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ABSTRACT

The demand for masks and air filters with effective filtration capa-
bilities is skyrocketing as there are many applications that require
protecting users from inhaling air pollutants or hazardous particles.
Unfortunately, we are witnessing a surge in the number of coun-
terfeit and substandard filters attributed to malicious and inept
manufacturers. Hence, users are left vulnerable in not knowing
which products are reliable. Exacerbating the problem, there are
diverse filter standards, each with a unique expression for filtration
efficiencies, adding to user confusion. Moreover, the average user
lacks the necessary tools, techniques, and knowledge to indepen-
dently verify the filtration efficiency. Specifically, state-of-the-art
solutions are lab-based machines that are extremely expensive and
difficult to access for the general public. To solve this problem, we
propose FilterOp, a novel smartphone-based mask and filter testing
system. FilterOp is a practical solution that allows a user to estimate
the filtration efficiency of a mask or a filter using only a pair of com-
modity smartphones. The novelty of FilterOp comes from its use of
light absorption and scattering effects, observed when light prop-
agates through the filter. We evaluate FilterOp in comprehensive
real-world experiments using 256 filter instances across 27 differ-
ent make-and-model products with varying filtration efficiencies.
Comparing our results to those obtained with a state-of-the-art
government-certified testing machine, we observe that FilterOp
yields comparable results with a low mean absolute error of 2.7%,
and detects substandard products with an overall accuracy of 96%.

CCS CONCEPTS

« Human-centered computing — Smartphones; Mobile phones;
« Computing methodologies — Computer vision.

KEYWORDS
Mask Testing, Filter Testing, Smartphone Camera

ACM Reference Format:

Bangjie Sun, Kanav Sabharwal, Gyuyeon Kim, Mun Choon Chan, and Jun
Han. 2023. Testing Masks and Air Filters with Your Smartphones. In The
21st ACM Conference on Embedded Networked Sensor Systems (SenSys "23),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys °23, November 1217, 2023, Istanbul, Turkiye

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0414-7/23/11...$15.00
https://doi.org/10.1145/3625687.3625807

Kanav Sabharwal
National University of Singapore
kanav.sabharwal@u.nus.edu

265

Gyuyeon Kim
Yonsei University
gyuyeon.kim@yonsei.ac.kr

Jun Han
Yonsei University
jun.han@yonsei.ac.kr

November 12-17, 2023, Istanbul, Turkiye. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3625687.3625807

1 INTRODUCTION

There are numerous applications in which users depend on masks
and medical devices to safeguard themselves against inhaling air
pollutants or hazardous particles, ensuring that they breathe clean
air. For example, face masks are one of the most prevalent types
of protective gear often used in a wide spectrum of settings in-
cluding healthcare [16, 44], haze and dust protection, professional
cleaning [67, 95], and construction [25, 57]. Gas masks are another
type of protective gear often used when exposed to more hazardous
settings including chemical industries [7, 34, 68], firefighting [8, 81],
and military operations [37, 79]. Further, Ventilation Support Sys-
tems are a type of medical device that provides a constant level
of air pressure to patients when worn on their faces. For exam-
ple, Continuous Positive Airway Pressure (CPAP) machines are often
used by sleep apnea patients to aid with breathing while sleeping
at home [15, 58, 59].

While these masks and medical devices serve different purposes,
they rely on their air filters to effectively filter hazardous parti-
cles, chemicals, and/or pathogens, hence delivering clean air to the
wearer. Disposable face masks are produced with an embedded
filter layer, while reusable face masks, gas masks, and ventilation
support systems are designed with replaceable filters. However, for
the average user, the task of navigating the market to find suitable
and reliable filters is daunting, primarily due to the following fac-
tors. (1) Counterfeit, Substandard, and/or Mislabeled Products:
Today’s market is plagued with a surge of counterfeit and substan-
dard products attributed to either malicious or inept manufacturers.
For instance, according to the Centers for Disease Control and Pre-
vention (CDC), over 60% of KN95 masks available in the market
are deemed substandard, making them unsafe for the intended us-
age [11, 19, 31, 32, 77, 88]. Furthermore, there are many instances
where the masks are mislabeled - i.e., they are either labeled improp-
erly or completely lack any labels. [20, 45, 60, 62, 76, 80]. (2) Diverse
Standards and their Expressions of Filtration Efficiency: In
addition, there are diverse standards, each expressing filtration ef-
ficiencies in a distinct manner, leading to considerable confusion
among average consumers. For instance, respirators and surgical
masks, despite having significantly different filtration efficiencies,
often label their packaging with a standardized “95% Particulate
Filtration Efficiency (PFE)” [3, 4]. However, it is important to note
that the tested particle size for respirators and surgical masks differ
(e.g., 0.3 ym and 3.0 pum for respirators and surgical masks, respec-
tively [61]), even though the packaging states the same numerical
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Figure 1: Figure depicts how FilterOp operates. The user )
places an instance to test (e.g., a disposable face mask or a
replaceable filter) on a smartphone display, and 2 takes a
video recording (using a second smartphone) of the display
projecting a colored rectangle moving from left to right. Fil-
terOp utilizes the optical properties, namely light absorption
and scattering to predict the filtration efficiency.

representation of PFEs [26, 42]. (3) Lack of Filter Verification
Method for the Average Users: Furthermore, an average user lacks
access to adequate tools, techniques, and knowledge to indepen-
dently verify the filtration efficiency of filters. Unlike regulatory
bodies or specialized laboratories that utilize expensive state-of-
the-art testing machines (see § 2.2), individuals typically lack the
means to perform such assessments [1, 2]. Consequently, they are
left solely to rely on the information provided by mask manufac-
turers and packaging labels, which may not always be transparent
or accurate.

To overcome these problems, we ask the following question -
can we empower an average user to test the filtration efficiency with
a practical solution that only leverages commodity smartphones?
To this end, we propose FilterOp that only utilizes a smartphone
camera with another display device to estimate the filtration effi-
ciency. The core idea of FilterOp is that the filter absorbs and scatters
the wvisible light passing through it, and the observed intensity of
these effects is correlated to the filtration efficiency (hence the name
FilterOp, utilizing optical properties to test filters). The filtration ef-
ficiency and optical properties of filter materials are both driven by
microfiber characteristics (i.e., filter thickness, fiber volume fraction,
and diameter).

