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ABSTRACT
In this paper, we present Jawthenticate, an earable system that
authenticates a user using audible or inaudible speech without us-
ing a microphone. This system can overcome the shortcomings
of traditional voice-based authentication systems like unreliability
in noisy conditions and spoofing using microphone-based replay
attacks. Jawthenticate derives distinctive speech-related features
from the jaw motion and associated facial vibrations. This combi-
nation of features makes Jawthenticate resilient to vocal imitations
as well as camera-based spoofing. We use these features to train
a two-class SVM classifier for each user. Our system is invariant
to the content and language of speech. In a study conducted with
41 subjects, who speak different native languages, Jawthenticate
achieves a Balanced Accuracy (BAC) of 97.07%, True Positive Rate
(TPR) of 97.75%, and True Negative Rate (TNR) of 96.4% with just 3
seconds of speech data.

CCS CONCEPTS
• Security and privacy→ Biometrics; • Human-centered com-
puting→ Ubiquitous and mobile computing.
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1 INTRODUCTION
As earables are garnering greater attention and driving the wear-
ables market [63], this paper proposes Jawthenticate, which fuses
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Figure 1: Jawthenticate concept.

speech-based (behavioral) and biometrics-based (physical) features
for continuous authentication on earables. Existing user authenti-
cation methods for smart devices often rely on audible speech [14,
15, 60, 76], which can be prohibitive in public environments due to
privacy concerns, or biometrics such as fingerprint [35, 69] or Face
ID [29, 84]. Unlike fingerprint and Face ID authentication, earables
have the potential to offer a completely hands-free approach, which
is essential for emerging Augmented Reality (AR) applications and
even day-to-day activities, where the user’s hands may be occupied.
This form of authentication is also inclusive for users with verbal
or physical disabilities.

Recent work on hands-free authentication using earables mani-
fests two key limitations. First, speech-based works such as Mandi-
Pass [49], Face-Mic [74], and VAuth [21] authenticate a user by
capturing vibrations produced by audible speech, requiring the
user to speak audibly, thereby rendering these systems less secure
in public places, compromising user privacy, and opening them
to audio-based spoof attacks [16, 65]. Second, many systems re-
quire the use of an active audible or inaudible probe. To facilitate
biometrics based authentication using earables, EarEcho [25] con-
tinuously plays audible sound into users’ ears to capture unique
ear canal geometry. However, this system is not ideal for scenarios
where continuous authentication is required for a seamless user
experience (e.g., AR game or interactive movies). To address this,
EarDyamic [89] and the work by Mahto et al. [52] use inaudible sig-
nals for continuous authentication; however, these high-frequency
inaudible signals can potentially negatively impact the ear. Studies
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have shown that long-term exposure to high-frequency sounds
can cause discomfort, difficulty in concentrating, and pain in the
ears [20, 23, 44, 45].

In this paper, we develop Jawthenticate, a novel hands-free user
authentication technique that unifies the advantages of speech-
based (continuous) recognition with biometrics-based authentica-
tion (secure). Jawthenticate is the first system to explore and exploit
the distinctiveness of the user’s jaw movement for authentication
using an around-the-ear design. It computes the intonation, ran-
domness, phase variations, and rhythm of user speech, and facial
muscle vibrations, using inertial motion sensors (no microphones)
to recognize users. It ensures safe and comfortable authentication
without external probe sounds or the requirement for a user to
produce audible speech. Jawthenticate removes the impact of en-
vironmental noise and motion artifacts via a twin-sensor setup,
allowing for robust continuous authentication.

In contrast to previous works, Jawthenticate offers several signif-
icant advancements. It is the first system that effectively captures
both audible and inaudible speech articulations, relying solely on
jaw motion data and does not require the user to produce any
sound. This provides an inclusive biometric-based authentication
solution. Furthermore, our system stands out in its ability to sup-
port language- and content-agnostic continuous authentication.
This feature enables broader applicability across diverse linguistic
backgrounds and speech patterns. Combining efficient feature ex-
traction and language/content-agnostic continuous authentication,
makes Jawthenticate well-suited for various real-world scenarios,
ranging from voice-controlled applications to secure access control
systems, where reliable and versatile authentication is required.

However, realizing Jawthenticate encounters the following three
challenges: (1) Microphone-free speech feature learning: While speech
has been shown to be sufficiently distinctive to identify users [86],
learning these speech-based features from jaw motion is extremely
challenging due to the indirect sensing of a secondary speech ar-
ticulator - the jaw. (2) Extracting signatures from inaudible and
audible speech: Many authentication systems require a passcode
or passphrase. However, passphrases cannot be used with audi-
ble speech-based systems due to privacy concerns, particularly in
public environments or when other people are within hearing dis-
tance. This necessitates the ability to understand and extract speech-
based features from inaudible speech. (3) Lightweight authentication:
There is a need for a system that is robust yet lightweight, with-
out requiring heavy-weight machine-learning solutions to enable
authentication in real-time.

To summarize, we make the following contributions:
• We develop Jawthenticate, a novel earable-based authenti-

cation system. Our system authenticates the user based on
their jaw motions and facial vibration while they are talking
(audible and inaudible).
• We derive features that are representative of the user’s speech

mannerisms, and invariant to the content (conversation,
phrase, or numerical passcode) and language (English, Hindi,
Greek, etc.) of the speech.
• We conduct various real-world impersonation attacks to

demonstrate the robustness to observation-based and ad-
vanced video-based mimic attacks.

Eyelid 
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connecting 

at TMJ

Figure 2: Muscle groups involved in producing facial vibra-
tions during speech-related jaw motion.

• In an IRB-approved study, we collect data with 41 partic-
ipants and evaluate the performance of our system under
various scenarios, achieving up to 97.07% BAC.

To the best of our knowledge, Jawthenticate is the first authen-
tication system to learn speech-based features from jaw motion
and facial muscle vibration without requiring voiced speech. This
enables us to accommodate both voiced and unvoiced speech for
authentication, making it reliable, resilient to audio and video-based
spoofing attacks, and privacy-preserving.

2 BACKGROUND
We present a primer on human speech articulation and how we
leverage those principles in Jawthenticate.

2.1 Speech Articulation
Given their active participation in speech production, lips, teeth,
tongue, alveolar ridge, hard and soft palate are termed primary
articulators. On the other hand, the jaw is only responsible for facil-
itating the lower lip and is hence termed a secondary articulator [58].
The temporomandibular joints (TMJ), located at the junction of the
lower jaw and skull, allow the lower jaw to move up and down [19].

