
NeuroRadar: A Neuromorphic Radar Sensor for
Low-Power IoT Systems

Kai Zheng
University of California San Diego

kazheng@ucsd.edu

Kun Qian
University of California San Diego

kuq002@ucsd.edu

Timothy Woodford
University of California San Diego

twoodfor@ucsd.edu

Xinyu Zhang
University of California San Diego

xyzhang@ucsd.edu

ABSTRACT
Radar sensors have recently been explored in the industrial and con-
sumer Internet of Things (IoT). However, such applications often
require self-sustainable or untethered operations, which are at odds
with the high power consumption of radar. This paper proposes NEU-
RORADAR, a neuromorphic radar sensor, to achieve low-power wire-
less sensing. NEURORADAR jointly optimizes the analog hardware
and the computation model, in order to mimic the highly efficient
biological sensing and neural processing system. NEURORADAR

features a highly simplified radar front end, which eliminates the
power-hungry components in conventional radars. It directly "en-
codes" ambient motion into spiking signals, which can be processed
using spiking neural networks running on energy-efficient neuro-
morphic computing platforms. We have prototyped NEURORADAR

and evaluated its performance in two use cases: gesture sensing and
localization. Our experiments demonstrate that NEURORADAR can
achieve high sensing accuracy, at orders of magnitude lower power
consumption compared with traditional radar.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; Ambient intelligence; Ubiquitous comput-
ing; Mobile computing.

KEYWORDS
Neuromorphic computing, Neuromorphic sensors, Spiking neural
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1 INTRODUCTION
Radar sensors in the Internet of Things (IoT) systems have gained
traction in recent years, and are widely used in healthcare, smart
homes, industrial automation, and intelligent transportation [26, 54,
59]. By 2025, industrial radar applications are anticipated to encom-
pass 10 million devices, whereas the consumer market will reach a
substantial $250 million [93]. Nevertheless, the high power consump-
tion of radar hardware remains a significant challenge, particularly
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Figure 1: Analogy of neuromorphic radar sensor. NEURORADAR
achieves energy-efficient sensing by emulating the structure and
functionality of biological sensing systems.

for battery-operated IoT devices and wearables where energy ef-
ficiency and battery lifespan are crucial. Compounding this issue,
numerous smart sensing applications, such as motion-activated secu-
rity radar, wearable gesture recognition, and activity classification,
often employ power-intensive artificial neural networks (ANNs)
for signal processing. Unlike human neurons that operate in short,
pulse-based bursts, ANNs prolong the activity of their “neurons"
using continuous activation functions, which substantially increases
the power demands of IoT devices. Furthermore, ANNs utilize the
classical von Neumann architecture, which frequently shuttles data
between physically separate CPU and memory units, resulting in
additional processing overhead.

Recent advancements in neuromorphic engineering have inspired
Spiking Neural Networks (SNNs) [46] and dedicated neuromorphic
circuits [18] that better approach the efficiency of sensory signal pro-
cessing in the brain. SNNs are structured to mirror the pulse-based
behavior of the human nervous system. They consist of spiking
neurons and the synaptic connections between them. Realized on
dedicated neuromorphic circuits, SNNs showcase exceptional en-
ergy efficiency that surpasses traditional von Neumann computing
units by orders of magnitude [10]. The revolution in neuromor-
phic computing has also given rise to state-of-the-art neuromorphic
sensing hardware, such as the energy-efficient, fast-response event
camera [39].

Inspired by these advancements, recent research has proposed
SNN-based signal processing to facilitate low-power radar operation
[6, 7]. However, these systems do not incorporate a full-fledged
neuromorphic hardware architecture. Primarily, the analog front-end
of these “SNN radar” systems [6, 7] remains the same as traditional
radars. Although the SNN-based signal processing has lowered the
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signal processing power consumption to the order of hundreds of 𝜇𝑊
[77], the radar front-end can demand tens to hundreds of mW. This
discrepancy poses a challenge to achieving truly energy-efficient
radar sensing. Additionally, the “SNN radar” systems [6, 7] continue
to rely on conventional CPUs or digital signal processing (DSP) units
for signal processing. The radar signals have to be first sampled by
analog-to-digital converters (ADCs), mapped into spikes, and then
processed by SNNs for ranging or environmental perception. Unfor-
tunately, the extra sampling steps prior to the SNN involve traditional
computing units, which adds a substantial overhead, preventing the
full exploitation of neuromorphic computing’s potential.

In this paper, we introduce NEURORADAR, a novel low-power
radar sensing system that fully exploits the power of neuromor-
phic sensing and computing. NEURORADAR draws inspiration from
neuromorphic sensors that mimic mammalian sensory systems, gen-
erating event-triggered outputs in response to external stimuli, as
depicted in Fig. 1. Contrary to traditional radars with continuous
frame-based outputs, NEURORADAR produces spiking patterns upon
detecting motion in the surrounding area. Unlike the recently pro-
posed SNN radars [6, 7], NEURORADAR follows a neuromorphic
architecture that jointly designs the analog sensing front-end and
spiking signal processing:

(1) SIL-based radar sensor front-end. NEURORADAR employs
a drastically simplified RF front-end that removes most power-
intensive active RF components that exist in traditional radars, leav-
ing only a low-power free-running oscillator. NEURORADAR senses
environmental changes using the self-injection locking (SIL) princi-
ple [90], where the oscillator’s frequency is influenced by motion in
the surrounding area. Despite the simplistic design, NEURORADAR

preserves a reasonable level of sensitivity due to the inherent proper-
ties of SIL architecture that enhance the signal strength. However,
a single SIL sensor is unable to provide angular resolution and ac-
curate range information, as it only senses environmental motion
information. To overcome this limitation, we draw inspiration from
the compound structures found in certain biological eyes [29], and
propose to design an array of SIL sensors with judiciously separated
carrier frequencies. With the SIL sensor array, NEURORADAR can
implicitly encode spatial information through the multi-channel spik-
ing signals, which can subsequently be decoded using application-
specific SNN models.

(2) Analog spike encoding and full SNN processing. NEURO-
RADAR converts ambient motion signals from the sensor front-end
into spikes using an analog spike encoding circuit. The spike en-
coder follows a biological neuron model, preserving all the essential
sensing information in the spike sequences. The spike sequences can
then be directly processed by the SNNs on neuromorphic computing
systems, thereby eliminating the need for any non-spike-based com-
puting units. Consequently, we can train the SNNs using these raw
spike signals for various tasks, including gesture recognition and
localization. This comprehensive SNN processing workflow allows
NEURORADAR to deliver application-specific sensing results with
superior energy efficiency.

To verify the effectiveness of our design, we prototype NEU-
RORADAR using discrete RF circuits and further perform simula-
tion for the integrated circuit (IC) version. Our experiments show
that a single-RF-chain NEURORADAR can effectively sense mo-
tion in the environment while consuming only 780 𝜇W power (IC:

240 𝜇W), which is 1-2 orders of magnitude lower than existing con-
tinuous wave radar systems with similar operating frequencies. We
further conduct two case studies to verify the usability of NEURO-
RADAR for practical IoT sensing applications. Specifically, NEU-
RORADAR can facilitate hand gesture recognition with an accuracy
of 94.6% and perform moving target localization with an average
error of 0.98 m. Compared with other SNN-based gesture recogni-
tion systems [6, 7, 68] with similar capability, NEURORADAR saves
78%-93% computing power. NEURORADAR reduces the end-to-end
power consumption by 1-2 orders of magnitude for both use cases,
compared with existing radars. Considering the spatial resolution
and motion detection capabilities, NEURORADAR can potentially be
used in a wide range of wireless IoT sensing applications, such as
vital sign sensing, surveillance alarm, etc.

In summary, we make the following contributions:
(1) We introduce NEURORADAR, a novel low-power radar para-

digm that realizes the concept of neuromorphic radar sensing. NEU-
RORADAR incorporates a spike-generation radar sensor that directly
interfaces with SNN-based neuromorphic processors, leading to
superior energy efficiency.

