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ABSTRACT
Many applications such as autonomous driving and augmented
reality, require the concurrent running of multiple deep neural
networks (DNN) that poses different levels of real-time perfor-
mance requirements. However, coordinating multiple DNN tasks
with varying levels of criticality on edge GPUs remains an area of
limited study. Unlike server-level GPUs, edge GPUs are resource-
limited and lack hardware-level resource management mechanisms
for avoiding resource contention. Therefore, we propose Miriam,
a contention-aware task coordination framework for multi-DNN
inference on edge GPU. Miriam consolidates two main components,
an elastic-kernel generator, and a runtime dynamic kernel coordi-
nator, to support mixed critical DNN inference. To evaluate Miriam,
we build a new DNN inference benchmark based on CUDA with
diverse representative DNN workloads. Experiments on two edge
GPU platforms show that Miriam can increase system throughput
by 92% while only incurring less than 10% latency overhead for
critical tasks, compared to state of art baselines.
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1 INTRODUCTION
Deep learning (DL) has become a catalyst for a wide range of

applications running on the edge, such as augmented reality and
autonomous driving [35, 49]. These applications typically require
the concurrent execution of multiple DNN tasks that have varying
levels of criticality. For example, in mobile augmented reality, DNN
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inference tasks are often used for gesture recognition and user be-
haviour analysis, which are key components in providing a seamless
user experience. This presents a major challenge as mobile/edge
devices are constrained by limited computational resources for
running multi-DNN inference tasks in real-time [46, 52].

To support multiple DNN-based applications that have different
real-time requirements [12], a common practice is to share an edge
Graphics Processing Unit (GPU). However, this practice poses signif-
icant challenges. On the one hand, when executing multiple DNNs
simultaneously, their contention over the limited onboard resources
on the same edge GPU can result in a performance bottleneck [30].
On the other hand, dedicating the entire GPU to latency-critical
tasks to guarantee their real-time requirements results in low GPU
utilization [45]. Meanwhile, most of the approaches that attempt
to support concurrent DNN inference tasks on GPU [18, 39, 42]
require runtime support from vendors like NVIDIA Multi-Process
Service (MPS) and Multi-Instance GPU (MIG) [32, 33], which are
unavailable on edge GPUs due to the architectural differences.

Furthermore, multi-DNN inferences present two potentially con-
flicting objectives. Firstly, it is imperative that critical DNN tasks
are given priority over other tasks in order to minimize end-to-
end latency. This necessitates that the critical tasks are treated as
first-class citizens on the GPU, with no interference from other
tasks. Secondly, in order to achieve high overall throughput, all co-
running DNN tasks should be concurrently executed in a best effort
manner. These two conflicting objectives pose a major challenge
for efficiently coordinating the inferences of multiple DNN tasks
on edge GPU.

In this paper, we propose a new system named Miriam which
aims to support real-time multi-DNN inference on edge GPUs by
addressing the latency and throughput problems of co-running
multiple DNN inference tasks. The key idea of Miriam is based on
the elastic kernel 1, which can achieve more fine-grained resource
mappings on GPU. Specifically, traditional kernels are elasticized by
breaking them down into smaller, more flexible units that can be
dynamically scheduled and remapped to different GPU resources
based on their priority and criticality. This elasticization approach
enables the padding of other GPU kernels, which maximizes GPU
utilization without causing significant resource contention. As a
result, critical tasks can be prioritized without compromising overall
system throughput, thus improving the real-time performance of
the system.

Our design is based on the key observation that the latency
degradation of co-running DNN kernels is mainly caused by two
dominant factors, namely intra-multi-processor (SM) resource con-
tention and inter-multi-processor resource contention. We leverage

1Kernel here refers to a small program that is executed on a GPU to perform the
specific DNN kernel computations.
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Figure 1: A bird’s eye of the full-stack DNN inference system.
Miriam enables efficient real-time multi-DNN inferences on
edge GPU without incurring accuracy loss for DNN models.

elastic kernels to address those two kinds of resource contention.
Specifically, Miriam integrates two main components. The first com-
ponent, the elastic-kernel generator, consists of an elastic grid/block
generator that generates resource-controllable GPU kernels to re-
solve co-running DNN tasks resource contention, and a source-to-
source kernel transformer that converts original GPU kernels into
elastic kernels while preserving computation consistency. We also
design a dynamic runtime coordinator to schedule the elastic kernels
to proactively control the execution of the co-running kernel at
runtime. To evaluate the effectiveness of Miriam, we implement
it as a hybrid framework based on CUDA, C++, and Python. We
use a set of multi-DNN inference benchmarks for edge GPUs that
include tasks with different priorities to evaluate the system’s ef-
fectiveness. Our results demonstrate that, compared to existing
methods, Miriam can serve significantly more requests with up
to 92% throughput improvement while maintaining the inference
speed for critical tasks with only a 10% increase in latency. These
results highlight Miriam’s superior performance in achieving effi-
cient coordination of real-time multi-DNN inference tasks on edge
GPUs. Fig.1 shows the general DNN serving stack, where Miriam
works as a multi-DNN runtime middleware that connects static
computation optimizations made by compilers and real-life appli-
cations. To summarize, we make the following main contributions
to this work:
(1) The elastic kernel design for multi-DNN inference. We
propose an elastic GPU kernel generation method that can support
flexible intra-SM thread slots allocations and inter-SM memory
fetching in a controllable manner.
(2) A dynamic runtime kernel coordinator. We provide an
elegant mechanism that can dynamically pad the elastic kernels
with other DNN kernels to maximize GPU utilization while avoiding
resource contention.
(3) A multi-DNN inference benchmark We construct a multi-
DNN inference benchmark for edge GPUs from real-world traces
and implement it in CUDA. Based on this we evaluate Miriam on
two edge GPU platforms to show the effectiveness of our approach.

The source codes of Miriam as well as a mixed-critical DNN
task benchmark are publicly available at: https://github.com/Kyrie-
Zhao/Miriam-Multi-DNN-Inference.git.

2 RELATED WORK
To enable on-device multi-DNN inference on edge devices, prior

methods such as joint DNN model compression sacrifices a modest
level of accuracy for each model to reduce the computational costs
of mixed DNN workloads [9, 25, 26, 28]. In contrast, Miriam does not
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Figure 2: An overview of CUDA programming paradigm and
the computation hardware in NVIDIA TX2.

compromise on accuracy and can be seen as an orthogonal approach
to the above systems. Other methods address this problem through
new compiling techniques. For example, Veltair [27] proposes to
generate multiple versions of compiled DNN models with different
intensities of resource contention for scheduling at runtime to
accelerate multi-DNN inference. However, these methods also lead
to issues such as high overhead in storage and offline profiling,
making them hard to scale to more use cases.

Systems like DeepEye [28], Abacus [6], and Dart [41] have uti-
lized the interleaving of operators with different "contention chan-
nels" (memory-bound or compute-bound). Although these methods
have proven to be effective, they require time-consuming offline
profiling and are cumbersome to generalize for new DNN tasks.
REEF [12] addresses the same problem of mixed-critical multi-DNN
inference coordination and achieves kernel-level preemption for
critical tasks. However, the approach requires modification of the
GPU driver library, which is not practical in many popular closed-
source devices. Heimdall [44] and Band [21] also target solving
resource contention of multi-DNN inference, while they have dif-
ferent application settings from ours.

