
FingerFaker: Spoofing Attack on COTS Fingerprint Recognition
Without Victim’s Knowledge

Yijie Shen†

Zhejiang University
ZJU-Hangzhou Global Scientific and

Technological Innovation Center
Hangzhou, China

shenyijie@zju.edu.cn

Zhe Ma†

Zhejiang University
ZJU-Hangzhou Global Scientific and

Technological Innovation Center
Hangzhou, China

mazhe1013@zju.edu.cn

Feng Lin∗

Zhejiang University
ZJU-Hangzhou Global Scientific and

Technological Innovation Center
Hangzhou, China
flin@zju.edu.cn

Hao Yan
Zhejiang University
Hangzhou, China

yanhao0366@zju.edu.cn

Zhongjie Ba
Zhejiang University
Hangzhou, China

zhongjieba@zju.edu.cn

Li Lu
Zhejiang University
Hangzhou, China
li.lu@zju.edu.cn

Wenyao Xu
University at Buffalo

Buffalo, New York, USA
wenyaoxu@buffalo.edu

Kui Ren
Zhejiang University
Hangzhou, China

kuiren@zju.edu.cn

ABSTRACT
Fingerprint recognition has been a vital security guard for various
applications whose vulnerability has been explored by different
works. However, previous works on spoofing fingerprint recogni-
tion rely on prior knowledge (e.g., photos and minutiae) of the target
fingerprint, which fails to implement in practical scenarios. In this
paper, we design a fingerprint spoofing attack, namely FingerFaker,
to explore the vulnerability of fingerprint recognition, which can
spoof automated fingerprint recognition systems (AFRSs) without
prior knowledge of target fingerprints. Specifically, we propose a
novel concept of “pseudo-minutiae-set" as an effective optimization
object and design a two-stage scheme to optimize “pseudo-minutiae-
set" leveraging a two-factor evolutionary strategy. In addition, we
use a GAN-based training strategy with a minutiae loss function to
pre-train a fingerprint generator to map a “pseudo-minutiae-set"
into a fingerprint. We use 6342 fingerprint images to verify the per-
formance of FingerFaker on spoofing the open-source AFRS, which
shows a high attack success rate (ASR) of 97.78%. Meanwhile, we
conduct a realistic case study on commercial off-the-shelf (COTS)
AFRS, where FingerFaker also shows 94.22% ASR. Finally, we ex-
plore the impact of different conditions to guide the attack and
propose countermeasures to mitigate the harm.

†These authors contributed equally to this work.
∗Feng Lin is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’23, November 12–17, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0414-7/23/11. . . $15.00
https://doi.org/10.1145/3625687.3625783

CCS CONCEPTS
• Security and privacy→ Biometrics.

KEYWORDS
Fingerprint recognition, spoofing attack, no prior-knowledge

ACM Reference Format:
Yijie Shen, Zhe Ma, Feng Lin, Hao Yan, Zhongjie Ba, Li Lu, Wenyao Xu,
and Kui Ren. 2023. FingerFaker: Spoofing Attack on COTS Fingerprint Recog-
nition Without Victim’s Knowledge. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’23), November 12–17, 2023, Istanbul, Turkiye.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3625687.3625783

1 INTRODUCTION
Automated fingerprint recognition systems (AFRS) have gained
popularity in various applications such as mobile payments and
access control, as they provide a secure means of user verification
using their unique fingerprints. The security of fingerprinting is
of utmost importance due to the use of commercial off-the-shelf
(COTS) AFRS in safeguarding critical applications.

Previous works have shown the latent risk of AFRSs. One com-
mon method of attack involves stealing fingerprints to bypass AFRS
security measures, which has been reported as successful in Ap-
ple’s TouchID [61] sensors and Samsung S10 smartphones [38].
However, this type of attack has limitations since adversaries must
physically follow victims and obtain traces of their fingerprints [40].
Additionally, fingerprints are more subtle biometrics than other
types such as face and voice, making stealing them a high-cost
and inefficient process. Another category of attack involves recon-
structing fingerprints from minutiae (See Section 3) that can be
obtained through invading fingerprint template databases. Nev-
ertheless, these databases are protected by multiple safeguards,
including malicious intrusion detection [4, 18, 50] and encryption
circuits [7, 28], which limit such attacks.

167

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625687.3625783&domain=pdf&date_stamp=2024-04-26

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

Eve

Cloud

Hi, Bob!

Access
Terminal

Social Account Payment Account

Access Control

Figure 1: Eve utilizes the fake fingerprint to bypass finger-
print recognition on the cloud to execute high-risk opera-
tions with Bob’s identity.

In this study, we aim to examine the security of fingerprinting
and explore potential vulnerabilities through practical experimen-
tation. Specifically, we pose the question: How can synthetic
fingerprints be generated without access to the target’s fin-
gerprint/minutiae? Adversarial attacks using techniques such
as adversarial examples [14] and generative adversarial networks
(GANs) [54] have successfully generated synthetic biometrics for
spoofing other biometric systems such as facial [63, 64] and vo-
cal recognition [74]. As such, adversarial attacks hold promise in
generating synthetic fingerprints without access to the target’s
fingerprint/minutiae. However, prior attempts [10] to use GANs
for fake fingerprint generation failed to effectively constrain the
generated fingerprint to a specific target, thereby rendering the
attack unsuccessful in spoofing AFRSs.

Inspired by previous works, we attempt to generate fake finger-
prints under a gray-box setting. However, we encounter three core
challenges.Firstly, we must address the challenge of querying the
AFRS using a feature set. Prior research [59] optimized the feature
set by querying the template of the target fingerprint using evolu-
tionary algorithms. However, this approach is impractical as the
AFRS accepts a fingerprint as input, not a feature set. To overcome
this, we propose a two-stage scheme that includes a feature-to-
fingerprint mapping stage and a feature optimization stage. The
former stage maps the feature set into a fingerprint to spoof the
AFRS, while the latter optimizes the feature set by querying the
target AFRS with the generated fingerprint. Secondly, we need to
design an appropriate form of the optimization object (i.e., the fea-
ture set). Our experiments showed that using a random vector as
the optimization object in the feature optimization stage [10] is not
effective for generating fake fingerprints. Hence, we need a well-
designed optimization object. Thirdly, it’s essential to recognize
that our feature set is inherently incomplete when compared to the
feature set of the target fingerprint. This is primarily due to the
fact that critical information, such as the quantity of minutiae, re-
mains unknown during our attack. As demonstrated in Section 8.7,
the state-of-the-art generator that synthesizes a fingerprint using
whole minutiae performs poorly in our spoofing attack. Therefore,
we need an advanced generator to achieve the mapping stage.

We have designed an end-to-end spoofing attack called Finger-
Faker that utilizes our two-stage scheme to create high-resolution
fake fingerprints and spoof AFRSs. Our approach involves two
main components. First, we introduce a novel concept of a "pseudo-
minutiae-set" to replace random vectors in the optimization object
for generating effective fake fingerprints. To optimize it, we use

a two-factor evolutionary strategy based on non-dominated sort-
ing [22] and genetic operators during the feature optimization stage.
Second, we develop a fingerprint generator capable of mapping the
"pseudo-minutiae-set" to the fingerprint and train it using a GAN-
based strategy with a minutiae loss for pre-training. We summarize
our contributions as follows:
•We conduct the investigation of spoofing COTS AFRSs without
the victims’ fingerprints and propose an end-to-end spoofing attack,
namely FingerFaker. Specifically, we propose a two-stage scheme
to generate fake fingerprints under the gray-box setting without
any victims’ information.
•We propose the concept of “pseudo-minutiae-set" as the optimiza-
tion object in the two-stage scheme. Based on such an object, we
design a two-factor evolving strategy and a GAN-based fingerprint
generator with a well-designed loss function to work together to
generate fake fingerprints.
•We conduct comprehensive experiments. The attack success rate
(ASR) achieves 97.78%, which is competitive compared with the
state-of-the-art works in generating fake fingerprints with victims’
prior knowledge.

2 THREAT MODEL
We consider a scenario where an adversary, hereafter Eve, attempts
to bypass AFRSs in the cloud to execute a high-risk operation (e.g.,
payment) with the identity of the victim, hereafter Bob. Eve utilizes
FingerFaker to generate a high-resolution fake fingerprint of Bob.
After that, Eve launches fingerprint recognition in her device and
sends the fake fingerprint to the AFRS through its API to break the
security guard and execute the operation. In the past, the reliance
on Bob’s fingerprint/minutiae is the main issue of a fingerprint
spoofing attack. To overcome the obstacle, Eve uses the novel con-
cept of “pseudo-minutiae-set" in FingerFaker. To clarify the capacity
of Eve, we consider the following assumptions:
Gray-box setting: Eve’s focus lies on the gray-box setting where she
can only access the authentication results, namely the decisions and
match scores. In this setting, the AFRS decides by comparing the
match score against an empirical threshold. This approach is rea-
sonable since various suppliers (e.g., VeriFinger [52], SecuGen [62],
CloudABIS [19], Innovatrics [35], Bio-Key [5], and Aware [8]) of
AFRS specify that their application programming interface (API)
will return match scores. Additionally, it is estimated that the AFRS
products distributed by these vendors have been deployed across
over 170 countries and regions, serving a vast user base exceed-
ing 100 million individuals [9, 20, 53]. In addition, we refrain from
making any assumptions regarding the internal implementation of
the AFRS system, whether it relies on traditional minutiae match-
ing(e.g., Bozorth3 [55] for open-source AFRS) or deep learning(e.g.,
VeriFinger [52] for COTS AFRS)).
Ability to query: We assume that Eve can query the AFRS. As a
countermeasure against security threats, AFRSs implement a tol-
erance value between two successful authentications. Specifically,
to ensure a seamless user experience, the allowable number of at-
tempts typically ranges from 5 to 50, depending on the manufacturer
and application [32]. Furthermore, successful user authentication
resets the count of failed attempts. Based on this setup, Eve can

168

FingerFaker: Spoofing Attack on COTS Fingerprint Recognition Without Victim’s Knowledge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

implement attacks by spreading queries to different days. Addition-
ally, the research [16] indicates that even in mature systems like
Android, Eve can exploit system vulnerabilities to perform unre-
stricted queries. In our study, we concentrate on devising a method
to generate high-resolution fake fingerprints while assuming that
Eve has query capacity according to the aforesaid solutions. Ex-
ploring ways to further enhance the efficiency of querying AFRS is
intriguing. In this paper, we only provide a brief statement regard-
ing its feasibility without delving into further research.
No high-precision fingerprint/minutiae: Eve cannot obtain high-
precision fingerprint/minutiae from Bob, as she has no prior knowl-
edge of him. Bob’s vigilance prevents Eve from accessing his finger-
print/minutiae directly, and he takes precautions to remove traces
of his fingerprints from touched surfaces to prevent leakage. Also,
fingerprints are a more subtle biometric modality than others, un-
like face and voice, making them harder for Eve to access by taking
photos.
Non-invasiveness: Eve is unable to breach the software or hardware
of AFRSs to modify or steal Bob’s fingerprint due to the imple-
mentation of multiple security measures ranging from software to
hardware [4, 28].

