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ABSTRACT

This paper introduces SudokuSens, a generative framework for au-
tomated generation of training data in machine-learning-based
Internet-of-Things (IoT) applications, such that the generated syn-
thetic data mimic experimental configurations not encountered dur-
ing actual sensor data collection. The framework improves the
robustness of resulting deep learning models, and is intended for
IoT applications where data collection is expensive. The work is mo-
tivated by the fact that IoT time-series data entangle the signatures
of observed objects with the confounding intrinsic properties of
the surrounding environment and the dynamic environmental dis-
turbances experienced. To incorporate sufficient diversity into the
IoT training data, one therefore needs to consider a combinatorial
explosion of training cases that are multiplicative in the number
of objects considered and the possible environmental conditions
in which such objects may be encountered. Our framework sub-
stantially reduces these multiplicative training needs. To decouple
object signatures from environmental conditions, we employ a Con-
ditional Variational Autoencoder (CVAE) that allows us to reduce
data collection needs from multiplicative to (nearly) linear, while
synthetically generating (data for) the missing conditions. To obtain
robustness with respect to dynamic disturbances, a session-aware
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temporal contrastive learning approach is taken. Integrating the
aforementioned two approaches, SudokuSens significantly improves
the robustness of deep learning for IoT applications. We explore
the degree to which SudokuSens benefits downstream inference
tasks in different data sets and discuss conditions under which the
approach is particularly effective.
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1 INTRODUCTION

Modern machine learning has revolutionized sensing applications,
but its success remains contingent on the availability of representa-
tive training data. This paper is motivated by sensing applications
where data collection remains expensive. For example, in a defense
scenario, where sensors are trained to identify different types of
vehicles from their seismic signatures, getting access to the right
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vehicles is logistically non-trivial. We say that such scenarios suffer
from data scarcity [13, 17]. In such scenarios, datasets for training
and validation may not fully represent the complexity and diversity
of real-world conditions. Machine learning models trained with
such data may therefore exhibit catastrophic failures in novel con-
ditions upon deployment [7, 34].

The data scarcity problem is generally more pronounced in IoT
applications compared to other fields such as computer vision (CV)
and natural language processing (NLP). The specialized nature of
some IoT sensors (compared to say, cameras or sources of text)
often makes it harder to perform data collection at scale. Moreover,
due to the non-interpretable nature of IoT sensor signals, manually
labeling data after the fact is difficult.

IoT applications involving specialized data thus need a different
data collection methodology compared to CV and NLP. As shown in
Figure 1, the gathering of a dataset in CV and NLP usually involves
scraping public data from the Internet in an automatic manner,
followed by manual validation and labeling. A typical example is
the construction of ImageNet [11, 38]. In contrast, specialized IoT
data collection often entails manually designing and conducting
experiments for the express purpose of generating training data.
For example, vehicles might need to be driven at different distances
from desired sensors in the intended types of terrain, for purposes
of measuring their seismic signature in such terrains. The time-
consuming and costly nature of this process contributes to data
scarcity, which impacts the quality of training for this category of
IoT applications.

To address data scarcity - specifically, the situation where the
data available for developing a deep learning model are not suffi-
ciently diverse, thereby failing to cover the full spectrum of con-
ditions that the model may encounter during deployment — our
framework, SudokuSens, reduces the number of combinations of
target and environment for which data must be physically collected.
Data for the missing combinations are instead generated by our
framework synthetically (much like solving a Sudoku puzzle), by
combining clues from other partially matching conditions. Training
can subsequently use both the physically collected and synthetically
generated data, thereby mitigating the data scarcity challenge.

In this work, we adopt a broad definition of IoT applications,
where the underlying sensing and data processing system is as-
sumed to possess adequate capacity to conduct ML-based infer-
ence tasks. This is in line with modern IoT applications, including
activity recognition and target detection, where smartphones or
(lower-end) edge servers can be enlisted to process sensing data, as
contrasted with the emphasis on mote-class devices and low-end
microcontrollers in the early days of sensor networks research.
The analytic tasks performed by our applications were thus exe-
cuted on a Raspberry Pi class device. The goal of these Al/inference
tasks is to determine (in-situ) certain target attributes in the face
of a variety of confounding conditions (static and dynamic) un-
der which the underlying sensory observations are made. We call
these confounding conditions intrinsic attributes and dynamic dis-
turbances, respectively, depending on whether they represent static
discrete types of environment or dynamic conditions changing on
a continuous scale. For example, in the case of seismic sensing, an
intrinsic attribute of the environment might be the type of terrain a
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vehicle drives on (e.g., asphalt, gravel, or dirt), whereas a dynamic
disturbance might constitute the dynamic wind noise.

SudokuSens introduces two major novel components. First, to
handle the diversity of intrinsic attributes, it uses a conditional vari-
ational autoencoder (CVAE)[25, 37] to augment the original dataset
by interpolating the missing conditions. Thus, the IoT dataset need
only sample a subset of all possible attribute combinations. For
example, in a vehicle detection task, a training dataset may only
cover the condition “vehicle A on a city road", "vehicle A on a sandy
road" and “vehicle B on a city road". Conditional interpolation can
then generate “vehicle B on a sandy road". Conditional interpola-
tion leverages the knowledge learned from the sampled conditions
to synthesize the missing conditions. The purpose is to provide a
more comprehensive augmented dataset.

Second, to handle dynamic disturbances, SudokuSens employs
a Session-Aware Temporal Contrastive Learning approach (SA-
TCL). Since we assume that specialized IoT datasets are manually
collected from specially designed experiments, we assume that the
experiments are divided into sessions, where each session focuses
on some specific physical activity in the presence of confounding,
varying background states. For example, in a 30-minute “vehicle A
on a city road" data collection session, all samples correspond to
vehicle type A. Accordingly, during training, SA-TCL rewards the
encoder neural network for placing samples from the same session
closer together in the latent space, while placing samples from
different sessions further apart, thus encouraging the emerging
latent representation to focus on session-label-specific features
while ignoring confounding dynamic disturbances.