Figure 1 depicts an overview of how FilterOp operates. The user
@ places an instance to test (e.g., a disposable face mask or a re-
placeable filter) on a smartphone display, and (2) takes a video
recording (using a second smartphone) of the display device depict-
ing a pattern (e.g., a colored rectangle) moving from left to right.
The smartphone camera captures the light distortion via a video
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recording. FilterOp analyzes the video to predict filtration efficiency
using computer vision and machine learning techniques.

Designing FilterOp, however, comes with the following chal-
lenges. First, the colors perceived by the smartphone camera are
subject to noise introduced by environmental factors, including
variations across devices (i.e., camera and display models), lighting
conditions, and screen protectors on the display. To overcome this
challenge, we utilize a reference color - i.e., color captured from the
side of the display not affected by the overlaid filter layer - as a
basis for comparison with the colors distorted by the filter layer.
As both the reference and captured colors are collected in the same
environmental condition, the noise introduced by differences in the
environment can be reduced.

Second, the input video data is subject to perturbations such
as variations in the filter’s fiber texture and creases on the filter
surfaces. This may result in incorrectly learning the relationship
between the optical properties (i.e., light absorption and scattering
effects) and the filtration efficiency. We overcome this challenge
by examining the model focus — i.e., pixels with a high weightage
towards the model’s decision — to estimate the quality of the data
collected and accept only part of the data with higher reliability.

We implement FilterOp and evaluate its performance by con-
ducting comprehensive real-world experiments under varying con-
ditions utilizing a total of 256 instances of off-the-shelf products
including different types of disposable face (respirators and surgical)
masks as well as replaceable filters for reusable masks, gas masks,
and ventilation support systems. We compare our results against
the ground truth measured by a government-certified testing center
that uses a state-of-the-art testing machine (costing $30K USD).
Our evaluation results demonstrate that FilterOp yields comparable
filtration efficiency estimates to that of the ground truth results,
with a low mean absolute error (MAE) of 2.7%.

In summary, the contributions of this paper are:

o We propose FilterOp, a low-cost and pervasive solution that
only requires the use of commodity smartphones to estimate
the filtration efficiency of air filters and face masks intact.
FilterOp works by leveraging the correlation between light
absorption and scattering effects of the filter and its filtration
efficiency.

e We introduce the use of reference color into the design of
FilterOp to make the system robust against varying environ-
mental changes and the use of model focus to improve its
accuracy by selecting more reliable data for testing.

e We implement and evaluate FilterOp through a set of com-
prehensive experiments. The results demonstrate that Fil-
terOp is able to provide filtration efficiency estimates that
are comparable to the ground truth results provided by the
state-of-the-art testing machine.

2 BACKGROUND

We first present the relevant background information of FilterOp.
Subsequently, we present a preliminary study to demonstrate Fil-
terOp’s feasibility.
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Figure 2: (a) illustrates the types and the use cases of face masks. Face masks are classified into respirators, surgical masks, and
reusable masks. (b) and (c) illustrate the use cases of gas masks and ventilation support systems, respectively.

2.1 Filter Types and their Use Cases

Masks and air filters are widely utilized in multiple applications, as
illustrated in Figure 2.

Face Masks: Face masks are further classified into the following
three types. (i) Respirators — including N95, KN95, KF94, and KF80
masks [26, 27] — are disposable masks designed for strong protection
against hazardous particles [30, 89]. Hence, they embed filters that
have high filtration efficiencies. They are worn on a daily basis by
a large population during haze seasons in many cities around the
world [50, 98]. In addition, the respirators are also often worn for
protection against airborne contagious viral infections as witnessed
in the recent COVID-19 outbreak [16, 44]. (ii) Surgical masks —
including KF-AD and ASTM 2100 masks [26, 54, 63] — are also
disposal masks designed to protect against airborne particles and
droplets. They embed filters that have relatively lower filtration
efficiencies. Hence, surgical masks are often used in lower-risk
settings (e.g., healthcare and professional cleaning) [26, 67, 95]. (iii)
Reusable masks are another type of face mask that enable easily
removable filters to be replaced without disposing of the entire
mask [5, 13, 48]. The replaceable filters can vary in the filtration
efficiencies that are comparable to either the respirators or the
surgical masks.

Gas Masks: Moreover, gas masks also utilize air filters — including
P95 filters [21, 35, 75] — providing additional protection for the
face and respiratory health. Professionals working in hazardous
environments such as chemical industries, firefighting, and the
military often rely on gas masks [8, 34, 37, 68, 79, 81].
Ventilation Support Systems: Furthermore, filters play a crucial
role in ventilation support systems that assist the breathing of users.
For example, Continuous Positive Airway Pressure (CPAP) ma-
chines, often used for treating sleep apnea, include filters to provide
purified air as well as to protect the machine itself [15, 58, 59].
In more severe conditions such as acute respiratory distress syn-
drome, where patients experience significant breathing constraints,
mechanical ventilators are used. In these applications, the use of
air filters is critical to prevent secondary infection and inhibit the
spread of infectious pathogens around the room [6, 47, 56].

2.2 Standard Testing Method

Employing industrial laboratory testing machines for filter quality
certification and regulation is the de facto standard across authori-
ties in different countries [33, 43, 84]. Figure 3 depicts how a labora-
tory testing machine (i.e., Automated Filter Tester 8130A-EN [84])
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Figure 3: Figure illustrates how the state-of-the-art
government-certified laboratory filter testing machine (cost-
ing over 30K USD) operates. FilterOp achieves comparable
filtration efficiency to that of the testing machine.

operates. The machine generates and injects specific types and sizes
of particles (e.g., 0.4 um paraffin oil particles to test for KF94 masks).
Then, the filtration efficiency is calculated by directly measuring
the percentage of particles that penetrate the filter. However, this
process contaminates the tested masks or filters, making them unus-
able. Although the machines yield highly accurate measurements of
filtration efficiencies, high cost (e.g., approximately $30K USD) and
low usability severely limit the accessibility of these machines to the
general public. FilterOp utilizes the measurements from these ma-
chines as ground truth data (with KF94 standards) to train machine
learning models. FilterOp could generalize to different standards
given corresponding ground truth data (see § 5).