3 FINGERPRINTING PRELIMINARIES
There are various approaches to implementing fingerprint recog-
nition (i.e., AFRSs), which can be mainly divided into two types:
(1) feature-matching approaches [36] and (2) image-matching ap-
proaches (by deep learning) [72]. Due to its lightweight and effec-
tiveness, the former type is more widely used in real life. Therefore,
we focus on feature-matching approaches to explore the end-to-end
fingerprinting spoofing attack, which can achieve an attack with a
practical impact.

3.1 Minutiae description
A fingerprint is regarded as the combination of ridges and valley
patterns that can be divided into bifurcation and ending. Conven-
tional approaches [36] consider a two-level model, as shown in
Figure 2, which consists of level-1 (i.e., orientation map, ridge fre-
quency map, and enhanced map) and level-2 (i.e., minutiae) features.
Meanwhile, minutiae are the most common features used to de-
scribe fingerprints in COTS AFRSs, and other features are usually
used to assist the AFRS in extracting minutiae. In practice, there are
various methods (e.g., MINDTCT [55] and VeriFinger [52]) that can
extract minutiae from fingerprints, and they, in general, involve two
main modules: image enhancement and feature extraction, where
the image enhancement module improves the clarity of the pattern
of the fingerprint for stable feature extraction by different steps
(e.g., orientation calculation, ridge frequency calculation, Gabor
filtering), and the feature extraction module processes the enhanced
image to obtain features (i.e., minutiae) to represent the fingerprint
for matching [33].

3.2 Fingerprint matcher
The fingerprint matcher determines the effectiveness, robustness,
and reliability of the recognition result, which is a significant dis-
tinction between AFRSs. To verify the performance of FingerFaker

(a) (c) (e)(b) (d)

Figure 2: Fingerprint features: (a) orignal; (b) orientation; (c)
ridge frequency; (d) enhanced; (e) minutiae.

in both research and commercial scenarios, we utilize an open-
source matcher and a COTS matcher in this paper. We first intro-
duce an open-source fingerprint matcher, namely Bozorth3, from
the national institute of standards and technology (NIST) due to
its widespread use in previous works [44, 48]. It compares two
fingerprints in three main steps [68]: (1) intra-fingerprint compar-
ison, (2) inter-fingerprint comparison, and (3) traverse. First, the
matcher calculates the distance and angular difference between
each pair of two minutiae in the same fingerprint and records the
result in a table. Second, the matcher looks for compatible entries
whose difference is within the threshold between the two tables
(i.e., tables of the registered fingerprint and tested one). Finally,
the matcher traverses and clusters compatible table entries into
clusters to calculate the match score. A higher match score means
a higher similarity between two fingerprints. In addition, we in-
troduce a COTS fingerprint matcher, namely VeriFinger, due to its
superior performance compared with others [52]. Based on our
results, FingerFaker can effectively spoof the AFRS achieved by the
open-source or the COTS fingerprint matcher, which shows the
generalization of FingerFaker.

4 PSEUDO-MINUTIAE-SET
In this section, we defined a novel concept, i.e., pseudo-minutiae-
set, which is formally consistent with the minutiae but only has
partially matched features of the target fingerprint, which gets by
optimization. Based on Section 8.7, it fails to optimize a random
vector to generate effective fake fingerprints to spoof AFRSs. In-
spired by previous works on the reconstruction of fingerprints, we
attempt to optimize an object consisting of minutiae to approach
the minutiae of the target fingerprint to generate effective fake
fingerprints. However, it is impossible to totally recover the minu-
tiae of the target fingerprint due to the large candidate space [76]
caused by multidimensional values (e.g., the number of minutiae,
the x-location, the y-location, and the orientation). In particular,
the number of minutiae dramatically increases the size of the candi-
date space, where the candidate space will be searchable if we can
limit the number of minutiae [15]. To this end, we proposed the
concept of “pseudo-minutiae-set" to overcome the problem by the
following characteristics of fingerprint recognition: it is a fact that
the different scanning of the same fingerprint will have different
minutiae, which forces the AFRS to have a tolerance for the testing
fingerprint, i.e. when partial minutiae are consistent, the conclusion
can be drawn that the testing and registered fingerprints are the
same ones. Hence, it is possible to find a proper fixed size to con-
struct a “pseudo-minutiae-set" to replace real minutiae, which can
satisfy the requirement of generating effective fingerprints. Based

169

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

Figure 3: Match rate under
different number of reversed
minutiae.

（a）

（b）

（c） 32

32
3

3

16

16
3

3

32

16
3

3

Figure 4: Related area of a
minutia when it is in differ-
ent locations.

on this insight, we conduct a verification experiment to prove the
feasibility of finding a fixed size for the “pseudo-minutiae-set".
Setup: We randomly select 5800 fingerprints from our dataset(as
shown in Table 1) and use MINDTCT to extract minutiae from such
fingerprints. For each fingerprint, we randomly reserve 𝑛 minutiae
and match the reserved minutiae with the original one by Bozorth3
with a threshold corresponding to a 0.01% false match rate (details
in Section 8), where we define the match rate as the following:

𝑀𝑎𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 =
𝑆𝑀𝐴

𝑇𝐴
, (1)

where 𝑆𝑀𝐴 is the number of successful attempts, and 𝑇𝐴 is the
number of total attempts.

We set the number of reserved minutiae 𝑛 as 11 and increase the
number with the step of one until it reaches 35.
Insights: As shown in Figure 3, the match rate increases with
the number of reserved minutiae and can achieve 100% when the
number achieves 24. It indicates that AFRSs have a tolerance of
loss for minutiae, and the lower limit of the number is 24 in our
experiment. Based on this result, we design “pseudo-minutiae-set"
that includes 30 quadruple tuples in the form of minutia (i.e.,
x-y location, orientation, and type) to optimize during the attack.
In fact, the number is a hyperparameter, which we set as 30 to offer
a certain level of redundancy (See Section 10 for details).

5 MAPPING STRATEGY: DESIGN OF LOSS
FUNCTION

Previous works [11–13, 44]focus on mapping whole minutiae into
fingerprints. However, we can only acquire a "pseudo-minutiae-set"
in the attacking, which leads to poor performance of conventional
approaches (See Section 8.7). Thus, we will review the process
of minutiae calculation from a fingerprint image and propose a
mapping strategy to generate fake fingerprints leveraging a special
minutiae loss.

5.1 Minutiae Calculation
A minutia is a quadruple tuple that consists of x-y locations, orien-
tation, and type.
Calculating orientation: To obtain the orientation of the minu-
tiae, AFRS needs to calculate the overall orientation field. First, a
3×3 Sobel operator [37] is constructed to calculate the gradient
𝐺𝑥 (𝑥,𝑦) and 𝐺𝑦 (𝑥,𝑦) in x and y directions of all points. Second,
the fingerprint image will be partitioned into 16 × 16 blocks and
calculate the second-order gradients of the centroid of the block

by the following formulations:

𝐺𝑥𝑦 =
16∑︁
𝑢=1

16∑︁
𝑣=1

2𝐺𝑥 (𝑢, 𝑣)𝐺𝑦 (𝑢, 𝑣), (2)

𝐺𝑥𝑥 =
16∑︁
𝑢=1

16∑︁
𝑣=1

𝐺𝑥 (𝑢, 𝑣)2, (3)

𝐺𝑦𝑦 =
16∑︁
𝑢=1

16∑︁
𝑣=1

𝐺𝑦 (𝑢, 𝑣)2, (4)

where𝐺𝑥𝑦 ,𝐺𝑥𝑥 , and𝐺𝑦𝑦 are the second-order gradients of the cen-
troid of the block in different directions. Finally, we can represent
the orientation of the block 𝜃 with the following:

𝜃 =
1
2 𝑡𝑎𝑛

−1 (2𝐺𝑥𝑦
𝐺𝑥𝑥 −𝐺𝑦𝑦) +

𝜋

2 . (5)

The orientation of the minutia is equal to the orientation of the
block that contains them.
Calculating x-y location and type: To obtain reliable minutiae,
AFRSs need to remove noise in the fingerprint image. Hence, the
Gabor filter is employed to denoise each 16 × 16 block in previous
works by the following formulation [33]:

ℎ(𝑥,𝑦, 𝜃, 𝑓) = 𝑒𝑥𝑝 (−1
2 [
(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃)2

𝛿2
𝑥

+ (−𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃)
2

𝛿2
𝑦

] × 𝑒𝑥𝑝 [2𝜋 𝑗 𝑓 (𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃)],
(6)

where the 𝜃 is the orientation of the block, 𝑓 is the frequency of the
block, i.e., the reciprocal of the average distance between adjacent
extreme points of the block, 𝛿2

𝑥 and 𝛿2
𝑦 are empirical constants.