The preparation and use of SudokuSens involves (i) pre-training,
(ii) fine-tuning, then (iii) deployment/testing. During pre-training,
SudokuSens first runs conditional data interpolation to augment
the original dataset. Subsequently, it applies SA-TCL to the aug-
mented dataset to train the SA-TCL encoder. Encoder training dis-
tills disturbance-resistant latent representations of the (augmented)
input data. To fine-tune the framework to specific downstream
inference tasks, the trained encoder of SA-TCL first maps incoming
data to the (disturbance-resistant) latent space, then a downstream
deep learning network is trained to decode from that space to the
output of the task at hand. Finally, at deployment/test time, the
SA-TCL encoder followed by the aforementioned decoder network
jointly map from input data to output inference.

We evaluate the efficacy of SudokuSens at improving machine-
learning outcomes for datasets that differ in their scarcity (i.e., their
coverage of relevant conditions), the complexity of foreground ac-
tivities performed, and the nature of static and dynamics confound-
ing factors experienced. The analysis yields preliminary insights
on deployment attributes correlated with the efficacy of the pro-
posed approach. Beyond existing dataset-based evaluation, we also
conduct experimental studies, demonstrating how SudokuSens is
integrated into real-world IoT sensing systems, where it contributes
to improved robustness to unseen conditions. SudokuSens is shown
to outperform the best baseline by 10.74% to 26.87% in accuracy
under the conditions considered.

The rest of this paper is organized as follows. We empirically
motivate the need for SudokuSens in Section 2. Section 3 describes
its design. Section 4 presents evaluation results. Section 5 covers
related work. Finally, we conclude the paper in Section 6.
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Figure 1: The differences of dataset collection methodology between CV/NLP and IoT sensing applications

2 MOTIVATION: THE GAP BETWEEN LAB
AND WILD

We present a motivating case study that underscores the perfor-
mance gap arising between laboratory and real-world conditions
due to data scarcity in IoT applications. The study comprises a
vehicle detection application based on acoustic and seismic sensors.
The goal is to detect the passage of a given vehicle type through
the detection area by running a deep learning model on 2-second
data intervals from both types of sensors. During data collection,
both the seismic and acoustic sensors are on the ground, sensing
the vibrations and sound generated when a vehicle is driven by.

Table 1: Data Collection Scenarios.

Location Description Terrain  Traffic Wind
A | Parking structure Roof top parking Concrete  Low High
B | College parking lot Large outdoor parking Concrete  Low Medium
C | Stadium parking lot 1 ~ Small outdoor parking Concrete  Medium Low
D | City parking lot Small outdoor parking Concrete  Medium Medium
E | State park Clearing in wooded area  Gravel No Medium
F | Stadium parking lot 2 Large outdoor parking Gravel Medium Low
G | Undeveloped area Overflow parking Gravel High Low

We perform the data collection in seven scenarios, described in
Table 1. Each scenario is a unique combination of location and con-
founding factors that introduce variability to challenge the classifi-
cation task. A total of eight vehicle types were utilized. Constrained
by both financial and temporal budgets, our data collection could
only partially cover the full range of possible vehicle-environment
combinations, as displayed in Table 2. In each data collection ses-
sion, the vehicle is arbitrarily driven at a speed between 5 miles
per hour to 25 miles per hour within a radius of 300 feet around
the sensors. In total, we collected 17 sessions of data for model
development.

The data set offers incomplete coverage of all possible vehicle-
environment combinations. We split it into a training set, a vali-
dation set, and a testing set in the proportions 80%, 10%, and 10%,
respectively, by splitting the sensor traces from each condition into
three contiguous partitions whose lengths are of the above propor-
tions to be included respectively in the corresponding sets. Thus,
(some part of) each condition is represented in each of the training,
validation, and testing data. For the classifier, we implemented a
deep learning model based on DeepSense [39], a supervised neural
network designed for time-frequency learning from IoT signals. We
then optimized this network by doing a manual neural architecture

Table 2: Experimental conditions in the vehicle detection
dataset. Each cell shows the minutes of data collected under
that condition. Blank cells are conditions not sampled.

Type A B C D E F G
Polaris ATV 20
Warthog Robot 20
Chevrolet Silverado  Pickup Truck 60 15
Ducati Scrambler  Motorcycle 60 30
Tesla Model 3 EV Sedan 70
Nissan Rogue SUV 60 20
Mazda MX-5 Roadster 30 30 30
Ford Mustang  Sports Car 30 60 30 20 20

search over the number of layers (including CNNs and RNNs), the
length of the feature dimensions, dropout rates, and learning rates.
Additionally, we adjusted the parameters of the short-time Fourier
transform (STFT) applied to the input data. The accuracy and F1
score of the developed classifier (applied to test data) for each of
the eight targets, as well as their average, is shown in Figure 2.
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Figure 2: A case study to motivate SudokuSens. The average
accuracy and the accuracy for each vehicle type during the
development phase are presented.

As can be seen from Figure 2, when test data are drawn from
the same environmental conditions as training and validation, the
performance is acceptable. To evaluate the robustness of the model,
we then collect data on two additional scenarios, featuring the same
targets in new conditions (intrinsic attributes and dynamic distur-
bances not used for training/validation). In Figure 2, we call them
Unseen 1and Unseen 2. The goal is to evaluate how well the trained
model generalizes to previously unseen conditions (i.e., conditions
not explicitly trained with).
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2.1 Unseen Condition 1: Different Intrinsic
Attributes

For unseen condition 1, we drive (during testing) a Ford Mustang
in scenario F. It is a previously unseen combination of vehicle,
background traffic, and terrain type. As shown in Figure 2, the
model exhibits poor performance in this case, compared to test-
ing in scenarios used in training. Even though the new condition
involves both (i) a vehicle type that appeared in training (under
other environmental conditions) and (ii) environmental conditions
that appeared in training (for other vehicles), the training tends to
overfit to the exact seen target/environment combinations, failing
to disentangle the influences of target and environment. One might
potentially blame the training, but fundamentally, the observed
overfitting is a result of data scarcity. Given a modern neural net-
work and limited training data, there are enough neural network
parameters to “memorize" the training data, thereby failing to gen-
eralize. This outcome highlights the limitations of training a deep
learning model on scarce data, as the trained model may then lack
the robustness to generalize well.

2.2 Unseen Condition 2: New Dynamic
Disturbances

For unseen condition 2, we drive the Ford Mustang in the location
of scenario B but on another day with a high wind noise (which
departs from conditions of scenario B). The strength and direction
of the wind were highly dynamic during the experiment. As shown
in Figure 2, there is a significant drop in accuracy under the new
condition, compared to the average accuracy for the conditions
trained with.

