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Abstract
Drowning incidents can occur in swimming pools even with pro-
fessional lifeguards present. This is because drowning swimmers
often face difficulties in calling for help due to choking, making it
challenging for lifeguards to recognize them and provide a timely
rescue. To address this problem, this paper presents AquaHelper,
an underwater SOS system that can transmit and detect acoustic
SOS signals in swimming pools. Specifically, a wearable device
(e.g., a smartwatch) serves as an underwater SOS transmitter, with
which a swimmer can call for help in emergency situations. Multiple
underwater acoustic receivers are deployed to detect SOS signals
and promptly alert lifeguards. The main challenge lies in the low
transmission power of lightweight wearable devices, which poses
difficulties in detecting weak SOS signals, particularly in low-SNR
underwater scenarios. To achieve reliable underwater SOS detec-
tion, AquaHelper develops novel techniques (e.g., incorporating
high-order harmonics, multi-scale window aggregation, and coher-
ent combining of multiple receivers) to fully leverage the spectral,
temporal, and spatial diversity of underwater acoustic signals. We
also describe lessons learned and our solutions to address practical
challenges involved in underwater SOS transmission and detection.
Our experiments demonstrate the effectiveness of AquaHelper in
detecting SOS signals in typical swimming pool environments.

CCS Concepts
• Human-centered computing → Ubiquitous and mobile comput-
ing design and evaluation methods.
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Figure 1: Underwater SOS transmission and detection.

1 Introduction
Each year, there are an average of 390 deaths due to drowning
in swimming pools in the US [6]. It is commonly assumed that
distressed swimmers could splash and yell for help during drown-
ing, while nearby lifeguards quickly recognize them and provide
timely rescue. In reality, however, most swimmers in trouble sink
quickly and quietly underwater [3]. Therefore, even when profes-
sional lifeguards are present, some individuals still drown due to
delayed rescue, often because lifeguards can be distracted or may
miss distress signs [19]. The worldwide rescue standard expects
lifeguards to discover the drowning incidents within 10 seconds
and rescue within 20 seconds, known as the 10/20 principle [12].
The chance of survival increases with earlier rescue efforts—every
second counts. Unfortunately, only 16% of the drowning swimmers
are discovered within 10 seconds by lifeguards. On average, it takes
around 69 seconds to discover a person in distress [28].

To aid lifeguards in detecting drowning individuals, existing
solutions [1, 2, 4, 5, 29, 45, 65] mainly utilize specialized cameras
installed above or in swimming pools for drowning detection. Most
of them generate a warning signal when a swimmer is detected
stationary in the water for a period of time, while the drowning
person may already have suffocated [44]. Moreover, vision-based
solutions are typically susceptible to poor lighting conditions, swim-
mer occlusions, and highly dynamic backgrounds [29]. As a result,
many drowning swimmers may miss the best rescue time if we
solely rely on vision-based systems.

As water-proof smartwatches are becoming increasingly popu-
lar for swimmers in assessing swimming performance [8, 11], can
we repurpose a smartwatch as an SOS transmitter? We provide an
affirmative answer by developing AquaHelper, an acoustic SOS sys-
tem that can work in underwater scenarios. As illustrated in Fig. 1,
AquaHelper consists of two main components: a wearable device
based SOS transmitter and multiple receivers deployed underwater.
AquaHelper uses speakers widely available in wearable devices to
transmit acoustic SOS signals, which have much better underwater
propagation properties than radio signals [22]. A swimmer can
easily initiate the SOS transmission by pressing a rescue button on
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a smartwatch in case of drowning or sudden discomfort. In addition,
AquaHelper provides an API for existing wearable based drowning
detection methods [42, 46, 55] to transmit SOS signals underwater.
On the other hand, once the SOS signals are detected, AquaHelper
will immediately alert lifeguards on duty and visualize the possible
location of a drowning swimmer on a screen so that lifeguards can
provide a timely rescue.

Turning the concept of AquaHelper into a practical system en-
tails a series of technical challenges. First, lightweight smartwatches
have relatively weak transmission power limited by their tiny form
factors. In a large swimming pool, reliably detecting weak SOS
signals with substantial underwater attenuation is challenging. Fur-
thermore, underwater noise (e.g., water flowing and air bubbles)
further reduces the Signal-to-Noise Ratio (SNR) [22]. Addition-
ally, swimming pool environments suffer from interference (e.g.,
pump operations and intense splashing), which spans across a wide
frequency band, severely hampering signal detection. Second, un-
derwater acoustic channels are inherently dynamic, both in time
and frequency due to various factors such as water flow and chan-
nel selective fading [22]. Consequently, we need a careful design
of SOS signals to ensure high signal detectability and strong re-
silience to frequency selective fading. Third, in contrast to open
water, the swimming pool’s shallow and confined nature causes
complex multipath reflections originating from the pool bottom,
side walls, water surface, and swimmers [56]. These multipaths
significantly affect SOS localization.

AquaHelper aims to enable lifeguards to recognize and rescue
drowning people as early as possible, necessitating reliable SOS
detection and visualization in low-SNR swimming pool environ-
ments. To achieve this goal, AquaHelper utilizes acoustic chirps as
SOS signals. Chirp signals exhibit a linearly increasing frequency
across the entire frequency band [43]. This characteristic makes
them robust against frequency selective fading and the Doppler
effect [39]. On the receiver side, we coherently aggregate the spec-
tral high-order chirps, temporal consecutive observation windows,
and multiple spatial receivers in the frequency, time, and spatial
domain, respectively, to enhance the SNR of SOS signals that could
otherwise be missed. To visualize the location of a drowning swim-
mer, we first initiate a pre-calibration operation to synchronize
the distributed receivers. Next, we leverage the time-frequency lin-
earity of chirp signals to separate the direct path from multipath
effects, which allows us to precisely estimate the arrival time of SOS
signals. After that, we partition the swimming pool into small grids
and generate a visualization that indicates the likelihood of the
drowning swimmer’s presence within each grid. Thus, lifeguards
can quickly identify the drowning user, facilitating swift and effec-
tive rescue efforts. To summarize, this paper makes the following
contributions:

• To the best of our knowledge, AquaHelper is the first under-
water drowning SOS transmission and detection system that
transforms lightweight wearable devices (e.g., smartwatches)
into SOS signal transmitters for swimmer safety.

