
Physics-Informed Data Denoising for Real-Life Sensing Systems
Xiyuan Zhang

University of California, San Diego
xiyuanzh@ucsd.edu

Xiaohan Fu
University of California, San Diego

xhfu@ucsd.edu

Diyan Teng
Qualcomm

diyateng@qti.qualcomm.com

Chengyu Dong
University of California, San Diego

cdong@ucsd.edu

Keerthivasan Vijayakumar
University of California, San Diego

kevijayakumar@ucsd.edu

Jiayun Zhang
University of California, San Diego

jiz069@ucsd.edu

Ranak Roy Chowdhury
University of California, San Diego

rrchowdh@ucsd.edu

Junsheng Han
Qualcomm

junsheng@qti.qualcomm.com

Dezhi Hong∗

Amazon
hondezhi@amazon.com

Rashmi Kulkarni
Qualcomm

rashmik@qti.qualcomm.com

Jingbo Shang
University of California, San Diego

jshang@ucsd.edu

Rajesh K. Gupta
University of California, San Diego

rgupta@ucsd.edu

ABSTRACT
Sensors measuring real-life physical processes are ubiquitous in to-
day’s interconnected world. These sensors inherently bear noise
that often adversely affects the performance and reliability of the
systems they support. Classic filtering approaches introduce strong
assumption on the time or frequency characteristics of sensory
measurements, while learning-based denoising approaches typi-
cally rely on using ground truth clean data to train a denoising
model, which is often challenging or prohibitive to obtain for many
real-world applications. We observe that in many scenarios, the re-
lationships between different sensor measurements (e.g., location
and acceleration) are analytically described by laws of physics (e.g.,
second-order differential equation). By incorporating such physics
constraints, we can guide the denoising process to improve perfor-
mance even in the absence of ground truth data. In light of this,
we design a physics-informed denoising model that leverages the
inherent algebraic relationships between different measurements
governed by the underlying physics. By obviating the need for
ground truth clean data, our method offers a practical denoising
solution for real-world applications. We conducted experiments
in various domains, including inertial navigation, CO2 monitor-
ing, and HVAC control, and achieved state-of-the-art performance
compared with existing denoising methods. Our method can de-
noise data in real time (4ms for a sequence of 1s) for low-cost noisy
sensors and produces results that closely align with those from
high-precision, high-cost alternatives, leading to an efficient, cost-
effective approach for more accurate sensor-based systems.
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1 INTRODUCTION
Sensors measuring various real-life physical processes have per-
meated our daily lives. These sensors play a crucial role in ac-
quiring a large amount of data in various applications including
environmental monitoring, healthcare, smart home and building,
and transportation, enabling context inference, pattern recognition
and informed downstream decision-making. However, because of
factors such as environmental interference, electrical fluctuations,
and imprecision of the sensor itself, sensor data are naturally noisy.
Such noise degrades data quality and adversely affects performance
of downstream applications.

To improve the quality of sensor data, there has been a line of
research on noise reduction, from traditional filtering approaches
that rely on prior knowledge of signal characteristics in time or
frequency domain [11, 38], to more advanced machine learning
methods [51, 63]. Existing machine learning-based methods typi-
cally assume availability of ground truth clean data in order to train
a denoising model in a supervised manner. However, given the in-
herently noisy nature of sensors, we often do not have access to
ground truth clean data in real-world applications. In addition to
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Figure 1: Real-life data captured by sensors are often gov-
erned by the laws of physics.

supervised denoising methods, researchers have also developed self-
supervised denoising methods, mostly in computer vision applica-
tions [26, 34]. These approaches often make simplified assumptions
about e.g., noise distributions, which may not accurately reflect
real-world sensor data with complex correlations. Moreover, they
do not leverage the unique physical characteristics of sensor data
distinct from typical image or text data.

In multiple applications, we observe that different measurement
channels of sensor data collected from real-life physical processes
are often correlated and characterized by equations rooted in well-
understood underlying physics. We illustrate three example scenar-
ios in Figure 1. In the first example, the relationship between loca-
tion and acceleration is captured by the motion law, which equates
the second-order derivative of location to acceleration. The second
example connects the measurements by drawing upon Ohm’s law
– the ratio of voltage and current is a constant, resistance, of the
circuit. In the third example, the ideal gas law establishes a link
between pressure and temperature measurements. These three ex-
amples are merely a sample of the numerous physics principles that
govern real-life sensing systems. This paper builds upon the intu-
ition that such physics-based constraints among measured channels
can be used to improve denoising techniques for sensor data.

To this end, we propose a physics-informed denoising method,
PILOT (Physics-Informed Learning for denOising Technology), by
incorporating analytical model based on known physics as loss func-
tions during training. Specifically, we introduce physics-derived
equations as soft constraints that the denoised output from our
model needs to satisfy. We illustrate the model architecture in Fig-
ure 4. We intentionally add noise to corrupt the original data col-
lected from multiple sensors. Feeding this corrupted data as input,
we train a denoising model to remove the added noise by mini-
mizing the reconstruction loss between the model output and the
original undistorted input. However, since the original sensor data
are inherently noisy, a reconstruction loss alone is insufficient to
remove such noise. Therefore, we introduce an additional physics-
based loss to minimize physics misalignment of denoised output. For
the example of inertial navigation, the corresponding physics equa-
tions include differential equations between position/orientation
and acceleration/angular velocity. Therefore, in this example, the
physics constraint would penalize discrepancy between the deriva-
tives of location/orientation and the acceleration/angular velocity.

Denoising processes for other applications follow similarly via a
unified mathematical formulation that we will elaborate.

To evaluate our approach, we conducted experiments on different
real-world scenarios including inertial navigation, CO2 monitoring,
and HVAC (Heating, Ventilation, and Air Conditioning) control. For
inertial navigation, PILOT generates denoised results that are most
coherent to physics equations, leading to the best performance
in downstream inertial navigation applications on the benchmark
OxIOD dataset [6]. We collected data for the other two applications,
detailed in Section 5.3 and Section 5.4. For CO2 monitoring, we
have two types of CO2 sensors–one is low-cost and very noisy, and
the other is more accurate but much more expensive. Denoised CO2
measurements from the low-cost sensors by PILOT closely match
those from the much more expensive CO2 sensors. Consequently,
our denoising technique offers significant cost savings. We observed
similar advantage for HVAC control system, where our denoised
temperature data collected from low-cost noisy sensors best match
those collected from industry-grade sensors. In summary, this paper
makes the following contributions:
• We propose a novel denoising method, PILOT, trained under the

guidance of physics constraints. To our best knowledge, this is the
first physics-informed denoising method that supports different
sensing applications.
• PILOT offers a practical denoising solution for application scenar-

ios where obtaining ground truth clean data or understanding the
underlying noise distribution is challenging, better representing
real-world sensing environments.
• We collected two datasets on CO2 monitoring and HVAC control,

with pairs of noisy and accurate sensor data.
• Extensive experiments in three real-world applications demon-

strate that PILOT produces results that are closest to the clean
data and most coherent to the laws of physics, achieving state-
of-the-art denoising performance. We also deployed the model
on edge devices and showed real-time denoising capability.