The observations in the above two cases motivate us to enhance
the robustness of deep learning models trained with scarce data.
Below, we present the general framework of SudokuSens.

3 FRAMEWORK DESIGN

In this section, we describe the design of SudokuSens that addresses
the robustness challenge. We first give an overview of the whole
framework then describe each of its two key components in detail.

3.1 SudokuSens Overview

As depicted in Figure 3, in the offline pre-training stage, a train-
ing dataset is first used to train a CVAE model to disentangle the
influences caused by various intrinsic environmental attributes.
Later, the trained CVAE is used to synthetically generate data for
conditions missing from the original dataset. The synthetic samples
together with the original samples form the augmented dataset.
Next, SA-TCL takes the augmented dataset as input and applies
contrastive learning. It pulls samples from the same sessions closer
together in the latent space and repels samples from different ses-
sions apart. The trained encoder in SA-TCL is then frozen, and
prepended to a downstream classifier as an initial feature extractor
to mitigate the effects of dynamic disturbances. The downstream
classifier is then trained using the augmented dataset. Finally, dur-
ing deployment/testing, each input data sample is passed through
the SA-TCL encoder and then fed into the downstream classifier to
accomplish the run-time inference task.

Tianshi et al.

3.2 Conditional Interpolation

Let us define D as the original dataset containing signals x with
their associated conditions ¢, such that D = (x;, c,-)f\i 1» Where N
is the total number of samples in the dataset. Each condition ¢; is
a vector that represents a specific combination of attribute values,
where each attribute value is one specific value from an attribute
in the set A. For instance, in the vehicle detection application,
if A = {vehicle type, terrain type}, then a condition ¢; could be
(sedan, desert), representing a specific vehicle type and a specific
terrain type. Furthermore, we denote the set of all seen conditions
in the dataset as Cseen, and the set of missing conditions as Cunseen-
Each ¢; € Cunseen represents a combination of attribute values that
do not exist in Cseen, although each individual attribute value has
appeared in some combination within D.

As shown in Figure 4, the CVAE takes multi-modality signals as
inputs, so x; = {x? }j\/I: 1» Where each x{ represents the signal from
the j-th modality and M is the total number of modalities. We pre-
process the time-series raw data by short-time Fourier transform
(STFT), which effectively exposes the patterns in the frequency
domain [40]. Thus, the input from each modality is in the shape
of feature X time X frequency, annotated as f, ¢, fr respectively (we
annotate the inputs to the neural network using the Channels First
format.). During training, signals x are fed into the encoder. Signals
from each modality first pass through multiple convolutional lay-
ers that reduce the frequency dimension and capture the essential
features in a lower-dimensional space. After that, feature maps
from each modality are flattened and concatenated alongside the
conditional feature g(c). Conditional feature g(c) is derived from
the conditional vector ¢ passing through a multi-layer perceptron
(MLP), where g(-) represents the function of the MLP. In our imple-
mentation, we one-hot embed each attribute value, and concatenate
them into the condition vector c. Next, the concatenated vector
passes through two separate MLPs to generate the mean p and
standard deviation ¢ of a Gaussian distribution respectively. Finally,
a latent representation z is randomly sampled from z ~ N'(y, o).

The objective of the decoder is to reconstruct the original signals
given the latent representation z alongside the conditional feature
g(c). The decoder maps the latent representation z to a higher
dimensional tensor by multiple MLPs and processes the feature
map of each modality by several transposed convolutional layers.
The reconstructed signals for each modality have the same shape as
the inputs. Following common practice, we utilize evidence lower-
bound (ELBO) [19, 25, 32, 33] to optimize CVAE model parameters:

L0, $;x,¢) = —E%(zb‘,c) [log po (x|z,c)]

(1)
+KL(qg(z]x,¢)|p(z)).

The first term of the loss function represents the reconstruction loss.
It ensures that the CVAE learns to accurately reconstruct the input
data. Here, q4(z[x, c) is the probability distribution that the encoder
uses to map the input data x and the conditional vector c to the latent
space, and pg(x|z, c) is the probability distribution that the decoder
uses to map from the latent space back to the data space. The second
term is the Kullback-Leibler (KL) divergence between the encoder’s
distribution g4 (z|x, ¢) and a prior distribution p(z), which is chosen
to be a standard normal distribution. The KL divergence measures
how much the encoder’s distribution over the latent space deviates
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Figure 4: The CVAE architecture for conditional interpola-
tion. A 2-modality input is taken as an example to illustrate
the design.

from the prior distribution. This term acts as a regularization that
encourages the distribution of latent variables to be close to the
prior distribution, preventing the model from overfitting.

Through training, the CVAE learns the influences of different
intrinsic attributes in A. Thus, after training, conditional interpo-
lation is applied to Cynseen. During the interpolation, latent rep-
resentation z is directly sampled from a standard normal distribu-
tion z ~ N(0,I) then passed through the decoder together with a
¢ € Cunseen to generate the synthetic sample x.

% = pg(zc). (2)

To incorporate sufficient variances, we interpolate a given ¢ €

Cunseen for T times. The synthetic samples alongside the original
dataset forms the augmented dataset Dgyg.

3.3 Session-Aware Temporal Contrastive
Learning

Session-aware temporal contrastive learning (SA-TCL) leverages
the fact that IoT datasets are often organized by data collection

sessions. Samples within the same session reflect the same physical
phenomenon in the presence of various dynamic disturbances. It
is advantageous to guide the neural network to learn disturbance-
independent features to avoid overfitting.

As shown in Figure 5, the encoder takes samples from the condi-
tional interpolated dataset Dgy 4 as inputs. We annotate each sample

from the Dygyy as x;. As a multi-modality input, x;J represents the
signal of the j-th modality from sample i. An STFT is computed to
convert the time-series data into a spectrogram. During contrastive
learning, the different frequency components of the spectrogram
could be weighted differently based on the information density. For
example, in the applications we consider (such as vehicle detection
and human activity recognition), the lower-frequency part of the
STFT spectrogram contains more target-related information than
the high-frequency part.