2.3 Physics Model

2.3.1  Physics Model of Filtration Efficiency. When air flows through
a filter, the hazardous particles come into contact with the fibers of
the filter and are eventually filtered out, as depicted in Figure 4(a).
The filtration efficiency of filter material is determined by the pos-
sibility of contact between particles and the fibers. Specifically,
filtration efficiency (E) can be obtained from single fiber filtration
efficiency (Es), filter thickness (L), fiber volume fraction («), and
fiber diameter (d) as E = 1 — exp( ;;g}isi)) [9, 10, 14, 78, 87]. This
equation indicates that thicker filters, as well as smaller and
denser fibers, yield higher filtration efficiencies.

2.3.2  Physics Model of Optical Properties. As visible light passes
through the filter, the fiber absorb and scatter the light rays (see
Figure 4(b)).
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Figure 4: (a) depicts the structure of a filter densely composed
of non-woven fibers. (b) depicts how a fiber absorbs and scat-
ters light. (c) depicts the setup of the feasibility study, where
the filter overlaid on a display screen attenuates and spreads
the penetrated color. (d) depicts the feasibility of FilterOp’s
core idea of utilizing light absorption and scattering effects
when a filter is overlaid on a display screen. The average color
difference between (I) uncovered color region and (2) overlaid
color region (0upsorprion) can be attributed to light absorption.
Similarly, the amount of the green color spreading towards
the white color (0scattering) in (3 spreading region can be at-
tributed to light scattering. Both values exhibit an increasing
trend as the filtration efficiency of the filter increases. We
advise the readers to view this figure in color.

Visible Light Absorption: Visible light absorption occurs when
a light wave strikes the filter and the electrons of the material
absorb the energy of the light wave and transform it into vibrational
motion. The absorption causes attenuation of light intensity as it
traverses through the fibers. The amount of attenuation increases
proportionally to the filter thickness, fiber volume fraction, and
diameter [49, 52].

Visible Light Scattering: Visible light scattering, or Mie scattering,
occurs when light interacts with objects whose size is within a few
orders of magnitude of the wavelength (e.g., the fiber in the filter
material). This causes spreading of the light rays to multiple direc-
tions (forming a cone or hemisphere) [52]. As filter materials are
porous, the strong contrast in refractive index between pores (i.e.,
air) and fibers results in strong scattering, with the light changing
its direction after passing through the filter material. Hence, the
amount of spreading increases as the filters become thicker and
the fibers become smaller and denser [53].

Takeaway: We observe a correlation between the filtration effi-
ciency and optical properties of the filter materials, with common
underlying fiber characteristics (i.e., filter thickness, fiber volume
fraction, and diameter). This is the fundamental enabler of FilterOp.
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2.4 Feasibility Study

We conduct a preliminary experiment to test the feasibility of Fil-
terOp, by checking if filters with different filtration efficiencies
exhibit different optical properties (i.e., light absorption and scat-
tering). For the preliminary experiment setup, we manually extract
filters from two surgical masks with a low and medium filtration
efficiency of 62.2% and 71.0%, respectively, and one KF94 mask with
a high filtration efficiency of 99.9% !. We then place each filter on
the smartphone display emitting green and white colors, overlay-
ing the boundary between the two colors, resembling Figure 4(c).
We capture the filters using a smartphone camera and examine
two metrics with respect to the distortion of transmitted light: (1)
the average color difference (0gpsorprion) between (D uncovered
color region and (2) overlaid color region, and (2) the amount of
the green color spreading towards the white color (0scattering) in
() spreading region. For example, Figure 4(c) depicts examples of
the captured regions. We compute 0gpsorprion by finding the color
distance [66] between the average colors (i.e., RGB values) of pixels
in @ and ). We then compute oscqattering Using the rate of color
changes per pixel as the color of each pixel in 3) changes from
green to white (when viewing from left to right).

Figure 4(d) depicts computed values of 0gpsorprion a0d Oscattering
of filters. As the filtration efficiency increases, we observe that
Oabsorption increases due to the higher light absorption of the filter
material. Likewise, Oscattering increases because the filters with
higher filtration efficiencies tend to scatter the light more. Hence,
the results align with the aforementioned physics model, verify-
ing the feasibility of leveraging the optical properties of a filter to
estimate its filtration efficiency.

3 DESIGN AND IMPLEMENTATION

We present FilterOp’s design and implementation details.

3.1 System Model

Goal. FilterOp’s goal is to test the filtration efficiency of filters by
capturing the relevant optical properties, namely, the light absorp-
tion and scattering effects observed when the filter is placed between
a display device and a camera.

Requirements. In designing FilterOp, we have the following re-
quirements: (1) accurately estimate the filtration efficiency (accu-
racy); (2) minimize user involvement (usability); and (3) only utilize
commodity devices while being robust to various environmental
conditions (deployability).

Assumptions. We assume that FilterOp user owns a pair of smart-
phones that have a camera and a display.

3.2 System Overview

FilterOp is divided into two phases, namely Bootstrapping and Ver-
ification. Bootstrapping Phase occurs offline, where government
authorities or manufacturers train the filter models from a large
set of video recordings of filters with varying filtration efficiencies,
along with the label, namely, the ground truth filtration efficiencies
collected from testing machines. FilterOp then utilizes the trained

!The filtration efficiency refers to that of the entire mask.
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Figure 5: Figure depicts the flowchart of FilterOp’s design. During the Bootstrapping Phase, FilterOp trains its models to
incorporate a set of video recordings of masks or air filters with their corresponding ground truth filtration efficiencies. We
envision government authorities such as CDC or FDA may take part in this phase. In the Verification Phase, users utilize
FilterOp on their smartphones to test their masks or replaceable filters.

model in its Verification Phase, occurring online as the users utilize
the FilterOp app on their smartphones to test the filters.
Calibration and Input. Figure 5 illustrates an overview of Fil-
terOp’s design. FilterOp first instructs the user, with the Calibration
module (§ 3.3), to set up the camera and display devices within
an appropriate distance and angle and checks the environment
lighting condition. FilterOp then takes as input the video record-
ings (captured by a smartphone camera) of the display device with
an overlaid filter. The display device projects colored rectangles
(green then blue) moving from left to right, eventually filling up the
entire filter and the screen. The moving rectangle allows FilterOp
to capture the color patterns at locations along the boundary of the
rectangle in each frame, and eventually examine all locations of the
overlaid filter across frames.