(2) We devise a low-power, low-complexity radar front end based
on the SIL principle. Both our theoretical analysis and experimental
results demonstrate that multi-chain SIL radar sensors can supply
ample information for short-range, low-velocity sensing applica-
tions.

(3) We implement the neuromorphic radar system through a PCB
prototype and carry out simulations for the IC version. Our experi-
ments verify NEURORADAR’s capability to empower the resource-
constrained IoT devices to perform low-power smart sensing.

2 BACKGROUND
2.1 Self-Injection Locking
Self-injection locking [14] is a phenomenon where an oscillator’s
frequency is affected by a reflected version of its own signal, as
depicted in Fig. 2. Unlike conventional injection locking, where
the oscillator’s frequency is locked to the frequency of an external
injection signal [1], the frequency of a self-injection-locked oscillator
(SILO) is dependent on the amplitude and phase of the reflected
signal.

Based on classical analysis of injection locking [61], we can
model the frequency shift of the oscillator caused by the reflectors
in the environment:

Δ𝜔 ≈
𝑁∑︁
𝑛=1

𝜔𝑜
2𝑄
|𝐼 (𝑛)𝑖𝑛 𝑗 |
|𝐼𝑜𝑠𝑐 | 𝑠𝑖𝑛(𝜔𝑜 ·

2𝑟 (𝑛)
𝑐
) (1)

Here, 𝜔𝑜 is the center frequency of the oscillator; 𝑄 is the quality
factor of the LC resonating tank; 𝐼 (𝑛)𝑖𝑛 𝑗 is the injection signal from

the 𝑛𝑡ℎ reflector; 𝐼𝑜𝑠𝑐 is the oscillator signal; 𝑟 (𝑛) is the distance of
the 𝑛𝑡ℎ reflector; 𝑐 is the speed of light, and 𝑁 is the total number of
reflectors.

Notably, the strength of the reflected signal, |𝐼𝑖𝑛 𝑗 |, is proportional
to 1/𝑟2. Its phase, ∠𝐼𝑖𝑛 𝑗 , encapsulated in the sine term, is also related
to 𝑟 . Thus, the oscillation frequency is modulated by the motion
of the reflectors. In the case of multiple reflectors, the observed
frequency shift of a SILO is the summation of the shifts caused
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Figure 2: Self-injection locking.

by each reflector. Since static reflectors cause constant frequency
shifts, only moving reflectors contribute to frequency modulation.
This principle is leveraged by NEURORADAR for environmental
perception.

2.2 Spiking Neural Networks
Biological neurons communicate by generating and propagating
electrical pulses or spikes. Neurons are interconnected via special-
ized junctions termed synapses. A neuron fires a spike whenever
enough incoming pulses accumulate to push its membrane poten-
tial above a certain threshold, following which the neuron resets
itself. This process is often abstracted as Leaky-Integrate-and-Fire
(LIF) [24]. In traditional ANNs, neurons encode information in a
complex network of real-valued activations. Activation functions
such as ReLU essentially approximate the spiking rates of biological
neurons. In contrast, SNNs mimic the human neuron system more
closely by: (i) using spiking signals directly for inter-neuronal com-
munication and (ii) using the timing rather than shape of spikes to
convey neural information.

The computation and energy efficiency advantages of SNNs orig-
inate from two fundamental aspects. First, the neuromorphic archi-
tecture can realize massive parallel processing, since each neuron
represents an integrated memory and computation unit, in contrast to
the rigid separation of CPU and RAM in von Neumann architectures.
Thus, SNNs can potentially continue to push the “intelligence per
Joule” as Moore’s law scaling comes to an imminent end. Secondly,
the energy consumption of SNNs is proportional to the number of
processed spikes, with each spike requiring as little as a few pico
Joules [10]. As information is sparsely encoded in the rates/timing
of the spiking neurons, an SNN can implement the same end-to-end
functionality as an ANN [70] but with much lower energy expendi-
ture.

Notably, the advantages of SNNs can be manifested only on
specialized non-von Neumann in-memory computing platforms
specifically designed to process spiking inputs. The past decade
has witnessed a variety of such platforms, such as Intel Loihi [18],
uBrain [77], DynapSE [52], IBM Truenorth [3], and SPINNaker
[22]. Albeit an active area of research, neuromorphic computers
have already demonstrated orders of magnitude of energy efficiency
than conventional computing architectures [10].

3 SYSTEM OVERVIEW
NEURORADAR consists of three main components: sensor front-end,
spike encoders, and spike processors (Fig. 3). The sensor front-end
senses ambient motion and the output signals are converted into
spike sequences (referred to as spike trains) by the spike encoders.
These spike trains are then directly processed by the energy-efficient
SNNs.

Spike ProcesserSensor Front End Spike Encoder

~ τ X LIF

SNNs~ τ X LIF

……

~ τ X LIF

f1

f2

fn

Figure 3: System Overview.

Sensor front-end. The NEURORADAR front-end emits a weak,
continuous-wave single-tone signal in the 0.3∼3 GHz ultra-high
frequency (UHF) band. The core component is a SILO whose fre-
quency is modulated by the motion of the surrounding targets [90].
By demodulating this frequency shift, the system generates a base-
band signal that carries the motion information. We further introduce
a sensor array design that combines multiple SILOs with different
operating frequencies to provide richer spatiotemporal information.

Spike encoder. The spike encoding circuit takes the baseband
signal produced by the front-end and converts the signal into spike
trains following the LIF model [24] (Sec. 2.2). Given that the input
is AC-coupled and the signal comprises both positive and negative
parts, two spike encoders are jointly employed to encode each chan-
nel of the radar sensor. The spike encoding circuits operate entirely
in an event-driven manner; they only generate spikes when the sensor
front-end detects motion and stays idle otherwise.

Spike processor. The spike encoders interface directly with the
neuromorphic computing circuits, enabling all signals to be pro-
cessed within the spike domain. Our approach involves designing
multi-layer convolutional SNNs to process the multi-channel spike
chains from the NEURORADAR sensor array. These SNNs execute
pattern recognition and regression tasks according to the application
requirements.

4 NEURORADAR SENSOR FRONT-END
DESIGN

4.1 Design Principle
The main principle of the front-end design is to reduce its power
consumption for NEURORADAR. To achieve it, we first analyze
the power-hungry RF components of traditional radars that lead to
high power consumption. A typical continuous-wave (CW) radar
front-end, as shown in Fig. 4(a), includes elements such as voltage-
controlled oscillator (VCO), phase-locked-loop (PLL), crystal oscil-
lator (XO), mixer, low-noise amplifier (LNA), and power amplifier
(PA). While power consumption can vary depending on specific
designs, we annotate a representative CW radar [86] for reference.
These active RF components are necessary to maintain the high
sensing performance required for advanced applications such as
automotive perception. For instance, the phase noise of a radar di-
rectly impacts target detectability, spatial resolution, and maximum
range [20, 73]. To contain the phase noise, most radar systems use a
VCO and PLL in a feedback loop, using a high-precision XO as the
reference input to synthesize a low-phase noise radar signal with a
precise frequency. Consequently, such high-profile radar front-ends
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Figure 4: Radar front-end architecture comparison and power
consumption breakdown. Uncolored blocks are passive compo-
nents. (a) A typical CW radar [86]. (b) NEURORADAR.

require a high power budget of several hundred mW, irrespective of
the signal processing hardware.

In contrast to traditional radar systems, neuromorphic systems
exhibit superior power efficiency and rapid response times by emulat-
ing the event-driven communication and computation in biological
neural systems [11, 43]. Event cameras [39], also known as dynamic
vision sensors, represent an epitome of neuromorphic sensing sys-
tems. Instead of capturing full frames at a fixed rate, event cameras
generate asynchronous events in response to changes in pixel-level
brightness. This event-driven approach increases the camera’s dy-
namic range, while substantially reducing power consumption and
data processing load [39].