Thus, we apply a frequency mask M to each x;] to put different
weights along the frequency axis of the original spectrogram. In the
frequency mask, the values closer to the lower frequency are ini-
tialized closer to 1, while the values closer to the higher frequency
are initialized closer to 0. For values in between, they are initial-
ized using a descending logarithmic scale, transitioning smoothly
from values near 1 to values approaching 0. By multiplying the
frequency mask by the original spectrogram, the contribution of
low-frequency components in computing the distance between
samples is emphasized, while the contribution of high-frequency
components is weakened. We define the masked sample i{ as:

~ ’
x{ =M- Xi] . 3)

As different tasks may have different information density distri-
butions, the values in M are set as learnable parameters, so that the
model has the flexibility to adjust this mask and learn the best way
to focus on different parts of the spectrogram.

After the frequency mask is applied, the signals from each modal-
ity pass through multiple convolutional layers that keep the original
shape of the spectrogram but increase the feature dimension to
expose features in a higher dimensional space. Then, the output
tensors from each modality are flattened and concatenated into one
vector z. This vector further goes through an MLP and produces
the latent representation for calculating the contrastive loss.
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The computation of contrastive loss is based on the Normal-
ized Temperature-scaled Cross Entropy loss (NT-Xent loss) [6, 24].
Given a batch size B, within each training iteration, B sessions are
randomly selected. Within each session, two different samples are
randomly chosen, making 2B samples in total for each batch. When
calculating the contrastive loss, for each sample i, the sample j
from the same session is treated as the positive sample, while the
remaining 2B — 2 samples are considered negative. The latent rep-
resentations of all the samples are calculated through the encoder
and annotated as h;. The NT-Xent contrastive loss of SA-TCL for a
positive pair (i, j) can be defined as:

exp (sim(hi, hj)/7)
N Wk exp (sim(hy, hy) /7) A

And the total loss of a batch is the mean of the losses for all the
positive pairs:

(i, j) = ~log @

N
1
£=2—};[t’(2k—l,2k)+f(2k,2k—l)]. ()
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Figure 5: Session-aware temporal contrastive learning,.

4 EVALUATION

We implement SudokuSens in Python based on PyTorch 1.11 [1].
The training of the framework is done on a server equipped with
an Intel i9-9960X @3.10GHz CPU and 4 NVIDIA GeForce RTX
2080 Ti GPUs. At deployment/inference time, SudokuSens is run
on a Raspberry Pi 4 (including the encoder and the downstream
classifier).

Below, we first introduce the experimental setup, including the
datasets, the downstream neural networks, and the baselines. We
then present and discuss the overall dataset-based evaluation results.
Subsequently, we revisit the motivating experiments mentioned in
Section 2, describe our implemented vehicle detection system in
more detail, and show how SudokuSens enhances model robustness
for this application during actual deployment. Finally, we conduct
ablation studies to investigate the factors affecting the degree of
improvement brought by SudokuSens and present profiling results
to evaluate its run-time efficiency on the Raspberry Pi.

Tianshi et al.

4.1 Datasets

In the first of the evaluation, we conduct experiments on three typ-
ical IoT datasets. In each case, we map the data set into a matrix we
henceforth suggestively call, the Sudoku matrix. One dimension of
this matrix represents different classes that the classifier in question
needs to distinguish (e.g., target types or human activities). The
other dimension represents a set of different discrete conditions un-
der which these classes might be observed. For evaluation purposes,
we mark some of these target/condition combinations (i.e., matrix
cells) as seen and others as unseen. We then divide each dataset into
three subsets: training, validation, and testing. The training and
validation sets draw only from cells marked seen, Cseen, whereas
the testing set comprises only the cells marked unseen, Cynseen-
The percent of the Sudoku matrix cells marked as seen is there-
after referred to as the percent coverage of the training/validation
data. We did not explicitly control for dynamic disturbances, al-
though natural noise in the data caused variations among different
traces, even under the same conditions. Thus, such disturbances
were naturally present. The evaluation is performed by performing
classification of known targets in unseen conditions and computing
the average accuracy and macro F1 score. Below, we describe the
data sets in more detail.

e Seismic- and acoustic-based vehicle detection. The ve-
hicle detection dataset we use is the Acoustic-seismic Clas-
sification Identification Data Set (ACIDS) [5]. ACIDS uses
a seismic and an acoustic sensor, both at a 1024 Hz sam-
pling rate, to record vehicles moving towards and away from
the sensing zone. On average, the dataset contains 45 min-
utes of recordings (per sensor) per target class, segmented
into two-second chunks with one-second overlap. It encom-
passes 135 sessions from 9 vehicle types across 3 terrains:
arctic (snow/ice), normal (city roads), and desert (sand). The
purpose, in this case, is to do vehicle classification. Con-
founding conditions represent the three different terrain
types. Clearly, the terrain type (e.g., asphalt versus snow)
affects both the sound and vibration features, making it a
proper confounding attribute.

e Wearable-device-based human activity recognition. We
use the RealWorld-HAR dataset [27] for wearable-device-
based human activity recognition, which captures data from
6 modalities, including accelerometer, GPS, gyroscope, light,
magnetic field, and sound level. Sensors are placed on 7 body
positions. On average, the dataset contains approximately
one hour of recordings (per sensor) per activity class. It fea-
tures 5 activities including walking, running, stairs up/down,
and jumping, recorded from 15 human subjects. Each ses-
sion lasts around 10 minutes (except for jumping, which
lasts approximately 1.7 minutes). The purpose, in this case,
is to perform human activity recognition. The confounding
variable is the person performing the activity.

e Wireless-sensor-based human activity recognition. We
use the wireless-sensor-based human activity recognition
dataset from [4]. It records Wi-Fi signal variations caused by
indoor human activities. On average, the data set contains
approximately 15 minutes of recordings per activity class.
It features 12 activities, performed by 30 human subjects
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across 3 environments. Each session involves 20 repetitions
of activities. The purpose, as before, is to perform human
activity recognition. The confounding variable is, again, the
person.