Processing Pipeline. In the Bootstrapping Phase, FilterOp pro-
cesses the video frames in the Video Frame Processing module (§ 3.4)
to reduce noise from multiple sources. FilterOp then passes the
processed frames into the Color Model Training module (§ 3.5),
which learns how to calculate filtration efficiency based on ex-
tracted color patterns. In the Verification Phase, FilterOp processes
the video frames in the Video Frame Processing module (§ 3.4) and
then utilizes trained models to estimate the filtration efficiency in
the Filtration Efficiency Estimation module (§ 3.6).

3.3 Calibration

As FilterOp utilizes captured color patterns, the colors are sensitive
to camera-to-display distance, angle, and lighting conditions of the
test environment. FilterOp requires the camera and display to be
within an appropriate distance (i.e., between 10 and 15cm), angle
(i.e., within five degrees), and consistent lighting conditions for
optimal performance (see § 4.4.4 and § 4.4.6). We use four circles
projected at the corners of the display to estimate the position of
the user’s smartphone camera. We then use visual cues, such as
arrows and text, to guide the user to the optimal location. Subse-
quently, we use the smartphone’s ambient light sensor to measure
the intensity of the surrounding light, and the camera to detect
shadows and glares on the display to alert users of inconsistent
lighting. Furthermore, FilterOp performs this calibration process
again in the Video Frame Processing module (§ 3.4) to validate every
video frame. If the condition check fails, the corresponding frame
is discarded.
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3.4 Video Frame Processing

FilterOp processes input video frames to capture the absorption and
scattering effects of light passing through the filter. However, there
are two types of noise interfering with the light signal as follows:
(1) Environmental noise: different environmental conditions such
as variations across devices (i.e., camera and display models) and
screen protectors; and (2) Filter noise: Creases on the filter surfaces
due to folding and packaging, causing air gaps between the filter
and the screen. Hence, FilterOp reduces the resulting noise in the
Environmental Noise Reduction (§ 3.4.1) and the Filter Noise Reduction
(§ 3.4.2) stages. Figure 6 depicts the processing pipeline.

3.4.1 Environmental Noise Reduction. FilterOp aims to reduce envi-
ronmental noise by utilizing the reference color - i.e., color captured
from the side of the screen that is not distorted by the overlaid fil-
ter — as a basis for comparison with the captured color passing
through the filter. It takes raw video frames as input and performs
two processing tasks.

(@ Region Detection. FilterOp detects in each frame the filter
region, Rgjjzer, 2 bounding box of the filter overlaid on the screen.
FilterOp also detects the reference region, Ry r, a bounding box of the
screen uncovered by the filter. We observe significant differences in
pixel values between Ry and R;js, allowing us to utilize Otsu’s
thresholding [64] to separate pixels in the frame into the foreground
(i-e., Rfijzer)/background, and contour detection algorithm [51] to
eventually detect the boundary of Rg;jse,. To obtain R, ¢, we take
the region to the left of the detected Ry;jze-

@ Filter Region (Rf;;,) Processing. FilterOp processes the filter
region, R;jzer, to reduce environmental noise by comparing it with
the reference region, R, r. We first compute the average pixel value
of Ry as Color, s to capture the reference color and mitigate the
Moiré pattern. Note that Color, ¢ varies with the camera and dis-
play devices, screen protectors, and lighting conditions. We then
utilize the color distance metric [66] which represents color differ-
ences, to compare the pixels within Ry;jze, with Color,. . For each
pixel pij in Ryjjzer, we compute the color distance which ranges
from 0 to 1 (0 indicates the minimal amount of color difference
and 1 indicates the maximum) to obtain a processed filter region,
R

processed> for each frame.

3.4.2 Filter Noise Reduction. Recall that the air gaps between the
filter and the screen yield additional noise. Hence, we need to only
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Figure 6: Figure depicts FilterOp’s Video Frame Processing module (§ 3.4), which extracts from video frames the regions capturing
light absorption and scattering effects. FilterOp processes the regions to be robust against environmental noise (from variations
across different camera and display devices, and screen protectors) and filter noise (from air gaps between the filter and the

screen caused by uneven filter surfaces).

select the locations that are in close contact with the screen. We
design the moving rectangles so that different frames will capture
different locations over the filter, maximizing our chances of cap-
turing the noise-free locations. Thus, we perform the following two
tasks.

(1) Extracting Boundary Regions in Each Frame. In each frame,
FilterOp captures light absorption and scattering effects occurring
along the boundary of the moving color rectangle inside Ry, cessed-
We first detect the boundary of the rectangle as the mid-line, [,,;4,
by finding the pixels that experience the sharpest change in color.
To ensure that possible regions of close contact can be found later,
we utilize the sliding-window-with-overlap approach to crop out
windows, Rpoundary- of size 100 x 100 pixels with 50% overlap (set
empirically).

(2) Selecting Regions of Close Contact across Frames. Across
frames, Rpoyndary indicates possible regions of close contact at
different locations on the filter. After obtaining Rpoundary for all
frames, we only select a portion of them. We observe that the
amount of color difference is smaller when the filter surfaces and
the screen are in closer contact. Hence, we compute the average
pixel value of Ryoyundary and select the lowest 50% (set empirically)
as the selected regions, Rgejecteq- FilterOp passes them to the Color
Model Training module (§ 3.5) in the Bootstrapping Phase and the
Filtration Efficiency Estimation module (§ 3.6) in the Verification
Phase.

3.5 Color Model Training

FilterOp aims to (1) extract robust features on the absorption and
scattering effects, and (2) learn the relationship between the ex-
tracted image features and filtration efficiency (see § 2.4) in the
Bootstrapping Phase. It takes as input the selected regions from the
Video Frame Processing module (§ 3.4) and outputs two machine
learning models. Recall that the display pattern contains both green
and blue moving rectangles. We train one model for each color.
Specifically, we utilize a convolutional neural network (CNN) as
the model architecture. The input image is kept small (i.e., 100 x
100 pixels), preventing the model from over-fitting the appearance
and texture of the filter. To design the model architecture, there
are two requirements: (1) the model should be lightweight and (2)
the model should yield accurate filtration efficiency. We tune the
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Figure 7: Figure depicts FilterOp’s Filtration Efficiency Es-
timation module (§ 3.6). This module examines the model
focus — i.e., pixels with a high weightage towards the model’s
decision — to estimate the quality of the data collected and
accept only part of the data with higher reliability.

number of convolutional layers (i.e., from two to six) to compare
the output filtration efficiency in each setting. We observe that the
results are comparable (i.e., the difference in the output filtration
efficiency is less than 1% on average). Hence, we utilize only two
convolutional layers with a 3 x 3 kernel and 16 and 32 filters, respec-
tively, to keep the model lightweight and compact for deployment
on mobile devices.

