model and generalized analytical model for equal redundant
segments with homogeneous blocks. Moreover, the authors have used an optimization technique
to optimize the design’s estimated parameters such as delay, power, and area. In the optimization
framework, the given accuracy is considered a hard constraint. However, the drawback of these
analytical methods is that they do not consider heterogeneous approximate blocks in the precise
evaluation of the error probability of approximate adders.
Moreover, an analytical model for error metrics, e.g., ER and MSE, of low-power approximate

adder is proposed by the PEAL [3]. It obtains the errormetrics by evaluating the carry-out probability
for each approximate FA. This method only evaluates the error rate as the accuracy of low-power
approximate adder and cannot be used to estimate more relevant error metrics such as MSE, MED
or PMF of error value. PEMACx [14] is a novel analytical method for efficiently computing the
PMF of error of a low-power approximate adder that is composed of cascaded approximate adder
units. In this article, the probability of carry-out error is evaluated for each cascaded approximate
adder unit. These probabilities are used recursively as carry-in probabilities for the next stages to
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Fig. 4. General diagram of an adder composed of 𝑘 disjoint sub-adder blocks

recursively evaluate the probability of carry-out error until the last stage. Also, [27] proposed a fast
analytical method to calculate the PMF of error value for low-latency and low-power approximate
adders. These models are generalized to support multiple different types of low-latency and low-
power approximate adder configurations. Therefore, the computational time for calculating the
MED can still be improved. For this purpose, in this work, we develop a specialized and more
efficient analytical model to compute error metrics of approximate adder configurations that fall in
the HBAA category. As the proposed model is specialized for HBAA adders, it takes less time to
generate accurate estimates for HBAA configurations. In this regard, in the following sections, we
first provide a generic model of our proposed HBAA configurations, then we provide an analytical
model that is used to evaluate the PMF of error of HBAAs using statistical formulas derived from
basic probability theory.

3 GENERIC MODEL FOR HBAA ADDERS
An HBAA adder operates on two N-bit inputs 𝐴 = (𝑎𝑁−1, 𝑎𝑁−2, ..., 𝑎𝑖 , ..., 𝑎0) and 𝐵 = (𝑏𝑁−1, 𝑏𝑁−2
, ..., 𝑏𝑖 , ..., 𝑏0). It is mainly composed of 𝑘 disjoint sub-adder blocks, as illustrated in Figure 4. First,
we explain the conventional Ripple Carry Adder (RCA) and then our modifications that lead to a
new design space. In an accurate adder, the carry-out at 𝑖𝑡ℎ bit location is calculated using Eq. 1. The
equation is based on generate and propagate signals of the previous bit locations. The generate and
propagate signals are computed using Eq. 2 for each 𝑖𝑡ℎ bit location, where 𝑖 ∈ {0, 1, 2, ..., 𝑁−2, 𝑁−1}.

𝑐𝑖+1 = 𝑔𝑖 + 𝑝𝑖𝑔𝑖−1 + ... + 𝑔1
𝑖∏
𝑗=2

𝑝 𝑗 + 𝑔0
𝑖∏
𝑗=1

𝑝 𝑗 + 𝑐𝑖
𝑖∏
𝑗=0

𝑝 𝑗 (1)

𝑝𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 , 𝑔𝑖 = 𝑎𝑖 .𝑏𝑖 (2)
Here, 𝑐𝑖 represents carry-in and 𝑐𝑖+1 represents carry-out of 𝑖𝑡ℎ bit location. 𝑔𝑖 and 𝑝𝑖 correspond to
generate and propagate signals of the 𝑖𝑡ℎ bit location, respectively. The carry-out logic circuit is
illustrated in Figure 5.
The proposed adder is composed of 𝑘 blocks where each block is an 𝐻 -bit sub-adder and

𝑘 = ⌈𝑁 /𝐻⌉. The blocks used in this adder are not homogeneous and fall into two types, i.e.,
accurate and approximate blocks. The accurate blocks are used primarily at MSB locations and
the approximate blocks are used at LSB locations. The accurate blocks are based on the Ripple
Carry Adder (RCA), and the approximate blocks use a combination of logic simplification (OR
gates replacement), full adders, and the RCA design to perform the addition of the corresponding
bits. For computing the carry-out signal of an approximate block, any carry-chain length can
be selected. Consequently, we are free to define the length of carry generation and propagation
in every approximate block. For instance, Figure 6 shows a 4-bit approximate block with carry
propagation length equals three and the lower two FAs replaced with OR gates for computing the
corresponding sum bits.
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Fig. 5. Logic expression of carry-out generation for RCA

Fig. 6. An example of approximate block with 𝐻 = 4 bits length

Fig. 7. A 16 bits HBAA configuration composed of 4-bit sub-adder blocks

We can have heterogeneous approximate blocks with different configurations placed in different
positions in the proposed adder. Moreover, we also consider that carry propagation occurs between
the most significant approximate block and all the accurate blocks on the most significant side in
the adder. This is illustrated in Figure 7 as well for a 16-bit HBAA configuration composed of 4-bit
sub-adder blocks. As can be seen in the figure, the carry-out of the most significant approximate
block (i.e., sub-adder 2) is connected to the carry-in of the next block (i.e., sub-adder 3) and all the
accurate blocks on the most significant side (i.e., sub-adder 3 and sub-adder 4) are also connected.
For our HBAA, each approximate sub-adder can have any number of bits of inexact logic (OR

gates) 𝐿 and any carry chain length 𝑆 . An 𝑁 −𝑏𝑖𝑡 HBAA adder consists of 𝑘 approximate sub-adders
of equal size. The adder is defined using an inexact logic configuration vector, 𝐿𝑣𝑒𝑐 = [𝐿1, 𝐿2, ..., 𝐿𝑘 ],
and a carry chain vector, 𝑆𝑣𝑒𝑐 = [𝑆1, 𝑆2, ..., 𝑆𝑘 ]. Here, 𝐿𝑖 and 𝑆𝑖 represent the number of inexact logic
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bits and the carry-chain length of the 𝑖𝑡ℎ sub-adder, respectively. Hence, the generic HBAA repre-
sentation, 𝐻𝐵𝐴𝐴{[𝐿1, 𝐿2, ..., 𝐿𝑘 ], [𝑆1, 𝑆2, ..., 𝑆𝑘 ]}, fully defines any possible HBAA configuration.

In the following section, we discuss the analytical model for computing PMF of error of HBAA
configurations.

4 ANALYTICAL MODELING FOR COMPUTING ERROR METRICS
Besides the conventional performance metrics such as delay, area, and power, error metrics are
also important to compare different approximate adder configurations and designs. Metrics such as
Error Distance (ED), Mean Error Distance (MED) [12][26][21][22][23], Normalized Mean Error Dis-
tance (NMED) [26][21], and Error Rate (ER) [8] are commonly used to quantify the computational
accuracy/quality of approximate arithmetic circuits. Among these metrics, the error distance (ED),
and mean error distance (MED) are considered more important and applicable for the comparison
of approximate adders [30]. These metrics can be calculated either using computer simulations
or analytical models. However, due to the greater benefits of analytical models over computer
simulations in terms of execution time/cost, analytical models are preferred for quality and per-
formance estimation of approximate components, specifically for design space exploration tasks.
Therefore, in this section, we present a novel analytical model for estimating error metrics of HBAA
configurations. The primary advantages of the proposed analytical model consist of:

• It facilitates efficient comparison between different HBAA configurations.
• It can be used to explore the complete design space of HBAA configurations in order to
obtain optimal circuit parameters such as the carry chain length, the number of approximate
blocks, and the configuration of each approximate block.

In the following text, we introduce our proposed analytical model for computing the PMF of error
of an HBAA configuration. The PMF of error indicates all possible error values and the probability
of each error value. It is important as it can be used to compute most of the error metrics such as
maximum absolute error value, MED, NMED, MSE, and error probability. Moreover, it also presents
an estimate of the distribution of the error, not just the mean values. As an HBAA adder is composed
of multiple sub-adder blocks, the error in each approximate block can propagate to the adder’s
output. The sources of error in the adder’s output are errors in the carry chain due to truncation
and approximation errors in the internal computations of each block due to the replacement of FAs
with OR gates for sum generation. To evaluate the PMF of error value of an HBAA configuration,
first, we identify the sources of errors in approximate blocks. Next, we evaluate the PMF of error of
each approximate block independently. Eventually, we combine the PMFs of the blocks to get the
overall PMF of error of the HBAA configuration. The proposed methodology is shown in figure 8,
which consists of the following stages:

• Identification of error sources (Stage 1): The first stage is for identifying the error sources
in the approximate blocks of the given HBAA configuration. The errors related to replacement
of FAs with OR gates for sum computation are referred to as 𝐸𝑂𝑅 , and the errors related to
carry-chain truncation are referred to as 𝐸𝑇 .

• Evaluation of the PMF of each error source (Stage 2): The second stage is for computing
the PMF of 𝐸𝑂𝑅 and 𝐸𝑇 error types in each sub-adder block independently. The analytical
models of these errors are presented in Section 4.1.

• Evaluation of the PMF of error of each approximate block (Stage 3): In this stage, an
analytical model is proposed to find the joint error events in each approximate block. Then,
the PMF of error value of each approximate block is obtained by using the probability of
corresponding error sources and the corresponding joint probability of events. The details of
this stage are presented in Section 4.2.
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Evaluation of joint probability of events, i.e., Pr(EOR_i    ET_i), and
computation of PMF of error of each ith block
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Fig. 8. Proposed methodology for computing the PMF of error value of HBAA

• Evaluation of PMF of error of the complete HBAA configuration (Stage 4): The PMF
of error value of the complete HBAA configuration is calculated by using independent error
events of all the sub-adder blocks. Thus, in this case, it is computed by convolving the PMF of
error value of all the approximate blocks. The details of this stage are presented in Section 4.4.