Not only articulators but facial muscles also perform important
tasks during speech production [53]. Figure 2 demonstrates three
major muscle groups related to speech production. The muscles
around the mouth (e.g., obicularis oris) control the shape and move-
ments of the mouth and lips. The muscles around the eyes (e.g.,
obicularis oculi) contract and pull the skin of the forehead and cheek
towards the nose, indirectly participating in speech production.

These muscles are tightly connected and contraction or relax-
ation of one muscle group can be sensed in another. The movement
of these muscles due to speech-related jaw motion produces subtle
vibrations, called facial vibrations [53]. There is another class of
vibrations present during speech articulation: bone-borne vibra-
tions [55], that are generated at the vocal cords during audible
speech articulation, propagating through bone and muscles around
the face to the TMJ. The movement of these muscle groups along
with jaw motion dictates speech characteristics like the speech rate
variation, intonations, rhythm, the magnitude of jaw opening, etc.,
which is the unique speech mannerisms of an individual.

2.2 Experimental Validation
TMJ is sensitive to capturing both the jaw and facial muscles’ in-
formation related to speech production. To understand different
types of signals generated during speech articulation, we place an
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Figure 3: Spectrogram when a user articulates a phrase (a)
audibly (voiced) (b) inaudibly (unvoiced). We can see the
presence of bone-borne vibrations in (a), which are absent
in (b). Jaw motion and facial vibrations, marked by dashed
boxes are present in both audible and inaudible speech.

IMU on the right TMJ. The gyroscope captures rotational jaw move-
ments during speech articulation. In addition, the accelerometer
captures subtle low-magnitude vibrations generated by bone-borne
vibrations and facial vibrations. To validate that these vibrations
are caused due to speech articulation, we conduct the following
experiments with the accelerometer signals.

Characterizing bone-borne vibrations. When users articulate
audibly, their sounds could conduct through the mandible bone
and reach the TMJ. To understand the characteristics of these bone-
borne vibrations, we ask the user to articulate a phrase of their
choice, once audibly and once inaudibly. In these experiments, we
sample data from the IMU at 800 Hz since previous works [39, 74]
have shown that data sampled at this frequency contains bone-
borne vibrations. Figure 3 shows the spectrogram for the same
phrase articulated audibly and inaudibly. In Figure 3(a) we can see
the presence of a high-frequency (>25Hz) signal, which is absent in
Figure 3(b). This higher frequency band appearing in the audible
articulation is the bone-borne vibrations.

Additionally, we observe a low-frequency band, as marked by
the dashed boxes, in both (a) and (b). This band is associated with
two types of vibrations: jaw motion and facial vibrations. Since
we expect jaw motion and facial vibrations to manifest in both
audible and inaudible speech articulation (as they involve rotation
of the jaw around TMJ and associated muscles) the observed low-
frequency band is consistent with our expectation. In this work,
we aim to achieve authentication for both audible and inaudible
speech articulation, focusing on their shared frequency – [1,20] Hz.

Isolating jaw motion and facial vibrations. The jaw moves
differently for different words [39, 79], therefore it is closely related
to distinctive behavioral features of an individual’s speech (the
rhythm of speech, variation in speech rate, etc.). On the other hand,
facial vibrations are caused as the user’s facial muscles contract
and relax, which is closely related to the person’s physical charac-
teristics. To verify that we can capture both, jaw motion and facial
vibrations induced by the contraction/relaxation of the muscles, we
conduct experiments that characterize these signals within [1,20]
Hz. To isolate these signals, we record a video, along with IMU
data collected from the user’s TMJ. We ask the user to articulate
phrases inaudibly to omit the bone-borne vibrations. We use the
video feed as ground truth to track the jaw motion by calculating
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Figure 4: (a) Comparison of the frequency spectrum from
accelerometer and camera when the user articulates a phrase
inaudibly. The only attribute captured by the camera is jaw
motion (0-5 Hz), and not the facial vibrations. (b) The same
observation for another user.

the displacement of a marker on the IMU, and then computing ac-
celeration in m/s2. We sample data from the IMU and camera at 60
Hz as this is sufficient to capture jaw motion and facial vibrations.
Figure 4 shows the frequency spectrum plot for the same phrase,
for the y-axis of the accelerometer (blue) and camera (red). We
observe a similar magnitude in the 1-5 Hz range in the frequency
spectrum in both the camera and IMU. However, the IMU captures
the 5-20 Hz facial vibration signals (absent in the camera data). We
verified this phenomenon for different users articulating different
words/phrases. Our insights in characterizing jaw motion and fa-
cial vibrations are significant to defend against advanced attacks
simulating IMU data from videos (§ 6.3).

3 SYSTEM OVERVIEW
Jawthenticate is capable of authenticating users whether they speak
(audibly or inaudibly) a predetermined passphrase or a numeri-
cal passcode, or have a regular conversation. Figure 5 shows the
overview of our system. There are 4 main modules that constitute
Jawthenticate: (1) Data Pre-processing: This module is responsible
for removing body motion, gravity, and DC noise from the ac-
celerometer data, segregating jaw motion and facial vibrations from
the signal, and distinguishing between speech and non-speech sig-
nals. Speech signals are passed on to the next module. (2) Jaw motion
feature extraction: With the isolated jaw motion signal, Jawthen-
ticate extracts intonations and randomness in the time domain
and rhythm and phase in the frequency domain that are represen-
tative of the distinctive jaw motion of the user. Features such as
intonation and rhythm have been successfully employed in speech-
based authentication [64, 77]. We extract similar features from jaw
motion to encode equivalent knowledge. (3) Facial vibrations fea-
ture extraction: Jawthenticate extracts frequency domain features
from the facial vibrations that encode the distinctive skin/muscle
vibration trend for each user. (4) User Identification: Once all the
features are extracted, Jawthenticate uses an SVM-based classifier
to authenticate the user.
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Figure 5: Overview of Jawthenticate.

3.1 Potential Applications
Jawthenticate aims for both traditional speech-based and secure
unvoiced authentication applications, such as one-time authenti-
cation in public settings (privacy-preserving), continuous authen-
tication to a voice-enabled device (e.g., continuous VR game, one-
time login/payments), and novel authentication modality for post-
laryngectomy patients unable to produce sound. We discuss two
potential applications:

Authentication in public settings: Voice-based authentication
is popular and convenient [4, 33], however, it is an open channel
that is susceptible to privacy leakage and impersonation attacks,
and can be affected by ambient noise. In contrast, Jawthenticate
enables users to authenticate themselves by using unvoiced speech,
which helps protect their privacy and prevent impersonation at-
tacks. For example, it can allow users to inaudibly convey sensitive
information, like SSNs to bank operators, where voice authenti-
cation can breach privacy. In addition, Jawthenticate can be used
in conjunction with silent speech recognition systems, such as
MuteIt [80], to provide an additional layer of security by using the
user’s articulated password or other confidential information as
the primary authentication factor, while their speech mannerisms
serve as a biometric that helps verify their identity. This can enable
a secure and private authentication experience in scenarios where
traditional voice based authentication might fall short. In addition
to enabling hands-free payments in crowded cafes, Jawthenticate
can also be used by medical staff to access patient records and med-
ication securely in a busy environment where vocal passwords may
breach confidentiality, touch-based systems are unhygienic, and
face might be covered with masks and glasses.