Warped-Slicer [42] employs performance versus computing unit
occupancy curves for selecting an optimized simultaneous ker-
nel pattern, but the method fails to address resource contention
between kernels. Works such as HSM [48] and [37] model the
latency degradation of concurrent GPU kernel executions based
on hardware information, but the predictors built in these works
are difficult to adapt to real-world multi-DNN inference scenar-
ios that are characterized by nondeterministic kernel overlapping
[6]. Other works such as Smcentric [39] and Effisha [4] tackle the
GPU multitasking problem from resource management perspec-
tives in a space-multiplexing manner [19, 40], which is orthogonal
to Miriam’s approach.

3 BACKGROUND
In this paper, we present the design and implementation of

Miriam based on the CUDA programming model for NVIDIA GPU
[34]. We first introduce some terminologies in CUDA. Fig. 2 (left)
shows the layout of an NVIDIA Jetson TX2 GPU, which consists of
two SMs, each capable of running a number of GPU threads with a
maximum size, and both SMs share the global memory.

CUDA Programming Model. A CUDA GPU has a number of
Streaming Multiprocessor (SM). Each SM contains multiple cores,
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which are the processing units that execute the instructions of
the threads. All cores within the same SM share the same set of
registers and can communicate with each other through shared
memory. Code executed by the GPU is known as a GPU kernel
[10]. Threads are the smallest unit of work that can be executed in
parallel on a GPU, and they are organized into blocks. Each block
is a group of threads that can execute concurrently on a single
SM. A grid is a collection of blocks that are organized in a three-
dimensional array. The grid defines the overall structure of the data
being processed and how it is partitioned into blocks. GPU streams
are a way of organizing and executing asynchronous tasks on the
GPU. Each stream is a sequence of kernels (e.g. Conv, MemCopy)
that can be executed independently of other streams. Kernels in
the same stream are executed in a FIFO manner [34].

Kernel Execution on GPU. When launching a kernel in CUDA,
we specify the dimensions of the grid and blocks. Each block is
dispatched to and executed on one SM. However, whether a block
can be dispatched to an SM that already has a block executing on it
depends on whether there are enough remaining resources, such as
thread slots and shared memory, to accommodate the new block. If
there is no available SM to accommodate a block, it has to wait in a
queue in a first-in, first-out (FIFO) order. When a kernel executes
on an SM, it competes for on-SM resources, such as thread slots
and shared memory, with other kernels already dispatched to and
executing on the same SM. This competition greatly affects the
execution time of a kernel on the SM. Thus, the varying time a
block waits in the queue, in addition to the varying time it takes to
execute its workload on the SM, contributes to the overall varying
latency experienced by the kernel.

4 MOTIVATION AND CHALLENGES
Miriam aims to support co-running DNN inference tasks on edge

GPU for real-time applications. Tasks that have strict real-time re-
quirements are referred to as critical tasks. For example, obstacle
detection in autonomous driving must be finished by a certain dead-
line, allowing sufficient time for the vehicle to maneuver around
obstructions. Tasks that do not have strict real-time deadlines are
referred to as normal tasks. For example, monitoring human drivers’
emotions and fatigue can be executed in a best-effort manner to
improve the driving experience.

Miriam aims to meet the real-time requirement for latency-
critical tasks while maximizing the overall throughput of co-running
normal tasks in a dynamic manner. One common solution is to se-
quentially execute critical tasks and normal tasks, which can yield
the lowest latency for critical task execution, but at the cost of
significantly reduced overall throughput. An alternative solution
is to directly execute multiple DNN tasks on the same edge GPU
without proper contention management. However, this can cause
increased latency for critical tasks.

Here we investigate performance degradation caused by the si-
multaneous execution of multiple DNN tasks. When running alone
on an edge GPU, GPU kernel execution time for DNN inferences
tends to remain consistent. However, the simultaneous execution
of multiple DNN tasks on an edge GPU can significantly impact
performance. To study this effect, we conducted an experiment
using CUDA multi-stream on an NVIDIA RTX 2060 GPU where
we launched a DNN task (i.e., ResNet50) with different co-runners
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Figure 3: (left) The latency distribution of ResNet50 when
co-running with other DNN models. (right) Illustration of
intra-SM and inter-SM contention.

in a closed-loop manner. In Fig. 3 (left), we present the cumulative
distribution function (CDF) of the ResNet50 latency with various co-
running tasks. The results show that the latency of ResNet50 ranges
from 4.4 ms to roughly 16.2 ms when co-running with VGG16, while
the solo-running latency is 4.2 ms, yielding a significant variation.
Meanwhile, the latency distribution pattern for different co-running
model settings also varies a lot.

The primary factor that results in these large variations in la-
tency is the complex resource contention among the co-running
tasks, which can be classified into intra-SM contention and inter-SM
contention, as is shown in Fig. 3 (right). The latency experienced by
a GPU kernel depends not only on the time it takes for the workload
to execute on the SM (affected by intra-SM contention) but also
on the time it takes for the workload to wait to be dispatched to
the SM (affected by inter-SM contention). Intra-SM contention and
inter-SM contention are two types of resource contention among
co-running tasks on a GPU. Intra-SM contention refers to the con-
tention within an SM, which can occur when multiple thread blocks
from different kernels are dispatched to the same SM and compete
for shared resources, such as registers, shared memory, and execu-
tion units. Inter-SM contention refers to the contention among SMs,
which can occur when multiple thread blocks from different kernels
are dispatched to different SMs and compete for shared resources,
such as global memory and memory controllers. These two types
of contention can cause significant performance degradation and
latency variation for co-running tasks on a GPU.

Thus, given two incoming DNN task queues for normal task
𝜏𝑛𝑜𝑟𝑚𝑎𝑙 and critical task 𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , to maximize the overall task
throughput while guaranteeing the real-time performance of criti-
cal tasks, it is crucial to carefully manage the contention that arises
from multiple overlapping kernels during co-execution. Our design
objective is: to mitigate the latency degradation of the critical kernel
during concurrent execution with the normal kernel by resolving
inter- and intra-SM contention while allocating idle SM resources
to the normal kernel as much as possible.

5 MIRIAM OVERVIEW
We now introduce Miriam, a holistic kernel-level system for

real-time multi-DNN inference on edge GPU. Miriam is a compiler-
runtime synergistic framework that achieves fine-grained kernel-
level GPU resources mapping. In this section, we first introduce
the key idea of Miriam and then describe its system architecture.
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5.1 Key Idea
In Section 4, we show that it is imperative to give careful con-

sideration to the resource contention that arises between multiple
parallel kernels. Failure to do so can result in GPU under-utilization
and degradation of inference latency.

Motivated by these findings, Miriam proposes a new DNN kernel
inference abstraction, elastic kernel, which is a GPU kernel that
has adjustable grid size and block size. Different gird/block sizes
of the elastic kernel correspond to different patterns of SM-level
GPU resource usage. By transforming normal kernels into elastic
kernels, Miriam can control their resource contention to the critical
task, and thus maximize the overall system throughput while not
compromising the real-time performance of the critical kernel.