4.1 Identification of the Error Sources and Evaluation of Their PMFs
In HBAAs, we consider two different types of approximations that can lead to errors in the adder’s
output, and we identify them as two separate error sources. The first type is replacement of FAs
with OR gates and the second is carry-chain truncation. In this work, we refer the errors related
to replacement of FAs with OR gates as 𝐸𝑂𝑅 , and the errors related to carry-chain truncation as
𝐸𝑇 . The computation of PMFs of 𝐸𝑂𝑅 and 𝐸𝑇 for each approximate sub-adder block (i.e., Stage 2 in
Figure 8) is explained in the following sub-sections.

4.1.1 Evaluation of PMF of 𝐸𝑂𝑅 for Each Approximate Block. When 𝐿 least significant FAs of an
adder block are replaced with OR gates, the error value can range from 0 to 2𝐿 − 1. Assuming all the
input bits to be independent, the probability of each possible error value can be computed by using
the probabilities of error at individual bit locations where the FAs are replaced with OR gates, as an
OR gate leads to either 0 or 1 error at the corresponding bit location. The error value at a given bit
location 𝑖 is 1 when both the input bits at the corresponding bit location are 1, and error value is 0
when at least one of the input bits is 0. Hence, assuming 𝑃𝑟 (𝑎𝑖 = 1) corresponds to the probability
of the 𝑖𝑡ℎ bit of input 𝐴 being 1 and 𝑃𝑟 (𝑏𝑖 = 1) corresponds to the probability of the 𝑖𝑡ℎ bit of input
𝐵 being 1, the probability of the error value being 1 can be computed using the probability of the
generate signal of the corresponding location. Given, 𝑔𝑖 represents the generate signal at 𝑖𝑡ℎ bit
location, the probability of error value at 𝑖𝑡ℎ bit location being 1 (when the FA at the corresponding
location is replaced with an OR gate) can be computed using the following equation.

𝑃𝑟 (𝑔𝑖 = 1) = 𝑃𝑟 (𝑎𝑖 = 1) ∩ 𝑃𝑟 (𝑏𝑖 = 1) (3)
Since all the input bits are assumed to be independent of each other, the intersection can be

replaced with the product of the two probabilities. Thus, Eq. 3 can be simplified to:

𝑃𝑟 (𝑔𝑖 = 1) = 𝑃𝑟 (𝑎𝑖 = 1) .𝑃𝑟 (𝑏𝑖 = 1) (4)
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Accurate 2 bits RCA Adder

2 bits OR gates
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Error

Fig. 9. A comparison of the truth tables of an accurate 2-bit adder composed of two FAs with an approximate
adder composed of two OR gates. The error cases are marked in red.

Similarly, the probability of error value being 0 at the same bit location can be computed using
1 − 𝑃𝑟 (𝑔𝑖 = 1).

Example for Computing PMF of 𝐸𝑂𝑅 for a 2-bit Adder: Here, we present an example to
demonstrate the usability of the above method for computing the PMF of 𝐸𝑂𝑅 of a 2-bit approximate
adder composed of two OR gates, shown on the right side of Figure 9. For the two bit approximate
adder, the error value range from 0 to 3. Figure 9 highlights all the error cases of the two bit
approximate adder. For the considered case, the probability of each error value can be computed
by using the binary representation of the error value. For example, for error value (𝑥) equals 3,
by converting 310 to its binary representation (i.e., 112), we can compute its probability using the
generate signals of the corresponding locations as shown in Eq. 5.

𝑃𝑟 (𝑥 = 3) = 𝑃𝑟 (𝑔1 = 1) ∩ 𝑃𝑟 (𝑔0 = 1) (5)

Assuming the input bits to be independent of each other, the above equation can be written as:

𝑃𝑟 (𝑥 = 3) = 𝑃𝑟 (𝑔1 = 1).𝑃𝑟 (𝑔0 = 1) (6)

Following the same procedure, the PMF of 𝐸𝑂𝑅 can be written as:
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𝑃𝑟 (𝑥) =


𝑃𝑟 (𝑔1 = 0).𝑃𝑟 (𝑔0 = 0) 𝑥 = 0
𝑃𝑟 (𝑔1 = 0).𝑃𝑟 (𝑔0 = 1) 𝑥 = 1
𝑃𝑟 (𝑔1 = 1).𝑃𝑟 (𝑔0 = 0) 𝑥 = 2
𝑃𝑟 (𝑔1 = 1).𝑃𝑟 (𝑔0 = 1) 𝑥 = 3

(7)

Assuming uniformly distributed inputs, 𝑃𝑟 (𝑔0 = 1) can be computed as:

𝑃𝑟 (𝑔0 = 1) = 𝑃𝑟 (𝑎0 = 1).𝑃𝑟 (𝑏0 = 1) = 1
2 .
1
2 =

1
4 (8)

Similarly, we get:

𝑃𝑟 (𝑔1 = 1) = 1
4 (9)

By putting the values of 𝑃𝑟 (𝑔0 = 1) and 𝑃𝑟 (𝑔1 = 1) in Eq 7 while considering 𝑃𝑟 (𝑔0 = 0) =

1 − 𝑃𝑟 (𝑔0 = 1) and 𝑃𝑟 (𝑔1 = 0) = 1 − 𝑃𝑟 (𝑔1 = 1), we get:

𝑃𝑟 (𝑥) =


9
16 𝑥 = 0
3
16 𝑥 = 1
3
16 𝑥 = 2
1
16 𝑥 = 3

(10)

Generalized Model for PMF of 𝐸𝑂𝑅 for an 𝐿-bit Adder: According to the above description,
we can formulate the probability of each error value (𝑥 ) of an 𝐿-bit approximate adder composed of
𝐿 OR gates using the following equation.

𝑃𝑟 (𝐸𝑂𝑅 = 𝑥) =
∏
𝑖∈𝐼

𝑃𝑟 (𝑔𝑖 = 1).
∏
𝑗∈ 𝐽

𝑃𝑟 (𝑔 𝑗 = 0) (11)

Here, 𝐼 represents the set of bit locations where generate signal is 1 and 𝐽 represents the set of
bit locations where generate signal is 0. Now, assuming uniform distribution for the inputs, Eq. 11
can be re-written as follows:

𝑃𝑟 (𝐸𝑂𝑅 = 𝑥) = ( 14 )
𝑙𝑒𝑛 (𝐼 ) .( 34 )

𝐿−𝑙𝑒𝑛 (𝐼 ) (12)

where, 𝑙𝑒𝑛(𝐼 ) represents the number of elements in the set 𝐼 .

4.1.2 Evaluation of PMF of 𝐸𝑇 for Each Approximate Block. To evaluate the PMF of 𝐸𝑇 , we need a
model for computing the distribution of the sum of two bit-level subsets of inputs to the adder. To
define that, first, we define a model for computing the distribution of a subset of bits of an input
based on [23]. If 𝐴𝑠𝑢𝑏 = [𝑎𝑞2 , ..., 𝑎𝑞1 ] is a sub-group of 𝑛 bits from 𝐴 = [𝑎𝑁−1, 𝑎𝑁−2, ..., 𝑎0], where
0 < 𝑞1 < 𝑞2 < 𝑁 and 𝑛 = 𝑞2−𝑞1 + 1, we can derive the probability distribution of𝐴𝑠𝑢𝑏 (i.e., 𝑃𝐴𝑠𝑢𝑏

(𝑟 )
for 0 ≤ 𝑟 ≤ 2𝑞2−𝑞1+1 − 1) as follows:

𝑃𝐴𝑠𝑢𝑏
(𝑟 ) =

2𝑁 −1−𝑞2−1∑︁
𝑖=0

( 2𝑞1−1∑︁
𝑗=0

𝑃𝐴 (2𝑞2+1𝑖 + 2𝑞1𝑟 + 𝑗)
)

0 ≤ 𝑟 ≤ 2𝑞2−𝑞1+1 − 1

(13)

Similarly, 𝑃𝐵𝑠𝑢𝑏
can be derived from 𝑃𝐵 for the other input 𝐵. Since the two inputs are independent,

the PMF of the summation 𝑍 = 𝐴𝑠𝑢𝑏 + 𝐵𝑠𝑢𝑏 is calculated by convolving 𝑃𝐴𝑠𝑢𝑏
with 𝑃𝐵𝑠𝑢𝑏

. Assuming
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that the probability distribution of 𝐴 and 𝐵 are uniform between 0 and 2𝑁 − 1, 𝐴𝑠𝑢𝑏 and 𝐵𝑠𝑢𝑏 can be
considered uniform between 0 and 2𝑛 − 1. Therefore, the PMF of 𝑍 can be represented as follows:

𝑃𝑍 (𝑟 ;𝑛) = 𝑃𝐴𝑠𝑢𝑏
(𝑟 ;𝑛) ⊛ 𝑃𝐵𝑠𝑢𝑏

(𝑟 ;𝑛) (14a)

𝑃𝑍 (𝑟 ;𝑛) =


𝑟+1
22𝑛 0 ≤ 𝑟 ≤ 2𝑛 − 1
2𝑛+1−𝑟−1

22𝑛 2𝑛 − 1 ≤ 𝑟 ≤ 2𝑛+1 − 2
0 otherwise

(14b)

Carry chain can be truncated at any bit location inside an 𝐻 -bit approximate block, as explained
in Section 3. If the length of the carry chain is 𝑆 bits, the length of the truncated portion is 𝐻 − 𝑆
bits (shown in Figure 10), which can lead to an error of 2𝐻−𝑆 at the output of the block. The error
occurs only when the first 𝐻 − 𝑆 bit segment shown in Figure 10 is in generate mode. Hence, the
probability of 𝐸𝑇 = 2𝐻−𝑆 can be represented as:

… …

H-S bitsS bits

Location of Carry 
Chain Truncation 

Fig. 10. Approximate block with carry chain truncated at bit location H-S.

