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Abstract
Understanding the location of ultra-wideband (UWB) tag-attached
objects and people in the real world is vital to enabling a smooth
cyber-physical transition. However, most UWB localization systems
today require multiple anchors in the environment, which can
be very cumbersome to set up. In this work, we develop XRLoc,
providing an accuracy of a few centimeters in many real-world
scenarios. This paper will delineate the key ideas that allow us to
overcome the fundamental restrictions that plague a single anchor
point from localization of a device to within an error of a few
centimeters. We deploy a VR chess game using everyday objects as a
demo and find that our system achieves 2.4 cm median accuracy and
5.3 cm 90th percentile accuracy in dynamic scenarios, performing at
least 8× better than state-of-art localization systems. Additionally,
we implement a MAC protocol to furnish these locations for over
10 tags at update rates of 100 Hz, with a localization latency of ∼1
ms. We have additionally open-sourced our system’s codebase at
https://github.com/ucsdwcsng/xrloc.git
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vices; • Human-centered computing→ Ubiquitous computing.
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1 Introduction
Extended Reality (XR), broadly encompassing virtual, augmented,
and mixed reality technologies, can potentially revolutionize fields
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Figure 1: XRLoc enables users to play a life-size chess game
with everyday objects. XRLoc localizes mugs retrofitted with
off-the-shelf UWB tags from a single vantage point with a
few cm of location accuracy, which are then translated to
chess pieces in the virtual world.

such as education, healthcare, and gaming [5, 91, 105]. The primary
ethos for XR is to provide immersive, interactive, and realistic expe-
riences for users. For example, everyday spaces and objects can be
transformed into video game assets (like tennis racquets, swords, or
chess pieces) for interactive gaming applications in virtual reality.1
Or imagine beamforming speakers streaming dedicated and spatial
audio to various users to enhance mixed reality applications [42].
Or consider enabling early warning of potential hazards in an en-
vironment at a construction site or factory floor via augmented
reality [41]. To enable these applications, we find a common thread
— any XR system should localize and track objects or users in an en-
vironment. Specifically, this object-tracking system needs to satisfy
three key requirements to realize XR applications:
R1. Ease of anchor deployment: Any asset localization system
must have low deployment efforts, which can potentially be embed-
ded within common electronics like TVs or soundbars. This single
module should be smaller than 1 m.2
R2. Accurate and reliable: Assets must be localized to an accuracy
within a few centimeters in room-scale scenarios (∼5 m). We place
a stringent requirement of a few centimeters of accuracy to provide
a glitch-free user experience. Providing immersive XR experiences
consequently means small user or object tracking errors are more
obvious and severely impede the adoption of XR [103]. Specifically,

1 In this demo, we transform the mugs and a desk in our lab into a life-size chess board
(link:https://youtu.be/WMu4kbbsyWE)
2Most consumer electronics like TVs or soundbars are around 1 m in length.
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Visual Acoustic Radar RFID Single anchor XRLoc
R1: Ease of anchor deployment ✓ ✓ ✓ × ✓ ✓
R2: Accuracy and reliability × ✓ × ✓ × ✓
R3: Multi-asset and low latency ✓ × ✓ ✓ ✓ ✓

Table 1: Existing technologies do not satisfy the 3 key requirements for an XR localization/tracking system.

the localization system must be reliable during movement, under
occlusions, and consistently track assets within an accuracy of a
few cm.
R3. Multi-asset low latency localization: Finally, an XR system
needs to localize multiple objects in an environment in real-time. In
dynamic scenarios, this can mean we must localize tens of objects at
a rate at which humans visually perceive their surroundings (60–80
Hz) [22], and delays in updates of object locations in a dynamic
scenario can break away from an immersive experience.

However, none of the existing asset localization systems meet
these three key requirements to deliver XR applications in everyday
scenarios (see Table 1). Camera and visual sensors are susceptible to
poor lighting and visual occlusions, consequently failing to provide
reliable localization (R2). Additionally, deploying a camera-based
system can be privacy invasive [75] in home and public settings.
Acoustic systems [53] provide accurate localization but do not si-
multaneously localize multiple assets with low latency (R3). Radar
systems [44, 65, 108] can provide low-latency object tracking from
a single module but fail to track occluded objects or those that
have small radar cross-sections (RCS). Some RFID systems have
succeeded in realizing low latency [55, 82, 111]. Their asymmetric
architecture (cost-effective tags and expensive readers) better suits
large-scale deployments in retail and industrial sectors. However,
long-range RFID systems (∼5 m) are expensive and bulky to inte-
grate into consumer electronics, precluding wide-scale deployments
(R1).

Altenatively, many single RF module localization solutions [16,
26, 28, 32, 33, 46, 51, 58, 59, 85, 100, 101, 112] leveraging WiFi/BLE
or ultra-wideband (UWB) are easy to deploy because of transceivers
which can be inexpensively deployed in consumer electronics. How-
ever, they fail to provide the necessary cm-level accuracy. None
of the existing systems simultaneously satisfy all three stringent
requirements to enable XR applications, and prior art will be more
carefully considered in Sec. 8.

To address the need for XR-compliant localization, we develop
XRLoc, which consists of two parts — a localization tag, attachable
to objects of interest, and a single localization module to furnish
few-cm level locations from a single vantage point. The localiza-
tion module is less than 1 m and can be easily incorporated within
everyday electronics such as televisions or soundbars (satisfying
R1). It leverages the tag’s single UWB transmission for a few cm
accurate localization. An accompanying MAC protocol also sup-
ports the localization of multiple tags at an update rate of 100 Hz
(satisfying R3). An example deployment of XRLoc is showcased in
Fig. 1, where beverage cups are attached with off-the-shelf UWB
tags. XRLoc is leveraged to transform an office space into a life-
sized chess board, with these cups taking the place of chess pieces
and localized with cm-level accuracy. A video demo of this case
study is also included as well1. However, to simultaneously meet
all the aforementioned requirements, we need to solve four key
challenges:

1. Geometric dilution of precision: In most UWB localization
systems, three or more UWB anchors need to be placed in diverse
locations in a room to localize the UWB tag, increasing deploy-
ment efforts and breaking away from R1. Alternatively, we can
place these UWB anchors within a single localization module con-
strained to a 1 m space. However, reducing the spatial diversity can
worsen the localization accuracy by 10×. This accuracy degradation
is called ‘geometric dilution of precision’ [87] (GDOP). A potential
strategy to overcome GDOP is to borrow techniques from RFID-
systems [55, 82, 111] that achieve real-time cm-scale accuracy from
a single RFID reader. However, we observe RFID systems provide
15× better measurement accuracy compared to UWB systems [111],
owing to an RFID system’s mono-static architecture (shared clock
for transmitter and receiver). Hence, underlying the effect of GDOP
is a system’s reduced resilience to measurement noise. This pre-
cludes XRLoc from directly borrowing techniques from RFID-based
systems.

To reduce our measurement noise, we could increase transmit
power to improve signal quality, increase transmission length for
better averaging, or choose better hardware with lower noise floors.
However, these solutions come at the cost of increased battery con-
sumption at the tag, increased localization latency, or expensive tag
design, respectively. Alternatively, XRLoc makes a key observation
when looking at the phase difference of the received UWB signal
measurements (PDoA) between a pair of anchors — PDoA mea-
surement quality can be improved proportionally to the distance
between the pair of anchors. This simple observation forms the
cornerstone of XRLoc’s design and allows us to satisfy the first
requirement R1.
2. Ambiguous location predictions: However, this improved
PDoA measurement quality comes at a detrimental cost — increas-
ing the anchor spacing creates multiple ambiguous location pre-
dictions as phase measurements wrap around at 2𝜋 . The changes
in these ambiguities mirror the changes in the true location of the
tag, and they do not affect tracking systems [14, 99], which lever-
age phases to provide cm-level tracking accuracy for handwriting
recognition. However, incorrectly choosing an ambiguous absolute
location can degrade the accuracy by several tens of centimeters
and may create glitches within the XR system.