Inspired by the event camera, we design NEURORADAR sensor
front-end that only responds to changes in the radar channel (caused
by motion) and produces asynchronous spike signals that contain
relevant motion information. To attain these properties, we extend
the SIL structure and develop spike encoders to convert radar signals
into spike trains. A SIL radar, as a variant of Doppler radar [88], is
inherently a motion detector, which aligns well with the event-driven
neuromorphic sensing principle. Moreover, radars with more com-
plex waveforms, like wide-band Frequency-Modulated Continuous
Wave (FMCW) radar, require intricate baseband signal processing
(such as FFTs) to extract basic sensing information. This is chal-
lenging to implement without ADC sampling and conventional DSP
units. In contrast, a SIL radar emits single-tone signals and “demod-
ulates” motion directly from the reflected signals, which eliminates
the need for complicated wideband signal processing and facilitates
the use of spike encoders. SIL radars feature a simplified architecture,
which makes them power-efficient and cost-effective to implement.
We elaborate on the SIL front-end design of NEURORADAR in the
following sections.

4.2 SIL Sensor Design
SIL radar adopts a simplistic architecture with only three RF compo-
nents: an oscillator, a time delay unit, and a mixer (Fig. 4(b)). The
oscillator emits an RF signal that becomes self-injection-locked due
to environmental reflections. A time delay unit and mixer demodu-
late the frequency shift caused by moving targets. The system’s total

power consumption is kept under 300𝜇𝑊 by lowering the oscillator’s
output power and employing a passive low-power mixer.

While the removal of active RF components such as LNA or PA
typically results in low sensitivity, the SIL radar’s unique architecture
provides a sensitivity gain that compensates for the impact. This
property ensures that despite the simplified design, a SIL radar can
still support our targeted IoT sensing applications that require only
limited range/velocity resolution (e.g., occupancy detection, coarse
indoor tracking, hand gesture recognition).

A target’s motion induces phase modulation on conventional a
Doppler radar [57], in contrast to frequency modulation on the SIL
radar [90]. The demodulation circuit extracts the phase change over
the delay time 𝜏𝑑 . As phase is the time integral of frequency, SIL
radar’s demodulation process inherently integrates and enhances
the motion signal [80]. A larger demodulation gain and hence high
sensitivity can be achieved by increasing 𝜏𝑑 , if the motion frequency
is much lower than 1/𝜏𝑑 , which holds true for our targeted IoT use
cases. Furthermore, in SIL radar, the oscillator signal, which contains
sensing information, directly enters the mixer without any attenua-
tion. In contrast, for conventional Doppler radar, the mixer’s input
comes from the attenuated reflected signal. Therefore, SIL radar
effectively amplifies the received signal amplitude to the oscillator
output level for free. Following the empirical model in [80], we find
that the SIL radar can provide a sensitivity gain of around 19.97 dB
with 𝜏𝑑 = 80 ns and carrier frequency 915 MHz (corresponding to
our implementation), which can be traded for low-power operations.

4.3 Array of SIL Sensors
4.3.1 Sensing Information from a Single SIL Radar. Suppose
a target is moving randomly within the surrounding area and a
continuous frequency shift (Eq. (1)) of the oscillator is observed.
The demodulation circuit integrates the frequency shift Δ𝜔 (𝑡) during
the delay time 𝜏𝑑 and the demodulated output 𝑦 (𝑡) ≈ Δ𝜔 (𝑡)𝜏𝑑 , if
Δ𝜔 (𝑡) changes slowly and is considered constant over 𝜏𝑑 . Therefore
𝑦 (𝑡) is a direct representation of the motion-modulated frequency
signal and from Eq. (1),

𝑦 (𝑡) = 𝑎(𝑡)𝑠𝑖𝑛[4𝜋 𝑓 𝑟 (𝑡)
𝑐
] (2)

𝑎(𝑡) = 𝐺𝑑
𝜔0
2𝑄

1
|𝐼𝑜𝑠𝑐 |

𝜎

𝑟2 (𝑡) , (3)

Here𝐺𝑑 represents an abstracted gain encapsulating various factors
(i.e. demodulation gain, antenna gain, and any practical system loss),
and 𝜎 is the radar cross section (RCS) of the target, which is an
unknown parameter and may fluctuate over time.

The range information 𝑟 (𝑡) is embedded in both 𝑎(𝑡) and 𝑠𝑖𝑛[4𝜋 𝑓 𝑟 (𝑡 )𝑐 ],
but this alone is insufficient for localizing the target. Although 𝑎(𝑡)
includes absolute range information, 𝑟 (𝑡) cannot be estimated due
to the unknown target RCS 𝜎 . Additionally, as 𝑠𝑖𝑛[4𝜋 𝑓 𝑟 (𝑡 )𝑐 ] is
2𝜋−periodic, it only contains ambiguous range information. More-
over, a single sensor fails to provide the angular information of the
target. This implies that given a distance 𝑟 , the actual location of the
target could be anywhere on a circle with a radius of 𝑟 . Therefore,
further information is required to precisely localize the target.

4.3.2 Frequency-Diverse SIL Sensor Array Design. To over-
come the lack of range/angle resolution, NEURORADAR combines
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Figure 5: Localization ambiguity area with different settings.

multiple SIL radar sensors operating at different frequencies, form-
ing a frequency-diverse array (FDA). A colocated sensor array can
infer the direction of the target by exploiting the phase difference of
the received signals across the sensors, whereas the frequency diver-
sity offers the potential to resolve the range ambiguity. Distinct from
traditional antenna arrays that often employ a half-wavelength (𝜆/2)
spacing to avoid angular aliasing [79], NEURORADAR employs a
quarter-wavelength (𝜆/4) spacing, 𝜆 being the average wavelength,
because a SIL radar uses the same antenna for both transmission and
reception, effectively doubling the phase difference due to antenna
spacing.

To quantize the sensing capability of the array design, we derive
a model-driven localization and speed estimation process. Consider
a linear array of 𝐾 sensors, where the position and frequency of the
𝑘-th sensor are ®𝑑𝑘 and 𝑓𝑘 , respectively. Since NEURORADAR only
detects motion, we suppose a target moves at a constant speed within
a short time (e.g., 0.5 s), and a total of 𝑀 observations are made with
an interval of Δ𝑡 . According to Eq. (2), when a target is located at ®𝑙
and moves with velocity ®𝑣 , the theoretical observation vector:

®𝑠 (®𝑙, ®𝑣) = [sin(4𝜋 𝑓𝑘
𝑟𝑘,𝑚
𝑐
)]𝑘=𝐾−1,𝑚=𝑀−1
𝑘=0,𝑚=0 , (4)

where 𝑟𝑘,𝑚 = | |®𝑙 + ®𝑣 ·𝑚Δ𝑡 − ®𝑑𝑘 | |2 is the distance between the target’s
location at time𝑚Δ𝑡 and the 𝑘-th radar sensor at ®𝑑𝑘 . In the model, the
amplitude 𝑎(𝑡) is not considered because in practice 𝑎(𝑡) fluctuates
randomly due to the time-varying RCS and provides unreliable
information.

Given the real observation vector ®𝑦 = [𝑦𝑘,𝑚] from the radar sensor
array, the location and speed of the target can be estimated by

®𝑙opt, ®𝑣opt = argmax®𝑙,®𝑣
®𝑠𝑇 (®𝑙, ®𝑣) · ®𝑦
|®𝑠 (®𝑙, ®𝑣) | · | ®𝑦 |

. (5)

Here [®𝑠𝑇 (®𝑙, ®𝑣) · ®𝑦] computes the correlation between the real obser-
vation vector and the theoretical observation vector.

To establish the optimal number of radar sensors required to
achieve reasonable resolution, we use the above model to numeri-
cally derive the sensing resolution. In the numerical simulation, the
sensor operating frequencies are set between 800 MHz and 950 MHz.
The simulation considers targets ranging from 0.5 to 7 meters and
sensing directions between 45◦ and 135◦ relative to the sensor array.
Target speeds range from 0.5 to 3 m/s, with their moving directions
varying between 0◦ and 360◦. We randomly sample 100 targets and
calculate the average percentage of the area with a correlation value
(Eq. (5)) exceeding -3 dB. This area represents the ambiguity of
NEURORADAR.
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Figure 7: (a) RC circuit model for a LIF neuron. (b) The evolution
of the membrane potential with a constant current injection.