Authentication for VR/AR and other Head Mounted De-
vices (HMD): HMDs lack input devices, such as keyboards, making
it difficult for users to authenticate themselves (when logging in or
making purchases). As a result, users often have to use a secondary
device, such as a mobile phone or tablet, which can negatively im-
pact the usability and experience, as they have to take off the HMD
to use the secondary device [3]. Jawthenticate can enable users
to log in to the system without using a secondary device. Most
HMDs already consist of a head-mounted IMU which can act as
the reference sensor. With an additional retro-fitted IMU placed
at the TMJ, Jawthenticate can be used for authentication without
requiring users to take their device off, thereby improving their
overall experience.

3.2 Threat Models
We identify the following threat models for Jawthenticate.

No knowledge attack. A no-knowledge attack can occur when
an impostor tries to breach the system without any knowledge of
how the system works. However, as they have no insights from
observation or other sources, it is very hard to break the system.
Due to its low probability of success, we do not evaluate the system
against this attack.

System aware attack. In this attack, the impostor gets access to
the user’s wearable device without their knowledge and permission.
Through observation, the impostor knows about the working of
the system and articulates some phrases. But, due to distinctive
jaw motion as well as facial vibrations for each user, Jawthenticate
will be able to deal with such attacks by rejecting impostors whose
facial vibrations and jaw motion do not match.

Mimic attack. In this attack, the impostor, after observation
and with insights about the data used by the system, tries to mimic
a legitimate user’s speaking style to break the system. We asked 5
users to mimic other users’ speech mannerisms while they articulate
a few phrases. We evaluate the system’s performance against this
attack in § 6.3.

Advanced mimic attack. In this attack, the impostor tries to
mimic the users’ jaw motion by using existing techniques that use
automated computer vision algorithms to reconstruct the IMU data
stream [42, 51]. However, since cameras are not capable of captur-
ing subtle facial vibrations (as shown in §2.2), this attack can lead to
simulating jaw motion only. Jawthenticate extracts distinctive facial
vibrations in addition to jaw motion, making it resilient to such at-
tacks that can only mimic jaw motion. We evaluate Jawthenticate’s
defensive performance against this attack in § 6.3.

4 SYSTEM DETAILS
In this section, we delve into the intricate workings of Jawthenticate
and its functionality.

4.1 Pre-processing IMU data
Jawthenticate adopts the twin-IMU noise cancellation design pre-
sented in MuteIt [79]. In the twin-IMU setup, a reference IMU is
placed at a location such that it captures head and body motion
but not the jaw motion, and another IMU is placed at the TMJ such
that it captures the jaw motion, but is corrupted by head and body
movements. This enables the system to remove body motion noise
(e.g., head nodding) from the jaw motion signal. However, instead
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Figure 6: Normalized power spectrum of the gyroscope signal
for (a) non-speech-related jaw motion (eating); (b) speech-
related jaw motion. In (a) there is no Peak 3 and most of the
power is distributed between the first two peaks, unlike (b)
which has 3 high power peaks.

of subtracting the two signals as in [79], we use an adaptive finite
impulse response (FIR) filter that converges an input signal to the
desired signal [31]. This can model complex and non-linear noise
characteristics more effectively, and provide better cancellation
performance [8]. Next, we remove the effect of gravity and any DC
bias from the accelerometer data. After applying noise cancella-
tion [79] to remove body motion from jaw motion signals, we use a
third-order band-pass filter to isolate jaw motion (0-5 Hz) and facial
vibrations (5-20 Hz). After this preprocessing, we obtain segregated
jaw motion and facial vibration signals.

Jawthenticate is convenient and can potentially be used contin-
uously. To achieve this, we discard any non-speech-related jaw
motion, the most common of which is eating and drinking. The jaw
motion related to eating has a more regular motion of opening and
closing compared to speech whereas there can be irregular pauses
for better articulation. In the frequency spectrum of eating-related
IMU signals, this reflects as one or two frequencies comprising most
of the energy. Figure 6(a) shows the normalized power spectrum
for the z-axis of the gyroscope when a user is eating, and (b) talk-
ing. We observe that the non-speech jaw motion signal has one
or two frequencies dominating the distribution while speech has a
spread-out power distribution with multiple peaks (at least 3). We
use this property to identify a window as speech or non-speech
jaw motion. Specifically, for every 0.5 seconds of jaw motion data,
we find peaks (whose magnitude is greater than the empirically
determined threshold of 0.4 and are at least 0.5 Hz apart) in the
normalized power spectrum signal. We compute the inter-peak
ratio between the 3𝑟𝑑 and 2𝑛𝑑 peaks, and if this ratio is found to
be less than 0.2 (threshold determined from an ROC curve), this
window is detected as non-speech and discarded, else it is marked
as speech and passed on to the next module.

4.2 Features from Jaw Motion
Next, we extract speech-based features from jaw motion. The com-
plex movements of articulators (tongue, lips, jaw, etc.) are responsi-
ble for speech mannerisms like speech rate, the rhythm of talking,
accents, etc. One way to represent these features would be to encode
them via statistical features, like maximum/minimum and veloc-
ity of jaw motion, which are bound to change with content and
emotions. With Jawthenticate we delve into the intricate process
of human speech articulation and employ a novel methodology
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Figure 7: Intonations [F1] for three different users, two dif-
ferent phrases. The rows represent a user and the columns a
phrase. (a), (b) show similar values (location and magnitude),
like (c), (d), and (e), (f). For the same phrase (each column),
intonations show different trends for different users.

to extract features from both jaw motion and skin deformation.
This approach effectively encodes the unique speech mannerisms
exhibited by each individual user. Notably, this method offers ad-
vantages over deep learning approaches that rely on complex layers
for feature extraction– it requires less training data, making it a
more efficient alternative (Section 6.7). Also, the use of speech man-
nerism extraction in our system ensures its invariance to speech
content, language, and even breathing patterns, given that speech
mannerisms tend to exhibit relatively stable characteristics Section
(6.2;6.4). We extract the following speech-specific features:
■ Feature 1 (F1): Intonations in speech. Different people have

different speaking rates, which can be estimated by the angular and
linear velocity of the jaw. Speech rate is a distinctive speech-related
feature as it is dependent upon social, physical, and psychological
bio-markers which vary across users [36]. However, speech rate can
change with content. Therefore, instead of speech rate, we look at
the intonation and stress in one’s speech. Intonation is the rise and
fall of voice while talking, and stress is a property determined by
the volume and pitch of the vowels. Although we can not measure
these directly from a secondary articulator without audio data,
we extract features that encode these properties. We observe that
some users tend to have higher speech rates at the start of their
phrase than in the middle and the end, while some users tend to
have a monotonous speech rate. Figure 7 shows the intonations
for 3 different users. Each row represents a user, and each column
represents a phrase1.