2 RELATED WORK
2.1 Physics-Informed Machine Learning
2.1.1 General Physics-Informed Machine Learning. The concept of
Physics Priors refers to our understanding of the inherent princi-
ples of the physical world, taking various representations such as
differential equations, symmetry constraints, and common-sense
knowledge, among others. An emerging field, Physics-Informed
Machine Learning (PIML), aims to incorporate physics priors into
machine learning models [17, 22, 53]. A line of research has been
proposed for such integration, which can be categorized into dif-
ferent directions: incorporating physics priors as loss regulariza-
tion [15, 23, 41, 42], imposing strict constraints into the model
architectures [48, 52, 60] or hybrid approaches [16]. In general,
physics-informed machine learning methods enhance efficacy, gen-
eralizability, and robustness of the models. However, most works
in the PIML domain evaluate on simplified synthetic datasets.

2.1.2 Physics-Informed Machine Learning for Sensing Systems. Sev-
eral works (such as PIP [61], PACMAN [35], Reducio [4], and
PhyAug [33]) employ physics in practical settings. However, most
approaches are domain-specific [8, 12, 18, 24], and miss the consider-
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Figure 2: Three example applications of PILOT. Inertial Navigation (left): PILOT denoises inertial measurements (angular
velocity and acceleration) and camera measurements (location and orientation) based on the motion law; CO2 Monitoring
(mid): PILOT denoises CO2 readings leveraging the CO2 relationship in a room; HVAC Control System (right): PILOT denoises
the supply and mix air temperature sensors of an AHU utilizing the heat transfer equation.

ation of physical relationships among different sensor measurement
channels that can assist with the denoising process. Multimodal
learning methods [21, 32, 54, 64] are also relevant topics as different
modalities mutually compensate and offer enriched information,
but existing multimodal methods mostly focus on fusing multiple
modalities for downstream prediction tasks (e.g., human activity
recognition) without addressing the denoising challenge. To address
this gap, we present the first physics-informed machine learning
model that incorporates these relationships into denoising sensor
data, pushing the capability of what is currently achievable in PIML.

2.2 Denoising Methods
Sensor data are often noisy due to intrinsic characteristics such
as thermal noise, operating point drifts, or environmental effects.
Existing works have proposed methods to denoise sensor data or
adapt the model to noisy measurements [13, 27]. The majority of
these strategies, however, is custom-tailored to specific domains of
application, such as COTS WiFi-based motion sensing [65], image
data processing under various weather conditions [7], speech recog-
nition [29], and clinical data analysis [40]. Some researchers have
also proposed more general denoising approaches through tradi-
tional estimation methods, or time-frequency domain analysis such
as discrete wavelet transform [11] and empirical mode decomposi-
tion [38]. However, traditional estimation methods such as Kalman
smoother rely heavily on the assumption of Gaussian noise and
Markovian transition, but real-world physics models such as human
motion typically have a higher-order temporal correlation. These
methods also rely on oversimplified assumptions that observed
variables are conditionally independent over time. More recent
deep learning approaches [51, 63] are supervised methods that re-
quire ground truth clean data, and they neglect the unique benefits
provided by physics-rich real-life sensing systems. Self-supervised
denoising methods have been recently proposed to train denoising
model without access to ground truth clean data [20, 26, 34, 49, 57].
These methods are mainly designed for the computer vision domain
and make assumptions about the noise.

2.3 Real-Life Sensing Systems
There exist numerous physics-rich real-life sensing applications.
In this study, we focus on three applications: inertial navigation,
CO2 monitoring, and HVAC systems. Inertial navigation predicts
location and orientation based on IMU data, which is prone to er-

roneous pose estimate rapidly over time [44]. Classic approaches
incorporate external measurements such as GNSS and camera, to
periodically correct the propagated pose value, at the cost of addi-
tional hardware and power. Recently, learning-aided approaches be-
come popular [5, 19, 28, 30, 31, 45, 46, 59]. CO2 monitoring monitors
CO2 level to ensure occupant comfort. Researchers have designed
data collection [47] and generation [55] methods for CO2 data.
When modeling CO2 data, existing works have developed data-
driven, differential equation models [56]. Modeling CO2 levels is
beneficial for occupancy prediction and energy savings [2, 14].
HVAC Control System controls heating, ventilation and air condi-
tioning based on temperature and airflow measurements [3, 36].
Apart from traditional model-based methods, recently deep rein-
forcement learning has also shown promising performance in mod-
eling HVAC systems [25, 58, 62].

3 PRELIMINARY
3.1 Problem Formulation
Clean Data. We denote the unobserved ground truth clean dataset
as D𝑋 = {X𝑖 }𝑁𝑖=0 which consists of 𝑁 samples. Each sample X𝑖 ∼
X,X𝑖 ∈ R𝑐×𝑇 , where X denotes the clean data space,𝑇 denotes the
number of timesteps in the sensor data, and 𝑐 denotes the number of
sensor measurement channels. Each sampleX𝑖 = [x𝑖1, x𝑖2, · · · , x𝑖𝑐 ]⊺ ,
where x𝑖 𝑗 ∈ R𝑇 represents the 𝑗th sensor measurement channel
for the 𝑖th sample in the ground truth clean dataset.

Noisy Data. We denote our observed noisy sensor dataset asD𝑌 =
{Y𝑖 }𝑁𝑖=0, composed of 𝑁 samples. Each sample Y𝑖 ∼ Y,Y𝑖 ∈ R𝑐×𝑇 ,
and Y𝑖 = [y𝑖1, y𝑖2, · · · , y𝑖𝑐 ]⊺ , whereY denotes the noisy data space,
y𝑖 𝑗 ∈ R𝑇 represents the 𝑗th sensor measurement channel for the
𝑖th sample in the noisy dataset.

Noise. Each noisy sample Y𝑖 is corrupted from clean sample X𝑖
by noise 𝜖𝑖 ∼ E, 𝜖𝑖 ∈ R𝑐×𝑇 , where E denotes the noise space.
Specifically, Y𝑖 = X𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, · · · , 𝑁 .
Physics Equations. Equation 𝑔(·) describes the relationships be-
tween different sensor measurement channels in the ground truth
clean data, i.e., 𝑔(x𝑖1, x𝑖2, · · · , x𝑖𝑐 ) = 0, 𝑖 = 1, 2, · · · , 𝑁 .
Denoising Model. The denoising model is parameterized by 𝜃 and
maps noisy data to clean data by mapping 𝑓 (·;𝜃 ) : Y → X ⊂ R𝑐×𝑇 .
We incorporate the physics equation𝑔(·) as a constraint to optimize
𝑓 (·;𝜃 ) during training.
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(b) Measured vs Computed Angular Velocity

Figure 3: (a) Original orientation measurements. (b) Comparison of gyroscope measurements (imu_w_x) and angular velocities
derived from orientations (ori_w_x) in x-axis. Regions with higher noise level (𝑡0 ∼ 𝑡1, 𝑡2 ∼ 𝑡3) in the orientation data map to
regions with large misalignment between IMU measurements and derived angular velocities. X-axis: timestep, Y-axis: meter.