3.6 Filtration Efficiency Estimation

FilterOp utilizes the selected regions from the Video Frame Process-
ing module (§ 3.4) and trained color models from the Color Model
Training module (§ 3.5) to estimate the filtration efficiency in the
Verification Phase. As the selected regions from the previous stages
may still contain noisy data, we identify the candidates that are
likely to have less noise among the selected regions and only pass
these candidates to the trained models for predictions at the Candi-
date Selection stage. Subsequently, we ensemble the predictions of
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the trained color models at the Ensemble stage (§ 3.6.2) to obtain
the final output filtration efficiency.

3.6.1 Candidate Selection. FilterOp identifies less noisy candidates
among the selected regions by examining how the trained models
assign corresponding weights to each of the pixels in the selected
regions. We observe that the model tends to assign erroneously
high weights to anomalous pixels arising from filter appearance or
texture, or air gaps caused by uneven filter surfaces. To mitigate
this problem, for each input image, we examine the model focus
- i.e., pixels with a high weightage towards the model’s decision
- to identify candidates of less noisy regions that may yield high
accuracy.

Specifically, we generate a gradient-based activation map to visu-
alize the model focus for each input image. We adopt the GradCAM
technique [72], often used to explain parts of the image most im-
portant to the CNNs for classification. Figure 7 depicts an example
of a gradient-based activation map where the model has a correct
focus. The warm colors (e.g., red and yellow) in the figure highlight
the model focus. The desirable region is the region inside and at
the boundary of the moving rectangle (see § 3.4.2). The figure also
depicts an example where the model has a wrong focus outside the
moving rectangle (i.e., in the undesirable region).

For selection, we compare the pixel values of the gradient-based
activation map inside and outside the moving rectangle. We only
accept an input image if the red channel of the pixels inside, which
correlates to the model focus, has a higher average value than those
outside.

3.6.2 Ensemble. FilterOp ensembles all of the intermediate predic-
tions of the filtration efficiency to compute final predicted filtration
efficiency. For predictions of the same color model (see § 3.5), we
first compute the average prediction, i.e., Predgreen and Predpjye,
and then combine the predictions by computing a weighted aver-
age. As different colors (e.g., green and blue) have different wave-
lengths, the corresponding colored light is absorbed and scattered
by the filter differently. We utilize a Multi-Layer Perceptron (MLP)
Regressor to learn the corresponding weights Wi and W5 in the
weighted average, respectively. The final prediction is Predfipq =
%4 Predgreen + WzPredblue.

4 EVALUATION

This section evaluates FilterOp through comprehensive real-world
experiments.

4.1 Experiment Setup

4.1.1 Apparatus. Figure 8 illustrates our experiment setup.

Testing Standards. Given that there are many different standards
expressing filtration efficiencies (e.g., KF94 standard uses 0.4 um
paraffin oil particles, whereas ASTM 2100 standard uses 0.1 pym
sodium chloride particles), we refer to all filtration efficiencies
with the KF94 standard in our evaluation (unless otherwise stated).
However, we note that FilterOp is generalizable with any other
standards if trained with corresponding ground truth data (see § 5).
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Figure 8: (a) depicts the setup (government-certified labo-
ratory testing machine) to obtain ground truth filtration
efficiency. (b) depicts FilterOp’s setup where we utilize two
smartphones (one as a camera and the other as a display de-
vice). (c) depicts differing conditions to evaluate FilterOp.

Brands and Corresponding Advertised Standards. We evaluate
FilterOp with 27 different brands ? including gas masks (P95), res-
pirators (N95, KN95, KF94, and KF80), surgical masks (KF-AD and
ASTM 2100), reusable masks (ASTM 2100), and CPAP machines (un-
specified). Among the 27 brands, 14 advertise the P95, N95, KN95,
or KF94 standards (i.e., minimum filtration efficiency of 94%) 3, four
advertise the KF80 standard (i.e., minimum filtration efficiency of
80%), and seven advertise the KF-AD, ASTM 2100 or equivalent
standards (i.e., minimum filtration efficiency of 70%). The remain-
ing two brands have unspecified standards (i.e., minimum filtration
efficiency is not guaranteed).

Ground Truth Testing. We collect the ground truth, namely
the filtration efficiencies measured by a government-certified test-
ing center utilizing Automated Filter Tester 8130A-EN (costing
approximately $30K USD) [84] (see Figure 8(a)). We note that the
standard testing method requires testing the mask intact (i.e., all
layers including outer, filter, and inner layers).

Filter Testing and Mask Testing. Recall that disposable face masks
(i.e., respirators and surgical masks) come equipped with an em-
bedded filter layer (see § 2.1), while reusable masks, gas masks,
and ventilation support systems utilize replaceable filters. For con-
sistency, we evaluate FilterOp’s performance in two settings as
illustrated in Figure 8(b):

e (1) Filter Testing: FilterOp supports Filter Testing. This is to
accommodate testing for the aforementioned replacement filters.

2We refer to brands as different make-and-model of masks and air filters.
3The N95 and KN95 masks are standardized to filter 95% of 0.3 pm particles, empirically
comparable to 94% efficiency against 0.4 um particles [46].
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However, for the purpose of our evaluation, we also manually
extract filter layers of disposable face masks for comprehensive
evaluation (see § 4.2.2).

® (2) Mask Testing: FilterOp also supports Mask Testing. This is to
test disposable masks intact (i.e., without extracting the filter
layers).

Data Collection. We collect data over a total of 256 filter instances,
namely 108 instances for Filter Testing, 40 instances for Mask Test-
ing, and the remaining 108 instances for ground truth testing. To
evaluate FilterOp’s overall performance, we use Samsung Galaxy
Note 10 as the camera device and Huawei P20 Pro as the display
device under dim room lighting. We place the filter or mask on the
display device and record a video of approximately 40 seconds for
each instance. We then evaluate FilterOp in differing conditions
(see § 4.4 and Figure 8(c)). We conduct this study upon the approval
of our institution’s Institutional Review Board.

Training FilterOp. During the training of FilterOp’s color models
(see §3.5), we utilize images extracted from the video recording of
each mask and air filter (i.e., over five thousand images from each
video recording). To prevent over-fitting on the data collected, we
train the models with a small number of epochs (i.e., a maximum
of ten epochs) and adopt the cross-validation approach to select the
best model.