The results depicted in Fig. 5a reveal that the ambiguous area
decreases as the number of sensors increases. A smaller ambiguous
area signifies a reduction in ambiguous side lobes and a more con-
centrated main lobe. The empirical findings suggest that an array
of 6 sensors is sufficient for NEURORADAR to resolve most targets,
striking an effective balance between resolution and array size.

The configuration of frequencies in the sensor array impacts sens-
ing ambiguity. As shown in Fig. 5b, a random frequency permutation
results in a significantly smaller ambiguous area compared to an
ascending permutation. This finding aligns with previous research on
traditional FDA [2, 47], which indicated that nonlinear and random
frequency offsets result in a range-angle decoupled beam pattern.
Fig. 6 presents the location ambiguity area given an observation
vector from a target at a specific location. In this instance, we only
consider the location for simplicity, assuming that the observation
vector can be retrieved even if the target is stationary. Consequently,
NEURORADAR takes advantage of this property by adopting a non-
linear frequency offset and a random frequency permutation for its
sensor array.

5 SPIKE ENCODING AND PROCESSING
5.1 Spike Encoder Design
To facilitate end-to-end SNN signal processing, NEURORADAR

employs an analog spike encoding circuit to directly transform the
SIL radar signals into spike trains. The spike encoder must preserve
the essential sensing information in Eq. (2). To this end, the encoder
should perform spike rate encoding, in which the firing frequency
increases linearly with the amplitude of the input signal. As a result,
the phase information in Eq. (2) is represented as variations in spike
density.

We design our spike encoder based on the aforementioned LIF
neuron model [24] (Sec. 2.2). The LIF neuron model consists of
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a current injector, an RC parallel circuit, and a spike firing circuit,
as depicted in Fig. 7a. In the human nervous system, a neuron’s
membrane potential 𝑢 (𝑡) rises upon receiving input stimuli 𝐼 (𝑡)
from other neurons. Once 𝑢 (𝑡) reaches a threshold 𝑢𝑓 , the neuron
triggers a spike to adjacent neurons and resets its voltage to a resting
value 𝑢𝑟 , as shown in Fig. 7b. In the absence of input, the membrane
potential decays exponentially to its resting value through a leaky
resistance path.

The evolution of 𝑢 (𝑡) can be characterized as:

𝜏𝑚
𝑑𝑢 (𝑡)
𝑑𝑡

= −[𝑢 (𝑡) − 𝑢𝑟 ] + 𝑅 𝐼 (𝑡) (6)

lim
𝛿→0;𝛿>0

𝑢 (𝑡 + 𝛿) = 𝑢𝑟 , when𝑢 (𝑡) = 𝑢𝑓 (7)

Here, the membrane time constant 𝜏𝑚 = 𝑅𝐶 determines the decay
time of the membrane voltage, with 𝐶 being the membrane capaci-
tance and 𝑅 representing the leaky resistance.

Given a constant input 𝐼0 from the SIL radar, the spike firing
interval can be found by solving the differential Eq. (6),

𝑇𝑠 = −𝜏𝑚 𝑙𝑜𝑔(1 −
𝑢𝑓 − 𝑢𝑟
𝑅𝐼0

) (8)

When the leaky resistor is large, the spike firing rate 𝑓𝑠 = 1
𝑇𝑠
≈

𝐼0
(𝑢𝑓 −𝑢𝑟 )𝐶 , which grows linearly with the input signal. The leaky
resistor causes a small input dead zone where no spike is fired even
the input 𝐼0 > 0, which is implied by Eq. (8) that 𝐼0 >

𝑢𝑓 −𝑢𝑟
𝑅 must

be satisfied. We utilize this property and design a proper dead zone
to suppress random noise input and avoid spike misfiring.

To encode a continuous signal into a spike sequence without
information loss, a sufficiently large spike rate is required. Given a
spike sequence with spike time 𝑡𝑖 , and signal bandwidth Ω,

𝑡𝑖+1 − 𝑡𝑖 < 𝜋

Ω
, ∀ 𝑖 (9)

must be satisfied to guarantee perfect recovery [15]. As a larger
spike firing rate increases power consumption, our design strikes a
tradeoff between input bandwidth and power consumption.

5.2 SNN Design
As the motion signals are converted into multiple parallel spike
trains, we design SNNs to process the spiking signals and extract the
spatiotemporal features. The overall structure of the SNN includes
three main components: spike buffering units, convolution layers,
and spike decoders (Fig. 8).

Spike buffering units. The input spike sequences initially arrive
at the spike buffering units, which are made up of cascaded time
delay units. Each delay unit imposes a consistent time delay of 𝑛𝑑𝑙𝑦
clock ticks, and the output spikes then enter the next-stage time delay
unit. In the majority of neuromorphic computing hardware, SNNs
are realized using digital circuits, with neuron states being updated
synchronously according to a clock tick (e.g., 1 ms). Upon the com-
pletion of the input sequence, the spike buffering units concatenate
the outputs from all delay units and present the spikes concurrently
to the subsequent layer. To improve the performance of the SNN,
the buffered spikes are repetitively dispatched to the next layer every
𝑛𝑖𝑛𝑡 clock ticks. By flattening the temporal dimension of the spike
sequence, the spike buffering units simplify the task for the subse-
quent convolution layers in extracting the temporal features of the

DecoderConv. LayersBufferingInput
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Figure 8: Illustration of the SNN structure.

spike sequence. A similar method is employed in [4] for processing
spike data from the event cameras.

Convolution layers. Convolutional layers are essential compo-
nents of Convolutional Neural Networks (CNNs) which can detect
local spatial patterns and structures within an image. With the spike
buffering units flattening the temporal dimension of the input spike
sequences, convolution layers can be similarly employed to extract
the spatiotemporal features of the spike sequences. Consequently, we
design a stack of convolution layers, accompanied by other types of
layers such as pooling layers and fully connected layers, to process
and classify the extracted features.

Spike decoders. In NEURORADAR, the SNNs are trained in such
a way that the output values are represented by the spike firing rate
of neurons in the final layer. Eventually, the output spike rate has to
be converted into a continuous value that can be interpreted by the
sensing applications. For classification tasks, the prediction probabil-
ity for each class can be determined by applying low-pass filtering
to the spikes from each output neuron representing the respective
classes. For regression tasks, the output values are represented by an
ensemble of neurons. We train decoders to perform a linear mapping
between the neuron outputs and the final output following [76].

5.3 SNN Training
SNN training is crucial for extracting spatiotemporal features from
input data. In NEURORADAR, the trainable parts of the SNNs are
the convolution layers and the spike decoders. The ANN-SNN con-
version method [66] is employed for training the SNNs in NEURO-
RADAR. The method involves training a conventional ANN with the
same structure as the desired SNN. Given an initial spike sequence,
some spike buffering units fire spikes into the next layer at a constant
firing rate, while others do not fire spikes at all. This allows the
conversion of the input into a static image with 0/1 binary pixels. We
then utilize conventional neuron models, like ReLU neurons, and
conventional backpropagation algorithms to optimize the connection
weights within the ANN. After training, all the ReLU neurons in
the ANN are replaced with spiking neuron models, specifically LIF
neurons. Lastly, weight scaling needs to be performed for the SNN
to ensure a reasonable spike firing frequency. After completing these
steps, the trained ANN is effectively converted into an SNN, which
can then process spike input efficiently and accurately.

6 SYSTEM IMPLEMENTATION
We build a NEURORADAR hardware prototype using discrete com-
ponents on PCBs, which comprises up to 6 SIL radar channels with
different operating frequencies. We also design a motherboard to
enable a robust power distribution to each hardware module.