To predict accurate locations despite phase wrap-around, XRLoc
leverages a second observation — unlike phase measurements, time
of arrival measurements do not suffer from ambiguity. Specifically,
the time difference of arrival (TDoA) between a pair of anchors,
although inaccurate in furnishing cm-level localization, can help
to detect and filter out ambiguities. By cleverly fusing these time-
difference and phase-difference measurements, XRLoc can provide
cm-level accurate locations from a single UWB transmission and
satisfy the second requirement R2.
3. Measurement-bias aware localization: However, as we push
the envelope on cm-accurate location predictions, we find that
hardware biases can corrupt our location estimates and degrade
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Figure 2: (a) Spatially-diverse placement of UWB anchors (red diamonds) near the walls provides median accuracy with TWR
of 2.9 cm (b) when receivers are constrained near the bottom wall, median accuracy degrades by 8× when using TWR (c) fusion
of TDoA, TWR, and AoA does not help in these scenarios either, providing median accuracy of 23.3 cm. (d) XRLoc solves the
challenges associated with dilution of precision, achieving median accuracy of 3.3 cm (e) Summary of errors when leveraging
various UWB measurements and XRLoc.

our location accuracy by over 2×. Specifically, through empirical
measurements, and as observed in previous studies [20], UWB
modules [21] suffer from a distance-sensitive measurement bias.
We model, estimate, and calibrate for these biases via a three-point
calibration procedure. We fuse the time and phase measurements
with a corrected PDoA and TDoA measurement model by leveraging
a particle filter to provide cm-accurate and low-latency location
estimates, satisfying R2.
4. High update rate multi-tag operation: In addition to pro-
viding low-latency localization, XRLoc must furnish locations for
multiple objects in the environment. Often, the UWB transmissions
for localization from multiple tags in an environment can cause
packet collisions at XRLoc’s module. The collision causes localiza-
tion failure 25% of the time. We leverage a low-power wireless side
channel to alleviate packet collisions to design a power-efficient
medium access control (MAC) protocol. Specifically, XRLoc deploys
a LoRa-based MAC to support consistent localization for tens of
tags at over 80 Hz, satisfying R3.

XRLoc brings together these key techniques to build a 1 m sized
module, consisting of 6 Decawave DW1000 [69] UWB modules for
localization, along with a Semtech LoRa SX1272 [81] to furnish
a side-channel for the MAC protocol. Additionally, we prototype
a simple UWB + LoRa Tag using the Decawave EVB1000 and a
LoRa SX1272. Through extensive evaluations, we find that XRLoc
satisfies all the three stringent requirements with

(1) Static localization error with median and 90th percentile
accuracy of 1.5 cm and 5.5 cm, an improvement of 9.5× and
5.2× from state-of-art systems [113].

(2) Dynamic localization error with median and 90th percentile
accuracy of 2.4 cm and 5.3 cm, an improvement of 11× and
8× from state-of-art systems [113].

(3) Localization failure rate of 0.5% when using the MAC pro-
tocol as compared to a failure rate of 25% without a MAC
protocol, a 50× improvement, for 10 tags operating simulta-
neously at 100 Hz location update rate.

(4) Location compute latency of 1 ms, allowing for real-time
localization (60 Hz) of 16 tags.

2 Why is this problem hard?
We have established the need for localizing users and objects within
a few centimeters of a single vantage point. In this section, we will
find that restricting our sensing to within a space of 1 m reduces our
geometric diversity leading to localization errors of many 10’s of

centimeters. This phenomenon is commonly referred to as geomet-
ric dilution of precision. We will explore the use of three common
UWB measurements — two-way-ranging (TWR), time-difference-
of-arrival (TDoA), and angle-of-arrival (AoA) — and find systems
that rely on these measurements fail to furnish the required accu-
racy. Additionally, we’ll explore fusing and jointly optimizing for
these measurements to improve localization accuracy. However,
even this measurement fusion is insufficient. To test this hypothesis,
we build a simple simulation environment described below.
Simulation environment: We perform extensive simulation in
a 3 × 3 environment, a standard room size, to find the best case
localization accuracy. We use 6 UWB transceivers, placed either
diversely in the environment (red diamonds in Fig. 2 (a)) or in a
limited space near the bottom wall (see Fig. 2 (b, c, d)). Next, we
divide this space into a 1 mm grid and place tags in each position
to measure the location accuracy. The pixels of the ‘heatmaps’
represent these tag locations, and the pixel color intensity quantifies
the median localization accuracy across 100 simulated trials.
Simulating TWR: Many UWB radios measure the time of flight
(ToF) of the signal between the transmitter and receiver up to a res-
olution of 15.6 ps [23]. The ToF is measured via multiple packet ex-
changes, taking at least 0.3 ms [18]. And clock drifts at the receiver
during this TWR event can lead to a ToF measurement deviation
of 150 ps for a 0.5 ppm clock crystal. Hence, we characterize our
simulated TWR measurements with a zero-mean Gaussian with a
standard deviation of 150 ps.
Simulating TDoA: Instead of an absolute time of flight measure-
ment, we can measure the difference in the time of arrivals across
a pair of synchronized receivers. However, TDoA measurements
depend on the receivers’ clock synchronization accuracy. Our mea-
surements, independently verified by Decawave [70], show clock-
sync errors in best-case wired synchronization can cause a TDoA
measurement deviation of 140 ps. Hence, our simulated TDoAs are
Gaussian distributed with a standard deviation of 140 ps.
Simulating AoA: Some UWB systems [38, 113] alternatively mea-
sure the angle of arrival of a signal between a pair of receivers
placed half-wavelength apart (see close pairs of red diamonds in
Fig. 2(c)). We can measure AoA with noise deviation of 1.5◦, as inde-
pendently verified in [38, 113]. Consequently, we simulate our AoA
measurements as zero-mean Gaussian with 1.5◦ standard deviation.

2.1 Quantifying localization errors
TWR, or distance measurements between a tag and multiple re-
ceivers placed diversely in an environment, can be used to trilaterate
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the tag’s position to achieve a few cm-level accuracy. From Fig. 2(e),
we find that the median localization error is 2.9 cm. Additionally,
this error is consistent (with a variation of a few centimeters) across
the space (see heatmap in Fig. 2(a)). However, when we place all
the receivers within a 1 m linear form factor to satisfy R1 (ease
of deployability), we find that the accuracy degrades by over 8×
as compared to the diverse antenna placement. Additionally, we
observe a non-uniform performance with errors as large as 1 m. To
meet R1, we have made our localization system too erroneous to
be usable.

The fundamental reason for the performance degradation is the
reduced geometric diversity when the antennas are closer. With
the antennas placed around the environment, trilateration is more
resilient to errors in distance measurements. We similarly quantify
the localization errors by leveraging TDoA or AoA measurements
and summarize the results in Fig. 2(e). We find under low geometric
diversity, the median localization errors are 54.4 cm and 40.9 cm
for TDoA and AoA measurements, respectively.

2.2 Fusing all measurements
Similar to many robotics applications [4], we can use TWR, AoA,
and TDoA measurements to provide higher accuracy. This fusion
is done by jointly optimizing the error function from TWR, AoA,
and TDoA [52] measurements. Specifically, in Fig. 2(c), we measure
6 TWR measurements from each receiver (red diamonds), 3 AoA
measurements from each closely-spaced pair of UWB receivers, and
3 TDoA measurements between one antenna from each of these
paired groups. The measurement-fusion efforts provide median
localization of 23.3 cm. However, it still fails to meet our criteria of
a few-cm error in localization.

None of the existing states of art systems can surmount the
challenge of localizing from a single vantage point and deliver the
stringent requirements set forth by our application use case. In XR-
Loc, we develop the algorithm (Sec. 3) and prototype a system (Sec. 4
and 5) to achieve this small-form-factor, high accuracy (median
accuracy of 3.3 cm as seen from Fig. 2(d) and Fig. 2(e)), and multi-
asset localization system, for use within VR systems and immersive
audio applications. In the following section, we will delineate the
key ideas which allow XRLoc to circumvent the challenges posed
by geometric dilution of precision.