To this end, Miriam generates an elastic kernel for each normal
task offline and enables kernel coordination at runtime. Specifically,
Miriam employs a novel elastic kernel generator to construct an
elastic kernel with adjustable GPU resource usage patterns. During
the runtime phase, the coordinator will select the best implementa-
tion patterns of the elastic kernels and dynamically pad them with
the critical kernels to fully utilize the GPU resource.

5.2 System Architecture
Fig. 4 shows a bird-eye view of Miriam. Miriam incorporates

two parts: Offline Elastic Kernel Generation and Online Kernel Co-
ordination, working at levels of compilation, i.e., source-to-source
code transformation, and kernel coordination, respectively. They
collaborate to exploit elastic kernels for supporting multiple DNN
inference on edge GPUs.

Miriam generates elastic kernels by transforming the compiler-
generated or handcrafted CUDA kernels to the elastic form. We
generate elastic kernels from both grids’ and blocks’ perspectives
of GPU kernels, which are called elastic grid and elastic block,
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respectively. These configuration knobs can achieve fine-grained
control over inter- and intra-SM resources.

There are two challenges here for generating elastic kernels.
First, the design space of the elastic kernel implementation patterns
is too large (e.g., 2874 on average for a single kernel in AlexNet
[23]). Hence, we shrink the design space to decrease the number
of potential elastic kernel candidates by taking the hardware lim-
itation into consideration. Second, when a kernel is launched in
CUDA, the execution configuration specifies the number of threads
to be launched and how they are organized into blocks and grids.
Modifying the grid and block size in a DNN kernel directly can
cause computation errors because this affects how threads are or-
ganized and executed on the GPU. In case of this, Miriam includes
a novel source-to-source kernel transformer, which transforms GPU
programs of a given DNN kernel into an elastic kernel execution
paradigm while ensuring the consistency of computation results.

Miriam adopts a novel dynamic kernel coordination mechanism
that controls the execution of elastic and critical kernels at run-
time. Specifically, Miriam will profile the SM occupancy of each
elastic kernel and the critical kernels. Then, Miriam determines the
grid size and block size of the next elastic kernel from the normal
task queue at runtime. In this way, tasks with elastic kernels can
maximize resource utilization without interference to other co-
running critical kernels. A key challenge here is that an elastic
kernel may be executed solely or in parallel with different critical
kernels. Hence, we cannot determine the scheduling of the elastic
kernel at the time of kernel launch. To address this issue, we design a
dynamic kernel sharding mechanism, in which we divide an elastic
kernel into several shards and determine the scheduling for each
sharding according to run-time resource usage.

Miriam can support a wide range of applications that need to
run multiple DNNs on the edge GPU. For instance, an obstacle
detection task and a navigation task need to run in parallel to
achieve autonomous driving. The obstacle detection task is critical
because it is related to driving safety, while the navigation task can
be executed in a best-effort manner as a normal task. For such a DL
task set, as shown in Fig. 5, Miriam first divides them into critical
kernels and normal kernels according to their task characteristic,
i.e., criticality of the tasks. Normal kernels are compiled offline and
transformed into elastic kernels by Miriam. At run-time, the elastic
sharding policy of normal kernels is determined by the Miriam
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to maximize resource utilization while not interfering with the
execution of the critical kernel.

6 GENERATION OF ELASTIC KERNELS
To support finer control over inter- and intra-SM resources of

a kernel running on the edge GPU, we propose an elastic kernel
generator. The design principle of Miriam is based on the insight
that both the block and grid’s resource allocations can be distilled
from the native GPU programming model. Fig. 6 illustrates the
design of the proposed elastic kernel generator: elastic block and
elastic grid. By separating resource allocation for thread blocks
from the logic-level grid and thread block identity, this approach
generates resource-controllable GPU kernels for further resolving
co-running DNN tasks resource contention problems. In the subse-
quent subsections, we will provide a comprehensive explanation of
these two elastic techniques.

To improve the efficiency of the elastic kernel generation process,
Miriam proposes to shrink the design space of elastic kernels accord-
ing to hardware limitations, as well as observations on co-running
DNN kernels from critical and normal task queues. Moreover, to
maintain the accuracy of elastic kernel calculation after elastic
kernel transformation, we design a source-to-source kernel trans-
former. Our transformer can convert original GPU kernels into
elastic kernels while preserving computational equivalence.

6.1 Controllable Intra-SM Resource by Elastic
Block

DNN kernels can be broadly categorized into memory operations
(memory allocations, memory transfers, etc.) and kernel execution.
To enable the execution of a single kernel on multiple GPU SMs,
GPU programming divides a large kernel into multiple sub-kernels,
each of which is executed by a GPU block. The block size is de-
termined by the computation workload of each sub-computation.
Blocks with smaller sizes consume less thread usage for each in-
struction cycle.

Multi-DNN inference on edge GPU can cause severe intra-SM
contention when multiple thread blocks from different kernels
compete for the resource within the same SM. Some blocks would

fail to execute or delay, which leads to a decrease in the overall
throughput and an increase in the corresponding latency of the
DNN inference. For this issue, one possible solution is to perform
code-level optimization of the GPU kernel. This approach includes
optimizing the memory access patterns and reducing unnecessary
computations to decrease the intra-SM resource usage, and thus
alleviates intra-SM contention. However, optimizing GPU codes for
a specific DNN model is challenging and time-consuming. Different
optimization techniques such as loop-tiling, loop-unrolling and par-
allelization naturally have different trade-offs in terms of execution
performance, memory usage, and code complexity. Achieving the
appropriate balance among those factors requires careful exper-
imentation and tuning. Adapting codes for different concurrent
kernels from diverse tasks demands a significant amount of effort
and may not generalize well, thereby restricting the effectiveness
and applicability of the optimization techniques.

To carefully manage the resource usage of each block, Miriam
adjusts the number of threads within the targeted block to generate
elastic blocks for each thread block. We adopt the persistent thread
technique [11] that is capable of adjusting a kernel’s resident block
size on an SM. In contrast to traditional kernels where threads
terminate after completing the kernel execution, persistent threads
remain active throughout the execution of a kernel function. We
limit the range of each elastic block size to fall between 1 and the
maximum resident block size. We also transform the default 1:1
logical-to-physical threads mapping scheme to an N:1 mapping
scheme while preserving the initial program semantics.

Compared to static block fusion [38], which fuses multiple thread
blocks from different GPU kernels into a single one to reduce un-
necessary loads and stores, our persistent thread design does not
require pre-compilation of all possible combinations of kernels.
This feature enables flexible SM-level resource mapping at runtime.

Our elastic kernel is designed to stay within the shared memory
limit, and we achieve this by modifying the way we control the
intra-SM resources, including shared memory, compared to the
original kernel. This modification results in a memory occupancy
that is either equal to or less than that of the original kernel.

While the persistent thread mechanism provides fine-grained
control over intra-SM parallelism, it comes with nontrivial overhead.
The optimal number of launched persistent threads does not always
equal to the maximum number of concurrently executing threads
from all thread blocks that can be afforded by a single SM. Hence,
we will narrow the design space of elastic block which will be
introduced in Section 6.3.