• We develop an underwater acoustic SOS detection method
that fully leverages the signal diversity in the spectral, tem-
poral, and spatial domains to significantly improve the SNR
and achieve reliable SOS detection and visualization.

Transmitter
…
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Multi-scale Signal Detection

Noise floor
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Alert

Arrival Searchingi
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Figure 2: System overview of AquaHelper.
• We conducted a comprehensive evaluation of AquaHelper in

swimming pools, and the results show that AquaHelper can
effectively detect SOS signals and alert lifeguards to increase
the chances of a timely rescue operation.

We emphasize that AquaHelper is not intended to replace profes-
sional lifeguards or other swimmer supervision techniques but to
work alongside them, providing an additional safety net and a help-
asking channel for swimmers. The objective is to alert lifeguards
in case of an emergency and to shorten the rescue time, which can
be of utmost importance for drowning persons in need.

2 AquaHelper Overview
Most smartwatches are equipped with one or more physical buttons
on the side, offering swimmers a convenient means to trigger a
command. AquaHelper allows swimmers to send SOS signals by
pressing a rescue button in case of drowning or sudden discomfort,
enabling them to actively seek for help. In addition, AquaHelper
provides an API for existing wearable-based drowning detection
systems [42, 46, 55] to send underwater SOS signals. Such an ap-
proach will leverage the ubiquity of wearable devices to democratize
swimming safety and make it available to everyone with a water-
proof smartwatch. Swimming pools can also provide smartbands
to swimmers for temporary uses. Therefore, our system assumes
the availability of water-proof smartwatches as transmitters and
pre-deployed hydrophones in swimming pools as receivers.

Figure 2 illustrates the system overview of AquaHelper. In an
emergency, a swimmer can activate SOS transmission by pressing
a rescue button on the smartwatch. The underwater acoustic re-
ceivers continuously monitor SOS signals in a multi-scale manner.
Upon detection of an SOS signal, AquaHelper will immediately
alert lifeguards through audible alarms and visualize the incident
area on a screen. This real-time information empowers lifeguards
to provide timely rescue to drowning swimmers.

In the following, we describe the key components of AquaHelper
including SOS transmission (Sec. 3), SOS detection (Sec. 4), and SOS
alerting and visualization (Sec. 5). We also describe lessons learned
and our solutions to address some practical issues (Sec. 6).

3 SOS Transmission
3.1 Challenges of Underwater SOS

Transmission and Detection
The key objective of AquaHelper is to transmit SOS signals using
lightweight wearable devices (e.g., smartwatches), reliably detect
the signals at underwater receivers, and then alert lifeguards in a
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Figure 3: The Chirp signal and dechirp process.
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Figure 4: Underwater noise and channel property.

timely manner. Intuitively, we can send a single-tone sine wave as
the SOS signal and examine the corresponding frequency power
on the receiver side. However, several factors pose significant chal-
lenges in accomplishing this goal. The limited transmission power
of smartwatches, due to their small size, hinders the strength of
SOS signals. Moreover, the underwater environment introduces
substantial attenuation, causing the signal to weaken significantly
over long distances before arriving at the receiver. During the prop-
agation in underwater channels, SOS signals also suffer from fre-
quency selective fading due to multipath effects that arise from
signal reflections and scattering within swimming pools [21]. Ad-
ditionally, the underwater environment introduces various sources
of noise, including bubbles, splashes, and water pumps, which can
overpower the already weak SOS signal [22]. Collectively, these
factors contribute to an extremely low SNR, making the detection
of underwater signals a highly challenging task.

3.2 Acoustic Chirp as SOS Signals
To overcome these challenges, we consider both the signal design at
the transmitter and the reception strategy at the receiver to jointly
improve the SNR. On the transmitter side, we use the acoustic
chirp as the SOS signal. As shown in Fig. 3(a), the frequency of a
chirp increases linearly with time. The chirp signal spreads within
a frequency band and hence is robust to frequency selective fading.
More importantly, it features the pulse compression property [18],
which means its signal power can be accumulated over time to yield
a high SNR after the dechirp-based demodulation [64]. Thanks to
this property, the chirp signal can be detected even under the noise
floor (Fig. 3(c)), which makes it ideal for long-range communication
[63]. Mathematically, a chirp can be represented as follows:

𝑆 (𝑓 ′, 𝑡) = 𝐶 (𝑡) · 𝑒 𝑗2𝜋 𝑓 ′𝑡 = 𝑒 𝑗2𝜋 (𝑓0+ 𝑘
2 𝑡 )𝑡 · 𝑒 𝑗2𝜋 𝑓 ′𝑡 (1)

where 𝐶 (𝑡) = 𝑒 𝑗2𝜋 (𝑓0+ 𝑘
2 𝑡 )𝑡 denotes a base chirp, starting from 𝑓0.