3 Circumventing low-spatial diversity
First, we will explore improving our phase measurements to im-
prove location accuracy by increasing the antenna separation (Sec.
3.1). However, this comes with the unintended side-effect of intro-
ducing ambiguities to our location prediction. So, we consider the
use of time difference of arrival (TDoA) measurements to combat
these ambiguities (Sec. 3.2). Finally, we explore fusing these mea-
surements in an accurate and low-latency fashion by leveraging a
particle filter (Sec. 3.3). By exploring the key ideas here, XRLoc will
fulfill R2 and furnish few-cm level localization.

3.1 Improving localization resolution
As discussed in Sec. 2, we reduce our resiliency to noise when we
try to localize tags from a single vantage point. Lacking spatial di-
versity adds vulnerability to the optimization creating large outlier
measurements and preventing few-cm scale localization. However,
when we have two closely (less than half-wavelength) separated

antennas, we can find the phase difference (Δ𝜙) between this pair
as

Δ𝜙 =
2𝜋𝑑
𝜆

sin(𝜃 )
where 𝜃 is the incoming angle of arrival w.r.t. to the normal of
this pair of antennas, 𝑑 = 𝜆

2 is the distance between them, and 𝜆
is the wavelength at 3.5 GHz UWB center frequency.3 However,
the typical UWB phase has a resolution of around 8 bits,4 which
provides a phase resolution of 1.4◦, and consequently a localization
resolution of 2.1 cm at a distance of 3 m from the localization mod-
ule. However, increasing the inter-antenna separation, 𝑑 , linearly
increases the measured phase difference. We can leverage this to
improve our localization resolution to the ∼1 mm limit when the
antenna separation is 1 m.

Prior works [14, 99] have leveraged this fact to increase accuracy
for handwriting tracking purposes. But, widening this separation
comes at the cost of introducing more phase ambiguities. This is
apparent when we return to the AoA equation and observe that
our phase-difference measurements, Δ𝜙 , wrap over 2𝜋 for a larger
separation than half-wavelength separation for angles between
−90◦ < 𝜃 < 90◦. This is not an issue for tracking purposes, where
the changes in location of these ambiguities mirror the true changes
in the location and continue to provide a similar trajectory estimate.
However, for XRLoc, we find predicting and tracking these incorrect
locations can degrade the localization accuracy by an order of
magnitude to several tens of centimeters.

3.2 Ruling out ambiguities
To overcome ambiguities, a simple solution is adding more antennas
between the two we have placed so far. These additional antennas
will help eliminate phase ambiguities by reducing the consecutive
antenna distance while employing a 1-m antenna array aperture.
Fig. 3 (a, b) depicts these ambiguities that exist in such a system by
showing the likely positions of the tag. Considering the simulation
environment from Sec. 2, we deploy two arrays with spacing 33.3
cm and 25 cm for the same antenna aperture of 1 m. Next, we deploy
a tag at the center of the space and predict its potential locations
(pixel color intensities) in both scenarios. We observe that keeping
the same aperture of 1 m, we have similar measurement errors (peak
widths) in both cases, consistent with our previous findings, but
reducing separation creates fewer ambiguities. Deploying 23 anten-
nas within this 1 m, each spaced half-wavelength apart, will remove
all our ambiguities at the cost of increased hardware complexity.

Alternatively, we observe TDoA measurements are free from
ambiguities and can potentially be leveraged to disambiguate the
predictions from PDoA. Similarly to the previous PDoA images,
in Fig. 3 (c, d), we only show the tag’s location likelihoods when
relying on TDoA measurements. The TDoA peak, although very
erroneous (larger peak widths), is unambiguous. Additionally, in-
creasing the number of antennas reduces this error/peak width.
To recap, by reducing the antenna separation (or increasing the
number of antennas), we increase the separations between the am-
biguities coming from PDoA measurements and tighten our peak

3We develop this intuition assuming far field, but later in Sec. 3.3 we consider the exact
phase difference measurement
4Although DW1000 have a 16-bit real and imaginary part in each CIR sample, it has a
to be correct by a 7-bit RCPHASE measurement, reducing its overall phase resolution.
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(a) (b) (c) (d)

Figure 3: Log-likelihood heat map of PDoA and TDoA when
changing the number of antennas 𝑁 .

widths coming from TDoA. Consequently, at the correct antenna
spacing, our ambiguous peaks will be wide enough to be rejected
by our TDoA measurements. We find this sweet spot when we use
6 antennas, 4× fewer antennas than would have otherwise been
required.

3.3 Jointly optimizing for TDoA and PDoA
measurements

We can now extend the key intuitions to leverage TDoA and PDoA
to develop a localization algorithm to meet our few-cm accuracy
requirement. As further explained in Sec. 4, via careful engineering
and hardware design choices, we measure PDoA with a standard
deviation 𝜎𝜃 = 5◦ and TDoA with a standard deviation of 𝜎𝑡 = 150
ps. This measurements can be modeled as a zero-mean Gaussian:

TDoA between Rx i and j : 𝑡𝑖, 𝑗 ∼ N(0, 𝜎𝑡 )
PDoA between Rx i and j : 𝜃𝑖, 𝑗 ∼ N(0, 𝜎𝜃 ).

Additionally, given a candidate tag location, ®𝑝 , and receiver loca-
tions ®𝑥𝑖 ,∀𝑖 ∈ [1, 2, . . . , 𝑁 ] we can also compute the expected PDoA
and TDoA as

TDoA : 𝑡𝑖 𝑗 =
| ®𝑝 − ®𝑥𝑖 |
𝑐

− | ®𝑝 − ®𝑥 𝑗 |
𝑐

PDoA : 𝜃𝑖 𝑗 = mod
(
2𝜋

( | ®𝑝 − ®𝑥𝑖 |
𝜆

− | ®𝑝 − ®𝑥 𝑗 |
𝜆

)
, 2𝜋

)
(1)

where ®𝑝 is the location of the tag and ®𝑥𝑖/®𝑥 𝑗 are the locations of the
6 UWB antennas placed within a linear 1 m array. 𝑐 and 𝜆 are the
speed of light and UWB wavelength, respectively. Note here we
forgo the far-field assumption made in Sec. 3.1.

The location (®𝑝) which gives the closest expected measurements
to the actual measurements is the likely tag location,

min
®𝑝

[
®𝑒𝑡𝑇 ®𝑒𝜃𝑇

]𝑇
Σ−1

[
®𝑒𝑡𝑇 ®𝑒𝜃𝑇

]
(2)

where ®𝑒𝑡 and ®𝑒𝜃 measure the error between our predictions and the
actual measurements, and

Σ = diag(𝜎2
𝑡 , · · · , 𝜎2

𝑡 , 𝜎
2
𝜃 , · · ·𝜎2

𝜃 )
is a diagonal covariance matrix containing the TDoA and PDoA
measurements standard deviations. Note here that since each re-
ceiver on XRLoc’s localization module is independently measuring
the TDoA and PDoA, we have a diagonal covariance matrix.

The simplest way to find this best tag location is to perform a
grid search over our space to find the minimum point for Eq. 2.
Aiming for cm-level localization, we choose a grid size of 1× 1 mm.
But this exhaustive search can be time-consuming (around 61.2 s
/ location on a 12-core CPU), precluding real-time localization in
dynamic situations. Alternatively, we can leverage gradient descent-
based optimization techniques [27] to arrive at the most likely tag
position. However, these techniques fail when we do not have a

good initial estimate of the location, which is the case when looking
to localize a tag in a large environment [29].