To leverage intonations, we look for repeatability within each
row, and variation within each column. For the same phrase, a user
exhibits similar patterns for F1, which is different than when other
users say the same phrase. With this insight, we find the locations of
the intonation points where the rate changes, i.e. where the signal
crosses a certain threshold. We find those samples when the signal
transitions outside ±20% of the mean. We save the magnitude of the
signal at these locations, forming a two-value tuple of [magnitude,

1Phrase 1: “How is the weather?” and Phrase 2: “Have a nice day.” for Figure 7- 9
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Figure 8: [F2] Entropy variation for three different users,
two different phrases. The y-axis is the Normalized Shan-
non Entropy for the z-axis of the accelerometer. Each row
represents a user and each column is a phrase. We can see
similarity within different phrases articulated by a user, that
is dissimilar from others.
location]. Though this is somewhat similar to the mean crossing
rate that can be a measure of speech rate, it is noteworthy that
people might have similar speech rates but the variation in speech
rate is distinctive, which is captured by this 2-value tuple.
■ Feature 2 (F2) - Randomness in speech. Another feature

in speech articulation is the randomness or the change in speech
rate over time. To this end, we measure the entropy of the jerk of
the linear acceleration and angular velocity. The intuition is that
when there will be a change in the speech rate, the randomness of
the signal will increase at that time with respect to signal windows
before and after. Specifically, we measure the Shannon entropy [73]
for each 0.1 second window. We leverage these thresholds to learn
speech-based features from jaw motion since they have been pre-
viously used in the audio domain [11, 56]. We form a tuple with
all the values of entropy in each window. Figure 8 shows the jerk
of angular velocity for two phrases spoken by three users. We can
see that the entropy for different phrases for the same user has
similar characteristics, while the entropy or randomness patterns
are different across users.
■ Feature 3 (F3) - Phase variations over time. With this fea-

ture, we aim to extract spectral properties of the jaw motion signal.
However, Discrete Fourier Transform (DFT) cannot detect the tem-
poral distribution of different spectral components, and therefore
Short Time Fourier Transform (STFT) is usually employed. The
drawback with STFT is that the temporal information of the fre-
quency spectrum is not fine-grained and we cannot obtain high
resolution both in the time and frequency domain [81]. We want
a time-frequency domain transform that encodes how the phase
and amplitude of each frequency of interest varies over time for
low-frequency jaw motion signals (0-5 Hz). We, therefore, use S-
Transform [82], to produce a frequency-time representation of the
time series data, as it has been shown to provide high resolution
for low-frequency signals [81]. Figure 9 shows the output of the
S-transform for two phrases for three users. Similar to Figure 7 we
see repeatability in each row (same user) and variation within a
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Figure 9: [F3] Variation of frequencies 1-5 Hz over time, for
three users, two phrases. The phase, especially at the start of
the phrase, is different for different users, while repeatable
across phrases for a user.

column (different users). We calculate the phase for 1 Hz, 2 Hz, 3
Hz, 4 Hz, and 5 Hz signals by calculating the location of the peak
with respect to the length of the phrase.
■ Feature 4 (F4): Speech rhythm. In linguistics, rhythm is one

of the aspects of prosody [62]. It is the beat of one’s speech and
recent discovery from the linguistic literature shows that speech
rhythm has a temporal structure of high regularity [27, 46]. We
extract this regularity by using the Fourier Transform and finding
the frequency bin with maximum amplitude. An assumption of the
Fourier Transform is that the signal can be approximated well as
a weighted sum of sinusoidal basis elements. However, a complex
signal cannot always be broken down into these basic elements
and be approximated as sinusoidal elements. Also, like the Fourier
Transform, Wavelet Transform does not look for regularities di-
rectly in a signal, but represents the signal as a sum of the mother
wavelet, like Mexican hat [5]. To overcome this, we use Periodicity
Transform (PT), to find the period of a signal such that for a signal
x(k) with a period p, x(k+p) = x(k). The PT breaks the signal into
a sum of periodic sequences by projecting onto a set of “periodic
subspaces” and hence this decomposition is accomplished directly
in terms of periodic sequences and not in terms of frequency [71].
PT has been used to find rhythm in different domains of signal
analysis [7, 67, 72]. Given a signal, there are multiple ways to de-
compose it into different sub-periodic signals by projecting them
into periodic subspaces. We use the M-Best Algorithm [72], which
finds M-best periodicities; the best is based on the amount of energy
lost from the signal once that periodicity has been removed. We
select the top M components that capture at least 90% of the power
as that would imply that the projections made by these compo-
nents have captured a higher order of periodicity. We experiment
with different values of M and empirically select M=4 based on the
dominant periodicities method [70].
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Figure 10: Frequency spectrum for facial vibrations (5-20 Hz).
(a), (b) show similar trends, like (c), (d), and (e), (f). For the
same phrase (each column), the frequency spectrum shows
different trends.

4.3 Features from Facial Vibrations
Facial vibrations are obtained from the preprocessing step. They are
generated based on how different facial muscle groups interact and
the facial structure of the user [53]. The distinctive movements of
the articulators dictate how facial muscle groups will interact [59].
Hence, our speech-related features are not only indicative of the
user’s speech mannerisms but also their facial structures and facial
muscle interactions, known to be distinctive for a large popula-
tion [54, 61]. There are limited insights from previous work on how
facial skin and muscles contract and relax during speech articula-
tion, and therefore it is hard to extract speech-based features from
the facial vibrations. However, we observe that these movements
and subtle vibrations vary in accordance with one’s speech man-
nerisms and facial structure. To capture this, we first calculate 100
point FFT for the three axes of the accelerometer in the frequency
range of 5-20 Hz, with a sliding window of 0.1 seconds and 80%
overlap. A 100-point FFT gives us a frequency resolution of 1 Hz at
the given sampling rate. Figure 10 shows the frequency spectrum of
facial vibrations for three users for two phrases of different lengths.
The frequency spectrum for each user is consistent across different
phrases. To represent this feature, we form a tuple with phase and
magnitude for each frequency bin.