𝑃𝑟 (𝐸𝑇 = 2𝐻−𝑆 ) = 𝑃𝑟 (𝐺1) (15)
Where 𝐺1 represents carry generation events of the first segment. Thus, the PMF of the error

value of 𝐸𝑇 can be computed using the following equation.

𝑃𝑟 (𝐸𝑇 = 𝑦) =
{
𝑃𝑟 (𝐺1) 𝑦 = 2𝐻−𝑆

1 − 𝑃𝑟 (𝐺1) 𝑦 = 0
(16)

Note that an event in 𝐺1 occurs when the summation of the corresponding input bits is at least
2𝐻−𝑆 . Therefore, the probability of 𝐺1 can be formulated as follows:

𝑃𝑟 (𝐺1) = 𝑃𝑟 (𝐴𝑠𝑢𝑏 + 𝐵𝑠𝑢𝑏 > 2𝐻−𝑆 − 1) = 𝑃𝑟 (𝑍 > 2𝐻−𝑆 − 1) (17)

which can be further expanded to Eq. 18.

𝑃𝑟 (𝐺1) =
2𝐻−𝑆+1−2∑︁
𝑗=2𝐻−𝑆

𝑃𝑍 ( 𝑗 ;𝐻 − 𝑆) (18)

By substituting Eq. 18 in Eq. 16, the PMF of 𝐸𝑇 can be given as:

𝑃𝑟 (𝐸𝑇 = 𝑦) =


∑2𝐻−𝑆+1−2

𝑗=2𝐻−𝑆 𝑃𝑍 ( 𝑗 ;𝐻 − 𝑆) 𝑦 = 2𝐻−𝑆

1 −∑2𝐻−𝑆+1−2
𝑗=2𝐻−𝑆 𝑃𝑍 ( 𝑗 ;𝐻 − 𝑆) 𝑦 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(19)
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Fig. 11. A generic configuration for the 𝐻 − 𝑆 > 𝐿 case.

4.2 Evaluation of PMF of Error of Individual Approximate Blocks
The method for computing the PMF of error of an approximate block of an HBAA configuration
depends on the configuration of the block. Mainly, we divide the block configuration into three
types based on the conditions listed in Table 2. A method for computing the PMF of error for each
individual case is presented in the following text.

Table 2. Error value ranges based on different cases

Case Carry chain truncated and OR gates position Error value ranges

First 𝐻 − 𝑆 > 𝐿
0 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 2𝐿 − 1

2𝐻−𝑆 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ (2𝐻−𝑆 ) + (2𝐿 − 1)
Second 𝐻 − 𝑆 = 𝐿 0 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 2𝐿 − 1

Third 𝐻 − 𝑆 < 𝐿

0 ≤ 𝑒𝑟𝑟𝑜𝑟 ≤ 2𝐿 − 1

𝑒𝑟𝑟𝑜𝑟 = 𝑋 − 2𝐿, 2𝐻−𝑆 ≤ 𝑋 ≤ 2𝐿 − 1

H – S > L Case: In the first case (𝐻 − 𝑆 > 𝐿), the length of the truncated carry chain is greater
than the number of OR gates. A generic configuration for such a case is shown in Figure 11. The
replacement of FAs with OR gates results in error values between 0 to 2𝐿 − 1, and the carry-chain
truncation induces an error equal to 2𝐻−𝑆 . Hence, the total error of the approximate block ranges
from 0 to 2𝐿 − 1 and from 2𝐻−𝑆 to 2𝐻−𝑆 + 2𝐿 − 1. As there is no carry being propagated from
the OR gates part to higher bits and the inputs bits are assumed to be independent, the errors
generated in the OR gates part can be considered independent of the error generated due to carry
chain truncation. Therefore, to compute the PMF of error of the complete approximate block, we
can simply convolve the PMF of 𝐸𝑂𝑅 with the PMF of error of the part between the location of
carry chain truncation and bit location 𝐿 (i.e., the central part of the block). Using Eq. 14 and
the method presented in Section 4.1.2 for computing the combined probability of a set of carry
generation events, we can compute the PMF of error of the central part in this case using the
following equation.

𝑃𝑟 (𝐸𝐶𝑃 = 𝑦) =


∑2𝐻−𝑆−𝐿+1−2

𝑗=2𝐻−𝑆−𝐿 𝑃𝑍 ( 𝑗 ;𝐻 − 𝑆 − 𝐿) 𝑦 = 2𝐻−𝑆

1 −∑2𝐻−𝑆−𝐿+1−2
𝑗=2𝐻−𝑆−𝐿 𝑃𝑍 ( 𝑗 ;𝐻 − 𝑆 − 𝐿) 𝑦 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20)
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Fig. 12. A generic configuration for the 𝐻 − 𝑆 = 𝐿 case.

Here, 𝑃𝑟 (𝐸𝐶𝑃 = 𝑦) represents the combined probability of all the events in which the error of the
central part of the block is 𝑦 and 𝑍 is the sum of 𝐴𝑠𝑢𝑏 = [𝑎𝐻−𝑆−1, ..., 𝑎𝐿] and 𝐵𝑠𝑢𝑏 = [𝑏𝐻−𝑆−1, ..., 𝑏𝐿].
Using the above equations, the PMF of error of the complete approximate block can be computed
using the following equation.

𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑘 ) = 𝑃𝑟 (𝐸𝑂𝑅) ⊛ 𝑃𝑟 (𝐸𝐶𝑃 ) (21)
H – S = L Case: In the second case (𝐻 − 𝑆 = 𝐿), the length of the truncated carry chain is equal

to the number of OR gates. A generic configuration for such a case is shown in Figure 12. As in this
case the location of the carry-chain truncation is the same as the end of the OR gates part, errors in
the output of the approximate block are induced only due to the replacement of FAs with OR gates.
Hence, the PMF of error of the complete approximate block is equivalent to the PMF of 𝐸𝑂𝑅 of the
block, as shown in the following equation.

𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑘 ) = 𝑃𝑟 (𝐸𝑂𝑅) (22)

H – S < L Case: In the last case (𝐻 − 𝑆 < 𝐿), the length of the truncated carry chain is smaller
than the number of OR gates. A generic configuration for such a case is shown in Figure 13.

In this case, errors are caused by the computations in the OR gates part and/or truncated carry
chain. Some inputs can lead to both types of errors. Therefore, to compute the PMF of error in this
case, we divide the approximate block into multiple segments. The first segment is the portion where
FAs are approximated with OR gates and there is no carry propagation from the corresponding
bits to higher locations, the second segment is the portion where approximate sum generation is
performed using OR gates and there is carry propagation to higher locations, and the third segment
is the accurate part of the adder. The three segments for an example case are shown in Figure 13.

Assuming the bits to be independent, we can compute the PMF of the first segment independently
of the second and third segments using Eqs. 11 and 12. The range of error of this segment is from
0 to 2𝐻−𝑆 − 1. Hence, we can represent the PMF of error of the first segment using the following
equation:

𝑃𝑟 (𝐸𝑂𝑅 = 𝑥) = ( 14 )
𝑙𝑒𝑛 (𝐼 ) .( 34 )

𝐻−𝑆−𝑙𝑒𝑛 (𝐼 ) (23)
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Fig. 13. A generic configuration for the 𝐻 − 𝑆 < 𝐿 case. The configuration can be divided into three segments:
(1) Sum generation using OR gates with no carry propagation to higher locations; (2) Sum generation using
OR Gates with carry propagation to higher locations; and (3) Accurate part of the adder. 𝐿 is the number of
bit locations where the sum is computed using OR gates, 𝐿1 is the length of Segment 1, and 𝐿2 is the length
of Segment 2.

where, 0 ≤ 𝑥 ≤ 2𝐻−𝑆 − 1, 𝐼 represents the set of bit locations where generate signal is 1 for a
given value 𝑥 , and 𝑙𝑒𝑛(𝐼 ) represents the number of elements in the set 𝐼 .
For computing the PMF of error of the second segment, we consider two different cases: one

where the carry-out of the segment is 1 and the other where the carry-out of the segment is 0.
For the case where carry-out equals 1, assuming the input bits to be independent and uniformly
distributed, we can model the probability distribution using the following equation:

𝑃𝑟 (𝐸 = 𝑥 − 2𝐿2 ) = ( 12 )
𝐿21 .( 14 )

𝑙𝑒𝑛 (𝐼 ) .( 34 )
𝐿22−𝑙𝑒𝑛 (𝐼 ) (24)

Here, 𝑥 represents the error in the OR gates part (excluding the carry chain circuitry), 𝐼 represents
the set of locations that are in generate mode for the given value of 𝑥 , 𝐿21 is the number of bit
locations from MSB of the segment to the most significant location in generate mode (excluding
the generate mode location), and 𝐿22 is the number of bit locations from LSB of the segment to
the most significant location in generate mode (including the generate mode location). Eq. 24 is
valid only for the cases where −2𝐿2 + 1 ≤ 𝐸 ≤ −1, i.e., for cases where at least one bit location is in
generate mode and all the bit locations from the most significant bit location in generate mode
until the most significant end of the segment are in propagate mode (including 𝐿21 = 0 case), see
Figure 14 for an example of such a case.