Ideally, for a real neuromorphic system, the spike encoders should
directly interface with neuromorphic computing hardware and send
spikes to a pre-trained SNN as input. However, due to a lack of highly
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Figure 10: (a) Clapp oscillator, (b) cross-coupled oscillator.

specialized neuromorphic processors, we implement the SNN using
simulation frameworks that are well-established in the neuromorphic
computing research community. Specifically, we adopt the Nengo-
DL framework [60] because it supports deep SNN training and
accurate emulation of real neuromorphic computing hardware such
as Loihi [18]. In addition, due to the need for offline SNN training
on the simulated neuromorphic computer, we still need to sample
the spikes digitally using an FPGA and store the timestamps on a
host PC.

Self-injection locked oscillator. For our prototype, our SILO
design employs a Clapp oscillator [63] due to its broad oscillation
range and tunability in our targeted UHF band. The oscillator is
built using an RF transistor along with discrete LCR components,
as shown in Fig. 10a. Infineon BFP620 [33] is selected as the RF
transistor for its high transition frequency, which ensures sufficient
gain for oscillation at higher operational frequencies. RF inductors
and capacitors with high self-resonance frequency are selected to
ensure the proper function of the oscillator. The output power of this
oscillator design is approximately -20 dBm, and a monopole antenna
is used for RF signal transmission. For the IC simulation, we design
a cross-coupled oscillator due to its high energy efficiency [63]. It
consists of a pair of transistors and features a differential output,
as shown in Fig. 10b. The inductor’s quality factor substantially
impacts energy efficiency, and in the simulation, we use off-chip
RF inductors, with their characteristics detailed by the manufacturer
[34]. The simulation is carried out using Cadence Virtuoso with a
90 nm generic process design kit.

When an array of SIL sensors is required (Sec. 4.3), their fre-
quencies need to be sufficiently separated to avoid mutual injection
locking or pulling [62]. The minimum required separation is deter-
mined by the quality factor of the LC oscillator and the coupled
signal strength. We find empirically that with 𝜆/4 spacing (Sec. 4.3),

Input

Delay and
Combine

Impedance
Matching Mix and Filter

Output

Figure 11: Demodulation circuit schematic.

the impact of mutual coupling becomes negligible when the center
frequencies are separated by at least 10 MHz.

Time delay unit. NEURORADAR requires a time delay to demod-
ulate the motion signal (Sec. 4.2). A longer time delay with minimal
insertion loss is desired to attain a large demodulation gain, so the
goal is to maximize the gain delay product. We choose to use Surface
Acoustic Wave (SAW) filters (RFMi SF2098E [64]) to implement
the time delay because of their compact size, low attenuation (1.3dB),
and reasonable delay time (28ns). SAW filters operate by converting
electrical signals into mechanical vibrations and back into electrical
signals. As mechanical or acoustic waves propagate significantly
slower than electromagnetic waves, a time delay is introduced when
a signal passes through a SAW filter. Notably, the bandwidth of the
selected SAW filter is 20–30 MHz, while the maximum observed
frequency shift of the oscillator is only 100s of kHz. Therefore, the
design ensures that the frequency does not shift outside the band-
width, where the SAW filters exhibit large attenuation. Moreover,
just like regular bandpass filters [51], multiple SAW filters can be
cascaded to increase the gain delay product. Given the delay (𝜏𝑆𝐴𝑊 )
and gain (𝐺𝑆𝐴𝑊 ) of a single-stage SAW filter, the optimal number
of cascaded SAW filters 𝑛 can be determined by maximizing the
product 𝑛𝜏𝑆𝐴𝑊𝐺𝑛𝑆𝐴𝑊 . In the actual implementation, we find that
cascading 3 to 4 SAW filters yields the strongest baseband signal.

Low-drive mixer. The mixer multiplies the oscillator signal with
its delayed replica and extracts the frequency shift during the time
delay. For power efficiency, we opt for passive diode mixers which,
in principle, exploit the nonlinearity of diodes to achieve signal mix-
ing. While complex single-balanced and double-balanced mixers
offer improved linearity and isolation, they need a high local os-
cillator (LO) power to drive the diodes [48]. We instead choose a
simple single-diode mixer implemented using a low-barrier Schottky
diode (Infineon BAT63 [32]), which operates efficiently at ultra-low
drive power. To maintain impedance consistency, we shunt another
identical diode to the ground to absorb the negative cycle of the input
signal, which can only pass the positive cycle through the mixer.
Further, a C-L impedance matching circuit precedes the mixer to
maximize power delivery from the SILO, and a single-stage LC
low-pass filter follows the mixer to attenuate high-frequency signals,
as shown in Fig. 11. The demodulated baseband signal has a much
lower amplitude than the dynamic range of the spike encoding cir-
cuit. Therefore, we need to add an operational amplifier (based on
TI TLV521 [81]) module to boost the signal level.

Spike encoding and sampling. We design spike encoder circuits
to emulate a LIF neuron, following the description in Sec. 5.1, and
Fig. 12. 𝑄1 (2N3906 [56]) serves as the current injector of the “neu-
ron” that charges the capacitor𝐶1 with current 𝐼𝑐 (𝑡) ≈ 𝑉𝑖𝑛 (𝑡)/𝑅3.𝑄2
(2N3906) and 𝑄3 (2N3904 [55]) implement the spike firing circuit,
with the firing threshold 𝑉𝑓 set by 𝑉𝑡ℎ . When the voltage of the
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Figure 12: Spike encoding circuit.

capacitor 𝑉𝐶1 exceeds the firing threshold 𝑉𝑓 , 𝑄2 and 𝑄3 are turned
on shortly to fire a spike and discharge 𝐶1 through 𝑅𝑘 . The leaky
resistor 𝑅𝐿 is directly connected to the ground, setting 𝑢𝑟 to zero.
To ensure event-driven output, the input signal is AC-coupled, and
two instances of LIF encoders are used to represent the negative and
positive parts of the signal, respectively. This ensures no spike will
be generated if the input signal is constant.

In order to provide spike samples for the Nengo-DL emulation,
we connect all output channels of the spike encoder to a lightweight
FPGA—Xilinx CMOD-A7 [21]—for sampling. The FPGA sam-
ples the spike sequences by polling the digital I/Os. Whenever a
spike is detected, each sampling channel creates a frame that con-
tains the timestamp of the spike and the channel index. To support
multi-channel parallel sampling, frames from multiple channels are
sequenced together using a first-in-first-out (FIFO) buffering block.
The output of the FIFO is connected to a universal asynchronous
receiver/transmitter (UART) block, which sends the spike frames to
the host PC, where the SNN emulation runs.

Power distribution motherboard for the NEURORADAR array.
Given that the aforementioned amplifiers offer high gain to the
baseband signal, they make the spiking encoding circuit susceptible
to noise because even minor disturbances are amplified and may
trigger false spikes. To mitigate this, a motherboard with a dedicated
power distribution network is designed to provide each SIL radar
channel with a stable power supply and suppress noise along the
power supply paths. This is accomplished through the incorporation
of Linear low-dropout (LDO) power regulators (TPS7A02 [82]) into
each amplifier module and spike encoder, which exhibit excellent
noise suppression capability. Additionally, the motherboard’s large
power plane provides a low resistance path for the supply current,
further reducing power supply noise.

7 EVALUATION
Microbenchmark of the SIL oscillator. We carry out experiments
in a multipath-rich lab setting to assess the motion modulation ca-
pability of the self-injection oscillator. To control the experimental
conditions, we use a 20cm × 20cm aluminum sheet as a representa-
tive target, place it at predefined locations, and measure the SILO’s
frequency using a spectrum analyzer. As Fig.13a illustrates, the
measured frequency shift aligns closely with the theoretical pattern
described by Eq.(1). These results indicate that the frequency of
the SILO can indeed be effectively modulated by the movement of
nearby reflectors, and the frequency shift pattern is not affected by
the presence of multipath clutter.
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Figure 14: Characters of the spike encoding circuit.