4.4 User Identification
Next, we use a Support Vector Machine (SVM) to classify a user
as a legitimate user or an impostor. We collect data from users in
different scenarios explained in Section 5. We chose SVMs as they
are known to be robust to overfitting, can handle noisy data [13],
and have been extensively used by previous authentication sys-
tems [21, 22, 25]. We follow different data splitting techniques
(balanced and imbalanced) to gauge the system’s capability to deal
with data imbalance. To evaluate how the system will perform
when negative data points are not present during training of the
model, we train a one-class SVM. We also performed other split-
ting schemes as in previous studies [22, 49, 93] to comprehensively
evaluate Jawthenticate. During training the SVM, we use 30% of the

Reference IMU

TMJ IMU

Ground Truth (Video)

Mobile App for Data collection

Reference IMU
TMJ IMU

Enclosing
Headphone

(a) (b)

Figure 11: (a) Data collection setup. (b) Jawthenticate can
be integrated with commercial head-worn devices. Example
superposition of our current prototype with Apple AirPods
Max for scale.
data as the validation set to find the best parameters for the SVM.
We perform the following splitting schemes for all users.
• Legitimate user-only classifier (LOC) - This is an imbalanced data

split scheme, wherein we train a one-class SVM for each user. For
each legitimate user 𝑈 , the training data consists of 50% of the
data from𝑈 , and the testing data consists of the remaining 50%
of the data from 𝑈 and 100% of the data from all other subjects.
• Legitimate user-Intruder Classifier (LIC) - This is an imbalanced

data split scheme, wherein we take 50% of the data from legitimate
user𝑈 and 50% of the data from all other subjects in the training
set. The remaining data from 𝑈 and other subjects is used for
testing. We train a two-class SVM for each user with 𝑈 as the
legitimate user and the remaining subjects as impostors.
• Legitimate user-Intruder Proportional Classifier (LIPC) - This is

a balanced data split scheme where we train a two-class SVM
for each user. We have the same number of training samples
in legitimate and impostor classes, with the number of training
samples in the impostor class equal to 50% of the total samples in
the legitimate class (user𝑈 ). We chose impostor samples stratified
for equal representation from all subjects.

5 EXPERIMENT SETUP
In this section, we describe the design and implementation of our
prototype, and the data collection procedure.

5.1 Implementation
Inspired by [79], we build a custom earable prototype with two
IMUs [43]: one placed on TMJ and another placed on the temporal
bone, connected via a silicon ear hook [1] as shown in Figure 11
(a). While our current prototype design targets feasibility, we en-
vision that it can be integrated into open-ear and around-the-ear
earables allowing for optimal sensor placement [75, 78]. A to-scale
example of potential integration with Apple AirPods Max is shown
in Figure 11(b). Most existing earables/headphones/HMDs have
at least one IMU which can be used as a reference IMU; our sys-
tem would need only one additional IMU to be placed on the TMJ.
The current prototype weighs 20 mg with plastic sensor casings
(36mmx27mmx10mm) and the ear hook. This twin-IMU prototype
has been shown to work effectively for the removal of body motion
artifacts [79]. We keep the IMUs in contact with the skin using a
gentle medical-grade adhesive. Besides skin-adhered research pro-
totypes [37, 87] and commercial products [85], FDA-approved [18]
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adhesive-backed wearables are widely used over long-term (e.g.
in glucose [83] and nicotine patches [57]) and are known to be
comfortable [41]. Data is collected at 100 Hz; we log timestamp, 3-
axis accelerometer (± 2g), and 3-axis gyroscope (250 DPS) data. We
stream to an Android Device running the authentication pipeline.

5.2 Data Collection Setup
We evaluate Jawthenticate with 41 users (29 Male; 12 Female) in the
age range of 16-38 years, enrolled in an IRB-approved study. We
collect video as ground truth for labeling. Our participants speak 9
different native languages, Hindi (10), English (8), Greek (4), Persian
(4), Tamil (3), Chinese (3), Korean (3), Italian (3), and Kannada (3).
We ask the users to talk as they normally do and not restrict their
body motion.

A summary of our data collection is presented in Table 1. We
collect conversational data as well as ask the user to read some
phrases. Conversations are spurred by asking questions, such as
"What is your daily schedule?", responses to which are of varying
lengths and content. Phrase data is used to determine if our system
can distinguish between users when they articulate the same phrase.
We selected 15 phrases used in daily life, with each phrase having
15-20 syllables. For example: "How are you doing?" For multilingual
data collection, users were asked to create their own passphrases in
their native language. We ask the users to not produce any sound
for inaudible speech and since we do not use any signal from the
microphone, mumbled sounds will not affect the system. For data
containing body motion noise, participants were instructed to walk
and jog at their regular speeds in a hallway or an empty parking
lot. When experimenting with acoustic noise, we ask users to wear
AirPods and play top Billboard songs 2021 at three levels – 30dB,
45dB, and 60dB – and converse with the users.
• Same user; different phrases (Audible): We collect conversational

data (20 samples (phrases) × 3 sessions) to capture users’ natural
style of articulation. Conversations are spurred by asking ques-
tions, such as "What is your daily schedule?", responses to which
are of varying lengths and content.
• Different users; same phrase (Audible and Inaudible): This data

simulates a passphrase scenario and determines if our system can
distinguish between users when they articulate the same phrase.
We selected 15 phrases used in daily life, with each phrase having
15-20 syllables. For example - "How are you doing?" We collect
90 samples ((15 audible + 15 inaudible) × 3 sessions) per user.
• Same user; different language (Audible and Inaudible): We evaluate

if the features extracted are invariant to the language. We ask
non-native users (33 users) to create 5 passphrases in their native
language and articulate them audibly and inaudibly. We have 30
samples from each user ((5 audible + 5 inaudible) × 3 sessions).
• Numerical data (Audible and Inaudible): We asked 10 users to

form five 6-digit passcodes (e.g. when a user articulates their pass-
codes/SSN). Users repeated each passcode 5 times. We collected
50 samples ((5 audible + 5 inaudible) × 5 numerical passcodes)
from each user.
• Presence of motion noise: We gathered data from 10 users (7 males

and 3 females) while they engaged in physical activities, specifi-
cally walking and jogging. Participants were instructed to walk
and jog at their regular speeds in a hallway or an empty parking

lot. They were asked to engage in a 5-minute conversation, both
audibly and inaudibly, during walking and jogging. Addition-
ally, we collected 10 minutes of data (5 minutes conversational
and 5 minutes audible phrases) after participants finished their
physical activities to assess the influence of changes in breathing
patterns. On average, we obtained 48 samples per user during
walking/jogging and 44 samples post-activity.
• Presence of acoustic noise: We collect data from 12 users with mu-

sic playing. We ask users to wear AirPods and play top Billboard
songs 2021 at three levels (30dB, 45dB, and 60dB) and converse
with the users for 5 minutes audibly, and 5 minutes in an inaudible
manner. We collect a total of 68 samples in this setting.