4.2 Downstream Classifiers

As a general feature extraction framework, SudokuSens can support
different downstream classifiers. We select 3 typical neural network
architectures as the downstream classifiers.

e Shallow neural network. The shallow neural network (de-
noted as shallow) concatenates all the features from each
modality together, and flattens the concatenated features
into a 1D vector. The network has a fully-connected hidden
layer, followed by a ReLU activation function. After that, a
fully-connected layer and a softmax function are used for
the final classification. We choose this architecture to offer a
baseline to compare against more complex architectures.

e DeepSense. DeepSense [39] is a neural network designed
for IoT applications. It extracts features from the input in a
hierarchical way. It first uses 3 convolutional layers to ex-
tract the modality-level features, then stacks the features
maps and averages across modalities to finish modality fu-
sion. Next, if multiple sensor node locations exist (like in
RealWorld-HAR), DeepSense follows the same pattern to do
location fusion. The fused features then pass through 1 Gated
Recurrent Unit (GRU) layer to better extract the temporal
related features. Finally, a linear layer followed by a soft-
max acts as the classification head and outputs the inference
result. We choose DeepSense to evaluate how SudokuSens
can improve on a more complex neural network based on
conventional network building blocks.

e Transformer. In the Transformer network, the input spec-
trogram of each modality is first reshaped from (f, t, fr) to
(fr x f,t) (Channels First format), and passed through a
standard Transformer encoder layer[31], which includes a
self-attention layer and two linear layers. Here, time dimen-
sion t is the sequence length, and the product of frequency
and feature dimension fr X f is taken as the embedding di-
mension. Subsequently, multimodal features are fused via
concatenation and linear layer processing. If multiple loca-
tions exist, the network follows the same manner to further
extract and fuse the location-level features. Finally, a linear
layer followed by a softmax acts as the classification head.
As one of the current mainstream and most successful ar-
chitectures, we choose transformer to evaluate whether our
method can further improve the performance of the state-
of-the-art architecture.

4.3 Baselines

We select four comparison baselines (alternative approaches to
improve training robustness) to understand the advantages of Su-
dokuSens in handling IoT data scarcity challenges, compared to
feasible alternatives.

e Basic. We train the downstream neural network on the
original dataset by supervised learning. This is the most
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straightforward and common approach taken in many IoT
applications. It offers no robustness support.
e Conventional data augmentation. Data augmentation
is a common approach to enhance the diversity and size
of datasets and increase the robustness of trained models.
We adopt the data augmentation techniques used in [45],
which include both augmentation in time and frequency
domain. We randomly apply one time-domain augmentation
and one frequency-domain augmentation on each sample
and create 10 augmented samples for each original. Then
we use supervised learning to train the downstream neural
network.
Temporal Neighborhood Coding (TNC). TNC is a tempo-
ral contrastive learning framework designed to capture the
progression of the underlying temporal dynamics [29]. The
idea is to divide the temporal sequence into windows and
define a neighborhood around every window. Then repre-
sentations are learned by contrasting samples from the same
neighborhood and samples from different neighborhoods.
Comparing with our approach, TNC provides a temporal
contrastive learning baseline that is not session-aware.
¢ Time-Frequency Consistency (TF-C). TF-C is a state-of-
the-art general contrastive learning framework for time-
series data [45]. It promotes proximity of time and frequency-
based representations of identical time series samples in the
latent space while distancing those from different samples.
This process incorporates both data augmentation and con-
trastive learning. Thus, TF-C serves as a strong baseline in
our study.

4.4 Overall Performance on Datasets

Figure 6 presents SudokuSens and baseline performance on each
dataset with different classifiers. The percentage coverage of the
Sudoku matrix is varied as shown on the x-axis. Smaller coverage
values indicate higher data scarcity. When SudokuSens is used, each
of the empty cells, Cynseen, of the matrix is filled-in with synthetic
traces whose length matches the average number of samples per
cell for the covered cells, Cseen.

Several observations from the figure are worth commenting on.
First, in general, SudokuSens improves classification accuracy over
other robustness/augmentation baselines. The difference becomes
more pronounced as the percentage coverage by training/validation
data decreases. At 100% coverage, SudokuSens does not offer a
significant advantage, if any.

Second, more advanced classifiers (lower rows in Figure 6), ap-
pear to be less robust. While they offer better accuracy and F1-score
at 100% coverage (no domain shift between training and testing),
they fare worse than simpler classifiers at low coverage values.
In other words, their degradation is more abrupt as data scarcity
increases. Figure 6 shows that SudokuSens generally offers a better
advantage at lower coverage values and with more advanced (and
thus less robust) classifiers.

Another interesting observation is the difference in SudokuSens
benefits across data sets (i.e., across the columns in Figure 6). The
figure demonstrates a higher improvement due to SudokuSens on
the ACIDS vehicle detection dataset (leftmost column) compared to
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Figure 6: Each row of figures presents results from a particular type of downstream classifier, while each column of figures
shows results from a specific dataset. Height of each bar represents the accuracy value while the vertical position of each dash
indicates the F1-score. The percentages on the x-axis represent the proportion of filled cells within the Sudoku matrix. A higher

percentage coverage indicates a more complete dataset.

the two HAR datasets. The comparison offers insights into data set
properties that might be more conducive to improvements with Su-
dokuSens. This observation needs some elaboration: SudokuSens is
designed to improve inference primarily by generating new training
traces for additional environmental conditions (via data extrapo-
lation using the CVAE). Clearly, a main factor affecting the utility
of such data extrapolation is the degree of similarity between seen
and unseen conditions. If the unseen conditions for a target class
are similar to the ones already represented in the training data (for
that class), then the improvement attained from the extrapolation
is marginal. Otherwise, the extrapolation is of more value. This
explains the difference between the columns. The sensory signa-
tures of the same vehicle in different terrains are quite distinct.
Thus, SudokuSens extrapolation to mitigate the large domain shift
is advantageous. In contrast, the signature variability in perform-
ing the same activity (such as walking) across individuals is less
pronounced. Thus, extrapolation has less value. Figure 7 visually
confirms the above by comparing example sensory signatures for
the same class of output in Wearable-HAR versus ACIDS. It can be
seen from Figure 7 that the differences between spectrograms in
the left column (seismic signatures of the same vehicle in different
terrains) are bigger than the differences between spectrograms in
the right column (accelerometer signatures of the same activity
for different people). Thus, SudokuSens offers more value from its
extrapolation framework in the ACIDS dataset.