4.1.2  Terminology and Evaluation Metrics. We define the filtration
efficiencies (FE) of filters/masks measured by the Automated Fil-
ter Tester as ground truth (FE;,y.), and FilterOp’s predicted FE
as FilterOp prediction (FE,,.q). We define Mean Absolute Error
(MAE) as 3 |(FEtrue —FEpreq)| /N, where N is the number of tested
instances.

4.2 Overall Performance

4.2.1 Data Preparation. To evaluate FilterOp’s overall performance,
we test 148 filter instances across 27 brands (depicted in Figure 9(a)).
Each brand has four instances. We employ the leave-one-out ap-
proach, i.e., training with 26 brands and testing on the remainder.
We train the color models with over 130 thousand extracted images
in total. Note that the test brand is unseen in the training.

4.2.2  Overall Results. We demonstrate FilterOp’s overall perfor-
mance on (1) predicting the filtration efficiency of the tested filter
(i.e., Filter Testing), (2) predicting the filtration efficiency of the
mask (intact) with the filter and additional layers together (i.e.,
Mask Testing), and (3) a case study of detecting substandard masks
and filters.

(1) Filter Testing. Figure 9(b) illustrates FilterOp’s predictions com-
pared to the ground truth. We observe that FilterOp achieves accu-
rate predictions with a low MAE of 2.7% across all 27 brands. Specif-
ically, the MAE is as low as 1.8% for replacement filters, namely the
ones for reusable masks, gas masks, and CPAP machines.

(2) Mask Testing. We then evaluate FilterOp’s performance in a
practical setting for face masks intact, as wearers may not want
to extract the filters, inevitably destroying the mask instance. We
randomly select two representatives for N95, KN95, KF94, KF80, and
surgical masks, respectively, totaling ten brands. For each brand, we
then sample four instances to undergo Mask Testing. Figure 10 com-
pares FilterOp’s predictions under Mask Testing with the ground
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‘ Baseline FilterOp

Accuracy (%) 84.0 96.0
False Positive Rate (%) 16.0 0
False Negative Rate (%) 0 4.0

Table 1: Table compares FilterOp against the considered base-
line (i.e., advertised filtration efficiency) for detecting sub-
standard masks and filters.

truth and predictions under Filter Testing. We observe that FilterOp
yields a low MAE of 2.5% under Mask Testing, which is comparable
to the MAE of 2.8% under Filter Testing for the ten brands selected.
However, we note that FilterOp’s predictions under Mask Testing
are generally higher than the ground truth, leading to overestima-
tion. We attribute this to the inevitable air gaps between multiple
layers, and uneven surfaces of the inner and outer layers. The light
becomes distorted after passing through the air gaps and uneven
surfaces, introducing noises to FilterOp. Nevertheless, in spite of
these distortions, FilterOp operates remarkably well under Mask
Testing.

(3) Case Study: Detecting Substandard Masks and Filters. The
ground truth testing reveals that four out of 25 brands depict fil-
tration efficiencies significantly below their advertised standards
(stated on their packaging). We now evaluate FilterOp’s perfor-
mance in detecting such substandard masks and filters. To compare
FilterOp’s performance, we set the baseline to be the advertised
filtration efficiency. This resembles the real-world scenario where
consumers rely on the information stated on the packaging.

We use the following metrics to evaluate the baseline and FilterOp.
(1) Accuracy reports the percentage of brands correctly classified
as legitimate, (2) False Positive Rate reports the percentage of sub-
standard brands that are misclassified as legitimate, and (3) False
Negative Rate reports the percentage of legitimate brands that are
misclassified as substandard.

Table 1 depicts the comparison, where FilterOp yields an accuracy
of 96.0%, with no false positive, but with a relatively small false
negative rate of 4.0%. On the other hand, the baseline results yield
a much lower accuracy of only 84.0% and a higher false positive
rate of 16.0%. The results show that FilterOp correctly detects all
four substandard masks and filters out of a total of 25 brands tested.
In the given scenario, even a low false positive rate can prove to be
catastrophic by misguiding the user to trust a substandard mask or
filter, putting their health at high risk. False negatives, on the other
hand, are not as critical since FilterOp underestimates the filtration
efficiency, letting the user decide whether to continue using them.
We note that FilterOp does not tolerate false positives in order to
safeguard consumers’ health. At the same time, the false negatives
remain low.

In addition, FilterOp also correctly detects all two substandard
face masks out of 10 brands tested under Mask Testing, as depicted
in Figure 10. This highlights FilterOp’s practicality to detect substan-
dard face masks before wearing them, safeguarding the wearer’s
health.

4.3 Module Evaluation

We evaluate the effectiveness of FilterOp’s internal modules.
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Figure 9: (a) depicts the list of 27 tested brands across various standards sorted by their corresponding advertised standards. (b)
depicts the overall performance of FilterOp for Filter Testing compared to the ground truth.
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Figure 10: Figure depicts filtration efficiencies of FilterOp for
Mask Testing and Filter Testing, also compared to the ground
truth. We note that both testing methods yield comparable
results.
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Figure 11: Figure depicts the MAE with/without the Video
Frame Processing module (§ 3.4). To evaluate the effective-
ness of the module, we operate FilterOp in different testing
conditions.

4.3.1 Video Frame Processing Module. Recall that the main goal of
the Video Frame Processing module (§ 3.4) is to enhance FilterOp’s
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Figure 12: Figure depicts the MAE with/without the Filtration
Efficiency Estimation module (§ 3.6).

robustness to testing conditions. We now compare the performance
of FilterOp trained using video frames with and without the module,
under five different testing conditions. From Figure 11, we observe
that FilterOp trained without the module yields significantly large
MAE under different conditions. We attribute such large errors to
the CNN’s sensitivity to significant changes in pixel values caused
by variations in testing conditions, highlighting the importance of
FilterOp’s Video Frame Processing module.