𝑘 = Bw
𝑇 is the increasing rate of the frequency, where Bw and 𝑇

are the bandwidth and the chirp duration, respectively. 𝑆 (𝑓 ′, 𝑡) is
a time-shifted version of the base chirp, starting from 𝑓0 + 𝑓 ′, and
its initial frequency is 𝑓 ′. The chirp signal adopts Chirp Spread
Spectrum (CSS) modulation [64], in which we can demodulate the
chirp 𝑆 (𝑓 ′, 𝑡) through multiplying it by the conjugate of the base
chirp, denoted by 𝐶−1 (𝑡). This procedure is called dechirp and is
represented below:

𝑆 (𝑓 ′, 𝑡) ·𝐶−1 (𝑡) = 𝐶 (𝑡) · 𝑒 𝑗2𝜋 𝑓 ′𝑡 ·𝐶−1 (𝑡) = 𝑒 𝑗2𝜋 𝑓 ′𝑡 (2)

Then, we can perform a Fast Fourier Transform (FFT) on the dechirped
signal, and the power of all samples will be accumulated at the initial
frequency 𝑓 ′.

Fig. 3(b) shows a chirp with the initial frequency 𝑓 ′ = 0 (i.e.,
a base chirp), which is almost overwhelmed by the noise. After

dechirp and FFT (Fig. 3(c)), the power of all chirp samples is concen-
trated at the initial frequency (0 𝐻𝑧). In contrast, the noise spreads
across the whole frequency band. Consequently, the dechirped sig-
nal peak stands out the noise floor. We detect the SOS signal by
examining if the highest peak satisfies 𝑋𝑝𝑒𝑎𝑘 > 𝑋𝑛𝑜𝑖𝑠𝑒 + 𝛽𝜎 (𝑋 ),
where 𝑋𝑝𝑒𝑎𝑘 is the highest FFT peak, 𝑋𝑛𝑜𝑖𝑠𝑒 is the noise floor, and
𝜎 (𝑋 ) is the standard variance. 𝛽 is the threshold. This energy ac-
cumulation property of chirp signals opens up the possibility of
SOS detection in low-SNR underwater scenarios. We will introduce
more reception strategies to improve the SNR on the receiver side
in Sec. 4.

3.3 SOS Chirp Design
The design of the SOS chirp involves careful consideration of the
bandwidth and duration parameters. While a wider bandwidth and
longer duration could potentially increase the accumulated energy
after dechirp in theory, the property of underwater channels must
be considered to maximize the SNR improvement.

Frequency. To determine the appropriate bandwidth for SOS
chirps, we analyze the spectrum of underwater noise, as shown in
Figure 4(a), and plot the Cumulative Distribution Function (CDF)
of its energy with an increasing frequency in Figure 4(b). We can
observe that 96% of underwater noise is distributed below 1 kHz
[22]. In this case, a highpass filter with a cutoff frequency of 1 kHz
can be used to remove the vast majority of the noise. However,
considering the transition width of a non-ideal filter, there is a
possibility that residue noise could still overpower the weak SOS
signal. Therefore, we leave 500 Hz as the guard band and choose
1.5 kHz as the lower bound of the SOS chirp. We also perform the
channel estimation between the transmitter and receiver 5m apart
underwater using a chirp. The frequency response is shown in
Fig. 4(c). We can see a rapid attenuation above 3.5 kHz since higher
frequencies suffer more from the attenuation underwater [22]. As
such, we set 3.5 kHz as the upper bound of the SOS chirp. Therefore,
we choose 1.5 ∼ 3.5 kHz as the bandwidth of SOS chirps, striking a
balance between noise interference and signal attenuation.

Duration. Considering the low transmission power of smart-
watches and the severe attenuation over underwater channels, the
signal at the receiver side would have a very low SNR. In this case,
a longer chirp duration can theoretically accumulate more energy,
increasing the chance of successful SOS detection [64]. However,
a longer chirp duration requires a larger detection window and
longer waiting time. To strike a balance between effectiveness and
efficiency, we set the chirp duration to one second and enable smart-
watches to transmit chirps consecutively. Accordingly, we design
a dynamic SOS detection scheme utilizing multi-scale detection
windows that can adapt to varying SNR scenarios.
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Figure 5: Incorporating high-order chirps.

Window Dechirp

Figure 6: Signal Detection with window misalignment.

4 SOS Detection
As a drowning rescue assistant, AquaHelper should satisfy two
key requirements—high detection reliability and short response
time. To strike a balance between the two potentially conflicting
goals, AquaHelper makes full use of received chirp samples so
that it can aggregate sufficient power to achieve reliable detection
in a multi-scale manner. In particular, AquaHelper enhances the
chirp SNR by dynamically aggregating the energy from high-order
harmonics, multiple detection windows, and different receivers in
the frequency, temporal, and spatial domains, respectively.

To process the acoustic signals captured by underwater micro-
phones, we down-convert the real-valued signal 𝑆𝑅 (𝑓 ′, 𝑡) to the
baseband by multiplying with the cosine and sine components of
the carrier frequency and then lowpass filtering:

𝑆 (𝑓 ′, 𝑡) = LPF (𝑆𝑅 · 𝑐𝑜𝑠2𝜋 𝑓𝑐𝑡) − 𝑗 · LPF (𝑆𝑅 · 𝑠𝑖𝑛2𝜋 𝑓𝑐𝑡) (3)
where 𝑓𝑐 is the center frequency of the base chirp (i.e., 2.5 kHz), and
LPF (·) is the lowpass filter with a cutoff frequency of Bw

2 . Thus,
we can obtain the complex chirp signals to facilitate dechirp and
subsequent processing.