Finally, observe from Figure 6 that at/near 100% coverage, Su-
dokuSens offers a marginally better advantage over baselines for
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Figure 7: The figure shows that similarity in target signatures
across different terrains (in ACIDS data) is much less than
similarity in activity signature across different subjects (in
Wearable HAR data). SudokuSens offers a higher value from
data interpolation in the ACIDS dataset.

the HAR datasets compared to ACIDS (where it offers no advan-
tage at all). At such a high coverage, CVAE extrapolation is not a
factor. Instead, performance differences are attributed to the used
disturbance rejection framework (i.e., the SA-TCL encoder). Note
that, at fine-grained timescales, sensory signatures of human activ-
ities are temporally more complex than the signatures of a rotating
vehicle engine. Thus, there is more value in disentangling activ-
ity signatures from dynamic background disturbances in the HAR
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dataset, compared to the ACIDS dataset. In ACIDS, simpler tech-
niques are sufficient for disturbance rejection, which is why, for
ACIDS, SudokuSens does not beat the baselines (at 100% coverage).

4.5 Outdoor Field Experiments

To further confirm the insights discussed above, we conduct addi-
tional outdoor experiments featuring a deployed run-time system
executing on the target edge hardware. This system has already
been mentioned briefly in Section 2. We describe it below in more
detail. Figure 8 illustrates the sensor devices used. Namely, sensing
is done with a RaspberryShake 1D [2], which is a Raspberry Pi 4
connected to a seismic sensor. Raspberry Pi 4 is a compact and
cost-effective mobile computer, equipped with a 1.5GHz Cortex
A72 CPU and 2 GB of memory. In addition, a ReSpeaker USB Mic
Array [3] was connected to the Raspberry Pi 4 via a USB port. It has
4 high-performance digital microphones and supports 360-degree
audio pick-up. The sensor devices collect seismic and acoustic sig-
nals at a sampling rate of 100 Hz and 8000 Hz respectively. The
entire node is situated on firm ground as depicted in Figure 8A. A
USB Wi-Fi antenna was connected to the Raspberry Pi 4, allowing
it to be remotely controlled for experimental purposes by our re-
mote controller device: a Lenovo ThinkPad T430 laptop (shown in
Figure 8B). The laptop was not used to process the inference work-
load. All inference and detection were deployed on the Raspberry
Pi, and performed in real-time on successive 2-second sensor data
intervals.

(A) The sensor node: RPi 4 in-
tegrated with a seismic sen-
sor and a microphone array

(B) A target: a Ford Mustang
sports car

Figure 8: Hardware devices adopted in the case studies.

While operating the target vehicle, the driver carried a smart-
phone to record GPS traces. For evaluation (i.e., ground-truthing)
purposes, when the distance between the vehicle and the sensor
exceeded 100 ft, we considered that there was “no vehicle" nearby.
Conversely, when the vehicle was within 100 ft, the ground truth
vehicle type was recorded.

SudokuSens was pretrained with the conditions listed in Table 2
(where scenarios A through G are as defined in Table 1). We then
filled out the rest of the SudokuSens matrix (i.e., the empty slots in
Table 2). Collection scenarios A through G were treated as confound-
ing attributes for each target class. They varied in such properties
as the nature of the experimental location (e.g., urban versus rural)
and the type of underlying terrain (e.g., paved versus gravel). Each
scenario (A through G) featured additional internal variability aris-
ing from dynamically changing target speed, distance from sensor,
and the naturally occurring background noise, forming acoustic
and seismic dynamic disturbances. While SudokuSens is executed
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in real time, the performance of other baselines was evaluated via
data playback.
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Figure 9: SudokuSens experimental study

Figure 9 compares the performance of SudokuSens to the base-
lines listed in Section 4.3 in terms of classification accuracy and
F1 score in the case of unseen condition 1 and unseen condition 2
(described in Section 2.1 and Section 2.2, respectively), as well as
the case where no unseen conditions exist (denoted in-dataset). The
latter serves as the upper limit of model performance. The figure
presents additional empirical evidence showing that SudokuSens
outperforms the other baselines.

4.6 Generalizability and Limits

The above results show great improvements brought by SudokuSens
for various downstream classification tasks. When do these im-
provements stop and what do they depend on? Below, we investi-
gate this question by conducting three additional experiments, aim-
ing to understand what factors impact the efficacy of SudokuSens.

4.6.1 Limits of CVAE Extrapolation Efficacy. The main factor affect-
ing the quality and efficacy of data extrapolation using the CVAE
is the sparsity of coverage in the training data. For a given target,
classification accuracy in new conditions depends on how many
Cseen cells of the Sudoku matrix features that target in the first
place. To confirm this intuition, we consider the settings of unseen
condition 1 described in Section 2.1 (i.e., the Ford Mustang running
in scenario F), and gradually reduce the number of seen “cells”,
Cseen, in the Sudoku matrix shown in Figure 2 that feature the Ford
Mustang. We then apply SudokuSens and other baselines to the
reduced data set. Figure 10 shows the Ford Mustang classification
accuracy and F1 score in two such cases. One when the Mustang
data in scenarios A and C was removed from the training data
(left), and one where the Mustang data in scenarios A, B, and C was
removed. Note how, in the left figure, SudokuSens advantage is mar-
ginal, whereas in the right it offers no advantage. This is because
removing scenarios A, B, and C leaves no row or column overlap
between Ford Mustang observations and other Cseen, data. Thus,
knowledge is not transferred from seen Mustang cells to other cells.
Similarly, in the right figure, the transfer is minimal. We conjecture
that CVAE extrapolation works when at least one rectangle can
be found in the Sudoku matrix such that three of its corners are
cells in Cseen, and the fourth is the unknown condition we want to
classify the target in. The more such rectangles exist that involve
the unknown condition, the better the knowledge transfer.
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Figure 10: Generalizability of conditional interpolation.

4.6.2 Limits of SA-TCL Disturbance Rejection. Aiming at reducing
label sensitivity to dynamic disturbances, SA-TCL helps reduce sus-
ceptibility to noise. A higher level of disturbances and other data
variability within individual session traces provides greater oppor-
tunities for SA-TCL to enhance the performance of downstream
tasks. Conversely, if the dataset exhibits limited temporal variability
within individual session traces, the improvement offered by SA-
TCL is constrained. To confirm this intuition, we perform additional
experiments under the settings of unseen conditions 1 described in
Section 2.1, except for filtering out data samples within the same
session by their amplitude to cut down temporal variability. We
show two experiments where we only keep the samples that fall
within 50% and 25% difference from the max seismic sample en-
ergy, respectively. Keeping only higher energy samples reduces
data variability, thus limiting the influence of SA-TCL.