4.3.2  Filtration Efficiency Estimation Module. Recall that we select
candidate regions and ensemble predictions of the trained models in
the Filtration Efficiency Estimation Module (§ 3.6). We now compare
the performance of FilterOp with and without the module. Without
the module, we resort to passing all selected regions (see § 3.4)
into the trained models. We observe in Figure 12, that for all tested
brands, the MAE is higher when all regions are used to calculate
the final filtration efficiency. We attribute this to the erratic predic-
tions when the model focuses on undesirable regions such as the
texture of filter materials, highlighting the importance of FilterOp’s
Filtration Efficiency Estimation module.
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Figure 13: Figure depicts the MAE with varying displayed
rectangle colors.
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Figure 14: Figure depicts the MAE with varying display de-
vices and specifications, such as pixel density (ppi) and bright-
ness (b).

4.4 Differing Conditions

We evaluate the robustness of FilterOp against different usage con-
ditions. Specifically, we train FilterOp under the same conditions
as § 4.2 (i.e., using Samsung Galaxy Note 10 as the camera device
and Huawei P20 Pro as the display device under dim room lighting).
We adopt the leave-one-brand-out approach. We then test FilterOp
under varying experimental and environmental conditions. For
all the experiments from § 4.4.1 to § 4.4.5, we sample five brands
(selected at random). Subsequently, in § 4.4.7, we evaluate FilterOp
with an end-to-end setup.

4.4.1 Varying Rectangle Colors. Recall that FilterOp captures mov-
ing colored rectangles projected by the display device. The dis-
played color affects the wavelength of the emitted light signal.
We evaluate the effect of the displayed color on FilterOp’s perfor-
mance. We first train and test FilterOp when the display device
projects only one colored rectangle (i.e., red (R), green (G), or blue
(B) corresponding to the colors of light-emitting diodes) and multi-
ple colored rectangles projected one after the other (i.e., R+B, R+G,
G+B, R+G+B). Figure 13 depicts the MAE of FilterOp with varying
displayed colors. Using multiple colored rectangles generally yields
lower MAE. However, involving the red color generally yields a
higher MAE. We conjecture that the long wavelength of red light
causes a high absorption rate (hence high signal-to-noise ratio) and
large randomness in scattering, hindering FilterOp’s generalizabil-
ity to unseen brands. Hence, we design FilterOp to only project
green and blue rectangles, which yield the lowest error.

4.4.2 Varying Display Devices. Display devices usually vary in
screen type (e.g., OLED, LED, LCD), brightness, color range,
and pixel density. We evaluate the performance of FilterOp using
different smartphones with varying display specifications. Among
the specifications, pixel density is the most important factor. In
Figure 14, we observe an increasing trend in MAE as the difference
in screen pixel density (i.e., Appi) between our training display
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Figure 15: Figure depicts the MAE with varying camera de-
vices and specifications, such as image sensor size (s) and

focal length (f).
10
5
0 7.51
Dim Daylight Daylight+CFL

Figure 16: Figure depicts the MAE with varying lighting con-
ditions.
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device (i.e., Huawei P20 Pro) and other devices increases. For exam-
ple, Sony Xperia XZ exhibits the lowest MAE because the device
has a pixel density of 424ppi, similar to Huawei P20’s 429ppi (i.e.,
Appi = 5). Brightness, however, does not have a significant impact
on FilterOp’s performance. There is no observable trend in the dif-
ference in screen brightness (i.e., Ab in nits). Overall, FilterOp
yields MAE below 6% for all tested devices, generalizing well to
different display specifications.

4.4.3 Varying Camera Devices. Similarly, smartphone cameras also
have different specifications. We evaluate FilterOp using different
smartphones with varying image sensor size and focal length,
which may impact the overall image quality like brightness and
sharpness. From Figure 15, both image sensor size and focal length
contribute to the increase in MAE, but image sensor size plays a
more important role. We define Af (mm) and As (inch) as the dif-
ference in focal length and image sensor size, respectively, between
the training device and other devices. For example, Samsung Galaxy
A9 (i.e., Af = 0and As = 0.035) has the lowest MAE, and Samsung
Galaxy Note 10 (i.e., Af = 1 and As = 0.18) has the highest MAE
of 7.09%. Despite some variations, FilterOp generalizes well across
different camera devices.

4.4.4 Varying Lighting Conditions. We evaluate FilterOp’s perfor-
mance in different lighting conditions. Figure 16 depicts the MAE
under different combinations of natural daylight and compact fluo-
rescent lights (CFL). We observe an increasing trend in the MAE as
the ambient lighting intensifies, with the highest MAE of 7.76% in
the Daylight+CFL scenario. We attribute such performance degra-
dation to the strong reflections off the filter, overshadowing the
intended effects. To capture the intended effects with minimal noise,
FilterOp’s Calibration module checks the intensity of ambient light-
ing conditions and instructs the user to perform testing under
conditions similar to dim and CFL lighting.

4.4.5 Varying Screen Protectors. We evaluate the effects of the
screen protectors on FilterOp’s performance. We apply a variety
of protective films on the display device. These include (1) clear
Polyethylene Terephthalate (PET) film, (2) PET film with a matte
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Figure 17: Figure depicts the MAE with varying types of
screen protectors.
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Figure 18: Figure depicts the MAE with varying camera-to-
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Figure 19: Figure depicts the MAE in the practical (handheld
setup) and optimal (static setup) conditions.

finish, (3) clear tempered glass, (4) matte tempered glass, and (5)
privacy-preserving protectors that employ a polarized sheet to
reduce viewing angle. From Figure 17, we observe that FilterOp
has no substantial increase in MAE for the PET films and privacy-
preserving protectors. The tempered glass protectors, however,
demonstrate a slight increase in MAE by around 2.5%. We attribute
this increase to the thicker glass protectors, which cause (unwanted)
additional absorption and scattering of light.

4.4.6 Varying Camera Positions. We evaluate FilterOp against chang-
ing the distance and angle between the camera and the display
devices. We observe in Figure 18, that FilterOp achieves low MAE
within a distance of 15cm. A further increase in the distance leads to
performance degradation due to a limited number of pixels captured.
Furthermore, we observe that FilterOp yields erratic predictions if
the angle is beyond five degrees. This is because the camera cap-
tures different amounts of light at different angles. FilterOp requires
the angle to be within a tolerable range (five degrees in this case).
Hence, FilterOp’s Calibration module guides the user to place the
camera device to be within 10 to 15cm away from the display device
and within an angle of five degrees, to achieve optimal performance.