𝑥 = 510 = 0 0 1 0 12

𝐴𝑠𝑢𝑏 = 2110 = 1 0 1 0 12

𝐵𝑠𝑢𝑏 = 1310 = 0 1 1 0 12

Locations in 
Propagate Mode

Most Significant 
Generate Mode Location

Errors at Locations Corresponding 
to Locations in Generate Mode

Operand

Operand

Error due to 
OR gates

Fig. 14. An example of the second segment of an approximate block with carry-out equals 1 in 𝐻 − 𝑆 < 𝐿 case
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Similarly, for the case where carry-out equals 0, we can model the probability distribution using
the following equation:

𝑃𝑟 (𝐸 = 𝑥) =
∑𝐿21

𝑖=1
(𝐿21
𝑖

)
.2𝐿21−𝑖

4𝐿21
.( 14 )

𝑙𝑒𝑛 (𝐼 ) .( 34 )
𝐿22−𝑙𝑒𝑛 (𝐼 ) (25)

Eq. 25 is valid for all the cases where 1 ≤ 𝐸 ≤ 2𝐿22 − 1, i.e., for cases where at least one bit
location is in generate mode and at least one bit location in the locations from the most significant
bit location in generate mode until the most significant end of the segment is in carry-kill mode.
Finally, for 𝐸 = 0 case, we can compute the probability using the following equation:

𝑃𝑟 (𝐸 = 0) = ( 34 )
𝐿2 (26)

which covers all the cases where there is no generate signal in the bit locations corresponding
to the second segment. Using the above equations, the probability distribution of the complete
approximate block can be computed by first mapping the PMFs to their corresponding error ranges
and then convolving the distribution of the first segment with the distribution of the second
segment.

4.3 Evaluation of the PMF of Error of Approximate Blocks with Carry-out set to 0
As shown in Figure 7, the carry-out signal of an approximate block may or may not be connected
to the carry-in of the subsequent block, which is mainly based on the location of the approximate
block in the adder configuration. The analytical models presented in the above subsection are
mainly designed for approximate blocks whose carry-out is connected to the subsequent block in
the adder. Therefore, to cover all the possible configurations, there is a need to extend the models
for approximate blocks whose carry-out is discarded (i.e., not connected to the subsequent block
in the adder). To achieve this, we define an approximate HA (𝐻𝐴𝐴𝑝𝑝𝑟𝑜𝑥.) and an approximate
FA (𝐹𝐴𝐴𝑝𝑝𝑟𝑜𝑥.) with carry-out set to 0. The truth tables of both are presented in Tables 3 and 4,
respectively. The approximate HA design is for the MSB location for the cases where 𝑆 = 1, and
the approximate FA design is for the cases where 𝑆 > 1. Assuming the inputs to be uniformly
distributed, the PMFs of these approximate HA and approximate FA designs can be represented
using Eqs. 27 and 28, respectively.

Table 3. Truth table of approximate HA (𝐻𝐴𝐴𝑝𝑝𝑟𝑜𝑥.). The error cases are marked in red.

a b 𝐶𝑜𝑢𝑡 Sum Error Value
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 2

𝑃𝑟 (𝐸𝐻𝐴𝐴𝑝𝑝𝑟𝑜𝑥.
) =

{
3
4 𝑥 = 0
1
4 𝑥 = 2𝐻

(27)

𝑃𝑟 (𝐸𝐹𝐴𝐴𝑝𝑝𝑟𝑜𝑥.
) =

{
1
2 𝑥 = 0
1
2 𝑥 = 2𝐻

(28)
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Table 4. Truth table of approximate FA (𝐹𝐴𝐴𝑝𝑝𝑟𝑜𝑥.). The error cases are marked in red.

a b 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 Sum Error Value
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 0 1 0
1 1 0 0 0 2
0 0 1 0 1 0
0 1 1 0 0 2
1 0 1 0 0 2
1 1 1 0 1 2

As input bits are assumed to be independent of each other, the replacement of the MSB location
FA of an approximate block with 𝐻𝐴𝐴𝑝𝑝𝑟𝑜𝑥. or 𝐹𝐴𝐴𝑝𝑝𝑟𝑜𝑥. can be modeled using the following
equation.

𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑘_𝐶𝑜𝑢𝑡=0) = 𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑘 ) ⊛ 𝑃𝑟 (𝐸𝐴𝑈𝐴𝑝𝑝𝑟𝑜𝑥.
) (29)

Here, 𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑘 ) represents the PMF of error of the approximate block from Section 4.2
considering carry-out signal is propagated to the subsequent block, 𝑃𝑟 (𝐸𝐴𝑈𝐴𝑝𝑝𝑟𝑜𝑥.

) represents the
PMF of error of 𝐻𝐴𝐴𝑝𝑝𝑟𝑜𝑥. or 𝐹𝐴𝐴𝑝𝑝𝑟𝑜𝑥. based on the configuration of the approximate block, and
𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑘_𝐶𝑜𝑢𝑡=0) represents the PMF of error of the complete approximate block considering
carry-out signal is set to 0.

4.4 Evaluation of the PMF of Error of an HBAA Configuration
The 𝑁 -bit HBAA is divided into 𝑘 blocks, each having 𝐻 -bit length. 𝑙 blocks are heterogeneous
approximate blocks, and the rest are accurate blocks. The sources of error in the output are the
errors in the associated approximate blocks. As the blocks are independent of each other, the
PMF of error value across the HBAA can be calculated by the convolution of the PMFs of all the
heterogeneous approximate blocks. Thus, the PMF of error value of the approximate adder (𝑃𝑟𝐸𝑉 _𝐴)
can be written as:

𝑃𝑟 (𝐸𝐴𝑝𝑝𝑟𝑜𝑥_𝐻𝐵𝐴𝐴) = 𝑃𝑟 (𝐸𝐵𝑙𝑘_1) ⊛ 𝑃𝑟 (𝐸𝐵𝑙𝑘_2) ⊛ ... ⊛ 𝑃𝑟 (𝐸𝐵𝑙𝑘_𝑙 ) (30)

Where 𝑃𝑟 (𝐸𝐵𝑙𝑘_𝑙 ) is the PMF of error of the most significant (i.e., 𝑙𝑡ℎ) approximate block.

4.5 Evaluation of HBAA’s MED and ER
Mean Error Distance (MED) is considered an important criterion to compare approximate adders.
MED can be calculated using the PMF of error by taking the weighted average of all error distances.
Hence, it is calculated using Eq. 31.

𝑀𝐸𝐷 = 𝐸 [𝐸𝐷] =
∞∑︁

𝑖=−∞
|𝑖 |𝑃𝑀𝐹 (𝑖) (31)

where 𝑃𝑀𝐹 is the PMF of error of the approximate adder (in our case, HBAA), and 𝑃𝑀𝐹 (𝑖)
corresponds to the probability of error value equals 𝑖 . Moreover, the Error Rate (ER) can be obtained
by adding the probabilities of all non-zero error values from the PMF of error evaluated by our
proposed analytical model.
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Fig. 15. Gate-level implementation of an approximate block of HBAA.

5 ANALYTICAL MODELING FOR ESTIMATING HARDWARE METRICS OF HBAA
DESIGNS

In real-world error-resilient applications, an acceptable accuracy level, which is identified by ED,
ER, or MED, must be satisfied. Therefore, it is important to effectively use the available error budget
for improving the efficiency of the underlying hardware/system. Metrics like area, delay, and power
are commonly used to estimate the performance and efficiency of the hardware. Configurations that
offer the best accuracy-efficiency trade-offs are identified by exploring the complete design space
using both error and performance metrics. Hence, alongside error estimation models, performance
estimation models are also required. In this work, we extend the estimation method proposed in [7]
to build models for computing the hardware metrics of HBAA configurations.

Conventional adders such as RCA are composed of three main parts, i.e., Propagate and Generate
(PG) signal generation part, carry generation part, and sum computation part [7][29]. Any abstrac-
tion level of a digital design, from the highest behavioral level to the lowest device level, can be
considered to estimate its performance/hardware metrics. In this work, the gate-level abstraction is
considered for modeling the hardware characteristics of adder designs. We consider 2-input gates,
e.g., AND, OR, NAND, and NOR, as the elementary gates for implementing adder designs. Other
gates, such as XOR and XNOR, can be expressed in terms of the above-mentioned elementary gates.
We neglect NOT (inverter) gates in the delay and area estimation. Thus, in this work, a circuit is
modeled by 2-input gates, and gate-level depth and gate count are used to estimate delay and area,
respectively. In our estimation model, the XOR gate is constructed from three 2-input gates, i.e.,
two 2-input AND and one 2-input OR. Thus, the gate-level depth and gate count of the XOR gate
are 2 and 3, respectively. The gate-level implementation of an approximate block of the proposed
HBAA is shown in Figure 15, which is used in this work to compute the gate-level depth and gate
count of HBAA configurations.