Figure 11 shows the results. It indicates that a reduction in tem-
poral variability within sessions (see right figure) leads to a decrease
in the benefits derived from SudokuSens. Other baselines do better,
thereby eroding the advantage of SudokuSens. In contrast, the left
figure shows a better advantage over baselines.
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Figure 11: Generalizability of SA-TCL. As the temporal dy-
namics in the dataset decrease, SudokuSens exhibits less su-
periority compared to the baselines.

4.6.3 Generalizability to Regression Tasks. While the paper thus
far focused on classification tasks, in this section, we show that
SudokuSens improves the performance of regression tasks as well.
In this experiment, we replace the classifier with a neural network
trained to perform a regression task based on the same vehicle
detection dataset used in Section 2.1, but with GPS traces of the
vehicles included to train the regression algorithm. In this task,
the target is to predict distance from the vehicle to the sensor.
Like in vehicle detection, we segment the whole session of sensing
data and the GPS trace into 2-second chunks. The sampling rate
of GPS is 1Hz and we take the 2nd second of GPS coordinate in
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each chunk to calculate the ground truth distance to the sensor
location. As for the downstream neural network architecture, we
use a version of DeepSense designed for regression tasks. We use
the mean squared error (MSE) as the loss function during training.
We evaluate the improvement in distance estimation accuracy due
to SudokuSens. The results are shown in Figure 12. The figure
shows that SudokuSens enables a more accurate distance prediction
than the baselines for the unseen environmental condition under
investigation. While the error (20 ft) might seem large, it is actually
of the same order of magnitude as the underlying GPS ground truth.
Also, since the samples are two seconds long, additional labeling
inaccuracy occurs due to target motion within a window.
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Figure 12: SudokuSens in distance prediction task

4.7 Ablation Studies

Next, we conduct an ablation study on the individual components
in SudokuSens, investigating their respective contributions to the
overall model performance.

4.7.1 Conditional Interpolation. The CVAE in SudokuSens uses a
generative approach to create additional data in Cynseen cells. The
default considered thus far was to populate those cells with the
same amount of data on average as the Cseepn cells. What if that ra-
tio was changed? How much data would be too much? How much
is not enough? To explore this question, we set up the ablation
study for conditional interpolation by changing the interpolation
ratio, which we define as the ratio of interpolated samples (syn-
thesized from CVAE) to the average number of samples per cell
in the original dataset. An interpolation ratio of 0 means that we
remove conditional interpolation from the framework, and only
apply SA-TCL to the original dataset.

The results for the data sets from Section 4.1 are shown in Ta-
ble 3. While conditional interpolation contributes to performance
improvements across all interpolation ratios in this table (compared
to results without interpolation), there is indeed a sweet spot at
which the benefit is maximized. Generally, shallow neural networks
tend to yield optimal performance at a lower interpolation ratio
(around 1x), while larger classifiers seem to perform better with
higher interpolation ratios. This is plausible since their model com-
plexity can benefit from the additional data. We conjecture that,
eventually, a high enough ratio may cause performance degrada-
tion, but the table focuses on the sweet spot at which benefits are
maximized. Similar observations were seen for the outdoor study.
They are not shown due to space limitations.

4.7.2  Session-Aware Temporal Contrastive Learning. Next, we show
a performance comparison with and without SA-TCL when the in-
terpolation ratio is 1x in Table 4. SA-TCL is shown to consistently
contribute a performance improvement across all datasets and dif-
ferent downstream classifiers.
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Table 3: Influence of the number of interpolated samples to
the performance of SudokuSens. The percentages after the
dataset names represent the proportion of filled cells within
the Sudoku matrix.

Downstream Interpolation ratio
Dataset
classifier 0 0.1x 1x 2x 5x
Shallow Acc | 0.6113 0.6492 0.6544 0.6632 0.6280
Neural Network F1 0.6002 0.6133 0.6588 0.6432  0.6363
ACIDS Acc | 0.6299 0.6840 0.7251 0.7081 0.6486
DeepSense
(67%) F1 0.6039 0.6777 0.7252 0.7114  0.6300
Acc | 05312 0.5820 0.6608 0.6884 0.6702
Transformer
F1 0.5209 0.5957 0.6874 0.6933  0.6868
Shallow Acc | 0.7021 0.7365 0.7490 0.7294  0.6541
Neural Network F1 0.6411 0.6813 0.7688 0.7200  0.6540
Wearable-
Acc | 0.7158 0.8410 0.8613 0.8891 0.8363
HAR DeepSense
F1 0.7055 0.8922 0.8888 0.9002 0.8516
(60%)
Acc | 0.6902 0.7158 0.7922 0.8194 0.8303
Transformer
F1 0.7090 0.7014 0.8211 0.8001 0.8434
Shallow Acc | 0.6427 0.7080 0.7492 0.7126  0.6688
Neural Network F1 0.6512  0.6823 0.7337 0.6900  0.6448
‘Wi-Fi-HAR Acc | 0.6676 0.7903 0.8616 0.8492  0.8111
DeepSense
(50%) F1 0.6811 0.7900 0.8711 0.8712  0.7919
Acc | 0.6226 0.6814 0.754 0.7649  0.7402
Transformer
F1 0.6220 0.6744 0.7105 0.7364 0.7550

To intuitively understand its effect, we randomly select 20 ses-
sions in ACIDS dataset, and visualize their samples in a 2D space as
shown in Figure 13. In order to map the high dimensional features
to 2D dots, we simply concatenate and flatten the features from
multiple modalities, and reduce the feature dimension to 50 by
conducting principal component analysis (PCA), which accelerates
t-SNE sufficiently without losing significant information that is
essential for clustering. Then we use t-distributed stochastic neigh-
bor embedding (t-SNE) to further reduce the dimension to 2. We
color the dots by their corresponding data collection session. After
applying SA-TCL, samples from the same session are drawn closer
together, while samples from different sessions are pushed farther
apart. We also calculated their Silhouette Coefficient (marked as
SC) as the metric for numerically measuring how "clustered" the
samples are within the same session (higher values indicate higher
clustering). This comparison demonstrates that SA-TCL mitigates
the variances brought on by dynamic disturbances, thereby provid-
ing more distinguishable feature patterns to downstream classifiers.