After all 16 × 16 blocks are processed by Gabor filters, the enhanced
fingerprint can be used to extract minutiae. Each point of the
enhanced fingerprint can be partitioned into a 3×3 matrix. The
centroid of the matrix is the testing point with the location of (𝑥,𝑦)
that is marked as 𝐴, and the surroundings are marked 𝐴1 to𝐴8. We
can formulate the sum of the differences of adjacent point-pairs in
such neighborhoods as 𝑐𝑛(𝐴) with the following formulation [6]:

𝑐𝑛(𝐴) =
8∑︁
𝑘=1
|𝐼𝐴(𝑘+1)𝑚𝑜𝑑 8 − 𝐼𝐴𝑘 |, (7)

where 𝐼𝑘 is the intensity, which is 0 or 1, on the enhanced fingerprint
image. When 𝑐𝑛(𝐴) = 2𝑜𝑟 6, the point can be regarded as a minutia.
In addition, when 𝑐𝑛(𝐴) = 2, the type of the minutia is ending,
otherwise it is bifurcation.

5.2 Transformation between Minutiae and
Fingerprint Image

A minutia is only related to a limited area (a 3×3 block) around
itself and 16×16 blocks where points of the 3×3 block are located.
Specifically, it, as shown in Figure 4 (a), is associated with a single
16×16 block when it is not positioned on the border of the block,
and it is associated with two and four blocks when it is on the
border and the corner of the block, as shown in Figure 4 (b) and (c),
respectively. Thus, we attempt to constrain the 32 × 32 block (it is
in) to design the loss function. Such a block’s left-top (𝑏𝑥 , 𝑏𝑦) can
be calculated by the followings:

𝑏𝑥 = (𝑚𝑥 − 1) − (𝑚𝑥 − 1)𝑚𝑜𝑑 16, (8)
𝑏𝑦 = (𝑚𝑦 − 1) − (𝑚𝑦 − 1)𝑚𝑜𝑑 16, (9)

170

FingerFaker: Spoofing Attack on COTS Fingerprint Recognition Without Victim’s Knowledge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Phase 1: Fingerprint Generator Pre-Training

Fingerprint

Loss&Back
propagation

Data Pre-
processing

Minutiae Label Map
Generator

Fingerprint
Generator

Multi-scale
Discriminator

Figure 5: FingerFaker generator pre-training.

where the 𝑚𝑥 and 𝑚𝑦 are the x and y locations of the minutiae.
The formulations above indicate that the optimization involves not
only the original values of the block points, but also their first and
second-order gradients. This insight prompts us to consider the
three-level information of such blocks. Consequently, we design a
loss function based on this idea to constrain the "pseudo-minutiae-
set" blocks. We provide a detailed description of the implementation
of this approach in Section 7.

6 ATTACK OVERVIEW
As shown in Figure 5 and Figure 6, FingerFaker focuses on spoofing
COTS AFRSs, which can be divided into two phases: (1) fingerprint
generator pre-training and (2) targeted attack. With the two phases,
FingerFaker can generate high-resolution fake fingerprints to by-
pass the COTS AFRS.
Fingerprint generator pre-training phase: As shown in Figure 5,
it includes four core modules: (1) data pre-processing, (2) minutiae
label map generator, (3) fingerprint generator, and (4) fingerprint
discriminator. First, FingerFaker pre-processes training data by a
series of operations (i.e., screen and segment). Second, it employs
MINDTCT to obtain the minutiae and orientation of pre-processed
fingerprints and use the minutiae label map generator to represent
them in a label map. Finally, GAN-based training is implemented on
the fingerprint generator with the discriminator and well-designed
loss functions to provide the generator.
Targeted attack phase: In this phase, the adversary attacks the
targeted victim in the COTS AFRS, leveraging FingerFaker with the
pre-trained fingerprint generator, as shown in Figure 6. It can be
further divided into two stages: (1) feature-to-fingerprint mapping
and (2) feature optimizing. The former stage generates fake finger-
prints and determines whether to optimize the features. Based on
non-dominated sorting and genetic operators, the latter stage uses
a two-factor evolutionary strategy to promote the iteration of a
“pseudo-minutiae-set" for generating a satisfactory fake fingerprint.

Phase2: Targeted Attack

Match score
> threshold

High-resolution
Fake fingerprint

Minutiae Label Map
Generator

Pre-trained
Fingerprint Generator

Orientation
Estimator

Genetic Operator Two-factor selection

Feature optimizing stage

Feature-to-fingerprint mapping stage

NFIQ2
AFRS

Figure 6: Targeted attack leveraging two-stage scheme.

…
×3 ×4

Fingerprint Generator

[3×3,1,1],
512

[3×3,1,1],
1024

[3×3,1,1],
1024

[3×3,1],
512

[3×3,1,1],
3

…

Block2Block1

Leaky
ReLUConv2DSPADE TanhUpsample Spectral

Normalization

[3×3,1,1],
512

Figure 7: GAN-based fingerprint generator.
First, the adversary randomly initializes a population of “pseudo-
minutiae-set" and sends it to the feature-to-fingerprint mapping
stage after processing by the genetic operators. Second, an orien-
tation estimator is employed to reconstruct the orientation of the
“pseudo-minutiae-set" in the population. Third, the minutiae label
map generator and pre-trained fingerprint generator work together
to generate fake fingerprints. Next, FingerFaker queries the AFRS
by the fake fingerprint and fetches its result and match score. If the
result is a failure, FingerFaker sends the match score, the quality (cal-
culated by a local quality evaluator, i.e., NIST finger image quality),
and the current population to the two-factor selection module and
repeats the above steps until the result is a success or the number
of iterations exceeds the upper limit. Finally, FingerFaker outputs
the fake fingerprint of the highest score in the population.

7 FINGERFAKER: ATTACK DESIGN
7.1 Fingerprint Generator Pre-Training
Data pre-processing: It is a fact that there is noise during finger-
print scanning. FingerFaker first uses a fingerprint quality evaluator,
i.e., NIST fingerprint image quality (NFIQ) 2 [55], to remove fin-
gerprint images whose quality is below 30. Second, FingerFaker
crops high-quality fingerprint images leveraging NIST fingerprint
segmentation (NFSEG) [55] and resizes them to 256 × 256. Finally,
FingerFaker describes the minutiae and orientation of these finger-
print images by an extractor (i.e., MINDTCT) due to its accessibility.
Minutiae label map generator: A three-channel label map,
namely a minutiae label map, is used to map the real minutiae
set/“pseudo-minutiae-set" into a proper form for training/calling
the GAN-based fingerprint generator. Specifically, it uses three
channels to label the location of minutiae, the orientation of minu-
tiae, and the orientation of the fingerprint. In the fingerprint genera-
tor pre-training phase, we provide the minutiae of the real minutiae
set and the orientation calculated by the real fingerprint to gener-
ate a minutiae label map. In the targeted attack phase, we provide
minutiae of the “pseudo-minutiae-set" and estimate the orientation
of the fingerprint by such minutiae. A minutiae label map generator
is designed in FingerFaker to translate pre-processed minutiae and
orientation into the minutiae label map. Specifically, given a minu-
tia set of the fingerprint image 𝑥 , let 𝑀𝑥 ∈ R𝐻×𝑊 ×3 be a minutiae
label map, where H, W and 3 are the height, width and number of
channels of the image. In order to obtain 𝑀𝑥 , we define 𝑉𝑥 to be
calculated as:

𝑉
𝑖, 𝑗
𝑥 =

{
𝑂𝑖 𝑗 , 𝜃𝑖 𝑗 , 𝑡𝑖 𝑗 𝑝𝑖 𝑗 is a minutia
𝑂𝑖 𝑗 , 0, 0 otherwise , (10)

where (𝑖, 𝑗) is the coordinate in the map, and 𝑝𝑖 𝑗 is the point of the
corresponding position. 𝑂𝑖 𝑗 is the orientation of the block, where

171

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

points of a 16 × 16 block share the same orientation. 𝜃𝑖 𝑗 ∈ [0, 180◦)
and 𝑡𝑖 𝑗 (i.e., 128 or 255) are the orientation and type of the minutia
at (𝑖, 𝑗). To obtain 𝑀𝑥 , we denote𝑂𝑖 𝑗 in 𝑀0

𝑥 as a line, i.e., when𝑂𝑖 𝑗
< 90◦, the generator draws a line between the lower left corner of
the 16 × 16 block and the boundary point (e.g., 11.25◦), otherwise it
draws between the lower right corner and the boundary point. If
the 𝜃𝑖 𝑗 and 𝑡𝑖 𝑗 are not 0, the 3 × 3 blocks centred of 𝑀1𝑖 𝑗

𝑥 / 𝑀2𝑖 𝑗
𝑥 are

filled with 𝜃𝑖 𝑗 and 𝑡𝑖 𝑗 , respectively.
Fingerprint generator: Inspired by the previous work [56], we
design the fingerprint generator based on spatially-adaptive denor-
malization (SPADE) layers. As shown in Figure 7, the generator con-
sists of three block 1, four block 2, and a three-channel output layer
with a spectral normalization layer, where block 1 and 2 are mainly
based on the module consisting of a SPADE layer, a LeakyReLU
layer, a spectral normalization layer and a two-dimensional convo-
lutional layer, hereafter base module. Block 1 contains two base
modules and an upsample layer, where the convolutional layer of
each base module has 3 × 3 convolution kernels with the stride
and the padding of 1 and 1024 output channels. Block 2 contains
two base modules in the main skeleton and a base module in the
short connection, and an upsample layer at the end, where 3 × 3
convolution kernels with the step of 1 are deployed in each base
module. Meanwhile, the output channel of the first block 2 is 512,
and the number of output channels of the latter block will become
half of the former one.
Multi-scale discriminators: Multi-scale discriminators contain
three discriminators with the same structure but operate at dif-
ferent scales [73]. Specifically, the fingerprints are downsampled
by a factor of 2 and 4 by an average pooling layer of 3x3 kernel
size with stride 2 to create images of 3 scales. Each discriminator
contains one block 1 and three block 2. Block 1 consists of a spectral
normalization layer [49], a two-dimensional convolutional layer,
and a LeakyReLU layer, where the convolutional layer has 4 × 4
convention kernels with the stride and padding of 2 and 64 output
channels. Block 2 compares block 1, adding an instance normaliza-
tion layer [71] before the LeakyReLU layer, where the convolutional
layer has 4 × 4 convention kernels, whose strides are 2, 1 and 1,
with the padding of 2. The output channel of the first block 2 is 128,
and the output channels of the latter block will become double the
former one.
Minutiae adversarial loss: Based on the transformation in Sec-
tion 5, FingerFaker first divides the fingerprint area into 32×32
blocks that include minutiae. For each block, FingerFaker measures

Leaky
ReLU

Conv2D

Spectral
Normalization

Instance
Normalization

Average
Pooling

Multi-scale Discriminators

Discriminator

Discriminator

Discriminator

[4×4], 64
Block1

×3
…

[4×4], 128 [4×4], 1
Block2

[3×3]

[3×3]

Figure 8: GAN-based fingerprint discriminator.