Microbenchmark of the motion demodulation circuit. We
proceed to validate the motion demodulation circuit by attaching it
to a running SILO. A target (an adult) moves away from the radar at
an approximately constant speed from 0.5m to 3m. Fig. 13b shows
the demodulated signal, which follows the sinusoid pattern consistent
with Eq. (2). As the target moves away, the reflected signal becomes
weaker, causing less frequency variation in the oscillator. The overall
baseband signal strength decays approximately proportionally to
1/𝑟2. In addition, it can be estimated that the distance the target
covers 𝑟 = 𝑛 ·𝜆/2 = 2.60𝑚 (close to the ground truth of 2.5 m), where
𝑛 = 14 is the completed cycles, and the wavelength 𝜆 = 37.2 cm.
Therefore, the result shows that the motion demodulation circuit
can effectively convert the frequency shift of the oscillator into a
continuous baseband signal.

Spike encoder properties. We profile the spike encoding circuit
by applying different DC voltage levels at the input and changing
the membrane capacitance (Sec. 5.1). Fig. 14a shows the spike
density with respect to the input voltage. As analyzed, the spike
firing rate can be increased with smaller membrane capacitance.
From 𝑉𝑖𝑛 = 0 to 0.07𝑉 , the spike encoder is in the dead zone and
produces no spikes. When 0.07𝑉 < 𝑣𝑖𝑛 < 0.90𝑉 , the spike firing rate
increases approximately linearly with the input voltage, as delineated
in Eq. (8). When 𝑣𝑖𝑛 > 0.90𝑉 , the spike rate starts dropping quickly
down to 0. The spike density plot shows that the spike encoding
circuit achieves a one-on-one mapping between the input voltage
and spike density. We then connect a real baseband signal from the
motion demodulation circuit into the spike encoders and convert
it to spike trains. Fig. 14b shows the spike representation of the
signal. We find that the spike generation is indeed event-driven and
asynchronous, as no spike is generated when the input is 0 V, and
the spikes can be fired at any random time without any explicit
synchronization signal.

Power consumption of the front-end. Next, we characterize the
power consumption of a single-channel SIL radar. The radar front-
end comprises three main parts: the oscillator, the baseband amplifier,
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Figure 15: System power consumption.

and the spike encoder. As shown in Fig. 15a, the system’s power
consumption is dominated by the oscillator, which is the sole active
RF component in the system. Due to the low signal bandwidth, the
baseband amplifier can be designed with low-power consumption,
consuming merely 20 µW power. The power consumption of the
spike encoder is primarily due to the quiescent current induced by
resistor dividers that are used to provide a DC bias. Each spike gen-
eration only consumes around 90 pJ and therefore has a negligible
impact on the total power consumption. Fig. 15b shows the power
consumption of the oscillator at popular operating frequencies in
the UHF band. The IC version, which adopts a more power-efficient
oscillator structure (discussed in Sec. 6), consumes less power than
the discrete version. The total power consumption of the radar front-
end falls below 300 µW, underscoring NEURORADAR’s low-power
operational capacity across different operating frequencies in the
UHF band.

8 CASE STUDIES
In this section, we implement and evaluate two use cases based on
NEURORADAR: hand gesture recognition and moving target local-
ization. For each case, we train and test the SNN, collect spike chain
data, and use them to drive the neuromorphic processor emulation
in the NengoDL [60].

A model-based method is employed to estimate the power con-
sumption of the signal processing units. The energy consumption of
running an SNN can be calculated as follows:

𝐸𝑆𝑁𝑁 = 𝑁𝑛 ∗ 𝐸𝑛 ∗ 𝑁𝑠𝑡𝑒𝑝𝑠 + 𝐸𝑠 ∗ 𝑁𝑠𝑝𝑖𝑘𝑒𝑠 (10)

Here, 𝐸𝑛 is the energy consumption of updating the status of a
neuron, which must be done for all neurons in the SNN for each
emulation timestep (1 ms). 𝑁𝑛 is the number of neurons, and 𝑁𝑠𝑡𝑒𝑝𝑠
is the number of timesteps. 𝐸𝑠 denotes the energy consumption of a
synaptic operation, which includes generating a spike and passing
it to other neurons through synapses. We assume that all the SNNs
in our comparisons run on the Intel Loihi neuromorphic chip [18],
where 𝐸𝑠 = 23.6𝑝 𝐽 and 𝐸𝑛 = 81𝑝𝐽 .

The energy consumption of a conventional ANN is calculated by
summing over all the multiply-and-accumulate (MAC) units:

𝐸𝐴𝑁𝑁 = 𝐸𝑀𝐴𝐶 ∗ 𝑁𝑀𝐴𝐶 (11)

We assume that all the ANNs run on the Nvidia GTX Titan Black
GPU, which has a per-MAC energy consumption of 𝐸𝑀𝐴𝐶=3.584
GMAC/W [19].

Radar signal preprocessing is performed using DSP units. Since
FFTs are widely used, we employ energy consumption data from
the Texas Instruments (TI) TMS320VC5505 [49] to estimate the

(a) Three-channel setup (b) Six-channel setup

Figure 16: Different NEURORADAR configurations for (a) ges-
ture recognition, and (b) localization.

energy consumption. For other preprocessing algorithms such as
digital filtering, we use the MAC energy consumption data of the
TI TMS320C6678 (0.853 GMAC/W) [19]. These two TI chips are
widely used and represent the state-of-art of DSP unit performance.

8.1 Gesture Recognition
We customize NEURORADAR for hand gesture recognition with
two setups, one with a single SIL channel at 915 MHz, and the
other with three SIL channels with distinct frequencies around the
866/915 MHz band. For the three-channel setup, two antennas are
placed on a horizontal line, with a spacing of 𝜆/4, with 𝜆 being the
average carrier wavelength; and the third antenna is placed above
the horizontal line and forms an equilateral triangle with the other
two antennas, as shown in Fig. 16a. The gestures are made in front
of the antenna plane, facing the center of the triangle. The spacing
is designed to be comparable to the displacement of a hand when
making gestures, affording more distinguishable signal patterns.
The elevated antenna provides richer information for vertical hand
movement (such as “swipe up” or “swipe down”).

Similar to state-of-the-art gesture recognition radar such as Google
Soli [40], we define a set of 12 gestures, as shown in Fig. 17. In
the gesture set, hand movement direction is diverse within a 3D
space (e.g. push, pull, left, right, up, and down), and some gestures
require 2 hands to move simultaneously. The three-channel version
is employed to recognize all 12 gestures. However, the one-channel
setup only employs one antenna, which is unable to acquire any
angular information. We, therefore, select 4 out of 12 gestures (5,
6, 7, 12) that primarily induce a distinguishable pattern in the range
domain, for the one-channel NEURORADAR to recognize.

As each SIL radar channel is paired with two spike encoders
(Sec. 6), the three-channel setup produces six spike sequences, while
the one-channel setup produces two, and the timestamps of the
spikes are recorded for SNN training. Each gesture sample contains
sequences of spikes across a time length of 1.5s. As explained in
Sec. 5.2, we buffer the input spike sequences, concatenate the output
of the delay buffers, and present them together to the convolution
layers. We set 𝑛𝑑𝑙𝑦 = 6 (6 ms), which results in an input dimension
of 6×250 for the three-channel setup and 2×250 for the one-channel
setup. In total, we collected 2400 samples, 200 for each gesture. We
divide the samples into a training set (1920 samples) and a test set
(480 samples) with a random 80/20 split. Although each sample has
a fixed length, the starting time of the gesture action is random. We
thus perform data augmentation by time-shifting the samples by a
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(1) Swipe Right (2) Swipe Left (3) Swipe Up (4) Swipe Down (5) Push (6) Pull

(10) Close Hands(9) Open Hands (11) Worship

(7) Clockwise

(8) Counter-clockwise (12) Wrist Rotation

Figure 17: Gesture set definition. Gestures (1) - (8) are single-hand; (9) - (12) are double-hand.
Table 1: SNN specification for gesture recognition.