6.2 Elastic Grid for Inter-SM Contention
While elastic block design can resolve intra-SM thread-slot con-

tention, inter-SM memory (e.g., DRAM, L2 Cache) fetching con-
tention can still be a severe problem if blocks inside a kernel are
directly launched. DNN kernels often use a large number of blocks
to hide stall cycles due to data access, thus, when multiple DNN
inference requests arrive in rapid succession, multiple SMs are al-
located to execute the requests (e.g. memory bus) have to wait for
each other, leading to decreased execution performance.

Miriam proposes an elastic grid generator that slices the ini-
tial grid into multiple smaller grids. This approach can improve
resource utilization and reduce inter-SM contention by allowing
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Table 1: GPU Architecture Parameters

Symbol Parameters
SM Streaming multiprocessors.
𝑁𝑆𝑀 Number of streaming multiprocessors on GPU.

𝑁𝑏𝑙𝑘_𝑟𝑡
Number of thread blocks in a dispatched
critical kernel.

𝑁𝑏𝑙𝑘_𝑏𝑒
Number of thread blocks in a dispatched elastic
normal kernel.

𝑆𝑏𝑙𝑘_𝑟𝑡
Number of launched working threads of each
thread block in a dispatched critical kernel.

𝑆𝑏𝑙𝑘_𝑏𝑒
Number of working threads of each thread
block in a dispatched elastic normal kernel.

𝐿𝑡ℎ𝑟𝑒𝑎𝑑𝑠 Limitations on the number of working threads.

more efficient memory accesses across multiple SMs. Elastic grid
generation implies a kernel slicing plan: Given a kernel 𝐾 , a slic-
ing plan 𝑃 (𝐾) is a scheme that slices 𝐾 into a sequence of 𝑛 slices
[𝑠0, 𝑠1, 𝑠2, ..., 𝑠𝑛−1] based on thread-block-granularity partitions.

Thus, given a set of kernels, the problem is to determine the
optimal grid slicing policy of the initial kernel when co-running
with other tasks with different workloads. To formulate, as for a
DNN kernel 𝐾 with 𝑀 thread blocks, a dichotomy algorithm-based
slicing plan 𝑆 (𝐾) can be applied to 𝐾 . Specifically, there would be
a sequence of slicing schemes represented as:

𝑆 (𝐾) = (𝑀2𝑛 ,
𝑀

2𝑛−1 ..., 𝑀), 𝑛 = max
𝑖
{𝑀 𝑚𝑜𝑑 2𝑖 = 0} (1)

where 𝑛 is the power index of 2 to be divided. By doing this, we
enable normal kernels to be issued with a flexible number of thread
blocks on SM, co-locating with critical kernels. By dividing the
single kernel into multiples, the sliced grids can be scheduled to
run independently by the GPU, allowing the GPU to interleave the
execution of them with the execution of other critical kernels. The
elastic grid design efficiently reduces co-locating kernels’ inter-SM
memory contention by improving the time-multiplexing potential
of the kernel with other kernels, allowing the GPU to better balance
the allocation of resources and maximize overall performance.

6.3 Workload-balanced-guided Design Space
Shrinking

We need to determine the execution parameters of the elastic
kernel at run-time, which includes the grid number(𝑁𝑏𝑙𝑘_𝑏𝑒 ) and
the block size(𝑆𝑏𝑙𝑘_𝑏𝑒 ). We call each pair of execution parameters
a schedule. A main challenge here is the huge number of feasi-
ble schedules, which makes it difficult to enumerate schedules or
heuristically find optimal ones at run time. The total number of
feasible schedules is exponential to the number of operators in
the incoming model and the size of input data. For example, an
implemented AlexNet model in the Tango benchmark with an
input image size of 3x224x224 can have up to 2.2 × 1025 feasible
schedules for all Conv kernels [23].

To address this challenge, we shrink the design space for each
kernel by removing combinations of elastic grid sizes and block
sizes that may result in dispatch failure due to severe resource
contention. In another word, Miriam narrows down the design

space by eliminating configurations that are expected to have low
performance.

When multiple kernels are co-running, thread blocks from dif-
ferent kernels can have many possible inter-leavings of SM-level
contention or inefficiency. We propose two constraints to address
these issues as shown in Eq. 2, and the specific parameters of these
factors are shown in Table 1.

{
𝑁𝑏𝑙𝑘_𝑏𝑒 ⩽ 𝑁𝑆𝑀 − 𝑁𝑏𝑙𝑘_𝑟𝑡 𝑚𝑜𝑑 𝑁𝑆𝑀
𝑆𝑏𝑙𝑘_𝑏𝑒 ⩽ 𝐿𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 𝑏𝑙𝑘_𝑠𝑖𝑧𝑒𝑟𝑡

(2)

The first constraint is based on the observation that workload
across SMs is unbalanced. This kind of imbalance appears broadly
when the number of thread blocks is not a multiple of the number
of SMs inside an edge GPU. To address this issue, we prune cases
where the number of thread blocks of elastic kernels exceeds the
remaining available SMs after dispatching all the thread blocks from
critical kernels. The second constraint addresses intra-SM workload
balance, which aims to reduce contention between thread blocks
from different kernels competing for resources within an SM. It is
necessary to ensure that each SM has as much workload as possible
and that the workload is balanced. If the workload in an SM is too
light, then the resources in that SM may be wasted. On the other
hand, if the workload in an SM is too heavy, it may lead to resource
contention and performance degradation. We prune cases when
the working threads of an elastic kernel exceed too much of the
spare intra-SM resources after being occupied by blocks from the
critical kernel based on the intra-SM workload balance constraint.

To formulate these two inefficiency cases, we define WIScore as
a workload imbalance metric:

𝑊𝐼𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑏𝑙𝑘_𝑟𝑡 𝑚𝑜𝑑 𝑁𝑆𝑀 + 𝑁𝑏𝑙𝑘_𝑏𝑒

𝑁𝑆𝑀
∗ 𝑆𝑏𝑙𝑘_𝑏𝑒 + 𝑆𝑏𝑙𝑘_𝑏𝑒

𝐿𝑡ℎ𝑟𝑒𝑎𝑑𝑠
(4)

where the value of WIScore ranges from [0,1]. Another factor we
consider when shrinking the design space is the dispatch overhead
for the elastic kernels. To ensure that the potential schedule gener-
ated for each elastic kernel is feasible and does not violate critical
decision-making requirements. Miriam prunes these cases using
OScore:

𝑂𝑆𝑐𝑜𝑟𝑒 =




1
∑
𝐿𝑂𝑏𝑙𝑘 (𝑘𝑏𝑒_𝑖 ) < 𝑀𝐴𝑋𝑏𝑙𝑘 ,∀𝑖 ∈ [1, 𝑁𝑠ℎ𝑎𝑟𝑑 ]

𝑎𝑛𝑑
∑
𝐿𝑂𝑝𝑡 (𝑘𝑏𝑒_𝑖 ) < 𝑀𝐴𝑋𝑝𝑡 ,∀𝑖 ∈ [1, 𝑁𝑠ℎ𝑎𝑟𝑑 ]

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

where function 𝐿𝑂 () represents the launch overhead which equals
the sum of the launching time for each elastic kernel fragment,
subtracting the launching time for the initial normal kernel. OScore
is set to 0 when the overhead exceeds the maximum acceptable bar
we set, which is a constant number.