To surmount this challenge, we provide the final insight — se-
lectively searching over the large space instead can reduce the
computation complexity for localization. The brute force approach
unnecessarily searches over each grid point for every packet. We
can instead sample our environment more sparsely and slowly con-
verge to our ideal location over a few packets. This is, in fact, the
key idea behind particle filters [2], which are commonly used in
state estimation scenarios with highly non-convex error functions
and poor initialization.

Armed with this insight, for the first packet we receive, we
uniformly distribute a set of particles (500 particles/m2) in our en-
vironment and compute the likelihood of these positions. When we
receive consecutive packets, we can re-sample the set of particles
with the highest probability and continue converging to our true
locations. However, despite the fewer likelihood computations re-
quired, particle filters commonly furnish non-real-time estimates
(with a latency of 7.2 ms on a 12-core CPU). To combat this problem,
XRLoc adaptively re-samples and reduces the number of particles
based on the current confidence of the estimate. As we do not know
the tag’s location, many particles are initially required to sample
the search space uniformly. However, our particles converge close
to the true location over time, improving our confidence in the
location estimate. We can reduce the number of particles needed as
we no longer need to explore the space uniformly. Empirically, this
adaptive particle filter implementation converges within five mea-
surements and provides a location estimate with a 1.2 ms latency
on a 12-core CPU.

4 Challenges with prototyping XRLoc
Additional considerations arise when employing the ideas from
Sec. 3 while prototyping XRLoc using off-the-shelf components.
First, we need to acquire low-noise phase measurements. In Sec. 4.1,
selecting the right clock is imperative to ensure a low phase noise.
Second, due to hardware imperfections, we find that the expected
PDoA measurements (Eq. 1) do not match the real-world measure-
ments. To account for the offsets, we devise a calibration scheme and
re-consider the formulation of the expected PDoA measurements
in Sec. 4.2. Finally, we explore the effects of multipath reflection on
the TDoA measurements in Sec. 4.3.

4.1 Acquiring accurate time and phase
Before prototyping XRLoc, we conducted extensive simulations
to investigate the minimum phase and time acquisition accuracy
needed to achieve few-centimeter positioning accuracy, assuming
6 antennas were equally spaced in a 1-meter region. In a 3 × 3
environment, we implemented the algorithm presented in Sec. 3.3
at varying phase and time acquisition noise levels. Our simulation
results are presented in Fig. 4(a), where the horizontal axis repre-
sents the standard deviation of the phase error, and the vertical
axis represents the 50 percentile of the localization error. Each line
shows the standard deviation of the time error.

From this simulation, we make two key observations. First, we
see that time errors between 3–250 ps provide similar localization
accuracy, and these lines are grouped in the plot. However, ex-
ceeding 300 ps in time error significantly increases localization
error, as TDoA fails to segregate ambiguity made by PDoA. Second,
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these simulations clarify that few-cm level accurate localization re-
quires high phase accuracy. Specifically, the red vertical line marks a
threshold of 5◦ of standard deviation in phase measurement needed
to achieve few-cm accurate locations.

The synchronization clock is the main factor affecting this phase
noise in our system. The phase of the UWB signal is measured by
first down-converting the received signal with the carrier signal.
It is measured relative to this carrier signal by the baseband pro-
cessing unit [23]. And when we consider measuring the PDoA, we
look at the difference in the phase of any two receivers. In this
situation, if both receivers share the same carrier clock, then the
PDoA they measure will be induced purely from the relative dis-
tance traveled by the signals to each receiver (see Eq. 1). A simple
way to achieve this is to connect the two receive antennas to the
same UWB module [14]. However, we observed the overhead of
extracting the complete CIR when implementing these systems is
large (∼1.2 ms), precluding low-latency localization. Specifically, we
have the API overhead to measure the data and the data extraction
overhead over USB, requiring 599 𝜇s and 612 𝜇s, respectively.

Alternatively, we prototype our system using independent UWB
modules [69] for each receiver, eliminating the need to export CIR
measurements. This reduces the data acquisition latency by ∼4×
to ∼340 𝜇s. However, we cannot synchronize the carrier clocks on
these independent modules, but instead, synchronize a lower 38.4
MHz clock leading to phase measurement errors. Via measurements
with different clocks, we find that the phase noise in this input
clock can largely influence the noise in the PDoA measurements.
Specifically, from the oscillator’s data sheet [19], we can obtain
the phase noise of the oscillator, 𝑁𝜙 (𝑓offset) where 𝑓offset is the
frequency offset from the center frequency of the oscillator. Using
the 𝑁𝜙 (𝑓offset), the standard deviation of clock jitter, 𝜎jitter, can be
expressed as follows.

𝜎jitter =

√
2

2𝜋 𝑓osc

√︃
Δ𝑓 𝑁𝜙 (𝑓offset) (3)

where, Δ𝑓 is the bandwidth of the measurement and 𝑓osc is the
oscillator frequency. We measure the standard deviation of the
phase error (𝜎𝜙 ) and time stamping error (𝜎𝑡 ) as:

𝜎𝜙 =
𝑐

𝜆

𝑓osc
2𝜋 𝑓𝑠

𝜎jitter ; 𝜎𝑡 =
𝑓osc
𝑓𝑡
𝜎jitter

where, 𝑓𝑠 is the sampling frequency, 𝑓t is the frequency of the clock
used for to measure time-of-arrival and 𝑐 is the speed of light.
We can choose an appropriate clock to meet our phase and time
measurement thresholds by modeling this noise behavior. Many
off-the-shelf [1, 19] clocks satisfy these requirements at reasonable
price points and employ [19] in prototyping XRLoc. For example,
according to the datasheets provided by Crystek [19] and Abracon
[1], their respective phase noise values at 100 kHz offset are −160
dBc/Hz and −150 dBc/Hz, while their respective phase noise values
at 100 Hz offset are −115 dBc/Hz and −109 dBc/Hz.

4.2 Combating hardware biases
In Eq. 1, we provided an expression for the expected PDoA mea-
surement if we know the underlying tag and receiver locations. In
reality, however, we see a large deviation when we compare the
expected PDoA measurements with true PDoA measurements. To
verify this, we perform an experiment varying the distance of a
tag from XRLoc’s localization module. In Fig. 4(b), the green‘RAW’
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Figure 4: (a) Localization error vs. PDoA error standard devia-
tion, with TDoA error standard deviations as each line in the
legend. For few-cm level localization, the threshold, per the
red line, is 𝜎𝑡 = 5◦ and 𝜎𝑡 = 150 ps. (b) Phase measurements
(green) deviate from ideal (black) measurements. Performing
appropriate calibration fixes these deviations (red).

measurements are shifted from black ground truth ‘GND’ measure-
ments. Visually, we observe three deviations — a constant additive
bias (𝛼) which contributes to a downward shift, a multiplicative bias
(𝛽) w.r.t. distance affecting the slope of the line, and an exponential
bias (𝛾 ) w.r.t. distance affecting the curvature (non-visualized in
the figure). We assume these biases result from the ADC saturation
when the distances are too close and propose a 3-point calibration to
compute these hardware-specific calibrations below. Subsequently,
we modify our expected PDoA measurements from Eq. 1 as

𝜙𝑖, 𝑗 = mod
( {

2𝜋𝑑𝑖
𝜆
− 𝛼𝑖 − 𝛽𝑖𝑑𝛾𝑖𝑖

}
−{ 2𝜋𝑑 𝑗

𝜆
− 𝛼 𝑗 − 𝛽 𝑗𝑑𝛾 𝑗𝑗

}
, 2𝜋

)
where, 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 are the calibration parameters and 𝑑𝑖 = | ®𝑝 − ®𝑥𝑖 | is
the distance between the tag and UWB receiver. We replace Eq. 1
with this updated expected PDoA equation for the particle filter
described in Sec. 3.3.