3.2 Physics Principles in Sensing Systems
In this section, we introduce the underlying physics principles of
three example sensing applications: inertial navigation, CO2 moni-
toring, and HVAC control. PILOT leverages these physics equations
as constraints during training to better guide the denoising pro-
cess. We evaluate the denoising performance of these three sensing
applications in Section 5. The major difference across different appli-
cations is the specific form of the physics constraint. Consequently,
to adapt our model to new applications, the only requirement is to
formulate the equation representing the physics relationship be-
tween different sensors in the new application. Thereafter, we can
seamlessly incorporate the constraint, treat it as regularization, and
maintain a uniform approach across varying applications.

We select these three use cases to demonstrate the different ca-
pabilities of the framework to model various physics relationships.
The use cases cover different sensor types, domains, and scales. In
particular, we choose the three applications to validate that the
proposed method is robust across different scales — from single-
human interactions to building air circulation models across many
zones and users. Further, we seek to cover as many types of sen-
sors (IMU, Camera, CO2, airflow, temperature, etc.) as possible in
these three experiments to demonstrate the potential to general-
ize to various types of sensors and noise levels. Our method can
incorporate different physical laws with varying degrees of physics
model complexity. We also picked the applications where physics
models are informative but imperfect due to various modeling chal-
lenges. The selected applications are known for their dependencies
on additional measurement modalities to compensate for the imper-
fect physics model, such as the visual information for navigation
and IMU physics. This motivates the necessity for both learning
component- as well as physics-based models.

3.2.1 Application Scenario I: Inertial Navigation. Inertial navigation
aims to estimate a moving device’s position and orientation based
on IMU sensor measurements, shown in Figure 2 (left). The inertial
navigation model takes IMU measurements as input, and predicts
locations and orientations. The ground truth location and orienta-
tion data are captured by cameras. However, both IMU and camera
data carry noise due to factors like jittering or occlusion, posing
challenges to training accurate inertial navigation models. If we de-
note location, orientation (in quaternion form), angular velocity,
and acceleration as 𝑝, 𝑞,𝑤, 𝑎 respectively, then their relationships
can be mathematically expressed by equations 𝑔1 (·), 𝑔2 (·):

𝑔1 (𝑎, 𝑝, 𝑞) = 𝑎 − 𝑅𝑇𝑞 (
𝑑2𝑝

𝑑𝑡2
− 𝑔0), (1)

𝑔2 (𝑤,𝑞) = 𝑑𝑞

𝑑𝑡
− 1

2𝑞 ⊗𝑤, (2)

where 𝑅𝑞, 𝑔0, ⊗ represent rotation matrix, gravity constant and
quaternion multiplication. As a motivating example, we randomly
select 30-second sensor data from the OxIOD dataset [6] and visual-
ize the orientation measurements in Figure 3a. We note two major
noise-heavy regions around the 500𝑡ℎ timestep and the 2500𝑡ℎ
timestep (indicated by boxed regions). Applying Equation 2, we de-
rive the angular velocity from the orientation data, and compare it
with the angular velocity directly measured by IMU gyroscope in
Figure 3b. The misalignment between these two angular velocities
appears around the same timesteps of noisy regions in the original
orientation data. This highlights the role of known physics to guide
the learning process of denoising models and its use in our model.

3.2.2 Application Scenario II: CO2 Monitoring. CO2 monitoring is
of wide interest in smart building applications. An accurate zone
CO2 reading can enable transmission risk analysis [43], occupancy
estimation [9], air quality monitoring [37] for energy-saving or res-
idence safety purposes [14]. Figure 2 (middle) depicts one example
placement of three CO2 sensors proximate to the air intake, out-
take, and the center of a standard office room. Assume 𝑐𝑡 , 𝑐0, 𝑐𝑡in, 𝑐

𝑡
out

represent the current average CO2 concentration in the room, ini-
tial average CO2 concentration in the room, CO2 concentration
for the input airflow, CO2 concentration for the output airflow, re-
spectively. Furthermore, let 𝑣,𝑉 , 𝑞, 𝑛𝑡 represent the airflow velocity,
room volume, CO2 emission rate per individual, and the number
of occupants in the room. Note that all these extra parameters are
known information of the environment. They may change over
time, but their values at each time step are known. Then, we can
write their relationship in the following equation 𝑔(·):

𝑔(𝑐𝑡 , 𝑐𝑡in, 𝑐𝑡out) = 𝑐𝑡𝑉 − (𝑐0𝑉 +
∑︁
𝑡

(𝑐𝑡in𝑣Δ𝑡)

+
∑︁
𝑡

(𝑛𝑡𝑞Δ𝑡) −
∑︁
𝑡

(𝑐𝑡out𝑣Δ𝑡))
(3)

Unfortunately, perfect CO2 monitoring would require deploy-
ing multiple high-resolution and low-noise lab-level CO2 sensors,
which are prohibitively expensive for a typical commercial building
consisting of hundreds of zones. By contrast, low-cost CO2 sen-
sors are readily available on the market with more noise and less
accuracy (e.g., CCS881 as we will detail in Sec 5.3). We aim to incor-
porate the aforementioned physics equation to denoise CO2 data
collected from these low-cost sensors, such that data quality after
our denoising algorithm can match the expensive counterparts.
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Figure 4: Physics-Informed denoising model framework. Dur-
ing training, we manually add noise to the original sensor
data, and minimize a reconstruction loss to remove such
noise. We also integrate a physics-based loss to ensure that
reconstructed data obey the law of physics.

3.2.3 Application Scenario III: Air Handling in HVAC Control Sys-
tem. HVAC control systems manage critical parameters such as
temperature, humidity, and air quality of commercial or residential
buildings to ensure thermal comfort and optimal air quality for oc-
cupants while maintaining energy efficiency. Air Handling Units
(AHUs), the core of an HVAC control system, take in outside air
and return air from zones in the building, recondition it via heating
or cooling, de-humidification, and then supply it to spaces. Down-
stream equipment such as Variable Air Volumes (VAVs) may further
condition the air based on factors including occupancy, time of day,
and specific temperature desired of the space. Figure 2 (right) il-
lustrates an AHU in an example HVAC control system with both
heating and cooling functionality. The AHU mixes a certain ratio
of return air from the conditioned spaces and the fresh outside air,
and reconditions the mixed air through cooling and heating coils
and supply air to various spaces. We denote the enthalpy differ-
ence across the heating and cooling coils by Δ𝑄 . The air’s mass
undergoing reconditioning is denoted as𝑚, its specific heat capac-
ity as 𝑐 , the temperature of the supply air and mix air as 𝑇sa and
𝑇mix, respectively. We then derive the following heat transfer equa-
tion under the assumption of no additional heat source aside from
the cooling and heating coils:

𝑔(Δ𝑄,𝑚, 𝑐,𝑇sa,𝑇mix) = Δ𝑄 −𝑚𝑐 (𝑇sa −𝑇mix) (4)
Note that air mass 𝑚 can be acquired through the airflow rate
(measured in Cubic Feet per Minute, or CFM) going across the AHU.
Furthermore, the air’s specific heat capacity, 𝑐 , is both humidity
and temperature dependent.

In practice, both supply air temperature and mix air tempera-
ture measurements are subject to noise, which impedes accurate
control in the HVAC system. Therefore, we incorporate the above
equation to denoise the two temperature measurements, enhancing
the accuracy and reliability of the HVAC control system.