The product of the𝑊𝐼𝑆𝑐𝑜𝑟𝑒 and 𝑂𝑆𝑐𝑜𝑟𝑒 values that are com-
puted for each elastic kernel candidate gives a metric that can
be used as a design space narrowing navigator for the perfor-
mance boundary. Specifically, by multiplying these two scores
(𝑊𝐼𝑆𝑐𝑜𝑟𝑒 ∗𝑂𝑆𝑐𝑜𝑟𝑒), we can identify the candidates that are likely
to achieve the best performance within the given design space.
Miriam computes it for every possible combination of elastic kernel
implementation settings. Determining the optimal percentage of
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Figure 7: Grid/Block size cannot be directly modified in case
of recomputation/computation error.

candidates to select is difficult since it is unclear how many can-
didates need to be chosen to ensure that Miriam finds the best
parameters within the pruned design space. Thus, we test some rep-
resentative tensor operations (such as convolution in CifarNet [36]
and matrix multiplication in GRU [7]) and then picks out the top
20% combinations among all the candidates to be used in the next
stage of runtime kernel coordination. Through these tests, we do
not find any cases in which the model prunes the best-performing
set of parameters.

With the assistance of constraint injections, we can greatly re-
duce the design space without sacrificing the candidate elastic
kernel’s performance. This feature is especially useful given the
large number of possible kernel configurations in modern edge
GPUs.
6.4 Source-to-Source Elastic Kernel

Transformer
Before assessing the effectiveness of elastic kernel design, it

is crucial to investigate whether the grid or block sizes of DNN
kernels can be modified directly from the original user-developed or
compiler-generated GPU programs. An experiment was conducted
on the benchmarks of Tango [23] to evaluate the effectiveness of
direct kernel transformation. The results of the experiment showed
that only 7.4% of the implemented kernels in the Tango benchmarks
were compatible with grid/block size adjustment without requiring
modifications to computation schedules inside kernels.

This is because that the block size and grid size defined in a
kernel are determined by the computation schedule of the ker-
nel: either directly written in CUDA codes or through declarative
loop-oriented scheduling primitives in DNN compilers, which bind
symbolic-extent logical threads with physical GPU threads, as is
shown in Fig. 7. This constraint motivates us to design a source-
to-source kernel transformer that can support our elastic kernel
design.

Miriam rapidly equivalently transforms a DNN kernel by inject-
ing a piece of code at the beginning of each kernel, which checks
the computation and memory offsets to realize where it begins
and ends after being evicted. Specifically, we compute a global
thread identifier and use it as a basis for SM-level workload distri-
bution. This identifier takes the thread ID as input and produces a

1 # Device Codes

2 __global__ void initialKernel (){}

3

4 __device__ void kernelFunction(float* data , float*

tensor) {

5 int threadId = blockIdx.x*blockDim.x+threadIdx.x;

6 # computation -based approach

7 int indexComputation = computeIndex(threadId);

8 int elementComputation = data[indexComputation ];

9 # memory -based approach

10 __shared__ int indexMemory[MAX_THREADS_PER_BLOCK ];

11 indexMemory[threadId] = computeIndex(threadId);

12 __syncthreads ();

13 int elementMemory = data[indexMemory[threadId ]];

14 # Rest of the kernel code ...

15 }

16 __device__ int computeIndex(int threadId) {

17 # Compute the index based on the threadId

18 return index;

19 }

20 __global__ void modifiedKernel(int* rt , int* node_id ,

float* dataPlaceholder , float* tensor) {

21 # elastic kernel design for normal kernels

22 if (*rt) return;

23 kernelFunction(dataPlaceholder ,tensor);

24 if (threadIdx.x + threadIdx.y + threadIdx.z == 0)

25 atomicAdd(node_id , 1);

26 }

27

28 # Host Codes

29 __host__ inference ():

30 memorycpyH2D (..) # copy input to device

31 #initialKernel <<<..>>> (..)# e.g. conv kernel

32 modifiedKernel <<<..>>> (..)

33 memcpyD2H (..) # copy output to host

Listing 1: A modified kernel templete genertaed by the
source-to-source code transformer in Miriam.

corresponding index for the data element accessed by the thread.
We replace references regarding physical threads (e.g. 𝐺𝑟𝑖𝑑𝐷𝑖𝑚)
and identity variables (e.g. 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑥 ) in the original kernel codes
with logical equivalents. Miriam employs two approaches for imple-
menting the index function: computation-based and memory-based.
The computation-based approach computes the index within the
kernel when the thread accesses the corresponding data element.
Alternatively, in the memory-based approach, the indices are pre-
calculated on the host side (i.e., the CPU) prior to kernel launch and
stored in shared memory for use during kernel execution. Listing 1
presents a template example of a transformed kernel generated by
the source-to-source transformer. The modified kernel exemplifies
how the consistency of computations with the initial kernel can be
maintained, while also accommodating the elastic kernel design.

7 RUNTIME DYNAMIC KERNEL
COORDINATION

This section introduces our design for the online scheduler of
elastic kernel coordination. First, we call each elastic kernel (i.e.,
elastic grid and elastic block) as elastic kernel shard. Our guide-
lines for designing the coordinator are two-fold: maximizing over-
all real-time performance and mitigating resource contention. To
achieve these goals, our runtime coordinator constantly monitors
the available GPU resources, both from the critical kernels and
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elastic kernels. It then determines which elastic kernel shards can
co-run effectively with the critical kernels.
Execution timeline of co-running kernels. Upon receiving mul-
tiple normal task requests 𝑏1...𝑏𝑛, Miriam pushes all the kernels
into a normal tasks queue and the kernels are dispatched to the
GPU semantic through multiple streams. Once a critical task arrives,
Miriam will instantly select appropriate elastic kernel fragments of
the following normal kernel in a "bin-packing" manner, considering
the current intra- and inter-SM-level resource distributions. After
that, once the critical kernels finished executing, all the kernels
from normal tasks will re-occupy the GPU.
Grid/block size determination of elastic kernels. During run-
time, a fixed size for elastic grids and block settings for elastic
kernels can easily become inefficient with the optimal co-scheduled
elastic kernel shards varying with different co-running with critical
kernels. For example, if one critical kernel finishes and there still
exists half of the computations unfinished from the co-locating
elastic kernel, the rest half of thread blocks from it lead to severe
resource contention or under-utilization when co-locating with the
subsequent critical kernel. The selection policy for elastic kernel
shards is crucial in order to prevent latency interference with criti-
cal tasks. To ensure optimal performance, one approach is to build
a duration prediction model for the formation of operator groups
based on runtime performance events (e.g. cache misses and global
memory bandwidth)[13, 43], and control the kernel overlap based
on the model. However, runtime events are not supported on edge
GPUs like Nvidia Jetson devices, and the hardware events reported
by tools like Nsight Sys and Nsight Compute can only be obtained
with high overhead. Thus, this method cannot be applied to our
problem (kernel overlaps are not determined) in a practical way.