type dimension channels kernel stride pool
1 conv. 6 × 250 1 1 × 16 1 × 4 1 × 1
2 conv. 6 × 59 32 3 × 16 1 × 2 1 × 1
3 conv. 4 × 22 32 4 × 8 1 × 1 1 × 1
4 dense 1 × 15 48 N/A N/A N/A
5 dense 180 N/A N/A N/A N/A
6 dense 12 N/A N/A N/A N/A

small random amount (∼50ms). This effectively doubles the training
set to 3840 samples.
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Figure 18: Gesture recognition results.
Fig. 18 summarizes the gesture recognition outcome. As shown in

Fig. 18a, the filtered spike signal at each output neuron is interpreted
as the probability of each class, and it needs sufficient time steps to
stabilize. Fig. 18b indicates that the SNN needs approximately 80
timesteps to produce recognition results with an accuracy exceeding
90%. This means that after gesture operation input is complete, the
SNN needs a mere 80 ms to produce a reliable result, which is
sufficient for most applications. The confusion matrix in Table 2
shows that the 3-channel NEURORADAR is able to distinguish 12
different gestures, with gesture #10 slightly less accurate than others.
Due to the sparsity of spikes, the neuron energy, which linearly
increases with emulation time (shown in Eq. (10)), is dominating
the overall energy consumption per inference. The number of time
steps strikes a tradeoff between higher accuracy and lower energy
consumption.

We present a comparison of NEURORADAR with other RF-based
gesture recognition systems in Table 3, including works that uti-
lize conventional ANN [69, 78], SNN [6, 7, 68], and other simple
machine-learning models [85]. When calculating the power con-
sumption of the RF front-end, duty cycling is considered according
to the descriptions provided in the corresponding publications.

Compared with multi-RF-chain radar systems [6, 7, 69, 78], NEU-
RORADAR demonstrates comparable gesture recognition capabili-
ties. In comparison to ANN-based systems [69, 78], NEURORADAR

achieves 3 orders of magnitude reduction in end-to-end power con-
sumption. Other SNN-based gesture recognition systems [6, 7] still

Table 2: Confusion matrix for gesture recognition.
1 2 3 4 5 6 7 8 9 10 11 12

1 0.94 0 0 0 0 0 0 0 0.03 0 0 0.03
2 0 0.95 0 0 0 0 0 0 0 0 0 0.05
3 0 0 0.93 0 0 0 0 0.02 0.05 0 0 0
4 0 0.03 0 0.91 0 0 0 0.03 0 0 0 0.03
5 0 0 0 0 0.97 0 0 0 0.03 0 0 0
6 0 0.04 0 0 0 0.96 0 0 0 0 0 0
7 0 0 0 0 0 0 1.00 0 0 0 0 0
8 0.02 0 0 0 0 0 0 0.98 0 0 0 0
9 0.02 0 0.04 0 0 0 0 0 0.92 0 0 0.02

10 0.02 0.07 0 0.02 0 0.03 0 0.03 0 0.83 0 0
11 0 0 0 0 0 0 0 0 0 0 0.98 0.02
12 0 0 0 0 0 0 0.02 0 0 0 0 0.98

rely on conventional computing units (i.e., CPU or DSP) for radar
signal pre-processing. This factor dominates the signal processing
power and diminishes the benefits of using an SNN. Owing to its
full-SNN architecture, NEURORADAR achieves a power consump-
tion reduction between 78% – 93% in terms of signal processing
(pre-processing and SNN). In addition, compared with other single-
channel radar gesture recognition systems with similar gesture sets
[68, 85], the single-channel NEURORADAR still reduces the power
consumption by at least one order of magnitude.

8.2 Moving Target Localization
To localize a single moving target with an acceptable level of ambi-
guity, NEURORADAR employs a 6-sensor array with a 𝜆/4 spacing
and diverse carrier frequencies, as simulated in Sec. 4.3. Since NEU-

1.80m

6
.0
0
m

Figure 19: The area of interest for target location. The maximum
distance from the radar is around 6 meters.

RORADAR can only detect moving targets, we ask a volunteer to
walk randomly within the radar’s field of view. The maximum dis-
tance of the target is around 6m and the angle of view is about 90◦,
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Table 3: Comparison of radar systems for gesture recognition.

Work Front-
end

Band
(GHz)

RF
chains

Pre-
proc.1

CPU/
GPU

Network/
Algorithm.2

Ges-
tures

Acc.
(%)

P_Front-
end (mW)

P_Pre-
proc. (µW)

P_ANN
(µW)

P_Total
(mW)

Sun et al. [78] FMCW 58-63 1Tx+3Rx RD-FFT Yes ANN-conv. 12 95.79 150.1 498.4 685150 835.74
Tinyradarnn [69] FMCW ∼60 2Tx+2Rx RD-FFT Yes ANN-conv. 11 92.39 190 642.6 28948 219.59

RadarSNN [7] FMCW 58-63 1Tx+3Rx
RDA-
FFT

Yes SNN-conv. 8 99.50 9.88 622.2 1 10.51

Arsalan et al. [6] FMCW 58-63 1Tx+3Rx Filtering Yes SNN 8 98.70 5.2 257.4 39 5.49

Safa et al. [68]
Burst
Chirp

8 1Tx+1Rx
R-FFT
+STFT

Yes SNN-conv. 5 93.00 0.68 1349.1 20 2.05

Wan et al. [85] Doppler 2.4 1Tx+1Rx STFT Yes kNN 3 96.70 412.5 154.6 ∼ 0 412.65
NeuroRadar SIL 0.915 1Tx/Rx N/A No SNN-conv. 4 90.00 0.28 0 12 0.292
NeuroRadar SIL 0.915 3Tx/Rx N/A No SNN-conv. 12 94.58 0.83 0 65 0.840

1 R stands for Range, D for Doppler, and A for Angle. 2 conv. means the neural network comprises convolution layers.

Table 4: SNN specification for localization.
type dimension channels kernel stride pool

1 conv. 12 × 500 1 2 × 32 2 × 1 1 × 4
2 conv. 6 × 118 64 3 × 24 1 × 1 1 × 2
3 conv. 4 × 49 64 4 × 16 1 × 1 1 × 2
4 dense 1 × 17 96 N/A N/A N/A
5 dense 1 × 300 N/A N/A N/A N/A
6 dense 1 × 16 N/A N/A N/A N/A
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Figure 20: NEURORADAR localization result.

as shown in Fig. 19. We employ a ZED-2i [75] depth camera to
obtain the ground-truth location and speed. We collect 6 segments
of 10-minute (600𝑠 × 6 = 3600𝑠) continuous data for training and
testing. For each segment, we allocate the first 480𝑠 (80%) of data
as training samples, reserving the last 120𝑠 (20%) as test samples.
This approach helps to mitigate any inconsistencies that might arise
between segments, such as issues with frame alignment with the
ground truth. We then further segment the continuous data into 2𝑠
short frames with a 75% overlap, and each of the short frames be-
comes a training/test sample. This results in a total of 5742 training
samples and 1422 test samples.

Again, the input spike trains are buffered (with 𝑛𝑑𝑙𝑦 = 4) and
presented collectively to the SNN, resulting in an input dimen-
sion of 12 × 500. From each frame, we evenly selected four data
points, yielding four sets of location and velocity data: (𝑥1, 𝑦1, 𝑢1, 𝑣1),
(𝑥2, 𝑦2, 𝑢2, 𝑣2), · · · , (𝑥4, 𝑦4, 𝑢4, 𝑣4). These sets were used as labels for
the regression problem, thus making the output dimension of the
neural network 1×16. The specific structure of the SNN model is
outlined in Table 4.

Fig. 20a shows the localization result by combining the output of
consecutive frames. Similar to the gesture recognition use case, the
SNN needs to run for enough timesteps to yield a reasonable result.