5.1 Delay Estimation
As shown in Figure 15, the gate-level implementation of an approximate block of HBAA consists of
three parts. The length of each part depends on the configuration of the approximate block, i.e.,
on 𝐻 , 𝐿, and 𝑆 values of the block. To construct a model for delay estimation, we first consider
the case of 𝐻 − 𝑆 > 𝐿. As earlier shown in Figure 11, in such cases the block configuration can
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Fig. 16. Gate-level implementation of different segments of an approximate block with𝐻−𝑆 > 𝐿 configuration.
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Fig. 17. Gate-level implementation of the most significant segment (apart from the truncated OR gates part)
of an approximate block with 𝐻 − 𝑆 < 𝐿 configuration.

be divided into three independent segments, i.e., OR gates part, the central part, and the accurate
most significant part. The gate-level implementations of the three parts are shown in Figure 16,
where Figure 16c shows the OR gates part, Figure 16b shows the central part, and Figure 16a shows
the accurate most significant part. As there is no carry propagation between these segments, the
gate-level depth of each can be computed individually and the maximum of these can be used as
the depth estimate for the whole approximate block. From Figure 16c, we observe that the depth of
the OR gates part is 1. From Figure 16b, we observe that the depth of the central part depends on
the length and depth of the PG, Carry, and Sum parts of the gate-level implementation. The depth
of the PG part is 2 when 𝐻 − 𝑆 − 𝐿 ≥ 1. The depth of the Carry part is 0 when 𝐻 − 𝑆 − 𝐿 ≤ 2 while
it is 2(𝐻 − 𝑆 − 𝐿 − 2) when 𝐻 − 𝑆 − 𝐿 > 2. And, the depth of the Sum part is 0 when 𝐻 − 𝑆 − 𝐿 ≤ 1
while it is 2 when 𝐻 − 𝑆 − 𝐿 ≥ 2. Thus, the depth of the central part can be summarized using the
following equation.
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𝐺𝑎𝑡𝑒_𝐷𝑒𝑝𝑡ℎ = 2(𝐻 − 𝑆 − 𝐿) when 𝐻 − 𝑆 − 𝐿 ≥ 0 (32)
Similar to the case of the central part, from Figure 16a, we observe that the depth of the accurate

most significant part depends on the length and depth of the PG, Carry and Sum parts of the
gate-level implementation. The depth of the PG part is 2 when 𝑆 ≥ 1. The depth of the Carry part
is 0 when 𝑆 ≤ 2 while it is 2(𝑆 − 2) when 𝑆 > 2. And, the depth of the Sum part is 0 when 𝑆 ≤ 1
while it is 2 when 𝑆 ≥ 2. Thus, the depth of the accurate most significant part can be summarized
using the following equation.

𝐺𝑎𝑡𝑒_𝐷𝑒𝑝𝑡ℎ = 2𝑆 when 𝑆 ≥ 0 (33)
Using the depths of all the parts shown in Figure 16, the delay of an approximate block with

𝐻 − 𝑆 > 𝐿 can be summarized as:

𝐷𝑒𝑙𝑎𝑦𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑜𝑐𝑘 =𝑚𝑎𝑥 (2𝐶𝑑𝑆, 2𝐶𝑑 (𝐻 − 𝑆 − 𝐿)) (34)
Where 𝐶𝑑 is a technology dependent constant for delay.

For the 𝐻 − 𝑆 = 𝐿 case, as only the OR gates part and the accurate most significant part can be
present, the delay of such an approximate block can be computed using the following equation.

𝐷𝑒𝑙𝑎𝑦𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑜𝑐𝑘 =𝑚𝑎𝑥 (2𝐶𝑑𝑆,𝐶𝑑 ) (35)
For the 𝐻 − 𝑆 < 𝐿 case, we define another type of segment shown in Figure 17. The gate-level

depth of this segment can be computed using the following equation.

𝐺𝑎𝑡𝑒_𝐷𝑒𝑝𝑡ℎ = 2𝑆 when 𝑆 ≥ 0 (36)
Note that even when 𝐿 = 𝐻 , the above equation is valid, as there are two additional gates installed

in parallel to the sum part for generating the carry-out signal. Hence, the delay of an approximate
block with 𝐻 − 𝑆 < 𝐿 can be computed using the following equation.

𝐷𝑒𝑙𝑎𝑦𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑜𝑐𝑘 = 2𝐶𝑑𝑆 (37)
Using the above equations, we can generalize the delay of an approximate block using the

following equation.

𝐷𝑒𝑙𝑎𝑦𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑜𝑐𝑘 =


𝑚𝑎𝑥 (2𝐶𝑑𝑆, 2𝐶𝑑 (𝐻 − 𝑆 − 𝐿) ) 𝐻 − 𝑆 > 𝐿

𝑚𝑎𝑥 (2𝐶𝑑𝑆,𝐶𝑑 ) 𝐻 − 𝑆 = 𝐿

2𝐶𝑑𝑆 𝐻 − 𝑆 < 𝐿

(38)

The above equation is for the case where the carry-out signal of the block is propagated to the
next block. However, if the carry-out signal is not propagated, Eq. 38 changes to the following
equation because of the absence of the last two gates used for carry-out signal generation in
Figure 17.

𝐷𝑒𝑙𝑎𝑦𝐴𝑝𝑝𝑟𝑜𝑥_𝐵𝑙𝑜𝑐𝑘 =


𝑚𝑎𝑥 (2𝐶𝑑𝑆, 2𝐶𝑑 (𝐻 − 𝑆 − 𝐿) ) 𝐻 − 𝑆 > 𝐿

𝑚𝑎𝑥 (2𝐶𝑑𝑆,𝐶𝑑 ) 𝐻 − 𝑆 = 𝐿

2𝐶𝑑𝑆 𝐻 − 𝑆 < 𝐿 and 𝐿 ≠ 𝐻

𝐶𝑑 𝐻 − 𝑆 < 𝐿 and 𝐿 = 𝐻

(39)

Besides a model for estimating the delay of approximate blocks, we need a model for computing
the delay of the accurate blocks used in the most significant part of HBAA configurations. Using the
method proposed in [7], the delay of an 𝐻 -bit accurate block can be computed using the following
equation.
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𝐷𝑒𝑙𝑎𝑦𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒_𝐵𝑙𝑜𝑐𝑘 = 2𝐶𝑑 (𝐻 + 1) (40)

Using the delays of individual approximate and accurate blocks, the delay of an HBAA configu-
ration can be computed by using the following equation.

𝐷𝑒𝑙𝑎𝑦𝐻𝐵𝐴𝐴_𝐶𝑜𝑛𝑓 𝑖𝑔. =

{
𝑚𝑎𝑥 (𝐶𝑑𝑆 𝑗 +

∑𝑘
𝑖=𝑗+1 𝐷𝑒𝑙𝑎𝑦𝐵𝑙𝑜𝑐𝑘_𝑖 , 𝐷𝑒𝑙𝑎𝑦𝐵𝑙𝑜𝑐𝑘_𝑗 , ..., 𝐷𝑒𝑙𝑎𝑦𝐵𝑙𝑜𝑐𝑘_1) 𝑆 𝑗 ≤ 1

𝑚𝑎𝑥 (2𝐶𝑑𝑆 𝑗 +
∑𝑘

𝑖=𝑗+1 𝐷𝑒𝑙𝑎𝑦𝐵𝑙𝑜𝑐𝑘_𝑖 , 𝐷𝑒𝑙𝑎𝑦𝐵𝑙𝑜𝑐𝑘_𝑗 , ..., 𝐷𝑒𝑙𝑎𝑦𝐵𝑙𝑜𝑐𝑘_1) 𝑆 𝑗 > 1
(41)

Where 𝐵𝑙𝑜𝑐𝑘_ 𝑗 is the most significant approximate block in the given HBAA configuration and
𝑆 𝑗 represents the carry-chain length to generate the carry-out signal of the 𝑗𝑡ℎ approximate block.

5.2 Area Estimation
The area estimate of an HBAA configuration is calculated based on its gate count. As shown in
Figure 15, a sub-adder block in HBAA is composed of three different parts, i.e., PG, Sum part, and
Carry part. Therefore, for estimating the area of a sub-adder block of an HBAA configuration, we
compute the gate count in each individual part of the block and then sum them up to get the final
gate count for the block. In an 𝐻 -bit accurate block, the gate count of the PG part is 4𝐻 , the gate
count of the sum part is 3𝐻 , and the gate count of the carry part is 2𝐻 . Thus, the overall gate count
of an 𝐻 -bit accurate block (𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 ) can be obtained by using the following equation.

𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 = 9𝐻 (42)

The gate count of each part of an approximate block of an HBAA configuration can be computed
using the equations mentioned in Table 5.