4.1 Incorporating High-order Harmonics
Acoustic transceiver systems are typically expected to be linear.
However, due to hardware imperfection of the diaphragm and ampli-
fier, there is usually some form of non-linearity in practical acoustic
systems [15, 53]. As a result, the acoustic chain brings nonlinear dis-
tortion, introducing high-order harmonics to the recorded chirps:

𝑆𝑅 (𝑓 ′, 𝑡) =
∞∑
𝑟=1

𝑎𝑟𝑆
𝑟∗ (𝑓 ′, 𝑡) ≈ 𝑎1𝑆∗(𝑓 ′, 𝑡)︸������︷︷������︸

Linear

+𝑎2𝑆
2∗ (𝑓 ′, 𝑡) + 𝑎3𝑆

3∗ (𝑓 ′, 𝑡)︸�������������������������︷︷�������������������������︸
Nonlinear

= (𝑎1 + 3𝑎3
4 )𝑐𝑜𝑠 (2𝜋 (𝑓0 + 𝑘𝑡 + 𝑓 ′)𝑡)

+ 𝑎2
2 𝑐𝑜𝑠 (2𝜋 (2𝑓0 + 2𝑘𝑡 + 2𝑓 ′)𝑡)

+ 𝑎3
4 𝑐𝑜𝑠 (2𝜋 (3𝑓0 + 3𝑘𝑡 + 3𝑓 ′)𝑡) + 𝑎2

2
(4)

where 𝑟 is the order index, and 𝑎𝑟 is a gain coefficient. 𝑆∗(𝑓 ′, 𝑡) =
𝑐𝑜𝑠 (2𝜋 (𝑓0 +𝑘𝑡 + 𝑓 ′)𝑡) are high-order harmonics produced at micro-
phone recording components. In practice, the higher-order terms
(larger than 3) are extremely weak and can be ignored.

As shown in Fig. 5, we can observe that the power of the chirp
signal is dispersed to two parts: the fundamental chirp and its
high-order chirps which start from 𝑟 (𝑓0 + 𝑓 ′) and increase with

a rate of 𝑟𝑘 . We note that these high-order chirps are generated
due to hardware imperfection during recording at the microphone,
independent of the channel attenuation in high-frequency bands as
mentioned in Sec. 3.3. Therefore, we can aggregate these chirps to
compensate for the energy loss due to the microphone nonlinearity.

Given that the nonlinearity of most electronics is symmetric (i.e.,
the same impact on positive and negative signal parts), the odd
harmonics will be much higher than the even ones [48]. Hence,
we only use the 3rd harmonic chirp to enhance the SNR signal.
Specifically, we perform down-conversion on recorded signals but
with different center frequencies to separate the fundamental chirp
and its 3-order chirp. After that, we can perform dechirp and FFT
on them individually. Since the 3-order chirp is always three times
higher than the fundamental chirp in the frequency, we can down-
sample the dechirp FFT result of the 3-order chirp by one-third and
then add it to the dechirp FFT of the fundamental chirp, as shown in
Fig. 5. Consequently, two SOS peaks will be aligned and superposed
constructively, while the random noise will be added destructively.
In this way, we can compensate for the diffused energy because of
hardware imperfection to enhance SNR in the frequency domain.

4.2 Handling Window Misalignment
The aforementioned detection approach assumes that the detection
window aligns well with the chirp edges. However, such an as-
sumption rarely holds since the receiver does not know the chirp’s
accurate arrival time due to the dynamic underwater channel. As
shown in Fig. 6, if the detection window and the chirp signal are
not aligned, there would be two fragments from adjacent chirps
in the window. These two chirp fragments have different initial
frequencies. Consequently, the SOS peak in the FFT result after
dechirp will be split into two lower peaks: 𝑓𝐴 , and 𝑓𝐵 = 𝑓𝐴 − Bw.

To address this issue, we adopt a downsampling technique [64].
Specifically, we downsample the dechirped signal with a sampling
rate equal to the bandwidth Bw. Thus, the second frequency peak
𝑓𝐵 will be merged with the first peak 𝑓𝐴 due to frequency aliasing:

𝑓 alias
𝐵 = |𝑓𝐵 − ℓ · Bw | , ℓ ∈ Z (5)

We can see that 𝑓 alias
𝐵 = 𝑓𝐴 when ℓ = −1. However, since the

fundamental chirp and its 3-order chirp have different bandwidths,
we cannot downsample the recorded signal directly with a single
sampling rate of Bw. Instead, we downsample the fundamental
chirp and its 3-order chirp using different downsampling factors:
24 for the fundamental chirp (48𝑘𝐻𝑧 → 2𝑘𝐻𝑧, Bw), and 8 for the
3-order chirp (48𝑘𝐻𝑧 → 6𝑘𝐻𝑧, 3Bw). After that, we can perform
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Figure 7: Multi-scale signal detection. Figure 8: Sample-level synchronization.

FFT and add their respective results to incorporate the 3-order chirp.
By doing so, AquaHelper can address the misalignment issue and
detect the SOS chirp regardless of the window’s location.

4.3 Aggregating Multi-scale Windows
The dynamic underwater channel is affected by many factors, such
as distance, noise, occlusion, and interference. If the SNR is high, it
is possible to detect the SOS signal within a single window. How-
ever, if the SNR decreases, the signal becomes very weak and cannot
be detected even if we accumulate the energy of an entire chirp.
Thus, we adopt a multi-timescale signal detection approach, which
keeps the latest consecutive windows (e.g., three windows) in the
buffer and successively aggregates multiple windows to detect the
SOS signal. As shown in Fig. 7, if the SOS signal is detected in the
first window, AquaHelper will alert lifeguards immediately. Other-
wise, we buffer this window and concatenate it with the following
windows for iterative detection until the SOS signal power goes
beyond the noise floor. This multi-scale approach can adaptively
detect the SOS signal in the underwater scenario with dynamic
SNRs, which strikes a balance between detection effectiveness and
efficiency.