Algorithm 1 Targeted Attack
Input: Thresholds for AFRS 𝑡 ;
Output: The high-resolution fake fingerprint ℎ;

1: Initialize 𝐾 ←70, 𝑁 ←30,𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ←0
2: Initialize 𝑐𝑢𝑟𝑃𝑜𝑝𝑚 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑁,𝐾)
3: //SBCrossover: Simulated Binary Crossover
4: //MLGenerator: Minutiae Label Generator
5: while𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 <= 𝑡 do
6: //Genetic operators
7: 𝑜 𝑓 𝑓 𝑃𝑜𝑝𝑚 ← 𝑆𝐵𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑐𝑢𝑟𝑃𝑜𝑝𝑚);
8: 𝑜 𝑓 𝑓 𝑃𝑜𝑝𝑚 ← 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑜 𝑓 𝑓 𝑃𝑜𝑝𝑚);
9: 𝑝𝑜𝑝𝑚 ← 𝑀𝑒𝑟𝑔𝑒𝑃𝑜𝑝𝑚(𝑐𝑢𝑟𝑝𝑜𝑝𝑚, 𝑜 𝑓 𝑓 𝑃𝑜𝑝𝑚);

10: for 𝑖 ← 1 : 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑜𝑝𝑚) do
11: 𝑜𝑖 ← 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (𝑝𝑜𝑝𝑚𝑖);
12: 𝑙𝑖 ← 𝑀𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑝𝑜𝑝𝑚𝑖 , 𝑜𝑖);
13: 𝑓 ← 𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑙𝑖);
14: 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 𝑀𝑎𝑥 (𝐴𝐹𝑅𝑆 (𝑓),𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒);
15: 𝑓 𝑖𝑡 ← 𝐴𝐹𝑅𝑆 (𝑓), 𝑁 𝐹𝐼𝑄2(𝑓);
16: end for
17: 𝑛𝑒𝑥𝑡𝑃𝑜𝑝𝑚 ← 𝑇𝑤𝑜𝐹𝑎𝑐𝑡𝑜𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑚, 𝑓 𝑖𝑡);
18: 𝑐𝑢𝑟𝑃𝑜𝑝𝑚 ← 𝑛𝑒𝑥𝑡𝑃𝑜𝑝𝑚;
19: end while
20: return ℎ

the difference between the real and generated fingerprint in zero-
order gradients to ensure the geometry of the minutiae and in the
first-order and second-order gradients to ensure the orientation.
Specifically, given a minutiae label map 𝑠 and its corresponding real
fingerprint 𝑦, the minutiae adversarial loss is calculated as:

LMINUTIAE (𝐺) =
𝑁∑︁
𝑖=1

6∑︁
𝑗=1

[

𝐹 (𝑦 𝑗 , 𝑖) − (
𝐹 (𝐺 𝑗 (𝑠), 𝑖)

)

2
]
, (11)

where 𝑁 is the number of minutiae, 𝐹 (·, 𝑖) is a function that can
extract the area of the block including the 𝑖𝑡ℎ minutia, and 𝑗 is
the mark that can represent the zero-order, the first-order (i.e., x-
direction and y-direction) and the second-order (e.g., xx-direction,
yy-direction, and xy-direction) gradients of the block of both real
and generated fingerprints. In addition, FingerFaker employs an-
other loss in previous works [56], and the final loss function is the
following:

LOVERALL = LPIROR + 𝜆LMINUTIAE (𝐺) . (12)

7.2 Targeted Attack
This phase aims at generating a fake fingerprint to spoof the AFRS
by the pre-trained fingerprint generator. The process is detailed in
Algorithm 1. Specifically, we randomly sample an initial population,
which consists of 𝐾 “pseudo-minutiae-set" (here, 𝐾 = 70). Then, we
continuously iterate the population by the algorithm until occurring
a “pseudo-minutiae-set" that can generate the fake fingerprint to
spoof the AFRS. As discussed in Section 4, we fix the number of
minutiae in the “pseudo-minutiae-set" as 𝑁 (here, 𝑁 = 30).

7.2.1 Feature-to-fingerprint mapping stage. In this stage, the pop-
ulation of “pseudo-minutiae-set" is mapped to the corresponding
fingerprint images.

172

FingerFaker: Spoofing Attack on COTS Fingerprint Recognition Without Victim’s Knowledge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

For each “pseudo-minutiae-set", FingerFaker first estimates the
orientation from it by the orientation estimator and generates the
minutiae label map by it and the estimated orientation. Second, the
pre-trained fingerprint generator is used to generate fake finger-
prints leveraging the minutiae label map. Next, FingerFaker fetches
the match score and quality of the fake fingerprint by querying
AFRS in the cloud and calling NFIQ2 in local, respectively. Finally,
FingerFaker compares the match score with the threshold and out-
puts the fake fingerprint of the highest match score in the current
population if the match score exceeds the threshold. Otherwise,
after all “pseudo-minutiae-set" in the population are processed, the
match scores and the qualities are sent to the feature optimizing
stage to optimize the population of “pseudo-minutiae-set".
Orientation estimator: FingerFaker employs an approach in previ-
ous work [26] to estimate the orientation of the “pseudo-minutiae-
set". Specifically, for each block, FingerFaker partitions the finger-
print into eight sectors centered on the block, i.e., one sector every
45◦, and find the nearest minutiae in each sector, respectively. The
orientation of the block is calculated by the following formulation:

𝑂 (𝑚,𝑛) = 1
2 arctan ©­

«
∑𝐽
𝑗=1 sin

(
𝛼 𝑗

)
𝑤 𝑗∑𝐽

𝑗=1 cos
(
𝛼 𝑗

)
𝑤 𝑗

ª®
¬
, (13)

where 𝐽 is the number of minutiae (𝐽 = 8 here), (m, n) is the location
of the block,𝑤 𝑗 is the reciprocal of the Euclidean distance between
the center of the block and the 𝑗𝑡ℎ minutia, and 𝛼 𝑗 is the orientation
of the 𝑗𝑡ℎ minutia. In algorithm 1, 𝑜 is the complete orientation
consisting of blocks.

7.2.2 Feature optimizing stage. In this stage, FingerFaker optimizes
the population of “pseudo-minutiae-set" by genetic operators and
the two-factor selection.
Two-factor selection: It is based on the two-factor evolutionary
strategy that takes the match scores and qualities of the fingerprints
generated by the population of “pseudo-minutiae-set" as the fitness
values to screen the population. For two “pseudo-minutiae-set" 𝑥1
and 𝑥2, 𝑥1 dominates 𝑥2, which means 𝑥1 has the higher competi-
tiveness, if all fitnesses of 𝑥1 are greater than or equal to the fitness
of 𝑥2 and at least one fitness of 𝑥1 is strictly greater than the fit-
ness of 𝑥2. For “pseudo-minutiae-set" that cannot be sorted by the
above approach (i.e., they have no dominance relation), FingerFaker
first sorts them as 𝑓 by a single type of fitness and generates a
lookup table 𝑇 , whose 𝑖𝑡ℎ item records the sequence numbers of
the 𝑖𝑡ℎ “pseudo-minutiae-set" in the 𝑓 . The crowding distance of 𝑖𝑡ℎ
“pseudo-minutiae-set" is calculated to sort them with the following:

𝑑𝑖 =
𝑀∑︁
𝑚=1

𝑓𝑚 (𝑇𝑚 (𝑖) − 1) − 𝑓𝑚 (𝑇𝑚 (𝑖) + 1))
𝑀𝑎𝑥 (𝑓𝑚) −𝑀𝑖𝑛(𝑓𝑚) , (14)

where 𝑓𝑚 is the𝑚𝑡ℎ fitness (e.g., match score) and 𝑇𝑚 is the𝑚𝑡ℎ
lookup table, and 𝑀 is the number of fitness types (𝑀 = 2 here).
If the 𝑖𝑡ℎ “pseudo-minutiae-set" has the highest or lowest fitness
in both types, 𝑑𝑖 is set to infinity. Then, we sort these “pseudo-
minutiae-set" with no dominance relation by the crowding dis-
tances.Finally, 𝐾 (𝐾 = 70 here) “pseudo-minutiae-set" will be se-
lected through binary tournament [42] and elite strategy [22] for
the next generation.
Genetic operators: The genetic operators contain a simulated bi-
nary crossover (SBX) [21] operator and a polynomial mutation [21]

operator: (1) simulated binary crossover operator: the opera-
tor generates the offspring population of “pseudo-minutiae-set"
by swapping attributes of two “pseudo-minutiae-set" 𝑥 (𝐼 ,𝑐𝑢𝑟) and
𝑥 (𝑗,𝑐𝑢𝑟) in current population with a probability of 0.9 by the fol-
lowing formulation:


𝑥
(𝑖,𝑜 𝑓 𝑓)
𝑘

= 0.5
[
(1 + 𝛽) · 𝑥 (𝑖,𝑐𝑢𝑟)

𝑘
+ (1 − 𝛽) · 𝑥 (𝑗,𝑐𝑢𝑟)

𝑘

]
𝑥
(𝑗,𝑜 𝑓 𝑓)
𝑘

= 0.5
[
(1 − 𝛽) · 𝑥 (𝑖,𝑐𝑢𝑟)

𝑘
+ (1 + 𝛽) · 𝑥 (𝑗,𝑐𝑢𝑟)

𝑘

] , (15)

where 𝑖 and 𝑗 are marks of different “pseudo-minutiae-set" in both
the current and offspring population, 𝑘 is the mark of the 𝑘𝑡ℎ attri-
bution (e.g., x location and orientation) in a “pseudo-minutiae-set",
𝛽 is calculated by the following:

𝛽 =



(2𝑢)