4 METHODOLOGY
4.1 Model Framework
Noise Injection. We first follow the setting of typical supervised
denoising methods to manually inject noise and train the denois-
ing model to remove the injected noise. Given the unknown nature
of real-world noise distributions, we first randomly sample noise
from pre-defined distributions as simulations. This process is insuf-
ficient to capture the complex noise distributions, so we augment

the model training with physics modeling process illustrated later.
When sampling the noise, we use Gaussian distribution with zero
mean and variance of 𝜎2 as an example and compare with other
noise distributions in Section 5.6 (Sensitivity Analysis). Mathemati-
cally, for each sample Y𝑖 in our noisy dataset, we further sample
Gaussian noise n𝑖 and add it upon Y𝑖 to obtain data Z𝑖 with a
higher degree of noise, i.e., Z𝑖 = Y𝑖 + n𝑖 , n𝑖 ∼ N(0, 𝜎2) . Note that
our physics modeling component does not pose any constraints or
assumptions on the noise type. The inclusion of Gaussian additive
noise is purely for simulation purposes to facilitate the training of
the denoising autoencoder.

Naive Denoising Model. The naive denoising model performs
optimization without modeling physical relationships. The denois-
ing model takes data with manual noise injected Z𝑖 as input, and
the training objective is to output data with such manual noise
removed, by minimizing the reconstruction loss, i.e.,

argmin𝜃EY𝑖∼Y,n𝑖∼Nℓrec (𝑓 (Y𝑖 + n𝑖 ;𝜃 ),Y𝑖 ), (5)

ℓrec (𝑓 (Y𝑖 + n𝑖 ;𝜃 ),Y𝑖 ) = | |𝑓 (Y𝑖 + n𝑖 ;𝜃 ) − Y𝑖 | |22 . (6)
The naive denoising model learns how to remove noise generated
from our pre-defined noise distribution, e.g., Gaussian distribution.
This is effective if the real noise follows the same noise distribu-
tion. However, in practice, the noise distribution is often much
more complex and cannot be simply approximated by predefined
patterns. As we will theoretically show in Section 4.2, the naive
denoising method becomes suboptimal when the real noise distri-
bution deviates from our pre-defined noise distributions. Therefore,
we incorporate physics constraint to enhance denoising perfor-
mance, enabling the model to adapt to more complex, real-world
noise distributions.

Physics-Informed Denoising Model. Apart from the reconstruc-
tion loss in the naive denoising model, we incorporate another
physics-based loss to overcome the limitation of the naive model. Re-
call in Section 3.1 (Problem Formulation) we mentioned that ground
truth clean data satisfy physics constraint 𝑔(x𝑖1, x𝑖2, · · · , x𝑖𝑐 ) =
0, 𝑖 = 1, 2, · · · , 𝑁 . In an ideal scenario, if our denoising model can
perfectly eliminate all noise, then the resultant output of this opti-
mal denoising model 𝑓 (·;𝜃∗) will also adhere to the physics con-
straint:
𝑔(𝑓 (z𝑖1;𝜃∗), 𝑓 (z𝑖2;𝜃∗), · · · , 𝑓 (z𝑖𝑐 ;𝜃∗)) = 0, 𝑖 = 1, 2, · · · , 𝑁 , (7)

which can be simplified as 𝑔(𝑓 (Z𝑖 ;𝜃∗)) = 0 or 𝑔(𝑓 (Y𝑖 +n𝑖 ;𝜃∗)) = 0.
Therefore, we can exploit the physics constraints intrinsic to an op-
timal denoising model and formulate the constrained optimization
problem as

argmin𝜃EY𝑖∼Y,n𝑖∼Nℓrec (𝑓 (Y𝑖 + n𝑖 ;𝜃 ),Y𝑖 ),
s.t. 𝑔(𝑓 (Y𝑖 + n𝑖 ;𝜃 )) = 0. (8)

Enforcing the physics equation as strict constraints makes the
model difficult to optimize. Instead, we include the constraint as
a soft regularization term in the loss function. Specifically, the loss
function for the physics-informed denoising model is a combination
of reconstruction loss and physics-based loss:

argmin𝜃EY𝑖∼Y,n𝑖∼Nℓ (𝑓 (Y𝑖 + n𝑖 ;𝜃 ),Y𝑖 ), (9)
ℓ = ℓrec + 𝜆ℓphy, (10)

ℓphy (𝑓 (Y𝑖 + n𝑖 ;𝜃 )) = | |𝑔(𝑓 (Y𝑖 + n𝑖 ;𝜃 )) | |22 . (11)
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The physics-based loss offers additional prior knowledge about
the ground truth data and better guides the learning process of
the denoising model, especially when we don’t have access to the
ground truth distributions. We find in the experiment section that
the physics constraint works for both first-order terms and higher-
order terms. Here, 𝜆 is the ratio that balances the two losses. We
find that an adaptive balancing strategy that keeps these two losses
always at the same orders of magnitude during training is empiri-
cally more effective than setting a fixed ratio, as we will illustrate
in Section 5.6.
PILOT Framework. We design a two-phase training framework
for the final denoising model. Specifically, we first optimize the
model only with reconstruction loss as a pre-training phase. The
two-stage training ensures that training is not biased by the physics
loss at the beginning, as the initial exclusive focus on optimizing
the physics loss can lead to overly simplistic and trivial solutions,
such as all-zero predictions. Two-stage training mitigates this by
serving as a warm-up period and providing better denoising model
initialization. By learning to reconstruct the data, the model bet-
ter adapts to the underlying data distribution. In the second phase,
we combine both reconstruction loss and physics-based loss to op-
timize the model. The physics-based loss corrects and guides the
model for enhanced denoising performance. To choose the denois-
ing model backbone, we keep both efficacy and efficiency in mind,
ensuring that denoising models can run on edge devices with lim-
ited compute. Therefore, we use one-dimensional Convolutional
Neural Networks (CNN) as an example, as they are relatively light-
weight with superior capability in extracting sensor features.

4.2 Theoretical Analysis
In this section, inspired by previous works in [20, 66], we analyt-
ically show that when the inherent noise of our model input has
a non-zero mean, training with naive denoising model would be
insufficient to recover the ground truth data distribution.
Corollary 1: Let y be observed noisy data corrupted from clean
data x by noise 𝜖 with non-zero mean 𝜂: y = x + 𝜖, 𝜖 ∼ E. Let z be
manually corrupted data from y by pre-defined noise n with zero
mean: z = y + n, n ∼ N . Assume Ez |x (z) = Ey |x (y) = x +𝜂, and the
variance of y is 𝜎2

y. Then the following equation holds true:
Ex∼X,𝜖∼E,n∼N | |𝑓 (x + 𝜖 + n;𝜃 ) − x| |22
= Ex∼X,𝜖∼E,n∼N | |𝑓 (x + 𝜖 + n;𝜃 ) − (x + 𝜖) | |22
− 𝜎2

y + 2𝜂Ex∼X,𝜖∼E,n∼N (𝑓 (x + 𝜖 + n;𝜃 ) − x) .
(12)

Since𝜂 ≠ 0, optimizing Ex∼X,𝜖∼E,n∼N | |𝑓 (x+𝜖+n;𝜃 )−(x+𝜖) | |22 is
not equivalent to the ideal goal of optimizing against ground truth,
i.e., Ex∼X,𝜖∼E,n∼N | |𝑓 (x+ 𝜖 +n;𝜃 ) − x| |22. In summary, the corollary
states that the naive denoising model’s optimization target fails
to completely mitigate the inherent noises. Therefore, we incor-
porate physics-based loss to augment the denoising performance,
particularly when underlying noise distributions are inaccessible.