4.4 Combining Multiple Receivers
In addition to aggregating multiple windows, we also utilize multi-
ple receivers to further enhance SNR. The basic idea is to coherently
combine the signals received on multiple receivers. Specifically, we
align and superpose the signals from multiple receivers:

𝑆 =
𝑁∑
𝑛=1

𝑆𝑛 (𝑓 ′, 𝑡 − ℎ𝑛Fs
) (6)

where 𝑁 is the number of receivers, Fs is the sampling frequency,
and 𝑆𝑛 is the received signal on the𝑛𝑡ℎ receiver.𝐻 = {ℎ1, ℎ2, ..., ℎ𝑁 }
is the sample offset vector of receivers, where ℎ1 = 0, and ℎ2 is the
sample delay between receiver Rx1 and receiver Rx2. However, the
sample offset 𝐻 cannot be obtained before detecting the SOS signal,
creating an egg-and-chicken problem. A simple but inefficient solu-
tion can be a brute-force search for all possible sample delays to
maximize the FFT peak after dechirp. However, if different receivers
are not synchronized, the sample delays can have a large possible
range which would impose significant computational overhead.

To deal with this problem, we employ a pre-calibration process
to synchronize different receivers during system launch, which will
be described in Sec. 5.1. By doing so, we can substantially reduce
the search space by exploiting the prior knowledge of a maximum

time delay as a constraint based on the swimming pool geometry.
For example, if two receivers Rx1 and Rx2 are synchronized with
their respective sampling indices𝑚1 and𝑚2, then the search range
of ℎ2 can be reduced as:

ℎ2 ∈
[
𝑚2 −

max (𝑑1,2)
𝑣𝑠

,𝑚2 +
max (𝑑1,2)

𝑣𝑠

]
(7)

where max (𝑑1,2) is the maximum distance difference between the
path from the signal source to the two receivers, which is known
beforehand based on the deployed receiver locations. 𝑣𝑠 is the speed
of acoustics in water. In this way, we can significantly reduce the
computational overhead and expedite the SOS detection process.

5 SOS Alerting and Visualization
Upon detecting an SOS signal, AquaHelper immediately notifies
lifeguards through sound alerts. To further reduce every second
of the rescue time, AquaHelper also visualizes the possible area
where the drowning person is located in the swimming pool on a
nearby screen. To this end, AquaHelper should achieve accurate
location estimation and effective visual coverage. However, there
are practical challenges that need to be addressed.

Challenges of SOS Localization and Visualization. Intu-
itively, we may compare the timestamps of transmission and re-
ception to calculate the time of flight (ToF) of acoustic signals to
estimate the swimmer’s location. This solution does not work well
because of the following reasons. (1) Lack of synchronization. The
transmitter and receivers are not synchronized due to their different
local clocks and OS latency. Previous works [21, 47] address this
challenge using two-way communication and timestamp exchange.
However, building additional communication channels from the
hydrophones back to a smartwatch is challenging due to the low
reception sensitivity of a lightweight smartwatch. Moreover, the
limited local computational capability of a smartwatch makes it
hard to efficiently execute complex algorithms to detect weak reply
messages from hydrophones over low-SNR underwater channels.
(2) Arrival time estimation. SOS localization requires precise esti-
mation of the arrival time of SOS signals at the receiver. However,
due to the dynamic underwater channels, the receivers may not be
able to detect the SOS chirp at the very beginning and miss a few
samples, leading to a localization error. (3) Multipath reflections.
The swimming pool environment introduces significant multipath
reflections due to its shallow and confined nature. To avoid obstruct-
ing swimming activities, the receivers are deployed on the pool
wall, exacerbating the multipath effect. We present our solutions to
address these practical challenges in the following.
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Figure 9: Searching the arrival time of SOS signals.

5.1 Receiver Synchronization
To deal with the first challenge, we propose a sample-level synchro-
nization protocol tailored for underwater distributed receivers. The
high-level idea is to calibrate the receiving buffer of different re-
ceivers before localization with the known distance between them.
As shown in Fig. 8, for the receiver Rx𝐴 , in addition to an under-
water microphone, we also attach a high-power underwater loud-
speaker to broadcast a synchronization signal at 𝑡0. Subsequently,
the signal arrives at the receivers Rx𝐴 and Rx𝐵 at the sample in-
dex𝑚𝐴1 and𝑚𝐵1 in their recording buffer, respectively. Given the
known distance 𝑑𝐴𝐵 between Rx𝐴 and Rx𝐵 , we can synchronize
the two receivers by aligning the buffer of Rx𝐵 with Rx𝐴 by the
calibrated index 𝑚′

𝐵1
= 𝑚𝐵1 − 𝑑𝐴𝐵 ·Fs

𝑣𝑠
. AquaHelper uses a down

chirp with a decreasing frequency as the synchronization signal,
orthogonal to SOS up-chirps.

This calibration-based synchronization approach offers two ad-
vantages. First, it effectively reduces the search space for coherently
combining signals from multiple receivers (Sec. 4.4) and opens up
opportunities for SOS localization and visualization. Second, unlike
the existing ToF-based methods, this method is transparent to users
(i.e., transmitter) and does not require their active involvement.

5.2 Arrival Time Estimation
After synchronization, we can calculate the Time Difference of
Arrival (TDoA) of SOS chirps. Suppose the SOS signal transmitted
by the smartwatch𝑇𝑥 reaches Rx𝐴 and Rx𝐵 at the sampling indices
𝑚𝐴2 and𝑚𝐵2 , we can calculate TDoA 𝑡𝐴𝐵 between the two receivers
by sample counting [47]:

𝑡𝐴𝐵 =
𝑚𝐵2 −𝑚

′
𝐵2

Fs
=

(𝑚𝐵2 −𝑚𝐵1 ) − (𝑚𝐴2 −𝑚𝐴1 )
Fs

+ 𝑑𝐴𝐵
𝑣𝑠

(8)

Considering the high transmission power of underwater loud-
speakers, we can use a matched filter to detect the synchronization
signal (i.e.,𝑚𝐴1 and𝑚𝐵1 in Fig. 8). However, the exact arrival time
of weak SOS signals (𝑚𝐴2 and𝑚𝐵2 ) is hard to measure due to the
dynamic nature of underwater channels. Figure 9 illustrates the
SOS chirp signals after down-conversion in two typical scenarios.
Theoretically, the FFT peak should be 𝑓0 = −Bw

2 Hz if the detection
window is exactly aligned with the chirp arrival time𝑚0. In prac-
tice, due to the low SNR, the SOS signal may not be detected at the
beginning (i.e.,𝑚0) but at a later time (e.g.,𝑚1). Consequently, the
frequency peak after dechirp becomes 𝑓1 instead of the expected
frequency peak 𝑓0. In high-SNR situations, the SOS signal can be
detected with a fractional chirp at an earlier time (e.g.,𝑚2) as illus-
trated in the figure.