1
(1+𝜂) u ≤ 1

2(
1

2−2𝑢

) 1
(1+𝜂) otherwise

, (16)

where 𝑢 ∈ [0, 1] is a random number, and 𝜂 is a customized param-
eter (here 𝜂 = 28). (2) polynomial mutation: after the crossover,
the offspring population will be mutated to promote evolution. For
the “pseudo-minutiae-set" of the offspring population 𝑥 (𝑖,𝑜 𝑓 𝑓) , the
each attribution of the “pseudo-minutiae-set" will be mutated with
the probability of 0.08 when 𝑘𝑡ℎ attribution is selected, the mutated
𝑥
𝑜 𝑓 𝑓
𝑘

is calculated as:

𝑥
𝑜 𝑓 𝑓
𝑘

= 𝑥𝑜 𝑓 𝑓
𝑘
+ 𝛿 · (𝑢𝑘 − 𝑙𝑘) , (17)

where 𝑙𝑘 and𝑢𝑘 are the lower and upper limitation of the attribution,
𝛿 can be defined as:

𝛿 =

{
1 − [

2(1 − 𝑢) + 2(𝑢 − 1
2) (1 − 𝛿2)𝜂+1

] 1
𝜂+1 u > 1

2[
2𝑢 + (1 − 2𝑢) (1 − 𝛿1)𝜂+1

] 1
𝜂+1 − 1 otherwise

, (18)

where 𝛿1 =
𝑥𝑡𝑘−𝑙𝑘
𝑢𝑘−𝑙𝑘 and 𝛿2 =

𝑢𝑘−𝑥𝑡𝑘
𝑢𝑘−𝑙𝑘 , 𝑢 ∈ [0, 1] is a random num-

ber, and 𝜂 is a customized parameter (here 𝜂 = 20). We round
attributions of the offspring population.

8 EVALUATION
8.1 Implementation details
We deploy our FingerFaker on the server with Ubuntu 20.04, Intel
Xeon CPU E5-2678 v3@ 2.50GHz with 125G RAM, and four NVIDIA
GeForce GTX 3090 GPUs. The initial learning rates of the generator
and discriminant are set to 0.0001 and 0.0004. We conduct the GAN-
based training for 140 epochs, where we keep the learning rate
constant in the first 80 epochs and decay the learning rate linearly
to 0 for in latter 60 epochs. We use the ADAM optimizer [39] with
𝛽1=0 and 𝛽2 = 0.999. For the minutiae adversarial loss function, we
set the weights 𝜆=50 in Eq. 12.

8.2 Dataset
We use the LivDet [29] datasets to evaluate the performance of Fin-
gerFaker. LivDet is widely used as a dataset for presentation attack
detection, and we use real fingerprints from it for training and test-
ing. Data from the different sensors (i.e., CrossMatch, Biometrika,
and GreenBit) are used here. We also use an optical fingerprint
sensor named ZKTeco LIVE 20R [78] with a resolution of 500 dpi
to enrich datasets by collecting additional fingerprints. All 70 par-
ticipants, including 45 males and 25 females, aged from 18 to 47
years, pressed on the sensor with normal pressure five times per

173

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

Table 1: Details of the datasets

Sensor
Images Num(Fingers Num)

Train Test

CrossMatch 1790(829) 150(150)

Biometrika 1546(374) 100(100)

GreenBit 681(146) 50(50)

ZKTeco LIVE 20R 1875(406) 150(150)

Total 5892(1755) 450(450)

finger (except for the little finger). Thus we obtained 560 fingers
and 2800 fingerprint images. We performed screening on both the
public and collected datasets, resulting in a total of 6,342 fingerprint
images from 2,205 fingers that met our criteria. Subsequently, we
divided these fingers into a training set and a testing set, using a
ratio of 4:1. The training set comprises 5,892 images from 1,755
fingers, while the testing set consists of 450 images, each from a
distinct finger. The details of the datasets used for training and
testing are shown in Table 1. There are no overlapping subjects in
the training and testing sets. The main motivation behind gathering
additional data is that, after applying screening, the fingerprints
within public datasets do not offer an adequate amount of train-
ing data. This limitation significantly hampers the performance
of the attack. Consequently, we incorporate additional samples to
augment the dataset, enhance sample diversity, and ensure the ro-
bustness of our attack model’s training outcomes. In fact, if more
public datasets become accessible in the future, there is a possibility
that we could consider substituting the data we have collected. It
is ensured the experiments follow the internal review board (IRB)
protocol of the host institution.

8.3 Metrics
Before verifying FingerFaker, we build the AFRS at different se-
curity levels, which are defined by false match rate (FMR) values,
i.e., 1%, 0.1%, and 0.01%, corresponding to level1, level2, and level3,
respectively. A higher security level means better system security,
and they are achieved by different thresholds that can be calculated

(a) Real fingerprint (b)Fake fingerprint

Figure 9: Comparison of real and fake fingerprints, where
left (a) is a real one and right (b) is the fake one generated by
FingerFaker. Enlarged plots show minutiae in these areas.

by a cross-matching approach based on the FVC2002 protocol [27].
We evaluate the results using attack success rate (ASR) and finger-
print quality. We attack all fingerprints in the testing set, and ASR
is defined as the ratio of successfully attacked fingerprints to all
fingerprints. It can be defined as:

𝐴𝑆𝑅 =
𝑆

𝑇
, (19)

where 𝑆 is the number of fingerprints successfully attacked, and 𝑇
is the number of all target fingerprints. After a successful attack,
we conduct a quality on the generated fingerprint using NFIQ2. For
defining the security levels of the AFRS system, we use the false
match rate (FMR) with the following:

𝐹𝑀𝑅 =
𝑁𝐹𝑀
𝑁𝐼𝐴

, (20)

where 𝑁𝐹𝑀 is the number of error matches and 𝑁𝐼𝐴 is the number
of impostor attempts, i.e., each fingerprint is matched to a different
fingerprint except itself.

8.4 Evaluation protocol
In each attempt, we first select a fingerprint from the testing set
and translate it into features (i.e., minutiae) by a specific method
(i.e., MINDTCT for open-source AFRS based on minutiae matching
and VeriFinger for COTS AFRS based on deep learning). Next, we
enroll features of such a fingerprint into the AFRS. Then, we repeat
the iteration of the targeted attack phase. To compare the fake fin-
gerprint with the enrolled one, we translate it by the same method
as the enrolled one, and a corresponding fingerprint matcher (i.e.,
Bozorth3 for open-source AFRS and VeriFinger for COTS AFRS)
will be used to generate the match score between them. The attack
will be counted to succeed if the match score exceeds the threshold
(depending on different security levels) in limited iterations (here is
40). Otherwise, it will be counted as a failure. We launch an attempt
on all the fingers in the testing set and count the results to show
the performance of FingerFaker.

8.5 Overall Performance
We evaluate the performance of FingerFaker in breaking the AFRS
of an open-source AFRS. We pre-train the fingerprint generator
with 5892 fingerprints in the training set and attempt to generate
fake fingerprints to match with fingerprints in the testing set. First,
we show a random pair consisting of a real (a) and a fake (b) finger-
print in Figure 9, where we also show minutiae within two areas.
The plot shows FingerFaker can generate fake fingerprints owning
similar minutiae as the real one. Then, we evaluated FingerFaker
statistically. Figure 10 shows the ASR of FingerFaker under different
security levels. The result indicates that FingerFaker can achieve
97.78% ASR even at the highest security level (i.e., FMR = 0.01%),
showing superior performance.

AFRSs will remove low-quality fingerprints to avoid false match-
ing, which means the quality of a fake fingerprint is a significant
metric for evaluating FingerFaker. Hence, we calculate the quali-
ties of fake fingerprints that can successfully spoof the AFRS and
compare them with the qualities of real ones. Figure 11 shows the
distribution of qualities of fake fingerprints and real ones, respec-
tively. The x-value represents the quality of real/fake fingerprints,
and the y-value represents the rate of fingerprints evaluated as this
quality. The average quality values for fake and real fingerprints are

174

FingerFaker: Spoofing Attack on COTS Fingerprint Recognition Without Victim’s Knowledge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Figure 10: Overall perfor-
mance.

Figure 11: Quality distribution. Figure 12: Number of queries. Figure 13: VeriFinger perfor-
mance.

Figure 14: Gender perfor-
mance.

Figure 15: Different fingers. Figure 16: Cross-AFRSs: same
algorithm.

FMR=0.001%

Figure 17: Cross-AFRSs: differ-
ent algorithms.

38.18 and 43.14. The result indicates that the distribution and aver-
age of our proposed algorithm match those of the original datasets.
Based on the result, FingerFaker can generate high-resolution fake
fingerprints, whose quality is close to real ones, to make sure they
get into the AFRS.
8.6 Number of Queries
The number of queries is a critical parameter in adversarial attacks.
Hence, we count the number of queries of all successful spoofs
in Section 8.5. Figure 12 shows the distribution of the number
of queries, where the x-value represents the number of queries.
The y-value shows the victim count that FingerFaker can generate
his/her fake fingerprints with this number of quires. As shown in
Figure 12, FingerFaker can spoof the AFRS with an average of 1839
queries. In the worst case, FingerFaker can also break the AFRS with
2797 queries. This result is significantly lower than state-of-the-art
adversarial attacks in other authentication systems, i.e., 5000 for
speaker verification [14] and 10000 for face verification [23].
Indeed, FingerFaker takes less than 1000 queries to attack 23 of
the victims, whereas FingerFaker only queries 444 times in the

Table 2: Ablation Study

Level3 (FMR=0.01%)
Method

ASR(%)
Quality

FingerFaker w/o T 95.11 29

FingerFaker w/o L 87.56 33

FingerFaker w/o P 8.33 18

FingeFaker(Ours) 97.78 38
T is a two-factor evolutionary strategy, P means pseudo-minutiae-set, and L means
minutiae loss.

Table 3: The performance of different Ages.