To estimate these calibration parameters, we perform a three-
point calibration. First, we model the phase (Φ̃) measured at each
UWB module according to these biases as

Φ̃𝑖 = Φ𝑖 + 𝛼𝑖 + 𝛽𝑖 (𝑑𝑖 )𝛾𝑖 , 𝑖 ∈ [1, 𝑁 ],
where Φ̃ is the calibrated phase. Next, we measure the received
phase (Φ) at each UWB receiver for three known locations within
our space. Finally, we use regression to find the expected calibration
parameters, which minimize the deviation between the measured
and expected phases according to the above equation.

4.3 Handling multipath reflections
However, in common indoor settings, reflections of the RF signal can
potentially lead to ambiguities in TDoA measurement [79]. Despite
our best efforts to acquire bias-corrected PDoA measurements, the
presence of multipath can prevent us from ruling out ambiguous
location predictions. However, UWB signals sample at the rate of 1
GHz, implying a time resolution of 1 ns. This fine-time resolution
implies we are only corrupted by reflected paths whose additional
travel distance is within 30 cm. In indoor environments, finding
such close-by reflected paths is unlikely, and we find that our direct
path and reflected signals are separable in the time domain. With
this in mind, we measure the time of arrival and phase of the signals
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Figure 5: Implementation: (a) Block diagram showcasing interconnections between the 6 UWB receivers [69], the clock
synchronization scheme (blue), “SYNC” implementation (red), and data back-haul via USB (black). (b) real-world implementation
of block diagram; inset: external modification to UWB receiver. (c) block diagram for Tag showcasing the UWB and LoRa
radios, the interrupt line (blue) to schedule UWB transmission and LoRa clock-sync broadcasts (dotted green) (d) real-world
implementation of Tag. (e) UWB/LoRa radio parameters.

at the hardware reported first peak index, FPI [72], at the 6 UWB
receivers in XRLoc’s localization module.

5 Enabling multi-tag operation
Through the ideas presented in Sec. 3 and 4, XRLoc fulfills the
first two requirements for a localization system to be compatible
with XR applications — ease of deployment (R1) and accuracy (R2).
However, when we extend the current system to localize multiple
tags in an environment, packet collisions amongst various tags
can detrimentally affect our localization rates, resulting in a packet
drop of 25%. Alternative to allowing tags to transmit arbitrarily, we
can schedule individual tags at specific time intervals and leverage
time-division multiple access (TDMA) to prevent collisions.

We seek to enable a total localization rate of 1000 Hz at XRLoc’s
receiver means localizing a 1000 tags at a rate of 1 Hz or 10 tags
at 100 Hz. Specifically, we explore leveraging low-power wireless
technologies [36, 78] as a side channel for MAC protocol operation.
A MAC controller needs to perform three tasks — onboarding new
tags, providing time synchronization, and applying corrections to
tags that deviate from their time slots. Existing systems [9, 57, 93]
leverage UWB signals for providing this MAC control. However,
we observe when a large number of tags need to be onboarded
or corrections to the tag’s time slots need to be made, frequent
collisions between UWB signals for localization and MAC control
can exacerbate the problem we seek to solve. Furthermore, UWB is
known to have high power consumption (e.g., about 416 mW for
DW1000) during reception due to its use of wide bandwidth and
despreading processing [10].

Alternatively, we propose using an additional side-channel lever-
aging low-power wireless technologies [36, 78] to simplify the MAC
control and allow for independent tag management and localization
functions. Using LoRa (e.g., about 20 mW for SX1280) or BLE (e.g.,
about 16 mW for nRF52832) as a side channel can also reduce power
consumption of the tag. Hence, we prototype our system with LoRa
as a side channel to furnish reliable and low-power MAC control
for multiple tags. LoRa and UWB are at 900 MHz and 3.5 GHz,
allowing them to co-exist with minimal interference.

The MAC protocol consists of two components — a LoRa MAC
controller (gateway), which is deployed along with the localiza-
tion module we have built so far, and a LoRa Receiver (LoRa RX)
connected to the UWB tag. The gateway performs the three core
functions of the MAC protocol.
Discovery and Onboarding: New tags introduced to a system
transmit beacon packets to announce their presence. Subsequently,

the gateway invites these new tags to join the network by assigning
a specific transmit time slot to transmit the UWB localization pack-
ets. The number and duration of a transmit slot are determined by
the maximum number of tags and their localization rate. Currently,
we support 1000 slots with a 1 ms slot width. Fig. 5(c) illustrates a
block diagram of operation.
Global Time sync: Each tag must have a consistent notion of
time slots, which requires a global time synchronization within the
accuracy of at least half the slot width. Previous works [73] have
showcased microsecond-level accuracy in clock synchronization,
and we leverage these works to provide time synchronization. The
gateway broadcasts synchronization packets every 100 s. This is
the time it takes for a 5 ppm clock to drift by 500 𝜇s, half the slot
width for each tag. The LoRa RX (co-located with the UWB tag)
receives these sync packets and corrects for its clock drift.
Correcting erroneous tags: Finally, as a precautionary measure,
we develop a correction mechanism to re-slot colliding tags. There
may be a time-sync failure at tags, resulting in transmission at an
incorrect time slot, leading to consistent collisions among groups
of tags. By tracking the tags which suffer consistent collisions, the
gateway broadcasts a correction packet over LoRa to re-slot the
erroneous tag.

6 Implementation
We have seen XRLoc consists of three core components — the
localization module, the LoRa MAC handler, and the UWB+LoRa tag.
This section will take a closer look at prototyping these components.
Localization module: XRLoc’s primary contribution is a single-
vantage point localization module using off-the-shelf components
with a size of 1 m. This small size allows the localization module to
be deployed within common electronics like TV’s our soundbars.
Fig.5 shows the implemented prototype. The prototype is built
with 6 UWB receivers EVB1000 [69], with Fig. 5(e) detailing the
configuration parameters. We synchronize the UWB modules to
a common clock (OCXO [19]) via a clock distributor module [90]
as shown by the ‘blue’ path in Fig/ 5(a). Additional to the clock
modification discussed in Sec. 4.1, we expose the EVB1000’s ‘SYNC’
pin to reset the time on the UWB modules to reduce bias in TDoA
measurements. This sync is handled by an Arduino Due and is
indicated in the ‘red’ path, with additional details provided in [70].
When each EVB1000 receives a single “blink” signal for localization
from the UWB Tag, the receiver reports the first-peak-index (FPI)
of the direct path in the channel impulse response’s peak, the signal
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XRLoc anchor
XRLoc tag
reflector
obstacle

(a) Env-1 (b) Env-2 (c) Env-3
Figure 6: Evaluated in three spaces referred to as (a) Env-1:
office-like, (b) Env-2: large-scale, and (c) Env-3: Non-line-
of-sight condition. The tag, XRLoc’s module, and relevant
regions are marked.
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Figure 7: XRLoc’s Localization performance. (a) Static local-
ization error, (b) localization accuracy vs. range with LOS
(Env-2) and NLOS (Env-3) conditions.

phase at this point, time of arrival (RXTIME), and a carrier phase
correction (RCPHASE) via the data path (shown in black).
LoRa MAC gateway: The LoRa gateway is the central controller
to initialize, discover, and onboard all the tags in the environment.
It is prototyped with a LoRa SX1272 [81] transmitter. This handler
maintains the MAC state machine and performs all the functions
described in Sec. 5.
Tags: We prototype the tag (shown in Fig. 5(d)) using the EVB1000 [69]
and program it with the parameters in Fig. 5(e). The tag transmits
‘blink’ packets at 60 Hz, with each transmitted frame having 14
bytes of payload, including packet number and MAC address, to
facilitate and test the MAC protocol. Operating in parallel, we have
the LoRa SX1272 receiving time-sync packets from the Gateway
module maintaining the UWB transmit slots and providing medium
access control. An interrupt pin is raised by LoRa RX (shown in blue
in Fig. 5(d)) to initiate a UWB ‘blink’ transmission at the accurate
time slot.