5 EVALUATION
5.1 Experimental Setup
We use a one-dimensional convolutional neural network with four
layers as the backbone for our denoising model. The respective

Table 1: Physics alignment results for OxIOD dataset. We
bold the best and underline the second best. PILOT aligns
the best with both acceleration and angular velocity.

Model Acceleration (m/s2) Angular Velocity (rad/s)
Metrics MSE MAE MSE MAE

Original 762.6 3.7862 2.6219 0.2376
Gaussian 363.2 3.2295 1.6277 0.2161

DWT 854.9 5.4534 2.6034 0.2701
DnCNN 312.5 8.3830 0.3470 0.1896
TSTNN 3272.0 30.513 0.4184 0.4836

DIP 2153.6 33.938 0.3788 0.4013
N2N 118.7 4.5749 0.3565 0.1756

PILOT 1.8695 0.6372 0.0380 0.0690

kernel sizes for each layer are set to 7, 5, 3, 3. We use Adam opti-
mizer with learning rate 1𝑒−4 and batch size 16. For each dataset
D𝑋 = {X𝑖 }𝑁𝑖=0, we first compute how well each sample aligns with
the physics equation. Specifically, the alignment for the 𝑖-th sample
is the L2 norm 𝑎𝑖 = | |𝑔(X𝑖 ) | |22. We select samples with the top 50%
smallest 𝑎𝑖 as our training set. These samples align more coherently
with physics equations and potentially carry less noise. The re-
maining samples are used as the test set. The applications we have
studied are mostly stationary systems, so the model should be able
to generalize to new test data in practice. We conduct the experi-
ments in Pytorch with NVIDIA RTX A6000 (with 48GB memory),
AMD EPYC 7452 32-Core Processor, and Ubuntu 18.04.5 LTS. We
also implement our method on edge device (Raspberry Pi 4) and
evaluate its efficiency in Section 5.7. We tune the hyper-parameters
of both PILOT and baselines to minimize loss on the training set,
and then evaluate on the test set after hyper-parameter tuning.

We compare PILOT with both statistical methods and recent
deep learning denoising methods as follows (including two self-
supervised methods DIP and N2N):
• Gaussian Filter employs a Gaussian filter with standard devia-

tion 𝜎 for the kernel to smooth the sensor data.
• DWT [11] decomposes the signal using Discrete Wavelet Trans-

form (DWT) and chooses the most energetic coefficients to re-
construct the denoised signal.
• DnCNN [63] is a convolutional neural network-based denoising

model that exploits residual learning and batch normalization to
boost the denoising performance.
• TSTNN [51] is a Transformer-based model for end-to-end speech

denoising. It is composed of a feature-mapping encoder, a two-
stage Transformer model to extract local and global information,
a masking module and a decoder to reconstruct denoised speech.
• Deep Image Prior (DIP) [49] exploits the structure of the neural

network as priors for denoising data. The method fits the model to
the noisy data with early exit, so the network captures dominant
patterns while ignoring the random noise.
• Neighbor2Neighbor (N2N) [20] applies random neighbor sub-

sampler on noisy data to generate input and target for the net-
work. It also proposes a regularizer as additional loss for perfor-
mance augmentation.
We evaluate the performance from three perspectives. First of

all, if we have collected data of higher quality using other sources
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Figure 5: Top: Angular velocity from IMU (imu_w) and from first-order derivative calculation of orientation based on original
data (original_w)/N2N(n2n_w)/PILOT (ours_w). Bottom: Acceleration from IMU (imu_a) and from second-order derivative
calculation of location based on original data (original_a)/N2N(n2n_a)/PILOT (ours_a). X-axis: timestep, Y-axis: meter.

(a) Location (Top: N2N, Bottom: PILOT) (b) Orientation (Top: N2N, Bottom: PILOT)

Figure 6: We compare PILOT with the best performing baseline N2N for qualitative denoising performance of (a) location and
(b) orientation. We also zoom in for regions with higher noise levels for better illustration. PILOT generates smoother results
which also align more closely with the original locations and orientations. X-axis: timestep, Y-axis: meter.

(e.g., more expensive and accurate sensors), we would regard these
higher-quality data as approximate ground truth and compute Mean
Square Error (MSE) and Mean Absolute Error (MAE) between the
denoised data X̂ and the higher-quality data X as the first metric,
noted as “Reconstruction Performance”. Specifically, Reconstruction
MSE = | |X̂−X| |22, and Reconstruction MAE = | |X̂−X| |1. The second
metric investigates alignment of denoised data with the govern-
ing physics equations, noted as “Physics Alignment”. Specifically,
Physics MSE = | |𝑔(X̂) | |22, and Physics MAE = | |𝑔(X̂) | |1. Lastly, if
the denoised data are further applied in downstream applications
(e.g., inertial navigation system), we also evaluate “Downstream
Performance” based on the metrics of interest for the corresponding
downstream task. Measuring downstream performance helps us
understand the full impact of denoising on real-world applications.

5.2 Application I: Inertial Navigation
5.2.1 Dataset. We use OxIOD [6] dataset for inertial navigation ex-
periments. OxIOD collects accelerometer and gyroscope data (100
Hz) mostly by IMUs (InvenSense ICM20600) in iPhone 7 plus. A
Vicon motion capture system (10 Bonita B10 cameras) is used to

record the locations and orientations. The total walking distance
and recording time of the dataset are 42.5 km and 14.72 h. The data
collection protocol is designed to simulate natural pedestrian move-
ment within an indoor environment equipped with motion capture
system. When collecting the data, a pedestrian walks naturally in-
side a room with motion capture system, carrying the phone in
hand, in the pocket, in the handbag, or on the trolley.

5.2.2 Physics Alignment. We compare the physics alignment per-
formance in Table 1. Specifically for this application, we compute
the misalignment for acceleration and angular velocity. Adapting
our experimental approach for the specificities of inertial naviga-
tion, we only denoise the location and orientation data, and leave
IMU data in its original form. This is because the downstream in-
ertial navigation model’s training requires integration over the
IMU, thereby inherently smoothing and denoising the IMU data.
Since our model only denoises the location and orientation data, we
model the physics relationships between the denoised location, ori-
entation, and the original IMU. More specifically, acceleration MSE
in Table 1 is computed as the discrepancy between accelerometer
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Table 2: Inertial navigation performance on OxIOD dataset with two inertial navigation models (IONet and RoNIN). We bold
the best and underline the second best. When applying the denoised data to downstream inertial navigation task, PILOT yields
the best performance given two different inertial navigation models (IONet and RoNIN).