To address these challenges, Miriam adopts a greedy scheduling
policy. Specifically, when the elastic kernel partially overlaps with
the critical kernel, the kernel coordinator must carefully balance
the resources allocated to each kernel. In this case, the coordinator
needs to ensure that the padded elastic kernel does not interfere
with the execution of the critical kernel, while still using as many
available resources as possible. When the padded kernel runs on
its own, the kernel coordinator can allocate all of the available
resources to the kernel, since there are no other tasks running on
the GPU. This allows the kernel to run as efficiently as possible,
without any interference from other tasks. Due to the requirements
for real-time decision-making and lightweight computation, it is
not possible to search the entire solution space to obtain a globally
optimal solution. The classical Monte Carlo simulation methods
in the literature [20] are not feasible because they often cause
huge run-time overhead. Therefore, there must be a more elegant
trade-off between optimality and runtime efficiency. We propose a
dynamic-sized shade binary tree approach for elastic kernel shards
formation to achieve high runtime efficiency and low resource
contention from different combinations of overlapped kernels.

Our shaded binary tree structure is an abstract for managing
the elastic kernel shards, which is similar to a complete binary
tree structure of shards, as is shown in Fig. 8. The root of the
tree represents the kernel from the normal tasks, whose initial
grid size is 𝑀 . Each node corresponds to a part of computations,
or potential thread blocks to be dispatched inside the kernel. The
shading property for each node is the elastic block size of the thread
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Figure 8: Shaded Binary Tree Construction for Kernel Shards
Formations. ES refers to the elastic kernel, and EBS refers
to the elastic block size. The sharding degree represents the
degree of elastic kernel splitting depth.

block. Directed edges indicate the potential sliced peers for the
unfinished computations left over from the predecessor. The whole
structure is composed of the actual shard and the virtual shard.
The actual shards are the ultimately formed elastic kernel shards
that are to be dispatched, and the virtual shards are the potential
fragments of the elastic kernel that would not be dispatched.

We iteratively analyze each node in the binary tree, calculating
the cumulative resource usage. If the total resource usage exceeds
the available GPU resources minus the critical kernel requirements
(the budget), the algorithm splits (thread block number) and adjusts
shading (thread block size) accordingly. In the main procedure, our
algorithm dispatches the critical kernel and checks if the current
elastic kernel is completed, and calls the padding accordingly. Upon
the completion of a critical kernel and the impending arrival of
the next critical kernel, the algorithm re-evaluates the status of the
elastic kernel and the resource demands of the upcoming critical
kernel. By repeatedly invoking the padding operation, the algorithm
enables a continuous process of padding the shards within elastic
kernels with critical kernels.

Miriam relies on the dynamic shaded kernel binary tree structure
to manipulate the elastic kernels from normal tasks and determines
the elastic kernel shards with heuristics based on the number of
thread blocks of kernels from both critical and normal tasks. Fig.
8 illustrates the life cycle of an elastic normal kernel. For elastic
fragment selection from normal kernels, the policy is to pick a set
of elastic blocks from the head of the shaded kernel binary tree
to share SM-level resources with co-locating thread blocks from
resident critical kernels with trivial contention. Miriam proposes to
utilize a policy to ensure that the elastic blocks from normal kernels
will only use the left-over resources from the critical kernels.

8 ADDITION OPTIMIZATION
For some DNN models that contain unstructured operators (e.g.

𝑜𝑝.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 in the 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 layer of the transformer
model [29]), the degree of their potential parallelism is dynamic and
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hard to predict. It is naturally difficult to equally divide tasks into
blocks and threads, resulting in unbalanced load and performance
problems. Miriam adopts the Dynamic Parallelism Principles (DPP)
(e.g. Cuda Dynamic Parallelism (CDP) [31]) towards these opera-
tors if the compiler-generated or handwritten GPU kernels do not
consider the optimizations. Specifically, the launched kernels with
DPP handle the parallel computation workload that is discovered
dynamically by a parent thread at runtime, and the parent threads
only have to issue a child kernel that handles the parallel computa-
tion with little or no control divergence. During the compilation
stage, Miriam only takes into consideration of the initial kernel for
end-to-end transformation and leaves the modeling of all nodes in
the nested parallelism to future work. Besides, during the loading
of input data into shared memory, there is a noticeable occurrence
of heavy bank conflicts as a result of the unaligned data layout of
shared memory. To mitigate these conflicts, Miriam implements a
padding technique in which additional data is added to the input
data to ensure that it aligns with the memory boundaries of shared
memory.
9 EVALUATIONS
9.1 Experiment Setup

We implemented Miriam based on NVIDIA CUDA 11.2 [34]
for elastic kernel generation and online kernel scheduling, and
Python3.6 for the source-to-source kernel transformer.
9.1.1 Implementation and Testbed. Our experiments are con-
ducted on an NVIDIA GeForce RTX 2060 that features 1920 CUDA
cores and an NVIDIA Jetson AGX Xaiver with Pascal GPU ar-
chitecture with 256 NVIDIA CUDA cores [34]. We implemented
Miriam with NVIDIA CUDA 11.2 for elastic kernel generations
and Python3.6 for the end-to-end kernel transformation. Note that
Miriam is extensible and can work well on other GPU platforms that
officially support OpenCL, HIP or other CUDA alike programming
paradigms such as AMD Embedded Radeon™ E9170 [1].
9.1.2 DNNWorkloads. We use six popular DNN models from
both computer vision and language processing fields to evaluate
Miriam. Inspired by DISB [12], we build a benchmark named MDTB
(Mixed-critical DNN Task Benchmarks) based on both CUDA imple-
mented Kernels to fully demonstrate the performance and general-
ization of our framework, summarized in Table 2. MDTB benchmark
simulates three patterns for inference tasks from user requests: (1).
Arrival in uniform distribution. The client sends inference requests
at a fixed frequency (e.g. 10 requests/second), which simulates crit-
ical applications such as pose estimation. (2). Arrival in Poisson
distribution, which simulates event-driven applications such as
obstacle detection. (3). Closed-loop workloads simulate when the
client keeps sending inference requests.

We choose five representative DNN models in MDTB, including
AlexNet [24], SqueezeNet [16], GRU [7], LSTM [15], ResNet [14],
and CifarNet [36], all implemented in CUDA. We conduct neural
network inference with a 224x224x3 single batch of images as the
input to mimic the inference in real applications.

9.1.3 Baselines. We compare Miriam with multiple DNN sched-
uling approaches on edge GPU. Sequential selects one model from
both task queues (critical and normal) in a round-robin fashion
and performs the inference one by one. In this mode, the critical
tasks run independently, occupy the GPU resources, and can have

MDTB A B C D
Critical Task

Frequency (req/s)
AlexNet

Closed-loop
SqueezeNet

Uniform (10 reqs/s)
GRU

Poisson (10 reqs/s)
LSTM

Uniform (10 reqs/s)
Normal Tasks

Frequency (req/s)
CifarNet

Closed-loop
AlexNet

Closed-loop
ResNet

Closed-loop
SqueezeNet
Closed-loop

Table 2: MDTB Workload Description.

optimal end-to-end latency for critical tasks. GPU Multi-stream
with Priority enqueues kernels from both critical and normal
tasks at the same time, and models are executed in parallel. This
is adopted by NVIDIA Triton [3]. Inter-stream Barrier (IB) is
the state-of-art multi-DNN operator scheduling method based on
multi-stream [45]. It uses inter-stream barriers to manually syn-
chronize kernel dispatch among different kernels. In this mode, the
concurrency among kernels can be controlled by utilizing stream
and synchronization-based mechanisms.