Table 5. Approximate block’s gate count

Parts Gate count of Approximate block with Carry-out Gate count of Approximate block with Carry-out set to 0

PG part 𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝑃𝐺 =


4(𝐻 − 𝐿) − 1 𝐻 − 𝑆 > 𝐿

4𝑆 𝐻 − 𝑆 = 𝐿

4𝑆 − 3 𝐻 − 𝑆 < 𝐿

𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝑃𝐺 =


4(𝐻 − 𝐿) − 2 𝐻 − 𝑆 > 𝐿

4𝑆 − 1 𝐻 − 𝑆 = 𝐿

4𝑆 − 4 𝐻 − 𝑆 < 𝐿

Sum part 𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝑆𝑢𝑚 =


3(𝐻 − 𝐿 − 2) + 𝐿 𝐻 − 𝑆 > 𝐿

3(𝐻 − 𝐿 − 1) + 𝐿 𝐻 − 𝑆 = 𝐿

3(𝐻 − 𝐿) + 𝐿 𝐻 − 𝑆 < 𝐿

𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝑆𝑢𝑚 =


3(𝐻 − 𝐿 − 2) + 𝐿 𝐻 − 𝑆 > 𝐿

3(𝐻 − 𝐿 − 1) + 𝐿 𝐻 − 𝑆 = 𝐿

3(𝐻 − 𝐿) + 𝐿 𝐻 − 𝑆 < 𝐿

Carry part 𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑟𝑟𝑦 =


0 𝐻 − 𝑆 ≥ 𝐿 and 𝑆 ≤ 1 and 𝐻 − 𝑆 − 𝐿 ≤ 2
2(𝐻 − 𝐿 − 3) 𝐻 − 𝑆 > 𝐿 and 𝑆 > 1 and 𝐻 − 𝑆 − 𝐿 > 2
2(𝑆 − 1) 𝐻 − 𝑆 ≤ 𝐿 and 𝑆 > 0

𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑟𝑟𝑦 =


0 𝐻 − 𝑆 > 𝐿 and 𝑆 ≤ 2 and 𝐻 − 𝑆 − 𝐿 ≤ 2
2(𝐻 − 𝐿 − 4) 𝐻 − 𝑆 > 𝐿 and 𝑆 > 2 and 𝐻 − 𝑆 − 𝐿 > 2
0 𝐻 − 𝑆 ≤ 𝐿 and 𝑆 ≤ 1
2(𝑆 − 2) 𝐻 − 𝑆 ≤ 𝐿 and 𝑆 > 1

𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝑃𝐺 +𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝑆𝑢𝑚 +𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐶𝑎𝑟𝑟𝑦

𝐺𝑎𝑡𝑒_𝑐𝑜𝑢𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 presents the gate count of an approximate block. The area estimate of an
𝑁 -bit HBAA is equivalent to the sum of the areas of all the accurate and approximate blocks in the
adder. Thus, the area estimate of an HBAA configuration can be computed using the following
equation.

𝐴𝑟𝑒𝑎𝐻𝐵𝐴𝐴_𝐶𝑜𝑛𝑓 𝑖𝑔. = 𝐶𝑎 (
𝑘∑︁
𝑖=1

𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐵𝑙𝑜𝑐𝑘_𝑖 ) (43)

Where 𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐵𝑙𝑜𝑐𝑘_𝑖 represents the gate count of the 𝑖𝑡ℎ block in the configuration and 𝐶𝑎

is a technology dependent constant for area.
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5.3 Power Estimation
Power consumption of a digital circuit is estimated based on the following two components:

• Dynamic Power: The dynamic power consumption (𝑃𝑑 ) of a digital circuit is directly
proportional to its area and delay if the clock frequency is assumed to be fixed [7]. Thus, 𝑃𝑑
of an HBAA configuration at a fixed clock frequency can be estimated by using Eq. 44.

𝑃𝑑 ∝∼ (𝑎𝑟𝑒𝑎.𝑑𝑒𝑙𝑎𝑦) ⇒ 𝑃𝑑 = 𝐶𝑝𝑑 (𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐻𝐵𝐴𝐴_𝐶𝑜𝑛𝑓 𝑖𝑔. .𝐺𝑎𝑡𝑒_𝐷𝑒𝑝𝑡ℎ𝐻𝐵𝐴𝐴_𝐶𝑜𝑛𝑓 𝑖𝑔.) (44)

Where 𝐶𝑝𝑑 is a technology dependent constant for dynamic power.
• Static Power: According to [7], the static power consumption (𝑃𝑠 ) of a digital circuit is
directly proportional to its area. Thus, 𝑃𝑠 of an HBAA configuration can be estimated using
the following equation.

𝑃𝑠 ∝∼ 𝑎𝑟𝑒𝑎 ⇒ 𝑃𝑠 = 𝐶𝑃𝑠 (𝐺𝑎𝑡𝑒_𝐶𝑜𝑢𝑛𝑡𝐻𝐵𝐴𝐴_𝐶𝑜𝑛𝑓 𝑖𝑔.) (45)

Where 𝐶𝑃𝑠 is a technology dependent constant for static power.
As a result, the total power consumption can be estimated by the sum of dynamic and static

power consumption.
𝑃 = 𝑃𝑠 + 𝑃𝑑 (46)

Similar to [7], we obtained the technology dependent delay, area and power constants by imple-
menting a 2-input NAND gate and extracting its hardware characteristics. We synthesize a 2-input
NAND gate using Synopsys Design Compiler with the Nangate 15𝑛𝑚 FinFET Open Cell Library. For
the power constant, similar to [7], we compute 𝐶𝑝 , which is equivalent to 𝐶𝑃𝑑 +𝐶𝑃𝑠 . The values of
the constants derived from the implementation of a 2-input NAND gate using the Nangate 15𝑛𝑚
FinFET Open Cell Library are presented in Table 6.

Table 6. Constant Factor of 15 𝑛𝑚 technology

Constant Factor Value
𝐶𝑑 1.26 𝑝𝑠
𝐶𝑎 0.14 𝜇𝑚2

𝐶𝑝 1.74 𝜇𝑊

6 RESULTS AND DISCUSSION
In this section, we compare the design space of our proposed HBAA with that of different state-of-
the-art approximate adder designs in order to highlight the significance of HBAA for providing
better accuracy-efficiency trade-offs. We also discuss the accuracy of our proposed analytical model
for computing the error metrics of HBAA configurations.

6.1 Error Metrics
In this work, we used (1) Mean Error Distance (MED) [12, 21–23, 26], (2) Normalized Mean Error
Distance (NMED) [21, 26], and (3) Error Rate (ER) [4] as the error metrics for comparing different
approximate adders. The definitions of these error metrics are presented below.

Mean Error Distance (MED) of an n-bit approximate adder is defined as:

𝑀𝐸𝐷 =
1
22𝑛

2𝑛−1∑︁
𝑖=0

2𝑛−1∑︁
𝑗=0

|𝑆𝑎𝑐𝑐𝑢 (𝑖, 𝑗) − 𝑆𝑎𝑝𝑝𝑟𝑜𝑥 (𝑖, 𝑗) | (47)
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Here, 𝑆𝑎𝑐𝑐𝑢 (𝑖, 𝑗) defines the accurate sum of 𝑖 and 𝑗 while 𝑆𝑎𝑝𝑝𝑟𝑜𝑥 (𝑖, 𝑗) defines the approximate
sum of 𝑖 and 𝑗 (computed using the given approximate adder).
Normalized Mean Error Distance (NMED) of an n-bit approximate adder is defined as:

𝑁𝑀𝐸𝐷 =
𝑀𝐸𝐷

2𝑛 =
1
2𝑛 (

1
22𝑛

2𝑛−1∑︁
𝑖=0

2𝑛−1∑︁
𝑗=0

|𝑆𝑎𝑐𝑐𝑢 (𝑖, 𝑗) − 𝑆𝑎𝑝𝑝𝑟𝑜𝑥 (𝑖, 𝑗) |) (48)

Error Rate (ER) of an n-bit approximate adder is defined as the percentage of erroneous outputs
among all outputs and is computed using:

𝐸𝑅 =
1
22𝑛

2𝑛−1∑︁
𝑖=0

2𝑛−1∑︁
𝑗=0

𝑓 ( |𝑆𝑎𝑐𝑐𝑢 (𝑖, 𝑗) − 𝑆𝑎𝑝𝑝𝑟𝑜𝑥 (𝑖, 𝑗) |) (49)

where

𝑓 (𝑥) =
{
1 𝑥 ≠ 0
0 𝑥 = 0

(50)

6.2 Accuracy of the Proposed Analytical Model for Computing Error Metrics
In this section, we evaluate the accuracy of our proposed analytical model for computing the
error metrics of HBAA configurations. To achieve this, we compare the results generated using the
proposed analytical model with the results generated usingMonte Carlo simulation. Table 7 presents
the MED values computed using the proposed analytical model and Monte Carlo simulations for
different randomly selected 16-bit HBAA configurations. The table also presents the accuracy of
the values computed using the analytical model by comparing them with the results generated
using Monte Carlo simulations. The results show that the proposed analytical model is capable
of generating error metrics fairly close to that of Monte Carlo simulations, i.e., on average 99.64%
accuracy. Note that for this analysis, eachMonte Carlo simulation result is computed using 10million
randomly generated input combinations.

Table 7. Accuracy of our proposed analytical model for computing MED of 16-bit HBAA configurations

16-bit Adder Configuration
MED calculated

using Monte Carlo
Simulation

MED calculated
using Analytical

Model

Accuracy of the
Analytical Model

HBAA

{1,4,2,3}{4,0,3,1} 9310.41 9313.64 99.97%
{4,2}{0,2} 19.26 19.5 98.77%

{2,2,2,1}{0,0,0,1} 47.28 47.5 99.54%
{6}{3} 0.25 0.25 100%

{2,1,2,1,0,2,1,1}{1,1,2,1,2,1,2,2} 9491.73 9404.39 99.07%
{3,2,3}{2,2,1} 595.41 595.85 99.93%
{4,4}{0,2} 65.45 66.69 98.14%
{5,2}{4,4} 1854.24 1856.83 99.86%

{2,1,2,1,0,2}{0,0,0,1,2,1} 1038.74 1030.72 99.22%
{2,2,2,2,1,2,2}{1,0,2,1,2,2,1} 3817.06 3855.7 99.00%

{2,3}{0,4} 35.88 35.94 99.83%
{1,1,2,0,0,2}{0,1,1,1,2,0} 1519.34 1523.46 99.73%

{4,4}{2,3} 72.02 72.16 99.81%
{2,1,2,1,0,2}{1,1,0,1,2,1} 1024.68 1029.76 99.51%

{2,1,2,1,2,2,1,1}{1,2,2,1,2,0,2,2} 9463.51 9515.9 99.45%
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To highlight the accuracy of the proposed analytical model for computing the PMF of error
values, Figure 18 presents a comparison between PMF of error values generated using the proposed
analytical model and PMF of error values generated using exhaustive simulation for 4 different
16-bit HBAA configurations. The configurations are composed of 4-bit sub-adder blocks, i.e., for all
the configurations 𝐻 = 4. The PMFs shown in Figure 18 are composed of discrete impulses, where
each impulse defines the probability of the corresponding error value. The figure shows that for
each configuration, the PMF generated using the proposed analytical model is exactly the same as
the PMF generated using exhaustive simulations. Therefore, it can be concluded that the proposed
analytical model is capable of providing accurate error estimates.