Model IONet [5] RoNIN [19]

Metrics vx vy vz mean v ATE RTE vx vy vz mean v ATE RTE
(m/s) (m/s) (m/s) (m/s) (m) (m) (m/s) (m/s) (m/s) (m/s) (m) (m)

Original 0.0207 0.0642 0.0093 0.0314 0.3076 0.8194 0.0180 0.0621 0.0090 0.0297 0.2472 0.6337
Gaussian 0.0249 0.0496 0.0145 0.0297 0.6111 1.8727 0.0242 0.0498 0.0147 0.0296 0.5988 1.8427

DWT 0.0266 0.0732 0.0094 0.0364 0.3142 0.8079 0.0243 0.0714 0.0091 0.0349 0.2665 0.7023
DnCNN 0.0200 0.0235 0.0144 0.0193 0.3001 0.7891 0.0177 0.0213 0.0139 0.0176 0.2476 0.6598
TSTNN 0.2857 0.3250 0.0935 0.2348 0.6496 1.6575 0.2865 0.3253 0.0938 0.2352 0.6256 1.5794

DIP 0.1971 0.2650 0.0105 0.1576 0.5759 1.5108 0.1926 0.2570 0.0101 0.1533 0.3989 1.0358
N2N 0.0246 0.0144 0.0183 0.0191 0.3151 0.8317 0.0224 0.0122 0.0182 0.0176 0.2605 0.6956

PILOT 0.0102 0.0095 0.0031 0.0076 0.2998 0.7875 0.0081 0.0078 0.0017 0.0059 0.2413 0.6309
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Figure 7: Downstream inertial navigation performance on OxIOD dataset with RoNIN model. RoNIN trained on denoised data
of PILOT reconstructs trajectories closet to the ground truth trajectories. X-axis: meter, Y-axis: meter.

data from IMU (𝑎) and the second-order derivative of the denoised
location subtracted by gravity constant and multiplied by rotation
matrix (𝑅𝑇𝑞 (𝑑2𝑝/𝑑𝑡2 −𝑔0)), as shown in Equation 1. Similarly, angu-
lar velocity MSE is computed as the difference between gyroscope
data from IMU multiplied by orientation (𝑞 ⊗ 𝑤/2) and the first-
order derivative of denoised orientation (𝑑𝑞/𝑑𝑡 ), as in Equation 2.

From Table 1, we can see that while most denoising methods
reduce the physics MSE compared with original data without de-
noising, PILOT significantly reduces the physics MSE by two orders
of magnitude. Accompanied by these quantitative results, we also
offer qualitative illustrations in Figure 5. We present a visual com-
parison of the direct IMU measurements and derived accelerations
and angular velocities. When comparing PILOT with original and
denoised data from the best-performing baseline, we observe that
PILOT-denoised data provide the best physics alignment for both
angular velocity and acceleration.

5.2.3 Reconstruction Performance. For the inertial navigation ap-
plication, we don’t have access to ground truth location and orien-
tation data. Therefore, we qualitatively compare the reconstruction
performance of PILOT and the best-performing baseline in Figure 6.
We compare the reconstruction performance for both location and
orientation, with detailed zoom-ins on regions exhibiting higher

noise levels for more clear illustration. We observe that PILOT effec-
tively reduces the noise in the original data, while simultaneously
reconstructing results that show greater alignment and coherence
with the original locations and orientations.

5.2.4 Downstream Performance. We also use the denoised data to
train downstream inertial navigation model, and compare PILOT
and baselines in terms of downstream task performance. We use
IMU data, denoised location and orientation data as training pairs
for the following inertial navigation models:
• IONet [5]: IONet uses deep recurrent neural networks to learn

location transforms in polar coordinates from raw IMU data, and
construct inertial odometry.
• RoNIN [19]: RoNIN regresses velocity given IMU with coordi-

nate frame normalization and robust velocity losses.
We measure the downstream performance by the following three

metrics, following previous works [19].
• Velocity: We compute MSE of predicted velocity (x, y, and z-axis,

along with the mean velocity of all three axes).
• Absolute Translation Error (ATE): ATE is defined as the Root

Mean Squared Error (RMSE) between the entire estimated and
ground truth location trajectory.
• Relative Translation Error (RTE): RTE is defined as the Root
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 8: We compare the CO2 denoising results of PILOT and the best performing baseline DIP. PILOT denoises CCS881 results
closet to the ground truth (K30 measurements). X-axis: timestep, Y-axis: ppm.

Mean Squared Error (RMSE) over a fixed time interval. We choose
1 minute in our experiment as in previous works [19].
We compare PILOT with baselines on downstream inertial navi-

gation task using IONet and RoNIN (Table 2) as the downstream
models. We can observe that PILOT best predicts the velocity and loca-
tions, regardless of the specific inertial navigation model. In Figure 7,
we also qualitatively compare PILOT with the best-performing
baseline using RoNIN as the inertial navigation model. We can see
PILOT’s denoised data offer RoNIN the best trajectory reconstruc-
tion performance relative to both the original data and that from
the best-performing baseline.

5.3 Application II: CO2 Monitoring
5.3.1 Dataset Collection. In this experiment, we deployed two
pairs of CO2 sensors (K30 and CCS811) in a typical graduate student
office environment. K30 is a highly accurate Non-Dispersive Infra-
Red (NDIR) CO2 sensor manufactured by SenseAir which costs $100
per unit. It features an accuracy of±30 ppm or±3% of measurements
and a high repeatability of ±20 ppm or ±1% of measurements [50].
The NDIR technology [39] utilizes the unique property of CO2
molecules — their significant absorption of infrared (IR) light in the
vicinity of 4.2 𝜇m wavelength. When a gas sample is illuminated
with light of this particular wavelength, the concentration of CO2
can be deduced by examining the fraction of light absorbed. We
regard K30 readings as the ground truth of CO2 concentration.

In comparison, CCS811 [1] is a substantially cheaper Metal-Oxide
(MOX) gas sensor, priced at less than $10 per unit, which computes
equivalent CO2 readings based on hydrogen gas readings. A MOX
gas sensor works by measuring and analyzing changes in the con-
ductivity of the gas-sensitive MOX semiconductor layer(s) at vari-

K30

CCS881

(a) Deployment on desk

K30

CCS881

(b) Deployment by vent

Figure 9: We connected a pair of two different CO2 sensors
(K30 and CCS 881 respectively) on a Rasberry Pi. We deployed
(a) one pair on the desk in the center of the office and (b) the
other pair close to the exhaust vent to monitor CO2 level.

Table 3: Reconstruction and physics alignment results on
CO2 dataset. We bold the best and underline the second best.

Model Recons (1 × 106 ppm) Physics (1 × 106 ppm)
Metrics MSE MAE MSE MAE

Original 1.5654 0.0020 0.1082 0.1908
Gaussian 0.6265 0.0016 0.0278 0.1019

DWT 1.5076 0.0020 0.1045 0.1846
DnCNN 1.5381 0.0020 0.1064 0.1897
TSTNN 0.0956 0.0007 0.0027 0.0498

DIP 0.0841 0.0006 0.0018 0.0308
N2N 0.4396 0.0018 0.0085 0.0789

PILOT 0.0371 0.0004 0.0012 0.0200

ous gas exposure [10]. It has no verifiable accuracy or repeatability
guarantee and is usually not recommended for laboratory use.