To address the misalignment problem in arrival time detection,
we leverage the frequency-time linearity of chirp signals (Eq. 1). By

LoS
Multipath

(a) Cross-correlation

LoSMultipath

(b) Dechirp

Figure 10: Multipath effect mitigation with (a) Cross-
correlation and (b) Dechirp.

analyzing the frequency peak after dechirp, we can infer the actual
arrival time using the following equation:

𝑚0 =𝑚∗ ±
𝑓∗ + Bw

2
𝑘

Fs (9)

where𝑚∗ is the sample index of the current window, and 𝑓∗ is the
corresponding frequency peak after dechirp. The operation ± indi-
cates the track direction, with the positive direction corresponding
to the high-SNR case and the negative direction corresponding to
the low-SNR case.

5.3 Multipath Interference Mitigation
Swimming pool environments are characterized by significant mul-
tipath reflections, which pose challenges for synchronization and
localization. Figure 10 illustrates the cross-correlation envelope
and the dechirp result for an SOS chirp signal. The presence of
reflections causes multiple peaks. We observe that some reflections
can be stronger than the LoS path due to constructive superposi-
tion, but they always arrive later than the LoS path. As such, we
adopt the earliest peak instead of the highest as the LoS path [56].
Specifically, we find all local maxima above a certain threshold
empirically set as 0.5 ×𝑚𝑎𝑥 (𝑝𝑒𝑎𝑘). Theoretically, AquaHelper can
distinguish the two signals whose arrival time difference is greater
than 1

Bw = 0.5 ms. Therefore, among these maxima, we choose
the peak with a minimum distance 1

Bw to other maxima to remove
noisy peaks. Finally, the first maximum is selected as the LoS peak.
It is important to note that the temporal direction in the dechirp
result is opposite to the correlation, as the delayed reflections will
be translated into peaks from back to front frequency bins after the
dechirp operation.

5.4 Likelihood-based SOS Visualization
With the TDoAs of multiple receiver pairs obtained by Eq. 8, a naive
way to locate the swimmer is to find the intersection of hyperbolas
with different TDoA measurements. However, this method is sen-
sitive to measurement error, and a single location result may not
indicate the exact position of the swimmer, which could mislead
lifeguards. To address this problem, we employ a likelihood-based
hologram to visualize the possible SOS area. The hologram visu-
alizes the likelihood that a drowning swimmer is in a particular
position. Specifically, we partition the 2D swimming pool into grids
and calculate the likelihood of each grid by measuring the difference
between the estimated and theoretical TDoAs:

L(𝜃 | x∈𝐺 ) = 1 − Normalize(
∑

𝑝,𝑞∈𝑃𝑎𝑖𝑟𝑠

			𝑡𝑝,𝑞 − 𝑡x𝑝,𝑞
			2
) (10)
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Figure 11: SOS visualization.

where x is a grid in the grid set𝐺 , and 𝑝, 𝑞 are receivers from all hy-
drophone pairs. 𝑡𝑝,𝑞 denotes the measured TDoA between receivers
𝑝 and 𝑞, while 𝑡x𝑝,𝑞 represents the theoretical TDoA for a virtual
transmitter at this grid x. Normalize is a min-max normalization
function. Intuitively, the smaller the residue between the theoretical
and the estimated TDoA is, the higher the likelihood L(𝜃 |x∈𝐺 )
should be.

Figure 11 illustrates a hologram with different likelihood con-
tours. Here light colors denote higher likelihood values. We can see
that the swimmer is within the area of the highest likelihood, which
decreases as the increasing distance. The likelihood threshold for
visualization (e.g., 90%) can be adjusted as needed, which ensures
effective coverage as the swimmer may be located at relatively low-
likelihood areas due to estimation errors. In this way, AquaHelper
can visualize the possible area of the drowning swimmer with the
likelihood hologram to assist lifeguards in prompt rescue.
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Figure 12: (a) A chirp with bursting noise. (b) Dechirp with
one window. (c) The SOS peak outstands the noise by aggre-
gating energy from more windows.

6 Practical Considerations
Bursting Noise. While most underwater acoustic noise, such as
water flow and air bubbles, is typically under 1 kHz, in our experi-
ments, we observe some types of noise (e.g., intense splashes, water
pump launching) span across the entire spectrum and cannot be
removed by a lowpass filter. As shown in Fig. 12(a), the bursting
pump noise can generate significant interference across the fre-
quency spectrum, resulting in a notable increase in the noise floor
and overpowering the SOS peak (Fig. 12(b)). Fortunately, the multi-
scale detection of AquaHelper can handle this issue. In practice,
bursting noise is sporadic and lasts for a short period. Thus, by
combining multiple windows for the dechirp, the SOS peak can
be proportionally amplified, as illustrated in Fig. 12(c). Meanwhile,
multi-window aggregation can also effectively spread the noise and
reduce the likelihood of false alarms.