6 EVALUATION
In this section, we show that: (1) Jawthenticate achieves 97.07%
Balanced Accuracy. (2) It can authenticate users even when they
speak multiple languages. (3) Jawthenticate is robust to external
attacks. (4) In exit survey, 90% users reported the system to be
comfortable.

We identify the following metrics based on their extensive use to
evaluate authentication systems [22, 25, 88, 89, 93]: (1) True Positive
Rate (TPR; how well the system identifies legitimate users). (2) False
Rejection Rate (FRR; how often the system incorrectly classifies
legitimate users as an impostor). 𝐹𝑅𝑅 = 1 −𝑇𝑃𝑅. (3) True Negative
Rate (TNR; how well the system can block impostors). (4) False
Acceptance Rate (FAR; how often the system incorrectly labels
an impostor as a legitimate user). 𝐹𝐴𝑅 = 1 −𝑇𝑁𝑅 (5) Balanced
Accuracy (BAC). 𝐵𝐴𝐶 = (𝑇𝑃𝑅 +𝑇𝑁𝑅)/2.

6.1 Overall Performance
We discuss the overall performance of the three data splitting
schemes (Section 4.4). Figure 12 (a) shows the mean value of TPR,
TNR, and BAC for the LOC, LIC, and LIPC data splits, which are
all greater than 92%. This shows that Jawthenticate can adapt to
different proportions of data from legitimate users and impostors.
The mean values for one-class SVM (LOC) are lower than the other
two schemes. This is understandable because this model has no
explicit information about the impostor distribution. Jawthenticate
achieves less than 7% mean FAR and FRR. The mean values of all
users’ BAC are greater than 90%, indicating robustness across dif-
ferent native languages and accents. For the rest of the evaluations,
we report the performance of the LIPC data splitting scheme, unless
otherwise mentioned.

6.2 Impact of Spoken Language
Language-invariant authentication is a significant contribution of
Jawthenticate rendering it more usable, convenient, and practical
than other voiced authentication systems [49, 74]. To demonstrate
this, we leverage data from the bilingual users in our sample pop-
ulation. We use the data points in the English language as the
training set and data from the native language as the test set for
each user. Figure 12 (b) shows the mean value of TPR, TNR, and
BAC, which are all greater than 92%, indicating that Jawthenticate
is able to extract and learn speech-related features that are specific
to the user and not dependent on the language. The highest mean
values are reported for native Hindi and Tamil users, who were
proficient in the English language and hence their speech rates and
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Setup Evaluates for Data Audible SPS Inaudible SPS #Users #Sessions
Same user; Different phrase Content invariance (Figure 14) C 20 - 41 3
Different user; Same phrase Speech mannerism (Figure 14) P 15 15 41 3

Same user; Different language Language invariance (Figure 12(b)) P 5 5 33 3
Numerical passcode Password entry (Figure 14) D 5 5 10 1
Walking and Jogging Body motion noise (Figure 15) C 52 44 10 1
Post running/jogging Breathing variations (Figure 15) C 48 40 10 1
Music on earphones Acoustic noise (Figure 15) C 82 52 12 1

Table 1: We collect data in diverse conditions to evaluate Jawthenticate’s performance. C: Conversational, P: Phrases, D: 6-digit
numerical passcode, SPS: samples per session per user.
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Figure 12: (a) The mean of TPR, TNR, and BAC is >90% for all training schemes. (b) Performance of Jawthenticate when the
training set is in the English language and the testing set is in the user’s native language.

User U1 U2 U3 U4 U5
FAR 0.067 0.055 0.071 0.059 0.047

Table 2: Impersonation-based mimic attack.
accent were similar in both languages. We do not expect the per-
formance to be affected by users’ language proficiency unless their
speech mannerisms vary significantly across training and testing
languages.

6.3 Attacking Jawthenticate
We now evaluate how well Jawthenticate can defend against mimic
attacks mentioned in §3.2.

Mimic attack (impersonation-based). We collect audible data
with 5 users to simulate a mimic attack. Two users (U1 and U2)
are native English speakers, and three are native Hindi speakers
(U3-U5). Each English speaker mimics another English, and Hindi
speakers mimic other Hindi users. Every user articulates 5 phrases,
15 times each, while the other user(s) observe. After each phrase,
the other user(s) makes 20 attempts to mimic. We report the FAR
in Table 2. The highest FAR is 7.1%, showing that Jawthenticate is
robust to impersonation-based mimic attacks with TNR>92%.

Advanced mimic attack (video-based). We evaluate Jawthen-
ticate with 15 users for the advanced video-based mimic attack,
where the impostor has access to a video of the user talking and
intends to extract jaw motion from the video. We use video for
mimic attacks due to their popularity for behavioral biometric sys-
tems [9, 51, 92]. We employ a pre-trained object tracking model [6]
to track the TMJ sensor, thereby acquiring the linear acceleration
and angular velocity necessary to simulate jaw motion of the le-
gitimate user. To synchronize the IMU data with the video, we
manually mark the initiation of jaw motion in the video and align
it with the corresponding timestamp in the IMU data stream for
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Figure 13: BAC and TNR exhibit a sharp drop when only
Jaw Motion (JM) or Facial Vibrations (FV) features are used,
compared to all features.

each phrase. Given that Jawthenticate also requires facial vibration
features along with jaw motion, we incorporate the facial vibration
features of the impostors. We train a LOC for each user. To attack
the system, we use the feature set extracted from the simulated
jaw motion using the video of the legitimate user and the facial
vibration feature set of the impostor. For each user, we make 700
attempts to break the system. The mean FAR is 11.8% and the mean
TPR is 89.4%. This shows that Jawthenticate is robust to advanced
video-based mimic attacks. It also substantiates that even if an at-
tacker has access to precise jaw motion data, facial vibrations are
distinctive and can prevent such attacks.

6.4 Impact of Different Settings
In this section, we evaluate the effects of different settings on the
performance of Jawthenticate.
■ Impact of different features We evaluate the impact of

jaw motion features and facial vibration features on the overall
system performance. We report mean values of TNR and BAC in
Figure 13, when the system is trained on individual feature sets
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Metric TPR TNR BAC
Mean 0.952 ±3.6% 0.946 ±2.6% 0.949 ±3.1%

Table 3: Change in mean BAC is ≈ 3% for leave-one-session-
out evaluation, showing that Jawthenticate is robust to varia-
tions in sensor placement.