4.4.7 End-to-End Experiment. To evaluate the practicality and us-
ability of FilterOp, we invite five participants (i.e., three males and
two females with ages between 20 and 30) to operate FilterOp by
holding the camera device in a typical office lighting condition.
Note that all five participants have experience using smartphones
but no prior experience using FilterOp. We observe in Figure 19,
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that the performance of FilterOp remains comparable under both
practical (i.e., Handheld+Normal Lighting) and optimal conditions
(i.e., Static+Dim Lighting). FilterOp only has a slight performance
degradation of 0.89% in MAE. We attribute this to the Calibration
module (see § 3.3), which guides the user to the appropriate distance
and angle and validates the testing condition in every video frame.
Hence, minute hand movements and usage variations have minimal
impact on performance. In addition, to evaluate the usability of the
Calibration module, we measure the calibration time taken by each
participant. We note that all participants could calibrate FilterOp
within a minute, and the average calibration time is approximately
40 seconds.

5 DISCUSSION

We now present important discussion points of FilterOp.

5.1 Deployment Considerations

We discuss important considerations if FilterOp is to be deployed.

Further Improvement of FilterOp. Based on the estimated filtra-
tion efficiency of the tested mask or filter, we envision FilterOp to
provide users with recommendations for safe applications (e.g., safe
to wear for healthcare or cleaning purposes but not for protection
against haze). This would significantly help users who are often
confused and have no choice but to rely on the filtration efficiency
labeling on the packaging, which is often inaccurate or less trans-
parent. Furthermore, we envision a user guidance module based on
augmented reality [36, 69] could be adopted to further improve the
usability of FilterOp and remind users to keep the camera device
within the appropriate range of distance and angle.

Training FilterOp. We implement FilterOp by training its model
with ground truth data utilizing the KF94 standard. However, we
note that FilterOp is generalizable to any standards as long as it is
trained with the corresponding standards (such as N95 and ASTM
2100). Users of FilterOp are not required to perform any training
and they only need to operate FilterOp in the Verification Phase. We
envision that the authorities (such as CDC, FDA, and ECDC [23, 28,
29]) would have incentives to adopt and train FilterOp’s model in
order to thwart counterfeit and substandard products. Furthermore,
training data could be collected under different usage conditions to
further improve the performance and robustness of FilterOp.

5.2 Limitations

We discuss the limitations and future works of FilterOp.
Requirement of Two Smartphones. As a proof-of-concept, we
implement and evaluate FilterOp with a pair of smartphones. The
core idea of FilterOp could be easily extended to any pair of devices
with a camera and a device (e.g., a smartphone and a tablet or a
laptop). Furthermore, we envision that FilterOp could be operated
by two users (each with a smartphone), such as between family
members, colleagues, and friends.

Filter Materials. As FilterOp leverages the optical properties of fil-
ter materials (see §2.3), the type of the material (e.g., polypropylene
and cotton) may affect FilterOp’s performance. Hence, to achieve
optimal performance, FilterOp needs to be trained for each type of
material.



SenSys 23, November 12-17, 2023, Istanbul, Turkiye

Colored Surfaces and Paintings. Colored surfaces and paintings
on masks may affect FilterOp’s performance when testing masks
intact. The users are recommended to extract the filter layers for
testing and video guidance could be provided to guide users to
correctly extract the filter layers.

Product Defects. FilterOp is not designed to detect defects in the
mask and air filter products due to poor design and manufacturing
errors (e.g., loose ear-loops). We envision that FilterOp could work
in complement to existing defect detection solutions [22, 41, 90] in
order to detect substandard products.

5.3 Extension and Impact of FilterOp

We discuss the extension and impact of FilterOp.

Other Usage Scenarios. FilterOp may be extended to other usage
scenarios as well. For example, manufacturers do not have adequate
methods of inspecting every single instance of their produced fil-
ters. This is because the state-of-the-art testing method inevitably
contaminates the filters [84], rendering them useless. Hence, they
rely on sampling a few sample filters in their production [65]. We
envision mask and filter manufacturers incorporating an automated
screen and camera in the conveyor belt of their production assem-
bly line to deploy FilterOp to quickly and accurately verify every
instance of their products.

Manufacturing Defects on Filters. Manufacturing defects may
occur on filters due to manufacturing errors. For example, some
filters may have non-homogeneous fiber density (i.e., some regions
have low fiber density and some have high fiber density), thus
hindering the filtration capability. To address this issue, FilterOp
could be extended to analyze the distribution of the estimated
filtration efficiencies of small regions (see §3.6.2) and ultimately
detect such manufacturing defects on filters.

Impact of FilterOp. Through FilterOp, we hope to encourage our
research community to explore how we can enable commodity
mobile devices to capture and model observable physical properties
to uncover seemingly hidden information. This way, we hope to
inspire other researchers to generalize FilterOp to a wide range
of related but novel problems including light, liquid, and material
sensing.
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6 RELATED WORK

We present prior work on mask testing and material sensing.

Other Mask Testing Solutions. Industrial mask testing machines
provide an accurate analysis of mask quality [43, 84]. Given their
high costs, researchers propose cheaper alternatives [55, 71]. How-
ever, these techniques rely on submicron particle generation and
counting, requiring specialized hardware, and hence cannot be
widely used by an average user. FilterOp, however, is a low-cost
and accessible solution that only requires commodity smartphones.
Material Sensing. Researchers propose to identify different types
of materials (such as solid and liquid) using radio-frequency (RF)
signals to analyze the dielectric properties (e.g., permittivity) [17,
24, 38, 39, 73, 74, 85, 86, 91, 92, 96, 97]. Furthermore, other lines of
work also utilize cameras, time-of-flight sensors, or light sensors to
capture and analyze optical properties of materials to identify their
types (such as identifying whether the material is made of plastic or

wood) [12, 18, 40, 70, 82, 83, 93, 94]. However, these methods only
classify the types of materials, while FilterOp predicts the filtration

efficiencies of masks and filters by analyzing minute differences in
light absorption and scattering effects.

7 CONCLUSION

We present FilterOp, a novel mask and filter testing system utilizing
commodity smartphones to estimate filtration efficiency. FilterOp
analyzes optical properties, namely the absorption and scattering
of the light due to the filter materials. We evaluate FilterOp’s per-
formance with real-world experiments under varying conditions
utilizing 256 instances of filters. We compare FilterOp’s results with
the state-of-the-art government-certified laboratory testing ma-
chine (costing over $30K USD) and observe that FilterOp provides
comparable results, with a low mean absolute error of 2.7%. FilterOp
also detects substandard masks and filters with an overall accuracy
of 96.0%.
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