Table 5: Indoor tracking system performance comparison.
NEURORADAR Doorpler[35]

Architecture SIL Doppler
RF Chains 6Tx/Rx 2Tx+5Rx
Frequency ∼915 MHz 2.4/5.8 GHz
Tx Power -20 dBm -10 dBm
Coverage 6 m <5 m

Front-end Power 1.44 mW 59.9 mW
Signal Proc. Power 0.59 mW 6.4 mW

Fig. 20b shows with about 150 timesteps, a localization accuracy of
1m can be achieved. The mean squared error for speed estimation
stabilizes at 0.25𝑚2/𝑠2. The result implies a tracking delay of 150 ms,
which is sufficient for our low-velocity indoor applications. Since
we are filtering spike sequences to achieve a continuous value, errors
are inevitable and the accuracy is impacted.

To showcase the advantages of NEURORADAR, we compare it
with a multi-tone (2.4 and 5.8 GHz) Doppler radar system, Door-
pler [35], which utilizes a conventional RF front-end architecture
(Sec. 4.1) and signal processing method. Doorpler is a radar-based
occupancy sensing system that can detect zone crossing events and
estimate the direction of movement at zone transition spots (e.g.
doorways). Similar to NEURORADAR, Doorpler employs an antenna
array to acquire angular information of the target and leverages the
Doppler effect to infer the moving direction.

Table 5 compares the performance of the two systems. Due to
the extra demodulation gain of SIL radar (Sec. 4.2), NEURORADAR

provides a more extensive coverage area than Doorpler, even with
10 dB lower Tx power. Due to its simple SIL structure and power-
efficient design, NEURORADAR achieves 1-2 orders of magnitude of
reduction in front-end power. The combination of FDA design and
neural network allows NEURORADAR to obtain more abundant and
accurate sensing information. Unlike Doorpler, which merely de-
tects crossing events and their direction, NEURORADAR offers both
location and speed estimation. At the same time, SNN processing
significantly reduces the computational power, and the end-to-end
system power consumption is reduced by 97%.

9 RELATED WORK
Neuromorphic sensors. Neuromorphic sensors mimic the struc-

ture and function of mammalian sensing systems to achieve energy-
efficient, and real-time sensory data processing [94]. Neuromorphic
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sensors have been explored to perceive various types of signals,
such as vision [12, 39], tactile [9, 84], auditory [28, 45, 92], chemi-
cals [25, 74], PH [41, 42], etc. Neuromorphic sensing devices have
shown great potential for personal healthcare monitoring [13, 72],
neuroprosthetics [65] and soft robotics [58]. Built on this line of
research, NEURORADAR represents a pioneering step in extending
neuromorphic sensing into the RF domain.

SNN-based radar signal processing. Recent research has at-
tempted to use SNNs to process radar signals to reduce power con-
sumption and latency. A majority of the proposed systems first
preprocess the raw radar samples using FFT based on conventional
computing units (i.e., CPU/DSP), convert the intermediate data, such
as range-doppler matrix, into spikes, and then employ SNNs to per-
form tasks like gesture recognition [5, 7, 8, 31, 37, 67, 68]. Other
works analyze the feasibility of using SNNs to perform FFT directly
on raw radar samples [6, 44, 83]. In [71], Shaaban et al. uses an
SNN to directly perform classification on time-domain radar frames.
However, all these methods are based on traditional radar front-
ends, and the radar signal must first be sampled using ADCs, then
processed and converted into spikes digitally. In contrast, NEURO-
RADAR adopts a novel front-end that produces spike sequences and
can directly interface with energy-efficient neuromorphic computing
hardware.

Self-injection locked radar. Wang et al. [90] were among the first
to analyze the advantages of SIL radar and demonstrate its ability
to perform vital sign sensing. Numerous variations of SIL radar
have been explored, such as a single-antenna SIL radar [89], mutual
injection locked radar [88], and bistatic SIL radar [87]. Tang et al.
[80] compared the performance of SIL radar with Doppler radar and
proposed innovative designs to eliminate null detection points. Hsu
et al. [30] studies a mutually injection-locked oscillator array and
demonstrates that by adjusting the tuning voltages of the oscillators, a
beamforming SIL radar can be achieved. In contrast, NEURORADAR

studies the sensing capabilities of a frequency-diverse SIL radar
array, and performs gesture recognition and target localization.

Low-power radar sensing. The RF amplifiers in radar systems
constitute a substantial source of power consumption. Prior research
has investigated energy-efficient, high power density amplifiers, such
as gallium nitride (GaN) amplifiers [17, 27, 91], to reduce the power
consumption of the radar front-end. Radar waveform design repre-
sents another approach to power reduction. For instance, impulse
radio ultra-wideband (IR-UWB) radars [16, 53] emit short-duration
pulses that helps achieve lower power compared to the widely used
FMCW radar. Another approach for low-power radar design is uti-
lizing existing radio sources. Passive radars, which utilize existing
radio sources such as television [36] and Wi-Fi [23, 38], eliminate
the need for transmitting their own signals. Consequently, they pro-
vide a cost-effective, low-power alternative to conventional active
radar systems. NEURORADAR offers a distinctive solution to this
challenge, achieving low power consumption by incorporating neu-
romorphic engineering into radar sensing.

10 DISCUSSIONS AND FUTURE WORKS
Multi-target localization. While our experiments underscore NEU-

RORADAR’s proficiency in sensing a singular moving target, the
model can seamlessly be extended for multi-target sensing. With N

targets in the vicinity, Eq. (4) can be rewritten as follows:

®𝑠 (®𝑙, ®𝑣) =
𝑁∑︁
𝑛=1
[𝑎𝑛sin(4𝜋 𝑓𝑘

𝑟𝑘,𝑚,𝑛
𝑐
)]𝑘=𝐾−1,𝑚=𝑀−1
𝑘=0,𝑚=0 ,

The observed frequency shift becomes the superposition of the fre-
quency shift induced by each moving target. The potential to localize
targets is dependent upon the ambiguity area resulting from solv-
ing the optimization problem in Eq. (5). As an increase in targets
would induce more ambiguity in the observation, a larger number of
sensors are required to distinctly localize each target. Subsequently,
following the same single-target paradigm, the SNN can be trained
to identify multiple targets based on the observations.

Reducing the form factor. For broader real-world applicability,
minimizing the system’s form factor is pivotal. Though the majority
of the NEURORADAR components can be integrated into an IC,
the system’s form factor is predominantly dictated by the antenna
dimensions and inter-antenna spacing. The monopole antennas we
employ, while robust, are size-intensive. Replacements like compact
PCB loop antennas, often adopted in low-frequency IoT devices [50],
could be more feasible. In addition, the current implementation has
restricted the system to the UHF band because of the frequency limi-
tation of the SAW filters (below 3 GHz). Developing NEURORADAR

sensors at higher frequencies can substantially reduce its form factor,
due to smaller antennas and a more compact inter-antenna spacing.
We leave the exploration of such solutions for future work.

Limitations and suitable applications. While the SIL radar’s
streamlined architecture facilitates energy-efficient operation, its
free-running oscillator remains vulnerable to external disturbances.
In-band signals from external sources may cause frequency pulling
or injection locking [61] to the oscillator, thereby jeopardizing the
SIL radar’s sensing capability either partially or wholly. Moreover,
SIL radars need to be stationary to function because otherwise, all
the reflectors in the environment would be moving relatively to the
radar, each adding a frequency shift to the oscillator, and making it
impractical to perform sensing. Nevertheless, in a controlled indoor
setting devoid of interference, NEURORADAR can support various
applications such as surveillance systems, vital sign monitors, mo-
tion tracking, and gesture-based controls.

11 CONCLUSION
In this work, we have introduced NEURORADAR, a novel and pio-
neering approach in radar systems that fully embraces the principles
of neuromorphic sensing. Through the joint design of analog hard-
ware and spike signal processing, NEURORADAR achieves superior
energy efficiency. Through gesture recognition and localization tasks,
NEURORADAR has demonstrated its capability while maintaining
a power consumption significantly lower than that of traditional
radar systems. This research marks a significant step forward, pro-
viding a unique and innovative solution for radar sensing in energy-
constrained IoT devices.
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