Table 4: Short and commonly used phrases have lower BAC
(Ph1-Ph5) compared to longer ones (Ph6-Ph10).

(jaw motion and facial vibrations), and a combination of both. The
performance for the given metrics exhibit a sharp drop when using
only jaw motion or facial vibration features, as compared to using
all the features. Specifically, the TNR and BAC drop by 44.3% and
42% respectively. This means that by combining jaw motion and
facial vibration features, Jawthenticate provides higher accuracy.
Additionally, we assessed the impact of sequentially omitting one
feature at a time to determine the necessity of each extracted feature.
By executing all possible permutations, we observed at least 10%
decrease in BAC for each omitted feature, indicating the significance
of every feature in maintaining the system’s robust performance.
■ Impact of variation in sensor placement. We evaluate

Jawthenticate’s robustness to variations in sensor placement by col-
lecting data over 3 sessions for all users and conducting leave-one-
session-out evaluation. In the first session, users were instructed on
where and how to place the sensors, and in the other two sessions,
they placed sensors on their own. Hence, the position is never ex-
actly the same from one session to the next. The sessions were on
different days (separated by > 1 week). For the leave-one-session-
out evaluation, we train on data collected from two sessions and
test on the third session. As seen in Table 3, the mean value of TPR,
TNR, and BAC is more than 90% with a change in mean < 3% over
the sessions. These results show that system performs reliably over
different sessions despite minor variations in sensor placement.
■ Impact of phrase selection. We assess the impact of both,

phrase content and length on Jawthenticate. We analyze the phrases
with the lowest and highest BAC and report BAC for ten phrases
across all users in Table 4. The first five phrases (Ph1-Ph5) exhibit
the lowest BAC. We speculate that this is because these phrases are
short and commonly used, and are therefore articulated similarly
by users. These phrases also last less than 3 seconds. The last five
phrases (Ph6-Ph10) are longer and less commonly used phrases;
these phrases have the highest BAC. To further analyze the impact
of phrase length, we input testing phrase samples ranging from
one second to nine seconds, and report mean BAC in Figure 17. We
observe that with just 3 seconds of data acquisition, Jawthenticate
can achieve a BAC>92%. This is much faster than recent earable-
based systems that require 10 seconds of data to authenticate [22].
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Figure 14: Jawthenticate is robust to variations in speech
mannerisms.

■ Impact of speech mannerism. To evaluate Jawthenticate’s
robustness to variations in speech mannerism when users speak
audibly/inaudibly, or when they speak a predetermined phrase
vs. have a conversation, we train and test it on different types of
data. We identify 3 cases: (1) Conversational (audible) vs. phrase
data (audible+inaudible), (2) Audible vs. inaudible using phrase
data, and (3) Conversational (audible) vs. numerical passcodes (au-
dible+inaudible). Figure 14 (first two groups) shows the results for
case 1. We can see that Jawthenticate can successfully recognize
a user whether they use a phrase or have a conversation (mean
BAC ≈ 95%). Figure 14 (last two groups) shows the results for case
2, demonstrating that our system learns fundamental jaw motion
features that can authenticate users for unvoiced speech even when
trained on voiced speech, and vice versa. For case 3, when using
audible and inaudible numerical passcodes for testing, Jawthenti-
cate achieves 91.7% BAC. The slight drop is due to less variations
in how different people say numbers compared to phrases.
■ Impact of body motion and variation in breathing. We

investigate the impact of motion noise and variations in breathing.
Our evaluation involves training the model on data collected in a
noise-free environment (sitting at a desk with no large body move-
ments) and testing it on data obtained during walking/jogging and
immediately after walking/jogging. The first set of bars in Figure 15
presents the mean values of TNR and BAC for walking/jogging. The
BAC>0.9 indicates that motion noise resulting from body motion
has minimal effect on Jawthenticate’s performance. Additionally,
we examine Jawthenticate’s performance when there are variations
in breathing as it can influence speech characteristics. Figure 15 (sec-
ond set of bars) illustrates the TNR and BAC after walking/jogging.
The BAC is >0.9 in both scenarios indicating that changes in breath-
ing have no significant impact on the system’s performance.
■ Impact of acoustic noise. We evaluate Jawthenticate’s per-

formance when users listen to music on earphones. We trained
the system with data collected in noise noise-free environment (no
music playing) and tested it on data collected with music playing
on earphones. Figure 15 shows that Jawthenticate is not affected
by music playing on the earphones. This can be because the vibra-
tions generated by music playing are above 20Hz. From this, we
conclude that Jawthenticate can be used with earphones, without
compromising their functionality.

6.5 Longitudinal Study
To evaluate the performance of Jawthenticate in capturing the
speech mannerisms over the long term, we further conducted a
4-week longitudinal study involving 7 users. We use the data de-
scribed in Section 5.2 to train a model. Then, we use data collected
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Figure 17: Comparison with baselines.

from the same users over the following 4 weeks to serve as the
testing set. In each session, users were asked to audibly articulate
20 phrases (15 phrases provided by us, 5 passphrases created by
the user) and engage in a 5-minute conversation, both audibly and
inaudibly, and repeat this study over a month. On average, one user
finishes 12 sessions in 4 weeks, with a total of 520 samples from
each user. Figure 16 demonstrates a BAC exceeding 0.92, confirming
our system’s robustness over time.

6.6 Identifying Speech-related Jaw Motion
To separate speech from non-speech-related jaw motion, we con-
duct conversations with 5 users while they eat. They were asked
to chew and talk as they felt comfortable. On average, we had 21
minutes of eating and 13 minutes of talking for each user. We man-
ually annotate the boundaries for speech and non-speech data from
the video. If the detected boundary is within 0.1 seconds from the
ground truth we label it as correctly identified speech-related mo-
tion. We achieve a true positive rate of 99% with 2% false positives,
allowing our system to successfully discard non-speech-related jaw
motions in real-world settings.