4.7.3  Frequency Mask. In Table 5, we remove the frequency mask
in SA-TCL and evaluate the performance changes given DeepSense
as the downstream classifier. We observed that the frequency mask
can further improve the performance brought by SA-TCL. The
frequency mask is empowered by our pre-knowledge regarding
the information density across the frequency bands. We speculate
that it can provide a better parameter initialization for the neural
network and help the temporal contrastive learning process focus
on the high information density area of the spectrograms.
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Table 4: Performance improvement from SA-TCL. The per-
centages after the dataset names represent the proportion of
filled cells within the Sudoku matrix.

Downstream
Dataset w/o w/
classifier

Shallow Neural | Acc 0.6052  0.6544

Network F1 0.6131  0.6588

ACIDS Acc | 0.6773  0.7251
DeepSense

(67%) F1 0.6540  0.7252

Acc 0.6400 0.6608
Transformer
F1 0.6810 0.6874

Shallow Neural | Acc 0.7119  0.7490

Network F1 0.7008 0.7688

Wearable-HAR Acc 0.8330  0.8613
DeepSense

(60%) F1 | 08514 0.8888

Acc 0.7714 0.7922
Transformer
F1 0.7690 0.8211

Shallow Neural Acc 0.7321 0.7492

Network F1 0.7045 0.7337
‘Wi-Fi-HAR Acc 0.8377 0.8616
DeepSense
(50%) F1 0.8519 0.8711
Acc 0.7222 0.754
Transformer

F1 0.7336 0.7105
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Figure 13: Visualization of the inputs and the output embed-
dings from SA-TCL. Each color represents one data collection

session in ACIDS.

Table 5: Performance improvement from frequency masks.

Dataset
ACIDS (67%) Wearable-HAR (60%) | Wi-Fi-HAR (50%)
w/o w/ w/o w/ w/o w/
Accuracy 0.6800 0.7251 0.8523 0.8613 0.8494 0.8616
F1 0.6766 0.7252 0.8662 0.8888 0.8270 0.8711

4.8 Inference Cost of SudokuSens

Only the encoder of the SA-TCL component in SudokuSens is uti-
lized during the inference time, thereby allowing SudokuSens to act
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Figure 14: Profiling of the execution cost of SudokuSens and
the various downstream classifiers on Raspberry Pi 4.

as a small-scale feature extractor before the downstream classifier
in real-world IoT sensing deployment. We profile the number of
parameters and the execution time cost on a Raspberry Pi 4, given
input data collected during the case studies described in Section 4.5.
The input batch size is set as 1. Figure 14 shows the results.

As shown in Figure 14, the number of parameters represents
the memory space requirement of the neural network. SudokuSens,
with its compact size compared to the three classifiers, can readily
fit into the memory of a Raspberry Pi 4. Since the SA-TCL encoder
in SudokuSens is primarily composed of convolutional layers, it
generates higher floating point operations per second (FLOPS) than
linear layers given the same number of parameters. As a result,
SudokuSens has a higher execution time cost than both the shallow
neural network and the Transformer, by 107 ms and 74 ms respec-
tively, but it still runs 215 ms faster than DeepSense. DeepSense is
notably slower than the other classifiers because of the overhead
caused by inputting lengthy sequence data into its RNN layers.
Considering the specific use case, where 2-second samples are used
for vehicle type classification, any of the three classifiers can be
integrated with SudokuSens for real-time vehicle detection. The
small scale of SudokuSens during the inference stage enhances its
practicality in a wide range of IoT applications.

5 RELATED WORK

The paper falls in the category of data augmentation solutions. Data
augmentation is a common approach used to alleviate the data
scarcity problem in IoT sensing applications [35]. Traditional time-
series data augmentation carried out in the time domain includes
scaling, jittering, rotating, permuting, noise injection, and others [8,
18, 30, 30, 36]. Since IoT signals may exhibit stronger patterns in the
frequency domain [40], data augmentation techniques in the time-
frequency domain were also proposed [22, 26, 43]. Recent studies
have explored learning-based augmentation approaches, such as
synthetic data generation using generative adversarial networks
(GANS) [12, 23, 41]. There is also research in generating IoT sensor
data based on data sources from other domain [17, 44]. However,
these methods only address general data scarcity. They do not
handle the specific incomplete conditional sampling problem we
covered for IoT datasets.

Contrastive learning is commonly used as a self-supervised learn-
ing approach on unlabeled datasets for model pre-training [15].
Many of the prior techniques are based on SimCLR [6]. It takes
two augmented views of the same signal as a positive pair and
maximizes their similarity, while minimizing their similarity with
other samples in the batch [16, 20, 28]. More customized contrastive
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learning designs for time-series data are also proposed. For exam-
ple, TF-C [45] considers both time and frequency domain similari-
ties as a measure distance during the contrastive loss calculation.
TS2Vec [42] performs contrastive learning in a hierarchical way in
both instance-wise and temporal dimensions, in order to extract
more robust features. The multi-modality characteristic of IoT sens-
ing data is leveraged to customize the contrastive loss [10, 21]. Tem-
poral contrastive learning involves constructing positive pairs by
the temporal relationships of the signals [9]. For example, TNC [29]
constructs positive pairs for time series data based on temporal
neighborhood. TCL [14] splits time-series data into segments, and
predicts the segment ID during the contrastive learning as a way to
extract underlying representation. Despite the fact that constrastive
learning for IoT was vastly investigated, SudokuSens is the first to
apply temporal contrastive learning by data collection sessions in
IoT.

6 CONCLUSION

In this paper, we introduced SudokuSens, a novel framework that
addresses data scarcity in IoT sensing applications. SudokuSens
employs a Conditional Variational Autoencoder (CVAE) for con-
ditional interpolation, enabling the synthetic generation of data
for missing intrinsic attribute combinations, thereby enriching the
diversity of the training dataset. Further, it incorporates Session-
Aware Temporal Contrastive Learning (SA-TCL) to mitigate the
variability introduced by dynamic disturbances, effectively enhanc-
ing the learned feature patterns for downstream classifiers. Across
diverse IoT applications, SudokuSens has consistently demonstrated
improved performance under unseen conditions, confirming its effi-
cacy. This work advances robustness of intelligent IoT applications
in real deployment scenarios.
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