7 Evaluation
XRLoc takes strides in achieving a few cm-scale localization in static
and dynamic conditions. We rigorously test the system over eight
different moving datasets and at multiple static points in various
environments, including line-of-sight (LOS at Env-1 and 2) and
non-line-of-sight (NLOS at Env-3) conditions as shown in Fig. 6. To
make the NLOS condition in Env-3, a wooden board 2.5 cm thick
was placed 30 cm forward from the XRLoc anchor. Additionally,
we re-implement state-of-art AoA-based UWB localization system
ULoc [113] based on their open-source documentation. We place
3 anchors in a diverse scenario, as a triangle in this space, and a
constrained linear scenario, in a 1 m straight line. We test ULoc
with the same static and dynamic positions.

7.1 Static localization accuracy
One of the key use cases targeted in XRLoc is to provide accurate
locations of real-world objects and place them in the virtual realm.
These objects of interest could be tagged with inexpensive and
long-lasting UWB tags, which will relay their location to the VR
system. To simulate this use case, we place multiple tags in the
environment with the simple goal of recreating a life-size chess
game. In this static scenario, from Fig. 7(a), we observe a median
and 90th percentile error of 1.5 cm and 5.5 cm, respectively. We
additionally observe XRLoc provides a 9.5× and 4.0× improvement
at the median over using ULoc in a linear (AoA-L) and diverse
(AoA-D) placement scenario which have (median, 90th%) of (14.6
cm, 28.7 cm) and (6.1 cm, 13.7 cm), respectively. The evaluation of
different ranges shows median errors of 6.8 cm and 15.2 cm at 4m
and 5 m in the LOS condition, respectively, and 35.3 cm and 34.0
cm in the NLOS condition as shown in Fig. 7(b).

7.2 Moving localization accuracy
Continuing with the motivation of playing a life-size chess game,
we characterize XRLoc’s localization accuracy in dynamic scenarios.
Fig. 8(a) and 8(b) showcase two characteristic movement patterns
we tested. We tested 8 movements, as shown in the demo video1, and
achieved median and 90th errors of 2.4 cm and 5.3 cm, respectively,
as shown in Fig. 8(c). We observe an 11× and 3.2× improvement at
median over using ULoc in a linear (AoA-L) and diverse (AoA-D)
placement scenario, which have (median, 90th%) of (26.0, 43.3 cm)
and (7.5 cm, 17.4 cm), respectively.

In Fig. 8(d), we show the time-series error of localization for the
‘Fig. 8(b)’ movement scenario (Fig. 8(c)). We note that opting to use
a particle filter over a brute force approach provides a localization
latency of 1 ms, compared to exhaustive grid search’s latency of
61.2 s on a 12 Core CPU as explained in Sec. 3.3. However, because
the particle filter performs a sparse sampling over the entire space,
XRLoc may initialize the tag’s location incorrectly. This is visible
in the inset shown in Fig. 8(d). But, throughout 5 received packets,
we can see the location converges to the true location, and XRLoc
subsequently provides accurate location predictions.

7.3 MAC protocol efficacy
In the previous sections, we have shown XRLoc can achieve a few-
cm level localization from a single localization module, meeting the
first two requirements (R1 and R2). To allow multiple tags to be
localized with this accuracy, XRLoc leverages a LoRa side-channel
to develop a power-efficient MAC protocol as described in Sec. 5.
To evaluate its efficacy, we set up 10 tags to transmit at 100 Hz
for a half-hour period. Fig. 9(a) showcases the packet success ratio,
and we find over 99.5% of the packets are received by XRLoc’s
localization module. Alternatively, when we do not have a MAC
protocol, we have an average success rate of 76%, ranging between
56% − 87%. Specifically, considering the best and worst tag, we
plot the packet arrival rate in Fig. 9(b) over the 30 min period and
observe there are large periods when packets from Tag 09 are not
received, likely due to collision from either Tag 02 or any of the
other tags in the environment. Alternatively, we see a consistent
packet arrival rate using a MAC protocol. Clearly, a MAC protocol
is necessary to achieve multi-tag tracking and localization at high
rates and fulfill R3.
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Figure 9: MAC protocol performance: (a) Packet success ratio
across ten tags with (blue) and without (red) mac protocol.
(b) packet success ratio over time for Tag 2 (best performing
without MAC) and Tag 9 (worst performing without MAC).
In all cases, MAC protocol provides a success rate of over
99.5%.

7.4 Justifying design choices
The evaluations from the previous sections prove XRLoc’s ability
to fulfill the stringent requirements set for Sec. 1. In the following
section, we will answer key questions about the design choices
made when developing XRLoc.
Why TDoA and PDoA are both needed?

As we have discussed, a system relying purely on time-based
measurements will not meet the stringent requirements of few-
cm localization accuracy. We further evaluate this on our datasets
in Fig. 10(a). We see a median localization accuracy of 49.1 cm,
deviating over an order of magnitude from our few-cm level ac-
curacy requirement. This re-iterates the challenge of achieving
single-vantage point localization. We also claimed in Sec. 3.2 TDoA
measurements play an important role in ruling out ambiguous ini-
tialization caused by PDoA-only localization. To confirm this, we
see in the same figure when PDoA is solely used for localization, and
we have a median accuracy of 74.8 cm. Clearly, ambiguities from
phase wrap-around can be detrimental to XRLoc’s performance,
emphasizing TDoA’s role. Through this micro-benchmark, it is ap-
parent TDoA and PDoA work hand-in-hand to provide few-cm
location accuracy.
How does the aperture effect the localization?

In Sec. 3.1, we discussed the importance of the antenna aperture
in bringing resilience to phase measurement error. Consequently, a
wider distance between the first and last antenna helps to improve
localization accuracy. To ensure easy integration within everyday
consumer electronics (like TVs or soundbars), we restrict XRLoc’s
size to less than 1 m wide. However, how important is antenna

aperture to our localization performance? For this, we reduce the
maximum antenna aperture to 80, 60, and 40 cm and report the
results in Fig. 10(b). Clearly, a reduction in the aperture size af-
fects the localization accuracy, with median localization accuracy
reducing to 9.6, 19.3, and 35.0 cm, respectively. In fact, we see a
steep drop-off in accuracy when we have an aperture of 40 cm.
Furthermore, we see that a minimum aperture of 1 m is required to
achieve the required localization accuracy. Under space constraints,
smaller apertures may be used at the cost of lower accuracy.
How many antennas are needed?: Clearly, a minimum aperture
of 1 m is needed. However, within this aperture, how many anten-
nas are needed to meet the localization requirements? This is an
important question to consider to make XRLoc cost-effective. In the
previous localization accuracy analysis, we consider an array with
6 antennas. In Fig. 10(c), we reduce the number of antennas placed
within the 1 m aperture. For 6, 5, and 4 antennas, we see the median
location accuracy of 4.7, 6.9, and 28.7 cm, respectively. As few as
4 antennas are enough to meet the required few-cm localization
accuracy at the median. Although, we observe a sharp reduction in
localization accuracy in the 90th percentile. More antennas provide
a better averaging effect and reduce erroneous TDoA and PDoA
measurements, hence improving the localization performance at
higher percentiles. From these experiments, we empirically observe
choosing at least 6 antennas meets the required few-cm level accu-
racy required for XR applications.
Are there better antenna spacing we can choose?: So far, we
have considered placing our antennas in a uniform linear array
(ULA), separated by 20 cm. However, many works [94, 99] showcase
antenna patterns that are more optimal than a ULA. To investigate
the improvements from these co-prime antenna arrays, we leverage
our simulator from Sec. 2 to carry out extensive simulations and
showcase the results in Fig. 10(d). We see slight degradation of
error when using co-prime arrays. However, co-prime arrays can
be levered to reduce the number of antennas required by XRLoc to
achieve similar location accuracy.
Why do we need fine-grained bias compensation?: We evaluate
the system-level measurements. In XRLoc, we choose the appropri-
ate clock sources to achieve the required accuracy in both TDoA
and PDoA measurements (Sec. 4.1) and additionally calibrate for
TDoA and PDoA hardware biases via a 3-point calibration scheme
(Sec. 4.2). In Fig. 11(a), we showcase the importance of this bias cal-
ibration, observing median localization accuracy degrade by 1.8×
to a median accuracy of 2.4 cm without applying appropriate bias
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Figure 11: (a) Localization error with and without bias calibration; (b) measured PDoA and TDoA errors; (c) Localization error
over different tag velocities showcasing XRLoc’s resilience to movement; (d) relative localization error indicating smoothness
of XRLoc’s trajectory predictions.

calibration. In Fig. 11(b), we also observe an average TDoA error of
180.7 ps and PDoA error of 8.2◦.
How does XRLoc’s tracking performance over varying speeds?
It is imperative XRLoc provides accurate location and tracking pre-
dictions as the tag moves in the environment. The collected datasets
involved tag movements at speeds of up to 68.1 cm/s, with the me-
dian error performance degrading from 2.4 cm to 3.3 cm, as shown
in Fig. 11(c). Our data further indicates that errors in the relative
change in position ("jumps") at the median and 90th percentile are
0.3 cm and 1.7 cm, respectively, which ensures a smooth tracking
experience as shown in Fig. 11(d).