Sampling Frequency Offset. In practice, there may be slight
variations between different receivers in the sampling frequencies
due to hardware imperfections, resulting in a sampling frequency
offset (𝑆𝐹𝑂 = Fs𝐴−Fs𝐵 ). This small offset can accumulate over time,
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Figure 13: Doppler Effect on SOS signals. (a) The theoretical
chirp (red) and the actual chirp (blue). (b) The FFT peak before
and after Doppler compensation.
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Figure 14: (a) Two SOS chirps are overlapped in multi-user sce-
narios. (b) Multiple users can be separated in the frequency
domain after dechirp.

causing an estimation error in SOS localization. Performing calibra-
tion frequently can address this issue, but the synchronization sig-
nal can potentially disturb swimmers. To strike a balance between
accurate synchronization and minimizing disturbance, AquaHelper
first measures the offset between several calibrations within a fixed
duration after the system launch. Consequently, we can fit the SFO
and compensate for the measured TDoA by (𝑚𝐵2 −𝑚𝐵1 )𝑆𝐹𝑂

Fs𝐵 . More-
over, AquaHelper also performs periodic synchronization every
hour and during pool-cleaning times to calibrate the compensation
residue.

Doppler Effect. When a drowning swimmer struggles in the
water, the arm and hand movement inevitably affects the frequency
of SOS signals due to the Doppler effect. As shown in Fig. 13(a), com-
pared to the original chirp, the SOS signal has a Doppler frequency
shift Δ𝑓 = 𝑣

𝑣𝑠
(𝑓0+𝑘𝑡), where 𝑣 is the velocity of the swimmer-worn

smartwatch. Assuming the maximum 𝑣 is 1𝑚/𝑠 , the corresponding
maximal Δ𝑓 will be ±3 Hz. Based on our experiment, the SOS peak
can still exceed the noise floor by a wide margin in most cases, as
shown in Fig. 13(b). The frequency shift range of low-frequency
signals is quite narrow, which is also why the chirp signal is re-
silient to the Doppler effect [18]. To maximize the SNR and increase
the possibility of SOS detection, AquaHelper compensates for the
Doppler effect by multiplying the received signal with a reversed
frequency shift 𝑒− 𝑗2𝜋 𝑣

𝑣𝑠
(𝑓0+ 𝑘

2 𝑡 )𝑡 . If the FFT resolution is 1 𝐻𝑧, 𝑣
can be accordingly discretized to Δ𝑓 𝑣𝑠

𝑓0+𝑘𝑡 , where Δ𝑓∈Z = [−3, 3] Hz.
Thus, we can search for a speed 𝑣 to maximize the height of the
FFT peak after dechirp. As shown in Fig. 13(b), we can observe that
the FFT peak becomes sharper and higher after Doppler compen-
sation. Although the arm speed may vary continuously within a
chirp duration, such a compensation method can partially rectify
the frequency shift and enhance the SNR. This Doppler shift can
also be compensated at the sub-window level to achieve better
performance.
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Figure 15: Experiment scenarios.

Scaling to Multiple Users. Although multiple swimmers rarely
drown simultaneously in a swimming pool, we consider such a
multi-swimmer detection scenario in AqualHelper. As shown in
Fig. 14(a), two chirps may collide if two swimmers send SOS signals
simultaneously. As a matter of fact, the chirp-based signal design
naturally supports multiple users. In most cases, there is a tiny
time offset between the SOS chirps from two swimmers. This time
offset can be translated into different FFT peaks after dechirp, as
shown in Fig. 14(b). Thus, we can resolve the collision by separating
the two different frequency peaks. In addition, we can also assign
chirps with different slopes to different swimmers at the entrance
counter and register these slopes in the server. These chirps with
different slopes are orthogonal and will not affect each other in SOS
detection and localization. Thus, AquaHelper can detect different
chirps in parallel to handle multiple users.

7 Evaluation
System implementation. We implemented AquaHelper and tested
it with two commercial smartwatches: Huawei Watch 3 and OPPO
Watch 3 pro1. Four Shuimi SN005 hydrophones (28 USD per unit)
were deployed in the water around a swimming pool to receive
SOS signals sent by the smartwatches. We use an underwater loud-
speaker to transmit synchronization signals. The underwater re-
ceivers are connected to Raspberry Pi and forward the data to a
laptop for post-processing. As the smartwatch broadcasts SOS sig-
nals consecutively, we use a sliding window with a step of 0.5𝑠 to
detect SOS signals. With a processing time of approximately 65𝑚𝑠
per detection window on the laptop, AquaHelper can achieve a
maximum detection rate of 15 Hz, which is sufficient for detecting
SOS signals.

Experiment setting. As shown in Fig. 15(a), the experiments
were conducted in a 6-lane 25𝑚× 15𝑚 swimming pool. Participants
are required to wear smartwatches, which send out SOS signals
underwater at different locations. All experiments were carried out
with the close monitoring of professional lifeguards and approved
by our university authority. In our evaluation, we first positioned a
receiver at one of the short edges of the pool to qualitatively assess
the impact of various factors on SOS detection performance across
various settings, including different distances, depths, orientations,
and interference scenarios. Then, we strategically positioned four

1We attempted to implement AquaHelper on an Apple Watch 6, but we found that the
Apple Watch automatically interrupts the audio playback when submerged in water.
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Figure 16: Overall performance of AquaHelper.

receivers at the midpoints of all four swimming pool edges at a con-
sistent depth of 0.5m. The signals from all four microphones were
employed for the collective performance and localization assess-
ment. In addition, we conducted an experiment in a lake (Fig. 15(c))
to evaluate the maximum supporting distance of AquaHelper.