For each pair of these two sensors, we connect both of them to a
single Raspberry Pi board, which collects data through UART pro-
tocol and I2C interface from K30 and CCS811 respectively, at an
interval of 4 seconds. The collected readings are transmitted to a re-
mote InfluxDB instance for storage and further analysis. We placed
these two pairs of CO2 sensors as follows. One pair is adjacent to
the HVAC exhaust vent and the other pair is at the center of the
room, to capture the relevant variables in Equation 3 as illustrated
in Figure 9. We set inflow CO2 concentration in Equation 3 to 440
ppm based on empirical observation.

5.3.2 Reconstruction and Physics Performance. For the application
of CO2 monitoring, data collected from high-precision K30 sensors
serve as the benchmark for calculating the reconstruction perfor-
mance. We also evaluate the physics alignment by how well our
denoised data match Equation 3. As shown in Table 3, PILOT outper-
forms all baselines, showcasing the lowest reconstruction and physics
alignment errors. We also qualitatively compare PILOT with the
best-performing baseline in Figure 8. We can observe that the de-
noised data by PILOT align the closest to the ground truth (K30
data) compared with original noisy data as well denoised data from
the best-performing baseline.

5.4 Application III: Air Handling in HVAC
Control System

5.4.1 Dataset Collection. We collected data points of relevant vari-
ables in Equation 4 from an AHU serving a lecture hall on campus.
We chose this particular AHU based on the following two crite-
ria. Firstly, this AHU is equipped with both heating and cooling
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thermal submeters (Figure 10a), ensuring the availability of Δ𝑄 in
Equation 4. Secondly, none of the zones served by this AHU has any
reheat unit. In theory, this guarantees that our assumption holds
true that heating and cooling coils are the only heat sources. We
collected the data through the campus building management sys-
tem (BMS) for 18 consecutive days, with readings taken at 1-second
intervals. We plan to collect more long-term data as a future work.

The mixed air temperature and supply air temperature are mea-
sured by copper-thread averaging duct sensors (costing $150 for
each) within the respective supply and exhaust ducts of this AHU,
as shown in Figure 10b. These sensors give the average temperature
based on the fact that the electrical resistance of copper changes in
a predictable way with temperature changes. However, this method
is prone to inaccuracy and lacks repeatability due to challenges
associated with maintenance and cleaning, as well as the uneven
distribution of the thread within the duct. A feasible yet costly alter-
native solution is to use multiple single-unit temperature sensors
evenly distributed throughout the duct. These sensors are more ex-
pensive and harder to deploy. To evaluate the denoising methods,
we carried this setup by deploying two dual-probe high-accuracy,
industry-level temperature sensors in the supply duct, each cost-
ing $200, and took the average of readings from each probe to get
a highly reliable ground truth temperature measurement.

5.4.2 Reconstruction and Physics Performance. For the HVAC con-
trol system application, we measure the denoising performance by
both reconstruction performance and physics alignment. For re-
construction performance, we deploy high-precision temperature
sensors and utilize the collected data as ground truth temperature to
assess the reconstruction performance of different denoising meth-
ods. For physics alignment, we compute the MSE and MAE between
Δ𝑄 and𝑚𝑐Δ𝑇 in Equation 4. As shown in Table 4, PILOT achieves
state-of-the-art performance and shows the lowest errors for both re-
construction performance and physics alignment. We also provide
qualitative comparisons to supplement our evaluation. Figure 11
showcases two example reconstructions of supply air temperature

(a) Δ𝑄 (b) Δ𝑇

Figure 10: Sensor deployments in HVAC systems. (a) We mea-
sure heat difference Δ𝑄 through the water temperature dif-
ference. (b) We measure the air temperature differences with
a copper thread averaging sensor.

Table 4: Reconstruction and physics alignment on HVAC
dataset. We bold the best and underline the second best.
PILOT best denoises HVAC data in terms of both reconstruc-
tion accuracy as well as physics alignment.

Model Reconstruction (K) Physics (K)
Metrics MSE MAE MSE MAE

Original 0.9479 0.8841 50.302 6.7184
Gaussian 0.8687 0.8782 49.528 6.7003

DWT 0.8553 0.8689 48.782 6.6471
DnCNN 0.3284 0.4786 50.380 6.7241
TSTNN 2.2980 1.1980 32.012 3.7260

DIP 3.7336 1.5098 29.747 3.7410
N2N 1.1830 0.9522 31.748 3.6990

PILOT 0.1994 0.3454 14.081 3.1600

(a) Example 1 (b) Example 2

Figure 11: Two example reconstructions for supply air tem-
perature. PILOT ’s outputs best align with the ground truth
compared with original noisy measurements and the best-
performing baseline. X-axis: timestep, Y-axis: K.

(a) Example 1 (b) Example 2

Figure 12: Two example alignment between Δ𝑄 and 𝑚𝑐Δ𝑇 .
PILOT achieves the closet alignment compared with original
data and the best baseline. X-axis: timestep, Y-axis: K.

data. Denoised data from PILOT exhibits the best alignment with
the ground truth data compared with original data, as well as the
best-performing baseline DnCNN. In Figure 12, we also present
two examples of physics alignment. We see that denoised data of
PILOT best align with the physics equation compared with original
noisy data and the best-performing baseline DIP.

5.5 Ablation Study
To study the effects of different components of our model, we sep-
arately remove the physics-based loss, reconstruction loss, and
pre-training phase, and evaluate PILOT in Table 5. For Inertial Nav-
igation System (INS), we compare the physics alignment of both ac-
celeration (MSEa, MAEa) and angular velocity (MSEw, MAEw). For
CO2 monitoring and HVAC control, we compare both reconstruc-
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Table 5: Ablation Study of PILOT. We bold the best and
underline the second best. Removing either physics-based
loss, reconstruction loss or pre-training phase would nega-
tively affect the performance, demonstrating the effective-
ness of all three components.

Task Metrics w/o 𝑙phy w/o 𝑙rec w/o pre-train PILOT

INS

MSEa 316.5 259.1 20.70 1.8695
MAEa 8.342 8.759 2.2930 0.6372
MSEw 0.3579 0.2845 0.1380 0.0380
MAEw 0.1899 0.3352 0.1291 0.0690

CO2

MSErec 0.4641 0.0568 0.0724 0.0371
MAErec 0.0139 0.0051 0.0074 0.0047
MSEphy 0.0194 0.0021 0.0023 0.0012
MAEphy 0.0781 0.0264 0.0330 0.0200

HVAC

MSErec 0.3314 0.5314 0.2686 0.1994
MAErec 0.4709 0.6128 0.4670 0.3454
MSEphy 50.22 14.69 14.469 14.081
MAEphy 6.713 3.263 3.203 3.1600

tion (MSErec, MAErec) and physics alignment (MSEphy, MAEphy).
We note that by removing the physics-based loss, PILOT degen-

erates to a naive denoising model, which is not sufficient to capture
the complex noise distribution in real-world sensor data. Therefore,
compared with PILOT, MSE and MAE of both reconstruction and
physics alignment increase after removing the physics-based loss.
We also observed that a higher degree of precision in the physics
model and higher frequency sensor data sampling (resulting in
fewer synchronization errors), lead to larger performance improve-
ments. For example, the relationships in inertial navigation physics
are more precisely captured than with CO2 or temperature systems,
and the IMU sensors are sampled at higher frequencies than CO2
sensors. Correspondingly, we observe greater performance gains
from employing physics equations than other applications. Sec-
ondly, reconstruction loss is important as it facilitates the model’s
ability to learn data distribution. In its absence, the model may
potentially generate trivial outputs that, while satisfying physics
constraints, neglect the actual data distribution (e.g., outputs of pure
zeros). Lastly, the pre-training phase serves as an essential warm-up
period to help the model better adapt to the underlying data distri-
bution. To summarize, the physics-based loss, reconstruction loss,
and pre-training phase collectively contribute to the overall efficacy
of the model, and their presence is crucial for optimal performance.