(a) (b)

(c) (d)

Fig. 18. Comparison of the proposed analytical model and exhaustive simulations for generating PMF of error
values for 4 different 16-bit HBAA configurations which have 4-bit sub-blocks (𝐻 = 4): (a) HBAA{[2,2],[0,0]} (b)
HBAA{[2,2],[2,2]} (c) HBAA{[2,2],[3,3]} (d) HBAA{[2,1,2],[3,2,2]}. The results are generated assuming uniform
input distribution.

Similar to Table 7, Table 8 presents MED values computed using the proposed analytical model
and Monte Carlo simulations for 6 different randomly selected 32-bit HBAA configurations. For
this analysis, we performed Monte Carlo simulations using 10 million randomly generated input
combinations as well as using 1 billion randomly generated input combinations. The table also
presents the accuracy of the proposed analytical model in comparison to the 1 billion combinations
based Monte Carlo simulations. The results show that for all the presented configurations the
analytical model generates fairly accurate error estimates, i.e., on average 99.52% accurate. The
table also highlights that the results generate using 10 million combinations based Monte Carlo
simulations and the results generated using 1 billion combinations based Monte Carlo simulations
are approximately the same, and therefore, Monte Carlo simulation using 10 million randomly
selected input combinations can be used, as they generate good-enough estimates and require just
4.2 minutes per configuration to complete compared to around 6 hours for 1 billion combinations
based simulations.

6.3 Hardware Metrics and Accuracy of Proposed Hardware Estimation Models
For hardware metrics, we mainly considered area, delay, and power for comparing different ap-
proximate adder configurations. We used Verilog HDL to describe our proposed as well as other
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Table 8. Accuracy of our proposed analytical model for computing MED of 32-bit HBAA configurations

32-bit Adder Configuration

MED computed
using Monte Carlo
simulation with 10
million combinations

MED computed
using Monte Carlo
simulation with 1

billion combinations

Analytical Model

Accuracy of Monte
Carlo simulation
with 1 billion

combinations results
compared to the
analytical model

results

HBAA

{[4,4,4,2][0,0,0,2]} 4095.66 4095.59 4095.75 99.99%
{[4,2][0,2]} 15.75 15.75 15.75 100%
{[4,1][0,3]} 7.7543 7.75 7.75 100%

{[4,4,4,1][0,0,0,3]} 2048.23 2047.78 2047.75 99.99%
{[4,4,4,2][0,0,0,3]} 3071.39 3071.98 3071.875 99.99%

{[4,4,4,4,1][0,0,0,0,3]} 32750.77 32766.54 31867.75 97.18%

state-of-the-art approximate adders (i.e., GeAr, SARA, and BCSA [8]). To evaluate the accuracy
of our proposed hardware estimation models, we synthesized different HBAA, GeAr, SARA, and
BCSA configurations using Synopsys Design Compiler and computed their area and delay values.
For synthesis, we used Nangate 15𝑛𝑚 FinFET Open Cell Library with 0.8𝑉 operating voltage and
25𝑜𝐶 temperature. To obtain the power values of adders, we used ModelSim tool to generate the
VCD files and then used Synopsys PrimeTime to generate the final power values. To generate VCD
files, we injected 10 million randomly selected inputs into the netlist of synthesized adders and
stored the internal activity information in VCD file format.

Tables 9, 10, and 11 present area, delay and power values for different 16-bit HBAA, GeAr, SARA
and BCSA configurations. The tables include both the values computed using Synopsys Design
Compiler and the values computed using the proposed hardware estimation model. The results
show that the proposed hardware estimation models offer highly accurate results, i.e., on average
94.29% accuracy for area estimates, 94.34% for delay estimates, and 90.70% for power estimates. We
also performed a similar comparison for 32-bit approximate adder configurations. Tables 12, 13,
and 14 present the area, delay, and power values for different 32-bit HBAA, GeAr, SARA and BCSA
configurations. The results show that the proposed hardware estimation model offers on average
94.38% accuracy for area, 92.31% for delay, and 91.14% for power estimates.

6.4 Comparison of HBAA with State-of-the-art Approximate Adders
In this section, we compare the HBAA with state-of-the-art approximate adders, i.e., GeAr, SARA,
BCSA,𝑄𝑢𝐴𝑑𝑜 and conventional LPAAs [11][2] configurations shown in Table 1. For the comparison,
we computed all the hardware metrics, i.e., area, delay, and power, of all HBAA and other state-of-
the-art approximate adder configurations using our proposed hardware estimation models. For
error metrics such as MED, we used our proposed analytical model for all HBAA configurations and
Monte Carlo (MC) simulations for all GeAr, SARA, BCSA, 𝑄𝑢𝐴𝑑𝑜 , and conventional LPAA [11][2]
configurations. Note that we used exhaustive simulations with 216 input combinations for 8-bit
approximate adders.
Different approximate adders offer different accuracy-efficiency trade-offs. Based on the user

requirements, a design space exploration is usually required to find optimal configurations that offer
the best output quality while meeting the user-defined resource constraints. Figures 19, 20, and 21
show the design points for 8-bit and 16-bit approximate adders composed of equal-sized sub-adders.
It can be observed from the figures that in all cases, i.e., area vs. MED, delay vs. MED, power
vs. MED, and delay vs. NMED, HBAA configurations offer the best quality-efficiency trade-off
compared to GeAr, SARA, BCSA, 𝑄𝑢𝐴𝑑𝑜 and conventional LPAA configurations. However, in the
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Table 9. Accuracy of our proposed estimation model for computing the Area of 16-bit approximate adders

16-bit Adder Configuration

Area Estimate using
the proposed

analytical Model
(𝜇𝑚2)

Area computed using
Synopsys Design
Compiler (𝜇𝑚2)

Accuracy of area
estimation model

HBAA

{1,4,2,3}{4,0,3,1} 8.96 9.93 90.23%
{4,2}{0,2} 13.15 12.87 97.82%

{2,2,2,1}{0,0,0,1} 12.05 11.59 96.03%
{6}{3} 13.58 14.27 95.16%

{2,1,2,1,0,2,1,1}{1,1,2,1,2,1,2,2} 14 13.26 94.42%
{3,2,3}{2,2,1} 10.8 11.37 94.99%
{4,4}{0,2} 12.18 13.05 93.33%
{5,2}{4,4} 13.16 12.34 93.35%

{2,1,2,1,0,2}{0,0,0,1,2,1} 11.2 10.34 91.68%
{2,2,2,2,1,2,2}{1,0,2,1,2,2,1} 12.32 11.62 93.98%

{2,3}{0,4} 14.84 14.36 96.66%
{1,1,2,0,0,2}{0,1,1,1,2,0} 13.44 12.86 95.49%

{4,4}{2,3} 14.54 15.28 95.16%
{2,1,2,1,0,2}{1,1,0,1,2,1} 12.88 12.34 95.62%

{2,1,2,1,2,2,1,1}{1,2,2,1,2,0,2,2} 13.44 12.27 90.46%

SARA
SARA2 23.52 20.86 87.25%
SARA4 25.48 23.12 89.79%
SARA8 22.96 24.36 94.25%

GeAr
{16,4,0} 17.36 16.23 93.04%
{16,8,0} 19.32 17.5 89.60%
{16,6,4} 25.2 24.42 96.81%

BCSA
BCSA2 22.82 20.56 89.01%
BCSA4 21.7 22.15 97.97%
BCSA8 21.14 23.43 90.23%

case of delay vs. ER, some of the state-of-the-art approximate adder configurations offer better
results compared to HBAA. Note that, in the most of the cases, metrics that are a measure of error
magnitude are considered more important than simple error rate. Thus, from this analysis, it can be
concluded that HBAA introduces additional configurations in the approximate adder design space that
can offer better results compared to state-of-the-art approximate adder designs.

6.5 Execution Time for Design Space Exploration using the Proposed Analytical Models
We have also compared the execution time of the proposed analytical model for computing
MED with Monte Carlo (MC) simulations and state-of-the-art error estimation methods such
as PEMACx [14] and Roy et al. [27]. For Monte Carlo simulations in this section, we used 216
randomly selected input combinations. The execution time of all the above-mentioned error esti-
mation methods for different adder bit-widths (i.e., 8-bit to 20-bit) is shown in Figure 22. It can
be observed from the figure that our proposed analytical model is faster than the other existing
analytical models for computing the error estimates. For example, for 16-bit HBAA, our proposed
model is about 6 times and 21 times faster than PEMACx [14] and Roy et al. [27], respectively.