6.7 Comparison with DL Baselines
We compare Jawthenticate with two deep learning (DL) models
as baselines. We use a Bidirectional LSTM (BiDiLSTM) and LIMU-
BERT [90] with a classifier head (ModLIMU). In BiDiLSTM we
have one Bidirectional LSTM layer, a fully connected layer, and a
classifier layer. For the ModLIMU baseline, we use the pre-trained
model [90] to extract representations, followed by a bidirectional
LSTM as a classifier head. We try different inputs to the two base-
lines: (1) a 3D array of the orientation, (2) a 1D array created by
flattening the orientation, (3) 1D array created by flattening the 6
axis IMU data. We report the evaluation results for input with the
best BAC. Figure 17 shows the amount of training data and authen-
tication data for each system, along with the achieved BAC. The
baselines achieve comparable mean BAC as Jawthenticate. How-
ever, they need a considerably longer sequence of training data and
test data (authentication phrase) to achieve a mean BAC greater
than 90%. Jawthenticate achieves a BAC of 90% with 5 minutes
of training data and only 3 seconds of test data, while BiDiLSTM
and ModLIMU need more than 20 minutes of training data and 8-9
seconds of data for authentication to achieve the same BAC.

Table 5: Comparing Jawthenticate with related earable
speech-based authentication systems.

6.8 Implementation and Study Results
■ Latency and Power Consumption. We implement Jawthen-
ticate on Android Smartphone Pixel 3XL running Android 12.0.
We use TensorFlow lite to run the SVM on mobile device. We run
the complete pipeline for 150 phrase instances. Jawthenticate takes
733ms and consumes 268mJ for running the end-to-end pipeline to
authenticate a user. This includes streaming data over Bluetooth
from the prototype, preprocessing, anti-noise filtering, extracting
the features, and running LIPC two-class SVM. These latency num-
bers are comparable with other recent earable-based authentication
systems [22, 49] and can further be improved by optimizing the
code.
■ Exit Survey. We conduct an exit survey with all participants,

using an anonymous Google Form, designed after the SUS sur-
vey [47] to validate the usability and practicality of Jawthenticate.
The form contains several questions on a Likert scale [38] to gauge
the users’ perception of Jawthenticate on comfort level, usability,
and willingness to use it continuously over long periods. 90.2% users
strongly agree that Jawthenticate is comfortable, and 92% users
think it is intuitive to use. When asked if they would be willing to
use Jawthenticate as a second-factor authentication device, 87% of
the users strongly agree, and 88% of users report being willing to
wear it for more than 3 hours. These responses are encouraging
and show affinity to accept Jawthenticate.

7 RELATED WORK
Jawthenticate is the first work to use jaw motion as a biometric
for authentication using voiced and unvoiced speech for multiple
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languages. Table 5 presents a summary of comparison with existing
work on speech-based authentication earable systems, where we
compare the capability to derive a user’s speech mannerism (speech-
based features), generalizability over multiple languages, support
of inaudible speech, and resistance to audio/replay attacks.

While EarEcho [25] and EarDynamic [89] exploit changes in
a user’s ear canal when they speak by transmitting active probe
signals into the ear, Vocal Resonance [50], EarPrint [24], and Mandi-
Pass [49] capture voice-induced body sound transmission. Toooth-
Sonic [88] leverages the sonic effect produced when a user performs
teeth gestures for earable authentication that are captured via an
inward-facing microphone, but its functionality is hindered when
music plays on the earable. Hu Et al. [34] estimate the user-specific
occluded ear canal transfer function by capturing the difference be-
tween the sounds inside and outside the ear. Like ToothSonic, [34]
cannot perform authentication when music is playing on the ear-
able and requires strong ambient sounds that can be captured by the
in-ear microphone. Unlike both these systems, Jawthenticate does
not require a microphone or strong ambient sounds, and can be used
while music is playing on the earable. Face-Mic [74] uses the speech-
associated facial vibrations (require audible speech) captured via
IMUs in VRs to identify a user. EchoVib [2], Accuth [30] (sampling
IMU at 500 Hz), and VocalPrint [48] (directs mmWave signals at
user’s throat) also leverage vocal cord vibrations generated during
audible speech articulation. VAuth [21] uses a microphone and IMU
for continuous authentication by matching the speech-associated
body-surface vibrations. All these systems either require the user
to speak audibly, which may not always be practical due to privacy
and accessibility constraints, sample at a high frequency making
real-world use impractical, or use external setups constraining them
to specific environments.

Bone-conduction-based systems like SkullConduct [68] do not
require a user to produce audible sound. However, they play white
noise in the earphones which might be unpleasant to the user,
susceptible to external sounds, and prone to sound/voice injection-
based attacks. EarGate [22] requires that a user walk every time to
authenticate themselves, which can be impractical in many real-
world scenarios. Similarly, EarID [93] captures behavioral character-
istics of the user via earphone IMU. In contrast to our work, none of
the systems have been demonstrated to work with both audible and
inaudible speech. By using jaw motion and facial vibrations as the
signature and validating it with a larger population/languages than
other works, we establish the unique contributions of Jawthenticate.

8 DISCUSSION
Jawthenticate is an early authentication prototype and a first of its
kind that leverages jaw motion and facial vibrations to perform
microphone-free speech-based authentication.

Limitations. Currently, we have evaluated Jawthenticate with
41 users. It is likely that a larger population size will affect the
result. To address this, we will conduct a larger study and employ
techniques [10, 12, 40] that could adjust based on the specific user
population. We also plan to evaluate the system at high speeds (in
a bus or car) and the impact of variations in speech mannerisms
due to the influence of alcohol, cold, cough, caffeine, and emotions.
Comparison with standard biometric authentication systems:
Our system has lower performance compared to top-3 standard

biometric authentication systems [66], fingerprint [91] (TPR1%),
facial recognition [26] (99% BAC), and iris recognition [17] (>99.9%
TPR). However, it is important to note that Jawthenticate is the first
of its kind and is still in its early stages. We believe that with further
research, Jawthenticate can be as accurate as the standard biomet-
ric authentication systems and can even be used as a secondary
authentication medium.
Frequency of retraining, model extraction, and physical at-
tacks: The speech mannerisms of users can change over time due
to various factors like age, health, and emotions. We plan to study
the frequency of retraining the system to keep it up-to-date. This
can be done via a closed-loop system where we ask users to provide
some data for training and developing a system with adaptive learn-
ing capability. We also plan to make Jawthenticate robust against
model extraction attacks using techniques like limiting the number
of unsuccessful trials, adding noise to the model’s output [32], and
differential privacy during training [28].

9 CONCLUSION
Jawthenticate learns speech-based features without using a micro-
phone and is invariant to changes in the content (conversational,
passphrase, or numerical passcode) or the spoken language. It per-
forms well for both, audible and inaudible speech. Experiments
with 41 users show that Jawthenticate achieves a balanced accuracy
of 97.07%. We envision that Jawthenticate can enable private hands-
free voice-free authentication in noisy environments (e.g. factory
or train), in quiet spaces (e.g. library or theatre), or for patients
who cannot produce sound but have their jaw movements intact
(e.g. tracheostomy). Jawthenticate can also be used as a secondary
authentication factor to enhance the security of existing systems.
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