Miriam selects these three baselines because they fully repre-
sent the most popular and optimal multi-stream mechanisms for
addressing edge GPU multi-DNN resource contention. We did not
choose other GPU resource allocation methods for comparison
(such as Warped-slicer [42] and Fractional-GPUs [19]) because they
cannot solve the problem of multiple DNN inference serving si-
multaneously. We did not select resource management systems
represented by DART [41] and BlastNet [25] because they focus on
optimizing resource load balancing on heterogeneous devices (e.g.,
CPU and GPU), while Miriam focuses on addressing the resource
contention issue caused by multiple DNN inference on a single edge
GPU. Besides, for a fair comparison, we enable the operator-fusion
mechanism [45] for the baselines to improve their performance.
9.1.4 Metrics. We use the overall throughput, the end-to-end
latency for critical tasks, and the achieved occupancy as our evalu-
ation metrics.
End-to-end Latency of Critical Tasks. This metric measures the
end-to-end inference speed of critical tasks with real-time demands.
Overall Throughput. This metric represents how many requests
from users can Miriam serve on the target edge GPU.
Achieved Occupancy. By definition, achieved occupancy is the
average ratio of active warps on an SM to the maximum number of
active warps supported by the SM[34], defined as below:

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 =
𝐴𝑐𝑡𝑖𝑣𝑒_𝑤𝑎𝑟𝑝𝑠/𝐴𝑐𝑡𝑖𝑣𝑒_𝑐𝑦𝑙𝑒𝑠
𝑀𝐴𝑋_𝑤𝑎𝑟𝑝𝑠_𝑝𝑒𝑟_𝑆𝑀

We use this metric to evaluate the fine-grained GPU utilization of
our system performance.
9.2 Overall Performance

To reflect the performance gain of system overall throughput
with little sacrifice on the real-time performance of the critical tasks,
we compare Miriam against other GPU scheduling approaches
under MDTB A-D workloads on two edge GPU platforms. We merge
discussion of the uniform distribution and poisson distribution of
critical task requests because their workloads are comparable. This
allows us to analyze and discuss their similarities more efficiently.
Closed-loop Critical Tasks (MDTB A). Workloads with closed-
loop critical tasks (AlexNet) experience significant resource con-
tention when co-running with normal tasks (CifarNet). Fig. 9 (a)-(d)
show that: compared to Sequential, Multi-stream and IB increase
the critical task latency by 1.95× and 1.52× on 2060 and 2.02×
and 1.77× on Xavier, respectively, while Miriam incurs only a 21%
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Figure 9: Comparison of end-to-end real-time task latency, overall throughput (including both critical and normal tasks), and
average achieved occupancy among different GPU scheduling approaches.
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Figure 10: (Upper) The active kernel-level timeliness of two
co-running AlexNet models with mixed-criticality, which
is profiled from the Nsight System. (Lower) The average
achieved occupancy for each layer of the critical AlexNet.

and 28% overhead on critical tasks. Miriam also improves overall
throughput by 64% and 83% on the two platforms, outperform-
ing other approaches significantly under MDTB A workloads. We
observed that IB’s throughput performance is even worse than Se-
quential’s due to the frequent launching of critical tasks require the
insertion of more synchronization barriers among GPU streams to
manage kernel groups, resulting in significant overhead. In terms of
achieved occupancy, Fig. 9 (e) and (f) demonstrate that Miriam leads
to higher SM-level GPU resources compared to other baselines. It is
important to note that achieving nearly 100% theoretical occupancy
is difficult for DNN inference tasks due to their large thread blocks,

which can easily lead to resource idleness or SM incapacity to cover
memory access latency [22].
Uniform/Poisson Critical Tasks (MDTB B, C, and D). As the
launching frequency of critical workloads decreases, the overall
throughput of all approaches improves with different degrees com-
pared to vanilla Sequential due to increased opportunities for nor-
mal tasks to share GPU resources with critical tasks. We observed
that Miriam outperforms other approaches in this scenario. For in-
stance, using MDTB B, C, and D on Xavier, Miriam increases overall
throughput by 1.85×, 1.79×, and 1.91× over Sequential, which is
much better than the other baselines. While both Multi-stream and
IB also yield improved throughput compared to Sequential with
1.34× 1.73×, they lead to severe latency degradation for the critical
tasks by 32% 88%, whereas Miriam only incurs a latency overhead
of less than 21% for these benchmarks. This improvement can be
attributed to our elastic kernel design and runtime dynamic kernel
coordination approach. Since the Sequential approach exhibits the
shortest latency for each critical task, our comparison demonstrates
that Miriam maximizes overall throughput while preserving the
end-to-end latency of critical tasks. From a GPU utilization stand-
point, Miriam increases the average active warps of each cycle,
resulting in better SM utilization. These results confirm the effec-
tiveness of our elastic kernel sharding approach and demonstrate
our ability to effectively pad critical kernels.

We observe that the performance improvements offered by Miriam
may not always result in higher SM occupancy on Jetson Xavier.
This is because Xavier has much fewer onboard resources and a
smaller number of SM compared to 2060. Additionally, the relatively
low memory bandwidth of the Xavier can limit the amount of data
that can be transferred between the memory and SMs, leading to
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Figure 12: Real-world trace collected from LGSVL simulator,
where (a) is the object detection result based on image data,
(b) is the result with lidar point cloud data, and (c) depicts
the setting of our collected trace.

performance bottlenecks with complex models. The thermal de-
sign power of the Xavier is also relatively low compared to 2060,
which can limit the amount of power that can be consumed by
the GPU and the amount of heat that can be generated. This can
negatively impact the clock speed of the processor cores and the
amount of parallelism that can be achieved, which in turn can have
a negative impact on the relationship between SM occupancy and
performance.

It is important to note that critical tasks give priority to meet
real-time requirements rather than increasing throughput. There-
fore, our current experiment focuses on maximizing global task
throughput under theoretical elimination of resource contention.
However, latency degradation of critical tasks in practical experi-
ments indicates that there may still be overheads related to kernel
launch and overlap, which we plan to further address in our future
work.

9.3 In-depth Analysis of Miriam
To better understand why Miriam performs better than other

GPU scheduling approaches under severe contention circumstances,
we provide an in-depth analysis in this section, with two AlexNet
models co-running on a single 2060 GPU named AlexNet-C which

serves as the critical task, and AlexNet-N which serves as the normal
task. Both tasks are launched in a closed-loop manner.