The overall design space exploration time to find the best HBAA configuration for a given set of
user-defined resource constraints depends on the bit-width of the adder. Figure 23 presents the
time required to find the best HBAA configuration at different bit-widths. The figure shows that
with the increase in bit-width the execution time increases significantly. This is mainly because, as
the adder size increases, the number of sub-adders increases and the number of combinations of
different sub-adder configurations increases exponentially. Therefore, the speed of our proposed
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Table 10. Accuracy of our proposed estimation model for computing the Delay of 16-bit approximate adders

16-bit Adder Configuration

Delay Estimate using
the proposed

analytical Model
(𝑛𝑆𝑒𝑐)

Delay computed
using Synopsys
Design Compiler

(𝑛𝑆𝑒𝑐)

Accuracy of delay
estimation model

HBAA

{1,4,2,3}{4,0,3,1} 12.6 11.83 93.49%
{4,2}{0,2} 30.24 31.16 97.05%

{2,2,2,1}{0,0,0,1} 35.2 38.41 91.64%
{6}{3} 30.24 31.05 97.39%

{2,1,2,1,0,2,1,1}{1,1,2,1,2,1,2,2} 7.56 7.93 95.33%
{3,2,3}{2,2,1} 12.6 13.94 90.39%
{4,4}{0,2} 30.24 31.41 96.28%
{5,2}{4,4} 10.7 11.34 94.36%

{2,1,2,1,0,2}{0,0,0,1,2,1} 20.16 18.57 91.44%
{2,2,2,2,1,2,2}{1,0,2,1,2,2,1} 12.6 11.52 90.63%

{2,3}{0,4} 35.28 34.18 96.78%
{1,1,2,0,0,2}{0,1,1,1,2,0} 16.38 16.94 96.69%

{4,4}{2,3} 32.76 32.89 99.60%
{2,1,2,1,0,2}{1,1,0,1,2,1} 20.16 21.67 93.03%

{2,1,2,1,2,2,1,1}{1,2,2,1,2,0,2,2} 7.56 6.94 91.07%

SARA
SARA2 10.08 12.79 78.81%
SARA4 17.64 21.46 82.20%
SARA8 27.72 30.32 91.42%

GeAr
{16,4,0} 12.6 13.76 91.57%
{16,8,0} 22.68 23.21 97.72%
{16,6,4} 27.72 27.23 98.20%

BCSA
BCSA2 12.6 11.29 88.40%
BCSA4 20.16 19.76 97.98%
BCSA8 25.2 28.2 89.36%

algorithm reduces significantly due to the exponential increase in the number of computations and
memory size. To understand this exponential increase in the number of sub-adder combinations,
consider an 𝑁 -bit HBAA constructed using 𝐻 -bit sub-adders. Given the architecture of HBAA,
each approximate sub-adder can have𝐶𝐻 = (𝐻 +1) × (𝐻 +1) − 1 different configurations. Moreover,
given that an 𝑁 -bit HBAA has in total 𝑘 = [𝑁 /𝐻 ] sub-adders and if 𝑖𝑡ℎ sub-adder is approximate
then all the less significant 𝑖 − 1 sub-adders should also be approximate, we get total approximate
configurations for an 𝑁 -bit HBAA with 𝐻 -bit sub-adders equals

∑𝑘
𝑖=1𝐶

𝑖 . Thus, it can be said that
(in general) the total number of configurations of HBAA increases exponentially with the increase
in the number of sub-adders and the size of the adder.

7 CONCLUSION
In this paper, we present a new class of energy-efficient approximate adders, namely Heterogeneous
Block-based Approximate Adders (HBAA), and propose a generic configurable adder model that
can be configured to represent a particular HBAA configuration. An HBAA, in general, is composed
of heterogeneous sub-adder blocks of equal length, where each sub-adder can be an accurate or
approximate sub-adder and have a different configuration. The sub-adders are mainly approximated
through inexact logic and carry truncation. To enable efficient design space exploration based on
user-defined constraints, we proposed an analytical model to efficiently compute the PMF of error
and other error metrics, e.g., MED, ER, and NMED of HBAAs. Moreover, we present hardware
estimation models for the computing area, delay, and power of HBAAs. Our results showed that
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Table 11. Accuracy of our proposed estimation model for computing the Power of 16-bit approximate adders

16-bit Adder Configuration

Power Estimate
using the proposed
analytical Model

(𝜇𝑊 )

Power computed
using Synopsys
PrimeTime (𝜇𝑊 )

Accuracy of power
estimation model

HBAA

{1,4,2,3}{4,0,3,1} 1224.96 1468.34 83.42%
{4,2}{0,2} 4085.9 4275.3 95.57%

{2,2,2,1}{0,0,0,1} 4440.4 3881.96 85.61%
{6}{3} 4219.5 4267.28 98.88%

{2,1,2,1,0,2,1,1}{1,1,2,1,2,1,2,2} 1218 1127.67 91.99%
{3,2,3}{2,2,1} 1476.52 1756.34 84.07%
{4,4}{0,2} 3784.5 4473.2 84.60%
{5,2}{4,4} 1552.52 1694.72 91.61%

{2,1,2,1,0,2}{0,0,0,1,2,1} 2366.4 2542.3 93.08%
{2,2,2,2,1,2,2}{1,0,2,1,2,2,1} 1684.32 1765.43 95.41%

{2,3}{0,4} 5348.76 5423.7 98.62%
{1,1,2,0,0,2}{0,1,1,1,2,0} 2338.56 2673.21 87.48%

{4,4}{2,3} 4879.21 5582.3 87.40%
{2,1,2,1,0,2}{1,1,0,1,2,1} 2721.36 2957.42 92.02%

{2,1,2,1,2,2,1,1}{1,2,2,1,2,0,2,2} 1169.28 1069.67 90.69%

SARA
SARA2 2630.88 3251.2 80.92%
SARA4 4750.2 4896.3 97.02%
SARA8 6563.28 5649.4 83.82%

GeAr
{16,4,0} 4746.72 4237.9 87.99%
{16,8,0} 5702.85 5993.8 95.15%
{16,6,4} 7203.6 7290.1 98.81%

BCSA
BCSA2 3970.68 4164.2 95.35%
BCSA4 4584.9 4235.7 91.76%
BCSA8 5517.54 4988.2 89.39%

Table 12. Accuracy of our proposed estimation model for computing the Area of 32-bit approximate adders

32-bit Adder Type Configuration

Area Estimate using
the proposed

analytical Model
(𝜇𝑚2)

Area computed using
Synopsys Design
Compiler (𝜇𝑚2)

Accuracy of area
estimation model

HBAA
{2,2,2,2,2,2,1}{0,0,0,0,0,0,0,1} 27.23 25.02 91.17%

{4,4,4,2}{0,0,0,2} 30.19 28.8 95.17%
{8,4}{0,4} 31.49 30.43 96.52%

SARA
SARA2 71.73 65.86 91.09%
SARA4 65.71 62.1 94.19%
SARA8 49.65 50.81 97.72%

GeAr
{32,2,2} 40.54 38.1 93.60%
{32,4,4} 56.27 53.34 94.51%
{32,8,2} 69.86 66.05 94.23%

BCSA
BCSA2 41.23 38.69 93.43%
BCSA4 44.16 45.52 97.01%
BCSA8 53.47 56.9 93.97%

compared to the design space of existing approximate adders, HBAA provides additional design
points that offer a better quality-efficiency trade-off.
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Table 13. Accuracy of our proposed estimation model for computing the Delay of 32-bit approximate adders

32-bit Adder Type Configuration

Delay Estimate using
the proposed

analytical Model
(𝑛𝑆𝑒𝑐)

Delay computed
using Synopsys
Design Compiler

(𝑛𝑆𝑒𝑐)

Accuracy of delay
estimation model

HBAA
{2,2,2,2,2,2,1}{0,0,0,0,0,0,0,1} 44.56 48.67 91.56%

{4,4,4,2}{0,0,0,2} 60.28 61.87 97.43%
{8,4}{0,4} 65.38 63.27 96.67%

SARA
SARA2 39.63 41.15 96.31%
SARA4 46.27 49.65 93.19%
SARA8 65.49 70.97 92.28%

GeAr
{32,2,2} 13.65 14.71 92.79%
{32,4,4} 18.27 20.85 87.63%
{32,8,2} 23.94 25.63 93.41%

BCSA
BCSA2 20.21 18.45 90.46%
BCSA4 26.84 23.38 85.20%
BCSA8 24.76 27.29 90.73%

Table 14. Accuracy of our proposed estimation model for computing the Power of 32-bit approximate adders

32-bit Adder Type Configuration

Power Estimate
using the proposed
analytical Model

(𝜇𝑊 )

Area computed
using Synopsys
PrimeTime (𝜇𝑊 )

Accuracy of power
estimation model

HBAA
{2,2,2,2,2,2,1}{0,0,0,0,0,0,0,1} 11568.4 12675.7 91.26%

{4,4,4,2}{0,0,0,2} 18326.15 19876.5 92.20%
{8,4}{0,4} 20699.43 22316.9 92.75%

SARA
SARA2 28931.34 31427.6 92.06%
SARA4 30807.04 34697.2 88.79%
SARA8 32690.47 38246.8 85.47%

GeAr
{32,2,2} 7984.2 8561.2 93.26%
{32,4,4} 10840.01 11864.1 91.37%
{32,8,2} 16249.15 17649.2 92.07%

BCSA
BCSA2 9138.335 10264.3 89.03%
BCSA4 12240.13 13468.4 90.88%
BCSA8 13723.6 15237.1 90.07%
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