8 Related Works
Providing indoor location information for people and various in-
animate objects is a well-studied problem. This section will broadly
cover various techniques leveraged to address this problem. We
will find that none of the existing techniques meets the stringent
requirements we set up earlier in Sec. 1. Recall that we seek to
provide easy-to-deploy (R1), few-cm accurate localization (R2) in
dynamic scenarios for multiple people or objects of interest (R3).
A few key technologies which can be considered are:
Visual sensing: Under this broad umbrella, we have many distinct
technologies. Existing VR systems utilize external IR-based sen-
sors [12], specialized cameras [97] or LED-based tags [83] to furnish
accurate ground truth locations. There are also works that deploy
a single Lidar [37] for person tracking or utilize headset-mounted
cameras [63]. However, these systems are sensitive to visual occlu-
sions, hindering a user experience. Recent works [54, 76, 114] which
leverage machine learning to track objects despite occlusions. Alter-
natively, other studies [35, 50, 104, 106, 109] seek to deploy multiple
cameras, let tag equips with a camera, or utilize special light sources
to be robust to occlusions. However, no studies have simultane-
ously solved all the problems of ease of anchor deployment (R1),

accuracy (R2), and the risk of security and privacy [98]. Moving
away from deploying privacy-invasive cameras, other works [62]
seek to use the cameras on-board VR setups fused with occlusion-
resilient radio-frequency (RF) signals like ultra-wideband. These
systems have a low deployment cost but do not achieve a few-cm
level accuracy.
Acoustic sensing: Alternative to these systems, various acoustic
localization systems [13, 24, 49, 60, 66, 102] take advantage of the
lower speed of sound ( 340 m/s) for fine-grained localization and
meet the required localization accuracy. However, acoustic sensing
has a few fundamental drawbacks [48]. First, acoustic systems [53]
are difficult to provide both multi-asset and low latency localiza-
tion simultaneously because of narrow bandwidth, deviating from
R3. Second, they hinder music and audio playback, precluding
immersive XR applications. Third, acoustic signals that employ
ultrasound (> 20 kHz) for sensing have considerable audio leakage
in the audible frequency range, affecting user experience.
Radar-based sensing: Mm-wave radars near the 60 GHz and 77
GHz bands have gained recent interest. Many works [44, 108] have
looked at furnishing human pose with these radars from a single
radar. Recent work [65] has shown that the human body can act as
a strong blockage at these frequencies. These blockages can hinder
tracking multiple people and objects in an environment and af-
fect user experience. Additionally, tracking and identifying smaller
assets in an environment can be challenging as radar reflections
depend on an object’s radar cross-sectional area (RCS). Alterna-
tively, many works [86] propose placing retro-reflective tags on
objects with small RCS to guarantee their detection; however, these
systems suffer from poor localization accuracy.
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tag anchor

cost energy
per loc

one tag
max(𝑓loc )

multiple
tags

max(∑ 𝑓loc,𝑖 )
RF cost size per

anchor
# of

anchors

RF power
consump-

tion

easy to
deploy

UWB

XRLoc $19 37 uJ 5556 Hz 5556 Hz $42 100 cm 1 2268 mW Yes
SALMA [32] $12 161 uJ 847 Hz 156 Hz $12 7 cm 1 378 mW Yes
ULoc [113] $12 30 uJ 5556 Hz 1023 Hz $244 17 cm 4 12096 mW No
SnapLoc [31] $12 118 uJ 1664 Hz 307 Hz $48 7 cm 4 1512 mW No
Pozyx [68] $12 644 uJ 212 Hz 39 Hz $48 7 cm 4 1512 mW No

RFID TurboTrack [55] $0.2 0 uJ 134 Hz 134 Hz $10000s 187 cm 1 75000 mW Yes
Tagoram [111] $0.2 0 uJ 40 Hz 40 Hz $1000s 27 cm 4 46000 mW No

Table 2: Cost, size, and power consumption of related technologies. See Appendix A for details on each value.

RF-based sensing: The robustness of sub-6 GHz RF-signals to
occlusions [84] and low privacy risk makes it a promising tech-
nology to consider. The common mode of operation is for mul-
tiple RF radios to jointly localize an active RF transmitter or a
passive RF reflector (tags). Many works have looked at leveraging
WiFi [45, 58, 64, 95, 107], LoRa [39], or BLE [8] to achieve robust user
localization. However, these systems fail to provide the required
localization accuracy due to bandwidth limitations.

RFID has a strong asymmetry in the reader-tag relationship, and
the transmitter and receiver share the same clock, which allows for
highly accurate phase acquisition. According to [55, 82, 111], RFID
systems do not have carrier and sampling frequency offset and
enjoy a phase measurement accuracy of 0.085◦ [111], 15× better
than the UWB, which provides an accuracy of 1.4◦. Using the highly
accurate phase, [40, 55, 56, 99, 111] has succeeded with tracking or
localization at the few cm levels. However, due to the asymmetric
nature, RFID readers whose range is several meters are not suitable
for embedding into consumer electronics (R1) because of their
power-hungriness and expensiveness (ex. ImpinjJ Speedway R420
costs $1666). The main target of RFID is industrial or retail store
settings where thousands of tags must be deployed inexpensively,
and readers’ one-time cost is justifiable. For instance, [82] looks
at item ordering in manufacturing lines, retail stores, or libraries.
[55, 111] examine industrial robotics or baggage handling tasks.

Unlike RFID, Ultra-wideband provides a more symmetric archi-
tecture where localization modules can cost $10−100. Consequently,
we have seen their increased adoption in smartphones and smart
tags. It provides over 500 MHz of bandwidth and a time resolution
of 1 ns, providing localization accuracy to a few tens of centimeters.
Many current UWB-localization schemes leverage the accurate
time-resolution for Two-Way Ranging (TWR) [3, 11, 25, 30, 43,
47, 67, 115] and localize objects via trilateration. However, these
multiple-packet exchanges increase localization latency and pre-
vent real-time tracking of multiple objects of interest (R3). Many
works instead leverage the TDoA or PDoA of the UWB signal to
multiple time-synchronized anchors [14, 15, 31, 92, 96], or AoA
measurements [23, 38, 113] at multiple anchors to furnish loca-
tions using a single packet. Some works [110] employ alternative
transmission schemes to TWR to reduce the packet overhead. How-
ever, these systems only meet the necessary localization accuracy
when the UWB anchors are placed in diverse locations, increasing
deployment efforts and deviating from R1.