Age
Level1

(FMR=1%)

Level2

(FMR=0.1%)

Level3

(FMR=0.01%)

ASR(%)

21-30 100.00 100.00 93.33

31-40 100.00 100.00 95.00

41-50 100.00 100.00 94.28

fastest case to break the AFRS. Hence, FingerFaker can implement
an effective spoofing attack within limited queries. Considering that
too many queries may cause alarm, we can put them into different
days, e.g., we can query 30 times a day and complete all within two
weeks. Meanwhile, we further discuss the latent optimization of
the number of queries in Section 10.

8.7 Ablation
We conduct the ablation experiment to quantify the gain of compo-
nents of FingerFaker, including pseudo-minutiae-set (hereafter P),
fingerprint generator(hereafter G), two-factor evolutionary strategy
(hereafter T), and the minutiae loss (hereafter L). Specifically, we
attempt to generate fake fingerprints by continuous feature vector
when we experiment without P. When we test without our gener-
ator, we employed the state-of-the-art fingerprint generator [11]
to replace our fingerprint generator, with both generators trained
on the same dataset. Meanwhile, we generate fake fingerprints by
only match-score when we test without T. Also, we generate fake
fingerprints by the loss function of the previous work [56] when

175

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

Table 4: Comparison of FingerFaker with state-of-the-art works of spoofing AFRSs

Algorithm Optimizer Generator
FMR=0.01% Attack without

prior knowledge
Targeted Attack

ASR(%)

Cappeli et al. [13] / Gabor filtering 23.00 # !

Li and Kot [44] / AM-FM model 86.48 # !

Feng and Jain [26] / AM-FM model 93.62 # !

Cao and Jain [12] / AM-FM model 99.38 # !

Bouzaglo et al. [11] / Conditional GANs 99.89 # !

Roy et al. [59] Hill climbing / 1.88 ! #

FingeFaker(Ours) Genetic algorithm GAN-base generator 94.22 ! !

we experiment without L. Table 2 shows that the performance is
reduced by 89.45% and 10.22% without pseudo-minutiae-set and the
minutiae loss, respectively. And using other fingerprint generators
will reduce the attack success rate by 17.11%. In addition, the two-
factor evolutionary strategy brings about a 36% improvement in the
quality of the fingerprint image while maintaining performance.
Hence, our designs are efficient and contribute to boosting the per-
formance of spoofing AFRSs. Table 2 illustrates that the absence of
the pseudo-minutiae-set and minutiae loss results in performance
degradation of 89.45% and 10.22%, respectively while utilizing other
fingerprint generators leads to a reduction in the attack success
rate of 17.11%. Furthermore, the implementation of the two-factor
evolutionary strategy enhances the quality of the fingerprint image
by 36%, while maintaining system performance. Consequently, our
designs are efficient and effectively improve the performance of
spoofing AFRSs.

9 REALISTIC STUDY ON COTS AFRS
9.1 Performance and Comparison
In this section, we employ the same evaluation protocol as outlined
in Section 8.4. To be more specific, we have shifted our attack target
to a COTS-AFRS, namely VeriFinger. We optimize fake fingerprints
to match real ones in the testing set by querying the COTS AFRS.
The result, as shown in Figure 13, indicates that FingerFaker can
achieve 100% ASR in the lower two security levels (i.e., FMR = 1%
and 0.1%) and still achieve 94.22% ASR in the highest security level,
which indicates the high performance of FingerFaker in spoofing
the COTS AFRS. In addition, we compare FingerFaker with state-
of-the-art works of spoofing AFRS [10–13, 26, 44, 58, 59]. Several
works [11–13, 26, 44, 58] attempt to generate fake fingerprints from
the prior knowledge of the targeted fingerprint (i.e., minutiae) by
mathematical models and deep learning models. Other works [59]
attempt to conduct an untargeted attack, i.e., the attack is successful
as long as the fake fingerprint can match with anyone in the enroll
list. FingerFaker is the first work to generate fake fingerprints of the
targeted victim to spoof the AFRS without the victim’s prior knowl-
edge. Specifically, we propose the concept of the pseudo-minutiae-
set and design the GAN-based generator/genetic algorithm to gen-
erate fake fingerprints/optimize the pseudo-minutiae-set. As shown

in Table 4, FingerFaker gets rid of the strong assumption on the
minutiae of the target fingerprint and can get a competitive perfor-
mance.

9.2 Impact of Gender
We are curious about whether the gender of the victim would
affect the performance of FingerFaker. To this end, we select 75
men’s fingerprints and 75 women’s ones from the testing set to
test the performance of FingerFaker and attempt to generate fake
fingerprints to match with them. As shown in Figure 14, there is
a 2.67% difference in ASR between attacking men’s fingerprints
and women’s ones, which has no significant difference. Thus, the
gender of the victim has little effect on FingerFaker.

9.3 Impact of Age
As individuals age, their fingerprints may wear, potentially affecting
the performance of FingerFaker. To assess the impact of age on
FingerFaker, we conducted experiments on the fingerprints of 120
individuals aged between 21 and 49. These fingerprints were divided
into three groups, each spanning a 10-year age range. Subsequently,
we registered these fingerprints in COTS-AFRSs at different security
levels and used FingerFaker to generate counterfeit fingerprints.
Table 3 demonstrates that FingerFaker successfully deceived AFRSs
that had already registered fingerprints from different age groups.
Furthermore, our analysis revealed that the ASR did not show
significant differences among different age groups, indicating that
FingerFaker’s performance remains consistent regardless of the age
of the individuals being attacked.

9.4 Impact of Sensor
Victims can enroll fingerprints with different fingerprint sensors.
Thus, we explore the performance of FingerFaker on spoofing AFRSs
enrolled through different fingerprint sensors in the testing set. As
shown in Table 5, FingerFaker can achieve high performance in
spoofing AFRS enrolled by different fingerprint sensors, which
indicates that fingerprint sensors do not affect the performance of
FingerFaker.

176

FingerFaker: Spoofing Attack on COTS Fingerprint Recognition Without Victim’s Knowledge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

9.5 Impact of Different Fingers
Different fingers have different shapes and sizes. Thereby, it is in-
teresting to verify whether different fingers of victims affect the
performance of FingerFaker. To explore the impact of different fin-
gers, we select four types of fingers (i.e., thumb, index finger, middle,
and ring finger) and randomly select 75 fingerprints for each type
from the testing set and test the performance of FingerFaker by at-
tacking the selected fingerprints. Figure 15 shows the performance
of attacking different fingers, where the ASR varies from 93.33% to
96%. The result indicates that the adversary can effectively attack
different fingers leveraging FingerFaker.

9.6 Cross-AFRS Attack
Although most AFRSs return a match score, some do not. To en-
hance FingerFaker, we have designed a cross-AFRS attack. In this
attack, we select another AFRS as the target and generate fake fin-
gerprints to spoof the system. The generated fingerprints are then
used to break the targeted AFRS. We consider two attack scenarios.
Scenario 1: the targeted and the attacked AFRSs use the same algo-
rithm to achieve fingerprint authentication, but they are enrolled
by the same fingerprint at different times. Fingerprint recognition
is a mature technology with limited algorithms [2]. Thus, it is rea-
sonable that two AFRSs use the same algorithm.
Scenario 2: the targeted and the attacked AFRSs use different algo-
rithms while the victim enrolls them by the same fingerprint at
different times. Specifically, we choose two common AFRSs (i.e.,
NIST and VeriFinger) to test the performance because they are
widely used in daily life [10, 41] and research [11, 12, 26, 44, 53, 59].
Setup: We use the testing part (in Table 1) to enroll the targeted
AFRS. Meanwhile, we enroll the attacked one with other finger-
prints from the same fingers. Next, we deploy FingerFaker to spoof
the attacked AFRS, which can get fake fingerprints and work on
the targeted AFRS.
Result: Figure 16 shows the performance under scenario 1. When
the two AFRSs both use NIST, the attack success rate achieves 94%.
When they both use VeriFinger, the attack success rate reaches
91.56%. The result shows FingerFaker can effectively spoof the tar-
geted AFRS by the cross-AFRS attack when the two AFRSs use the
same algorithm.

Figure 17 illustrates the cumulative distribution function (CDF)
of the match scores for fake fingerprints generated by FingerFaker
when the targeted AFRS uses NIST and the attacked AFRS uses Ver-
iFinger. The y-axis represents the rate of the match score of fake fin-
gerprints below the corresponding x-value. Our results demonstrate
that 86.9% of fake fingerprints can successfully spoof the targeted
AFRS when the AFRS is at security level 1, whereas 75.33% of fake
fingerprints can break the highest security level. These findings sug-
gest that different architectures of AFRSs may lead to performance
degradation, as previously reported in state-of-the-art adversary
attacks on speaker identification systems [14]. Specifically, NIST
employs a traditional minutiae matching approach (detailed in Sec-
tion 3), while VeriFinger claims to use a deep learning-based method
for minutiae extraction and matching [52]. They extract completely
different features. VeriFinger can extract richer and more extensive
minutiae, which is the reason for the performance degradation.
Despite the performance degradation, FingerFaker is still capable

Table 5: The performance of different sensors.

Sensor
Level1

(FMR=1%)

Level2

(FMR=0.1%)

Level3

(FMR=0.01%)

ASR(%)

CrossMatch 100.00 100.00 95.33

Biometrika 100.00 100.00 95.00

GreenBit 100.00 100.00 94.00

ZKTeco 20R 100.00 100.00 93.33

of conducting cross-AFRS attacks on more than three-fourths of
fingerprints, highlighting the practical impact of such an attack.
However, it is challenging to spoof the VeriFinger-based AFRS by
attacking the NIST-based AFRS (less than 30% success rate under
the highest security level) since the VeriFinger has a superior per-
formance than NIST [60]. Hence, the adversary can select another
VeriFinger-based AFRS to launch the attack.