In Fig. 10, the upper two rows show the timelines of active
kernels from the two co-running DNN tasks, which demonstrate
the performance difference between Miriam and Multi-stream. The
figure is sketched based on real profiling results achieved from
NVIDIA Nsight Sys [2], in which we use the blue color to represent
the critical task, green color to represent normal tasks launched by
vanilla Multi-stream, and pink color represents elastic kernels of the
normal task by Miriam. As shown in the figure, there are obviously
more pink blocks than green blocks, and these pink blocks are
tightly padded with the blue blocks, which can be a showcase of
the elastic kernel shards padded with the critical kernels. The end-
to-end latency of AlexNet-C in Miriam is much lower than that in
Multi-stream.

We also show the corresponding achieved occupancy of this case
in Fig. 10. The average layer-wise achieved occupancy for Miriam is
65.25% and is 32.9% for Multi-stream. As mentioned, more average
active warps per cycle and less contention overhead is the key to
improving the parallelism while preserving the speed of critical
tasks.
9.4 Evaluations on Design Space Shrinking

Miriam filters out the definitely-slow cases (80%) by applying
hardware limiters, as detailed in Chapter 6.3. The trade-off between
elasticized scale (i.e., the dynamic shaded binary tree’s depth, as
discussed in Chapter 7) and scheduling granularity is a critical
consideration for different implementations of elastic kernels, as
shown in Fig. 11 to guide the further shrinking process. For instance,
an elastic kernel shard with 𝑒𝑙𝑎𝑠𝑡𝑖𝑐_𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 = 1 is flexible to
accommodate other critical kernels, but launching overhead for
such a shard may be too large due to the increased number of kernel
shards. Fig. 11 summarizes the pruned space of candidate elastic
kernels from the models in MDTB, ranging from 84% to 95.2%. The
expected pruned space may differ across candidate models due to
multiple factors, such as the complexity of the models (i.e., the
operator types used) and the input size.
9.5 Case Study: Autonomous Driving with

LGSVL
We further use a real-world trace from an open autonomous

driving platform (i.e., LG SVL [17]) as the workload, which provides
a realistic arrival distribution of critical tasks (i.e., obstacle detection)
and normal tasks (i.e., pose estimation) in autonomous driving.

The trace was collected from a 3D Lidar perception module and a
2D camera perception module when running the LGSVL simulator,
and we selected backbones from the models included in our MDTB
benchmark, they are SqueezeNet for simulation of pose estimation
as the normal task (lidar data), and ResNet for obstacle detection
as the critical task (camera data). The clients send the inference
requests in a uniform distribution, with 12.5 Hz frequency for the
normal task and 10 Hz for the critical task, as is shown in Fig. 12.
The experiment was conducted on GTX 2060.

Fig. 13 demonstrates the experimental results for this real-world
workload. Compared to Sequential, Multi-stream and IB increase the
overall throughput by 1.41× and 1.25×, while amplifying the critical
task latency by 82% and 56%, respectively. Due to the low launching
frequency of both critical and normal tasks (10 and 12.5 Hz), the
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Figure 13: Comparison of end-to-end real-time task latency, overall throughput, and average achieved occupancy using different
scheduling schemes with our LGSVL simulated workloads.

elastic kernels of the normal task can execute concurrently with the
critical task with little eviction overhead for elastic kernel shards.
Finally, Miriam achieves 89% improvement of overall throughput
compared to Sequential, and only incurs 11% latency overhead
for the critical task. This proves how Miriam can achieve large
improvement of throughput based on our elastic kernel design with
little sacrifice on critical task latency, which is also confirmed by
our high SM occupancy among all baselines shown in Fig. 12 (c).

9.6 System Overhead
The scheduling overhead of Miriam mainly consists of two parts.

The first part is the runtime elastic kernel shards selection, which
scans the shard candidates and has the complexity of𝑂 (𝑁 ). Owing
to the low complexity of the scheduling mechanism in Miriam,
we find that their overall average overhead for serving in each
DNN model is less than 0.35 ms. The second part is the launch
time overhead for critical kernels due to the padding of the elastic
kernels, we evaluate this overhead and found that in most (over
80%) cases, the overhead is less than 15 us. This latency overhead is
mainly because of contention on the texture cache and L2 memory,
which we leave for future work.

10 DISCUSSION
Scalability. We believe that Miriam has the potential to be scaled
beyond pair-wise DNN tasks co-running and can support more
general tasks. However, due to the large number of co-running ker-
nel possibilities, some additional considerations must be taken into
account. These include establishing a scheduling policy for normal
tasks with the same priority, as well as finding an efficient way to
perform offline kernel profiling since the design space increases
exponentially.
Integrated with DNN Compiler. Representative DNN compilers
like TVM [5] can generate high-performance DNN kernels with low
latency using auto-tuning [53]. The inquiry arises as to why DNN
compilers have not been leveraged to generate multiple versions
of kernels, tailored to various contention levels, and dynamically
adapt them in real-time to circumvent resource contention [50].
This is because DNN compiling is an offline approach with a long
compilation time. For example, the time consumption for on-device
measurements of a VGG16 model can be up to 10 hours on an
NVIDIA TX2 [51], which is unacceptable, let alone generating mul-
tiple versions of a single kernel. Moreover, pre-loading multiple
kernel versions onto the GPU would be an inefficient use of mem-
ory resources [50], and the generated kernels can not be easily

modified at runtime. This creates a gap between static compilation
and dynamic scenarios in IoT applications, particularly when on-
device resources become available dynamically. Miriam can serve
as a post-compiling runtime to ensure that the on-device resources
are fully utilized during runtime in an adaptive manner to fill the
gap.
Orthogonal to Other Approaches. Miriam can work symbiot-
ically with other optimized DNN execution approaches, such as
model compression [26], and edge-cloud offloading [52], to exe-
cute multi-DNN workloads effectively. With such a collaborative
approach, it becomes possible to achieve improved runtime perfor-
mance and better resource utilization, enabling effective execution
of multi-DNN workloads in resource-constrained edge computing
environments. Previous works such as IOS and POS [8, 47] have
used reinforcement learning or dynamic programming search-based
methods to obtain optimal inter- and intra-operator scheduling poli-
cies offline. However, due to limited runtime resources, we cannot
directly apply these methods online. Inspired by this body of work,
we can consider combining search-based results as templates with
Miriam’s greedy method to achieve a better balance between re-
source efficiency and optimality during runtime.

11 CONCLUSION AND FUTURE WORK
We propose a novel compiler-runtime synergistic framework

named Miriam that addresses latency and throughput problems of
co-running multiple DNN inference tasks on edge GPUs. The pro-
posed system utilizes elastic kernels to facilitate fine-grained GPU
resource re-mapping and a runtime dynamic kernel coordinator to
support dynamic multi-DNN inference tasks. Experimental results
on a benchmark we built on two types of edge GPU show that
Miriam can significantly improve the overall system throughput
while incurring minimal latency overhead for critical tasks, com-
pared to dedicating the GPU to critical tasks. Miriam could further
enhance its latency-throughput trade-off capabilities through more
fine-grained GPU resource mapping. Such advancements would
contribute to the overall effectiveness and versatility of Miriam
in the context of real-time multi-DNN inference on edge GPUs,
expanding its potential impact in various domains and enabling
broader application support.
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