As discussed in Sec. 2, few-cm accurate localization is challenging
due to geometric dilution of precision. To circumvent this prob-
lem, three common techniques are leveraged. First, by leverag-
ing reflected paths in the environment, many systems [16, 32, 46,
51, 59, 85, 112] create additional “virtual” radios in the environ-
ment. These “virtual” radios provide the spatial diversity to localize
an object of interest. However, multipath is often unreliable [6],
leading to localization failure and poor user experience. Second,
many works [26, 74, 100, 101] look at fusing TWR, TDOA, and
AoA information to provide single anchor localization solutions.
However, some systems cannot furnish the few-cm accurate lo-
calization requirement or rely on TWR measurements, increasing
the system’s latency. Finally, some works develop switched beam
antennas [28, 33], which selectively sense signals approaching the
anchor from different directions. However, these systems lack the
required angular resolution to provide localization accuracy of a
few cm.

9 Discussion
Table 2 compares XRLoc and other localization systems with cost,
size, and power consumption. The calculation of each value is based
on the values in the data sheets, and the conditions are aligned as
much as possible. Note that each value is for reference purposes only
because each value varies depending on the target performance
and implementation details. For UWB, we compared with four dif-
ferent typed systems for reference: SALMA [32] as a single receiver
system, ULoc [113] assumed as a 3D AoA system, SnapLoc [31] as a
concurrent ranging system, and Pozyx [68] as a TWR-based system.
For RFID, two extreme examples were used as a comparison, as the
technology is fundamentally different from UWB: Tagoram [111],
which is based on COTS RFID readers, and TurboTrack [55], which
uses software-defined radio equipment.
UWB tag comparison: XRLoc incurs a slight increase in cost
due to the inclusion of side-channel functionality. The side-channel
function also increases energy consumption, but the increase in
power consumption is limited, as the side channel can maintain
continuous synchronization with one reception every 100 seconds.
As for the maximum localization frequency in the case of a single
tag (max(𝑓loc)), XRLoc achieves the same frequency as the state-of-
the-art ULoc, since localization is possible using only a blink frame.
Furthermore, when multiple tags exist, XRLoc achieves about 5.4
times more frequent localization than ULoc because it employs
TDMA using the side channel. If TDMA is not used, UWB will
communicate in pure ALOHA [89], reducing throughput to about
18.4 % in the presence of many terminals.
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UWB anchor comparison: XRLoc is comparable to other local-
ization systems in Table 2 except SALMA [32]. There is a clear
trade-off between SALMA and XRLoc. XRLoc achieves about 5.3
times better localization accuracy and about 35.7 times better lo-
calization frequency in the presence of multiple tags than SALMA.
In exchange for this performance improvement, XRLoc increases
anchor cost by a factor of 3.5, anchor size by a factor of 14.3, and
power consumption by a factor of 6.0 compared to SALMA. The
future challenge for XRLoc is how to reduce the size of the anchor
while maintaining the current localization accuracy and frequency.
Tag size: Thanks to semiconductor technology, it is already pos-
sible and realistic to combine multiple wireless communication
functions on a single chip. The Semtech SX1280 [80], for example,
combines BLE and LoRa functionality in a chip in 4 mm × 4 mm size.
Apple AirTag [7] also embeds UWB, BLE, and NFC functionality
in a 32 mm diameter module. For reference, the typical size of the
RFID is approximately 16 mm × 43 mm × 0.2 mm.
UWB vs. RFID: A key technological difference between RFID
and UWB is the tag-reader asymmetry. RFID tags are simple, eas-
ily deployable, and inexpensive, whereas readers are commonly
power-hungry and expensive (∼$1900) Whereas UWB is more sym-
metric, the reader and tag are equivalent in power, cost (∼$12), and
complexity. They hence serve different applications.

RFID is applied to industrial or retail store settings [55, 82, 111]
where thousands of tags must be deployed inexpensively, and read-
ers’ one-time cost is justifiable. On the flip side, employing RFID
readers in consumer electronics like televisions or smart speakers
can often double or triple the cost of these consumer electronics.

Alternatively, UWB is a localization solution for consumer elec-
tronics. Here, less-than-$5 UWB chips can be incorporated with
smartphones, televisions, or smart speakers to support the localiza-
tion of asset tags with a 2–3 years battery life. UWB anchor plugins
compatible with Cisco routers to support large-scale UWB localiza-
tion in large spaces [77] are also being rolled out. Consequently, we
see an increasing need for UWB systems in AR/VR devices [61, 88]
and sports IoT applications [30]. To satisfy these needs, we develop
an XRLoc prototype anchor (costing ∼$42) and tag (costing ∼$19).

10 Conclusion and Future Work
XRLoc overcomes fundamental challenges arising from geometric
dilution of precision to deliver cm-level accurate localization by
developing an easy-to-deploy and low-latency localization module.
Through this development, we are one step closer to achieving
immersive XR experiences. However, a few possibilities of future
work can be explored to build upon XRLoc.
Extensions to 3D: XRLoc focuses on localizing people and assets
on a 2D floor plane, which is required in various XR applications.
However, these ideas can be extended to the 3D domain by incorpo-
rating a vertical array of antennas in conjunction with the current
horizontal linear array, such as an L-shaped or T-shaped antenna
array [113].
Improving power efficiency of XRLoc’s localization module:
Various works [10] have noted the 10× higher power consumption
of UWB reception than transmission. Keeping this in mind, we
designed a system that requires only a single transmission from
the tag for localization to ensure long battery life. However, using
6 receivers on XRLoc’s wall-powered localization module is power

inefficient. To rectify this, antenna switching schemes [34] can be
employed, or multiple antennas can be combined to connect to a sin-
gle receiver [14] to reduce the number of receivers. However, unlike
XRLoc’s system, these alternatives will not be FiRa compliant [17].
Miniaturized tag design: We prototype our tag from off-the-shelf
EVB1000 [69] and LoRa [81] evaluation boards. Future work can
look towards miniaturizing these tag designs. Since these radios we
employ are centered at 3.4 GHz and 930 MHz, it allows us to place
these modules in close proximity with limited RF interference.
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A Basis for calculating the values in Table 2
The costs of tag and anchor were calculated based on the price of a
1,000-unit lot of key components only. We totaled, for UWB, the
cost of the DW1000 IC chip, the SX1261 IC chip, the STM32F105RC
CPU, and the chip antenna. For RFID, Table 2 accumulated the
prices of the circularly polarized patch antenna, USRP X310, and
USRP N210. All systems require a computational function to con-
trol each anchor, collect information from the tags, and calculate
their positions. In addition, systems with multiple anchors require
cabling costs to connect the anchors to the calculation function.
Since the calculation function and cabling costs depend highly on
the situation and application, Table 2 does not reflect the costs.

For power consumption, Table 2 totaled the values listed in the
data sheets for the same major components used to calculate the
costs. However, as with costs, we did not add the power required
for the computational function. The energy per loc is the energy
required for one localization. The frame size and transmit/receive
switching overhead are calculated consistent with the values used
in the beacon and TWR descriptions listed in [71] and [21].

One tag max(𝑓loc) is the maximum frequency of localization
when there is only one tag. Since the processing time depends
on the hardware, the localization frequency was calculated purely
using the protocol overhead. As with energy per loc, the values
are consistent with those listed in [71] and [21] for comparison.
Multiple tag max(∑ 𝑓loc) is the maximum of the total number of
localization frequencies for all tags when collisions are considered
in the case of a large number of tags. When centrally controlled, as
in XRLoc’s TDMA and RFID, the performance is the same as one
tag max(𝑓loc), but collisions occur when using pure ALOHA [89].
Since the theoretical maximum throughput of pure ALOHA is 18.4
% of the total, we multiplied one tag max(𝑓loc) by 0.184.

The size per anchor is the length of the individual anchor. For
those using UWB, we calculated it based on the size of the EVB1000
[69] if the system can be implemented with EVB1000. For those
using RFID, we calculated it from the information provided in the
paper. As for # or anchors, 1 was used for a single anchor system,
and 4 for a multiple anchors system. As for easy-to-deploy, we chose
“No” for a multiple anchor system and “Yes” for a single anchor
system. However, among the systems marked “Yes”, those with
smaller size per anchor are easier to deploy.
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