10 DISCUSSION AND FUTURE WORKS
The Number of Queries Reduction: The issue of high query
costs is common among adversarial attacks. However, FingerFaker
requires fewer queries than state-of-the-art adversarial attacks in
other authentication systems, such as 5000 for speaker verifica-
tion [14] and 10000 for face verification [23]. The fact shows the
superiority of FingerFaker. Furthermore, many studies are currently
attempting to reduce the query cost of adversarial attacks. For
example, building a substitution model [46] can reduce queries in
adversarial attacks. Additionally, a previous work [34] combines the
substitution model and the return of the target system to achieve
a balance between performance and queries. FingerFaker aims to
reveal the latent risks of AFRS, such as adversaries breaking the
safeguard without the victims’ knowledge, while future works can
focus on reducing query costs by above works.
Hard-Label Attacks: In previous literature, there have been many
hard-label black-box attacks targeting adversarial machine learn-
ing [17, 24, 66]. Nevertheless, in our current attack setting (i.e.,
verification), these attacks prove to be ineffective, as hard-label
attacks only yield binary results of 0 and 1. It’s worth noting that
if we were to transition to an identification scenario, the use of
hard-label attacks on FingerFaker would become a viable option.
Liveness Detection: Liveness detection is a mainstream finger-
print anti-counterfeiting technology. However, it is known to have
a negative impact on AFRSs’ usability due to the burden of calcu-
lation and the high false rejection rate [69]. As a result, it is not
suitable for high-efficiency scenarios where previous research [57]
has shown that COTS AFRSs can be broken by fake fingerprints.
Consequently, FingerFaker can effectively target such AFRSs. More-
over, several studies [3, 47, 75] have demonstrated that spoofing
attacks aimed at AFRSs with liveness detection can also generate
high-precision fake fingerprints. As a result, FingerFaker can also
be used to break AFRSs with liveness detection.
The size of the “pseudo-minutiae-set": The size of FingerFaker

177

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

plays a crucial role in determining its performance, as it must be
large enough to accurately predict the information present in the
target fingerprint. However, a larger size also results in an increased
number of attempts, necessitating more queries to achieve results.
As a result, we have made a deliberate trade-off by setting the size
of FingerFaker to 30.
Printing FingerFaker in the physical world: The exploration of
applying FingerFaker in the physical world presents an intriguing
avenue of research. One potential approach involves using a laser
engraving machine to etch counterfeit fingerprints onto a conduc-
tive silicon film, or alternatively, employing a 3D printer to create a
physical fingerprint membrane. [3, 25] These fabricated fingerprint
films could then be employed to press onto the target fingerprint
scanner(e.g., an iPhone or an Android device), enabling deception
attacks within the physical domain. However, it is imperative to
address the mitigation of physical noise during the printing process,
including potential manufacturing errors, as these inaccuracies can
significantly diminish the effectiveness of attacks in a physical con-
text. This represents a challenging area, and we intend to continue
our investigation into this topic in the future.

11 COUNTERMEASURES
Fake detector: The first countermeasure is to train a detector to
distinguish between fake and real fingerprints. Previous works [31,
45, 70, 77] use real and fake fingerprints (generated by the targeted
attack) to train the detector. However, these approaches require a
large number of fake fingerprints to train the detector and increase
the false rejection rate.
Device authentication: The second countermeasure is to require
recognition requests to be made by trusted devices, i.e., add device
authentication [1, 67] to provide higher security. Users must provide
and update a list of trusted devices for the supplier to prevent the
adversary from querying the AFRS with their devices.
Stricter error limits: The third countermeasure is to reduce the
number of errors allowed by the AFRS. Because FingerFaker needs
to query the AFRS, such queries are errors for the system. Therefore,
the AFRS can set an upper bound of errors to defend against such
attacks. However, extremely low error bounds will greatly reduce
the system’s availability. One possible compromise is to reset the
error count when the user successfully authenticates. However,
the attacker can assume that the user normally uses the system a
certain number of times per day, which allows the attacker to get
enough queries in multiple intervals.

12 RELATED WORK
Reconstruction of fingerprints: Breaking security of fingerprint
systems has been explored by previous works, where they spoof
AFRSs by reconstructing fingerprints from prior knowledge (e.g.,
minutiae) of the target fingerprint [11, 12, 26, 44, 58]. For instance,
mathematical modeling between minutiae and the fingerprint was
proposed to reconstruct fake fingerprints [12, 26, 44, 58]. Recently, a
deep-learning-based approach also achieved superior performance
in spoofing AFRSs [11]. However, these attacks are based on the
strong assumption of prior knowledge of the target fingerprint,
where the adversary needs to obtain minutiae protected by multi-
ple security [30, 43, 65] from the database. Therefore, these attacks

are hard to implement in real scenarios and lack practical value.
Our work explores the vulnerability and designs an attack, namely
FingerFaker, to spoof AFRSs without the target fingerprint/minutiae,
which leads to a practical attack to break fingerprint-based security
to threaten the victim in a real scenario.
Adversarial attacks: In past decades, efforts have been devoted to
investigating spoofing biometrics systems leveraging adversarial
attacks, which threaten biometrics-based security [14, 54, 63, 74].
In the beginning, researchers find the vulnerability of the decision
boundary of deep learning is also common in facial recognition sys-
tems and voice recognition systems, which inspires them to propose
adversarial attacks in such a task and achieve effective spoofing
attacks [31, 51]. Recently, an attack aims at generating a general
fake fingerprint leveraging conventional adversarial attacks [10].
However, it only achieves a limited performance due to the lack
of adaptation and adjustment to the attack of AFRSs. Specifically,
conventional adversarial attacks based on GANs cannot preserve
the “pseudo-minutiae-set", which leads to poor performance. Our
work proposes an advanced generator based on the concept of
“pseudo-minutiae-set" to tackle areas of weakness, which realizes
the high-performance adversarial attack on AFRSs.

13 CONCLUSION
In this paper, we design a novel attack, FingerFaker, to spoof COTS
AFRSs. Specifically, we design a two-stage scheme to generate
high-resolution fake fingerprints, where we propose the concept of
“pseudo-minutiae-set" to remove the dependency on prior knowl-
edge of the fingerprint and design a two-factor evolutionary strat-
egy to optimize such features for generating a high-resolution fake
fingerprint, meanwhile, a well-designed loss function is used in
a GAN-based training strategy to preserve "pseudo-minutiae-set"
in fake fingerprints. Our evaluation shows the high performance
of FingerFaker on both open-source and COTS AFRSs. In addition,
we also propose several countermeasures to mitigate the harm of
FingerFaker.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Devel-
opment Program of China under grant 2020AAA0107700, the Na-
tional Natural Science Foundation of China under grants 62032021,
62372406, 61972348, 62172359, and 62102354.

REFERENCES
[1] Inayat Ali, Sonia Sabir, and Zahid Ullah. 2019. Internet of things security, device

authentication and access control: a review. arXiv preprint arXiv:1901.07309
(2019).

[2] Mouad MH Ali, Vivek H Mahale, Pravin Yannawar, and AT Gaikwad. 2016.
Overview of fingerprint recognition system. In 2016 international conference on
electrical, electronics, and optimization techniques (ICEEOT). IEEE, 1334–1338.

[3] Sunpreet S Arora, Kai Cao, Anil K Jain, and Nicholas G Paulter. 2016. Design and
fabrication of 3D fingerprint targets. IEEE Transactions on Information Forensics
and Security 11, 10 (2016), 2284–2297.

[4] M Arul Selvan and S Selvakumar. 2019. Malicious node identification using
quantitative intrusion detection techniques in MANET. Cluster computing 22, 3
(2019), 7069–7077.

[5] Aware. 2023. Aware. https://www.aware.com/identification-verification/.
[6] Roli Bansal, Priti Sehgal, and Punam Bedi. 2011. Minutiae extraction from finger-

print images-a review. arXiv preprint arXiv:1201.1422 (2011).
[7] Daniel Bichler, Guido Stromberg, Mario Huemer, and Manuel Löw. 2007. Key

generation based on acceleration data of shaking processes. In UbiComp 2007:

178

FingerFaker: Spoofing Attack on COTS Fingerprint Recognition Without Victim’s Knowledge SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Ubiquitous Computing: 9th International Conference, UbiComp 2007, Innsbruck,
Austria, September 16-19, 2007. Proceedings 9. Springer, 304–317.

[8] BioKey. 2023. BioKey. https://www.bio-key.com/portalguard/.
[9] BioKey. 2023. BioKey Case Study. https://www.bio-key.com/resources/?type=

case-studies.
[10] Philip Bontrager, Aditi Roy, Julian Togelius, Nasir Memon, and Arun Ross. 2018.

Deepmasterprints: Generating masterprints for dictionary attacks via latent
variable evolution. In 2018 IEEE 9th International Conference on Biometrics Theory,
Applications and Systems (BTAS). IEEE, 1–9.

[11] Rafael Bouzaglo and Yosi Keller. 2022. Synthesis and reconstruction of fingerprints
using generative adversarial networks. arXiv preprint arXiv:2201.06164 (2022).

[12] Kai Cao and Anil K Jain. 2014. Learning fingerprint reconstruction: From minutiae
to image. IEEE Transactions on information forensics and security 10, 1 (2014),
104–117.

[13] Raffaele Cappelli, Dario Maio, Alessandra Lumini, and Davide Maltoni. 2007.
Fingerprint image reconstruction from standard templates. IEEE transactions on
pattern analysis and machine intelligence 29, 9 (2007), 1489–1503.

[14] Guangke Chen, Sen Chenb, Lingling Fan, Xiaoning Du, Zhe Zhao, Fu Song, and
Yang Liu. 2021. Who is real bob? adversarial attacks on speaker recognition
systems. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 694–711.

[15] Jiansheng Chen and Yiu Sang Moon. 2008. The statistical modelling of fingerprint
minutiae distribution with implications for fingerprint individuality studies. In
2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA. IEEE Computer Society.

[16] Yu Chen, Yang Yu, and Lidong Zhai. 2023. InfinityGauntlet: Expose Smartphone
Fingerprint Authentication to Brute-force Attack. In 32nd USENIX Security Sym-
posium (USENIX Security 23). USENIX Association, Anaheim, CA, 2027–2041.
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-yu

[17] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui
Hsieh. 2018. Query-efficient hard-label black-box attack: An optimization-based
approach. arXiv preprint arXiv:1807.04457 (2018).

[18] Ana Cholakoska, Bjarne Pfitzner, Hristijan Gjoreski, Valentin Rakovic, Bert Arn-
rich, and Marija Kalendar. 2021. Differentially Private Federated Learningfor
Anomaly Detection in eHealth Networks. In Adjunct Proceedings of the 2021
ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2021 ACM International Symposium on Wearable Computers.
514–518.