5.6 Sensitivity Analysis
5.6.1 Balance between Reconstruction Loss and Physics-Based Loss.
In our experiments, we adopt an adaptive strategy to adjust the
ratio between reconstruction loss (𝑙rec) and physics-based loss (𝑙phy)
during training. Denote the ratio as 𝜆 = 𝑙rec/𝑙phy. More specifically,
for each iteration, we compute the mean value of the reconstruction
loss, and adaptively adjust 𝜆 such that (𝜆 · 𝑙phy) aligns with the same
order of magnitude as 𝑙rec. Consequently, this adaptive approach
avoids overemphasizing either the reconstruction loss or physics-
based loss throughout the entire training process. To validate the
effectiveness of adaptive loss ratios, we compare PILOT with its
counterparts trained with fixed loss ratios, varying from 0.1, 1 to

Table 6: Efficiency Analysis on Raspberry Pi 4.

Metrics Params Size Inference Time CPU Usage
Efficiency 270K 284 KB 4 ms 25%

10. As shown in Figure 13, adaptive loss ratio (denoted as “ADA”)
yields the best performance compared with different fixed ratios.

5.6.2 Manually Injected Noise Types. We also study the effect of
different noise types injected for optimizing the reconstruction
loss. In our experiments, we use Gaussian noise as an example in-
jected noise. We compare PILOT with its counterparts trained with
manually injected uniformly distributed noise, as well as manually
injected zero masks. As shown in Figure 14, injecting random noise
(Gaussian or Uniform noise) performs better than applying zero
masking, as random noise aligns closer to real-world noise distri-
bution compared with zero masking. Moreover, the model is less
sensitive to the particular noise types applied, such as Gaussian
noise or uniformly distributed noise.

5.7 Efficiency Analysis for Edge Devices
As many denoising methods for sensor data run on edge devices,
we explore the time and memory efficiency of PILOT in Table 6
using Raspberry Pi 4 as an example edge device. We deploy the
inertial navigation denoising application through the Tensorflow
Lite framework on Raspberry Pi 4. For time efficiency, PILOT can
denoise a sequence of 100 readings (corresponding to a sequence
of 1 second) within 4 milliseconds. To ensure the reliability of our
evaluation, this experiment has been repeated a thousand times
to obtain the average inference time. Therefore, PILOT is capa-
ble of performing sensor data denoising in real time. For memory
efficiency, PILOT is a lightweight CNN model with just 270K param-
eters and 284 KB model size. Moreover, it demonstrates an average
CPU utilization of only 25% during the entire inference process. In
summary, PILOT is both time and memory efficient for real-time
operations on edge devices.

6 DISCUSSIONS AND FUTURE WORK
In this section, we discuss potential future directions of PILOT.
Broader Applicability to Other Sensing Systems We acknowl-
edge that the need for clearly formulated physics relationships is
one limitation of our work. However, we note that apart from the
three applications we have explored, in practice numerous sensing
systems have underlying physics relationships, and we recognize
this opportunity for extended exploration in future work. We dis-
cuss a few potential use cases as some examples for the model’s
wider applicability:
• Power System. In a power system, the most classical Ohm’s law

describes the relationships between power, current and voltage.
Electronic devices measuring current or voltage are often subject
to environmental disruptions, such as temperature fluctuations,
resulting in measurement noise. Utilizing physics priors like
Ohm’s Law, PILOT can offer a promising solution to mitigate
these noise-related inaccuracies.
• Weather Monitoring. Weather monitoring and forecasting in-

volve calculations with respect to air pressure, temperature, wind
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Figure 13: Performance analysis on the ratio of reconstruction loss over physics-based loss. Adaptive loss ratio yields better
performance compared with fixed ratios.
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Figure 14: Performance analysis on the types of manually injected noise for the reconstruction process. Applying random
noise performs better than zero masking.

speed, etc. These properties can be modeled as fluid dynamics
problems, which are often characterized by the Navier-Stokes
equations linking velocity and pressure. Environmental sensors
responsible for capturing data like wind speed or pressure are
susceptible to noise originating from environmental influences
or sensor sensitivity. PILOT can leverage physics-based priors
such as the Navier-Stokes equations to denoise these collected
data, enhancing the accuracy of weather monitoring.
• Localization in Autonomous Systems. In autonomous sys-

tems, we employ a combination of GPS, Lidar, Radar and IMU
sensors to localize autonomous driving cars or drones. These
sensor readings can be noisy due to atmospheric effects, multi-
path propagation, etc. PILOT is capable of applying the laws of
motion (e.g., acceleration is the second derivative of location) to
denoise location data collected from these multiple sources.

Uncertainty Quantification Our future work also includes incor-
porating uncertainty quantification (UQ) into the denoising process.
The integration of UQ aims to provide a holistic understanding of
noise structure, delivering not just a point estimate for the denoised
data but also the model’s confidence in that estimate, avoiding over-
confident and potentially inaccurate inferences. The integration
may also help quantify the effects of denoising with respect to the
precision of the model or synchronization errors. Uncertainty quan-
tification can be achieved by adopting a probabilistic approach to
extend the current model architecture to output not just a single
denoised signal but a distribution over possible denoised signals.
FPGA Acceleration We have implemented our denoising method
on edge devices like Raspberry Pi and demonstrated its time and
memory efficiency. To take this step further, we plan to explore
hardware acceleration as Field-Programmable Gate Arrays (FPGA)
co-processors to explore the possibility and cost of such edge infer-
ence. With FPGA’s reprogrammable nature, we have the flexibility
of prototyping and testing different configurations and parame-
ters for the best possible performance and efficiency. Furthermore,
FPGA allows us to seamlessly transition from prototype to subse-

quent production of Application-Specific Integrated Circuit (ASIC),
which enable us to scale up our solution while reducing power
consumption and production costs.

7 CONCLUSION
We presented a physics-informed denoising method, PILOT, for
real-life sensing systems. We build upon the insight that measure-
ments from different sensors are intrinsically related by known
underlying physics principles. This approach allows the model to
harness these physics constraints as guidance during training to
improve denoising process. This paves the way for a more prac-
tical denoising solution, especially given the frequent challenges
associated with acquiring ground truth clean data in sensing sys-
tems or understanding underlying noise patterns. Extensive ex-
periments show the efficacy of PILOT in removing sensor noise
across three representative real-world sensing systems. PILOT pro-
duces denoised results for low-cost sensors that align closely with
high-precision and high-cost sensors, leading to a cost-effective
denoising approach. PILOT is also lightweight and can enable real-
time denoising on edge devices.
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