[19] CloudABIS. 2023. CloudABIS. https://www.m2sys.com/.
[20] CloudABIS. 2023. CloudABIS Case Study. https://www.m2sys.com/biometric-

fingerprint-software-case-studies/.
[21] Kalyanmoy Deb, Ram Bhushan Agrawal, et al. 1995. Simulated binary crossover

for continuous search space. Complex systems 9, 2 (1995), 115–148.
[22] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[23] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and
Jun Zhu. 2019. Efficient decision-based black-box adversarial attacks on face
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 7714–7722.

[24] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and
Jun Zhu. 2019. Efficient decision-based black-box adversarial attacks on face
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 7714–7722.

[25] Joshua J Engelsma, Sunpreet S Arora, Anil K Jain, and Nicholas G Paulter. 2018.
Universal 3D wearable fingerprint targets: Advancing fingerprint reader eval-
uations. IEEE Transactions on Information Forensics and Security 13, 6 (2018),
1564–1578.

[26] Jianjiang Feng and Anil K Jain. 2010. Fingerprint reconstruction: from minutiae
to phase. IEEE transactions on pattern analysis and machine intelligence 33, 2
(2010), 209–223.

[27] FVC2002. 2002. Fingerprint Verification Competition. http://bias.csr.unibo.it/
fvc2002/.

[28] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. 2016. Candidate indistinguishability obfuscation and functional
encryption for all circuits. SIAM J. Comput. 45, 3 (2016), 882–929.

[29] Luca Ghiani, David A. Yambay, Valerio Mura, Gian Luca Marcialis, Fabio Roli,
and Stephanie Schuckers. 2017. Review of the Fingerprint Liveness Detection
(LivDet) competition series: 2009 to 2015. Image Vis. Comput. 58 (2017), 110–128.

[30] Marta Gomez-Barrero, Emanuele Maiorana, Javier Galbally, Patrizio Campisi, and
Julian Fiérrez. 2017. Multi-biometric template protection based on Homomorphic
Encryption. Pattern Recognit. 67 (2017), 149–163.

[31] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[32] Google. 2023. Android-12-cdd biometric sensors. https://source.android.com/
docs/security/features/biometric.

[33] Lin Hong, Yifei Wan, and Anil Jain. 1998. Fingerprint image enhancement:
Algorithm and performance evaluation. IEEE transactions on pattern analysis and
machine intelligence 20, 8 (1998), 777–789.

[34] Zhichao Huang and Tong Zhang. 2019. Black-box adversarial attack with trans-
ferable model-based embedding. arXiv preprint arXiv:1911.07140 (2019).

[35] Innovatrics. 2023. Innovatrics. https://www.innovatrics.com/innovatrics-abis/.
[36] Xudong Jiang and Wei-Yun Yau. 2000. Fingerprint minutiae matching based on

the local and global structures. In Proceedings 15th international conference on
pattern recognition. ICPR-2000, Vol. 2. IEEE, 1038–1041.

[37] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. 1988. Design of an
image edge detection filter using the Sobel operator. IEEE Journal of solid-state
circuits 23, 2 (1988), 358–367.

[38] Sieeka Khan. 2019. Samsung Galaxy S10 Fingerprint Scanner Hacked. https:
//www.sciencetimes.com/articles/19758/20190406/samsung.htm.

[39] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[40] Zoe Kleinman. 2014. Politician’s fingerprint ’cloned from photos’ by hacker.
https://www.bbc.com/news/technology-30623611.

[41] Kenneth Ko et al. 2007. User’s guide to nist biometric image software (nbis).
(2007).

[42] John R Koza and Riccardo Poli. 2005. Genetic programming. In Search method-
ologies. Springer, 127–164.

[43] Cai Li and Jiankun Hu. 2016. A Security-Enhanced Alignment-Free Fuzzy Vault-
Based Fingerprint Cryptosystem Using Pair-Polar Minutiae Structures. IEEE
Trans. Inf. Forensics Secur. 11, 3 (2016), 543–555.

[44] Sheng Li and Alex C Kot. 2012. An improved scheme for full fingerprint recon-
struction. IEEE Transactions on Information Forensics and Security 7, 6 (2012),
1906–1912.

[45] Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun
Wang. 2021. Combining Graph Neural Networks with Expert Knowledge for
Smart Contract Vulnerability Detection. TKDE (2021). https://doi.org/10.1109/
TKDE.2021.3095196

[46] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[47] Davide Maltoni, Dario Maio, Anil K Jain, and Salil Prabhakar. 2009. Synthetic
fingerprint generation. Handbook of fingerprint recognition (2009), 271–302.

[48] Anna Mikaelyan and Josef Bigun. 2012. Ground truth and evaluation for latent
fingerprint matching. In 2012 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops. IEEE, 83–88.

[49] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957 (2018).

[50] Farid Ghareh Mohammadi, Farzan Shenavarmasouleh, M Hadi Amini, and
Hamid R Arabnia. 2020. Malware detection using artificial bee colony algo-
rithm. In Adjunct Proceedings of the 2020 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers. 568–572.

[51] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1765–1773.

[52] Neurotechnology. 2021. Verifinger SDK. https://www.neurotechnology.com/
verifinger.html.

[53] Neurotechnology. 2022. Verifinger Case Studies. https://www.neurotechnology.
com/cgi-bin/customers.cgi.

[54] Dinh-Luan Nguyen, Sunpreet S Arora, Yuhang Wu, and Hao Yang. 2020. Adver-
sarial light projection attacks on face recognition systems: A feasibility study. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops. 814–815.

[55] NIST. 2010. NIST Biometric Image Software (NBIS). https://www.nist.gov/
services-resources/software/nist-biometric-image-software-nbis.

[56] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic
image synthesis with spatially-adaptive normalization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2337–2346.

[57] Aditya Singh Rathore, Yijie Shen, Chenhan Xu, Jacob Snyderman, Jinsong Han,
Fan Zhang, Zhengxiong Li, Feng Lin, Wenyao Xu, and Kui Ren. 2022. FakeGuard:
Exploring Haptic Response to Mitigate the Vulnerability in Commercial Finger-
print Anti-Spoofing. Proceedings 2022 Network and Distributed System Security
Symposium (2022).

[58] Arun Ross, Jidnya Shah, and Anil K Jain. 2007. From template to image: Recon-
structing fingerprints from minutiae points. IEEE transactions on pattern analysis
and machine intelligence 29, 4 (2007), 544–560.

[59] Aditi Roy, Nasir Memon, and Arun Ross. 2017. Masterprint: Exploring the vul-
nerability of partial fingerprint-based authentication systems. IEEE Transactions
on Information Forensics and Security 12, 9 (2017), 2013–2025.

[60] Anush Sankaran, Tejas I Dhamecha, Mayank Vatsa, and Richa Singh. 2011. On
matching latent to latent fingerprints. In 2011 international joint conference on
biometrics (IJCB). IEEE, 1–6.

[61] Mathew J. Schwartz. 2014. Apple iPhone 6 Touch ID Hacked. https://www.
bankinfosecurity.com/apple-iphone-6-touchid-hacked-a-7348.

[62] SecuGen. 2023. SecuGen. https://secugen.com/products/webapi/.

179

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Y. Shen et al.

[63] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. 2016. Ac-
cessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 acm sigsac conference on computer and communications
security. 1528–1540.

[64] Meng Shen, Zelin Liao, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2019. Vla:
A practical visible light-based attack on face recognition systems in physical
world. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 3, 3 (2019), 1–19.

[65] Erez Shmueli, Ronen Vaisenberg, Ehud Gudes, and Yuval Elovici. 2014. Im-
plementing a database encryption solution, design and implementation issues.
Comput. Secur. 44 (2014), 33–50.

[66] Satya Narayan Shukla, Anit Kumar Sahu, Devin Willmott, and Zico Kolter. 2021.
Simple and efficient hard label black-box adversarial attacks in low query budget
regimes. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery
& data mining. 1461–1469.

[67] G Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for
device authentication and secret key generation. In 2007 44th ACM/IEEE Design
Automation Conference. IEEE, 9–14.

[68] S Supatmi and ID Sumitra. 2020. Fingerprint Matching Using Bozorth3 Algorithm
and Parallel Computation on NVIDIA Compute Unified Device Architecture. In
IOP Conference Series: Materials Science and Engineering, Vol. 879. IOP Publishing,
012109.

[69] Amirhosein Toosi, Andrea Bottino, Sandro Cumani, Pablo Negri, and Pietro Luca
Sottile. 2017. Feature fusion for fingerprint liveness detection: a comparative
study. IEEE Access 5 (2017), 23695–23709.

[70] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses.

arXiv preprint arXiv:1705.07204 (2017).
[71] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normaliza-

tion: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022
(2016).

[72] Ruxin Wang, Congying Han, and Tiande Guo. 2016. A novel fingerprint classifi-
cation method based on deep learning. In 2016 23rd International Conference on
Pattern Recognition (ICPR). IEEE, 931–936.

[73] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-resolution image synthesis and semantic manipulation
with conditional gans. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 8798–8807.

[74] Lei Zhang, Yan Meng, Jiahao Yu, Chong Xiang, Brandon Falk, and Haojin Zhu.
2020. Voiceprint mimicry attack towards speaker verification system in smart
home. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 377–386.

[75] Qijun Zhao, Anil K Jain, Nicholas G Paulter, and Melissa Taylor. 2012. Fingerprint
image synthesis based on statistical feature models. In 2012 IEEE Fifth International
Conference on Biometrics: Theory, Applications and Systems (BTAS). IEEE, 23–30.

[76] Yongfang Zhu, Sarat C. Dass, and Anil K. Jain. 2007. Statistical Models for
Assessing the Individuality of Fingerprints. IEEE Trans. Inf. Forensics Secur. 2, 3-1
(2007), 391–401.

[77] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He.
2020. Smart Contract Vulnerability Detection using Graph Neural Network. In
IJCAI. 3283–3290. https://doi.org/10.24963/ijcai.2020/454

[78] ZKTeco. 2021. ZKTeco LIVE 20R. https://www.ebay.com/itm/134070768618.

180