Evaluation Method. We evaluate two key metrics for the SOS
detection performance: recall and specificity. Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ,
which quantifies the system performance of detecting SOS sig-
nals. Specificity = 𝑇𝑁

𝐹𝑃+𝑇𝑁 quantifies the ability to tolerate false
alarms. TP, FN, TN, and FP are true positives, false negatives, true
negatives, and false positives, respectively. In our target application
scenario, higher recall and specificity indicate better performance.
We empirically set the detection threshold 𝛽 as 5 to strike a balance
between recall and specificity. We maintain a consistent detection
criterion throughout the evaluation. Thus, we present recall in most
experiment results, as they consistently exhibit similar levels of
specificity, as shown in Sec. 7.3.

7.1 Overall Performance
As shown in Fig. 15(a), we first evaluate AquaHelper in a real-world
swimming pool environment during regular operating hours. To
mimic potential disruptions, we engaged several volunteers to swim
and make splashes in close proximity to the receiver. Meanwhile,
one volunteer wearing a smartwatch simulated frantic drowning
movements at varying distances (5m to 25m) from the receiver to
evaluate AquaHelper’s performance in a realistic drowning sce-
nario, as depicted in Fig.15(b). During the experiment, we had
non-participant swimmers (mainly university students and fac-
ulty members) swim freely in adjacent lanes in the swimming pool.
All experiments were closely monitored by professional lifeguards
nearby. The evaluation consisted of two sessions: one with the
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Figure 18: Recall in the lake.

smartwatch emitting SOS signals to assess recall and another with
the smartwatch turned off to evaluate specificity. We collected 50-
min recordings in total.

The result of recall is shown in Fig. 16(a). AquaHelper achieves
the highest detection performance at a distance of 5m, with a recall
of 96.9%. This detection gradually decreases with increasing dis-
tances. At the maximum distance of 25m, the recall remains 87.4%.
When employing a single window for SOS detection, the overall
recall rate is 93.1%. This performance degradation can be attributed
to two main factors. Firstly, SOS signals significantly attenuate as
the distance increases. Secondly, interference from other swimmers
and the user’s frantic drowning movements influence the SOS de-
tection. Fig. 17 illustrates a received signal clip. We can observe
that the drowning movements cause strong splashes. Although
most energy is distributed in the low-frequency range, it can still
increase the overall noise floor. Notably, the user’s arm movements
intermittently submerge and raise the smartwatch in and out of the
water. As shown in the dashed box of Fig. 17, when the smartwatch
is out of the water surface, it results in fragmented chirps. This, in
turn, reduces the energy peak of SOS signals after dechirping. An
interesting observation is that human speech and ambient noise
have a minimal impact on SOS signals, particularly when the re-
ceiver is positioned at a greater depth below the water surface. By
expanding the size of detection windows to 3, the overall detection
recall increases to 96.7%. This improvement is mainly because of the
aggregation of more chirps. Similarly, utilizing a detection window
size of 5 further enhances the detection recall to 98.3%.

We also evaluate the specificity with the smartwatch turned off,
and the results are presented in Figure 16(b). We can observe that
AquaHelper achieves a specificity rate of 97.8% at a close distance
of 5m, as the user’s frantic splashes at such close proximity could
potentially trigger false positive cases. As the distance between
the user and the receiver increased, the specificity gradually im-
proved, reaching 99.5% at a distance of 25m. At greater distances,
the influence of the user’s movements became negligible, and false
positives primarily originated from splashes generated by other
swimmers when they approached the receiver, particularly near
the pool wall. By utilizing a larger window size (e.g., 3), the energy
of interference was effectively dispersed, leading to an increased
system specificity of 99.8%. In Sec. 7.3, we present more evaluation
results with distances less than 5m.

In summary, these evaluation results demonstrate the effective-
ness of AquaHelper in achieving a high level of detection per-
formance in practical swimming pool environments. To further
enhance its robustness, we can strategically deploy more receivers
around the pool to alleviate the impact of signal attenuation.
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Figure 19: Performance under interference.

7.2 Effect of Distances
In the previous section, we evaluated AquaHelper’s performance
at different distances, revealing that the system’s effectiveness di-
minishes with increasing distance due to energy attenuation. To
evaluate AquaHelper’s maximum operational range, we conducted
experiments in a lake, as illustrated in Fig.15(c). Fig.15(d) showcases
the five distinct test locations within the lake. During these tests,
both the smartwatch and the receiver were submerged in water
using ropes. We calculated the detection performance based on a
single detection window, and the results are presented in Fig. 18.
At a distance of 58m (Loc 1), AquaHelper demonstrated a detection
recall of 97.1%, which only experienced a slight decrease to 95.8%
at 107m (Loc 2). Even at a distance of 128m (Loc 3), AquaHelper
maintained a commendable detection performance of 94.1%. No-
tably, these results surpassed those obtained in the swimming pool
scenario, as we observed significantly less noise and interference in
the lake environment. To further challenge AquaHelper and investi-
gate its limits, we conducted additional measurements at two more
distant locations, situated at distances of 137m (Loc 4) and 144m
(Loc 5). At 137m, the detection recall experienced a significant drop
to 21.84%. This decline primarily resulted from the weakened SOS
signals at this considerable distance, which struggled to surpass the
system’s detection threshold. At a distance of 144m, the receiver
could no longer detect the SOS signal. In light of these results, our
findings suggest that AquaHelper effectively detects SOS signals in
open water environments at distances of up to 128m. This extensive
range adequately covers most application scenarios of AquaHelper
(i.e., swimming pools).

7.3 Effect of Interference
We also conducted experiments to evaluate the system’s robustness
under various forms of interference.

Splash of swimmers on SOS detection. We first evaluated
the impact of splashes on SOS signal detection. To this end, we
placed a smartwatch transmitting SOS signals underwater at 10𝑚
from a receiver, while a swimmer (not wearing the smartwatch)
swims and splashes water at a distance varying from 1𝑚 to 5𝑚 from
the receiver. As illustrated in Fig. 19(a), AquaHelper achieves 100%
detection recall when the swimmer is 5𝑚 away, which indicates
that the impact of splash interference was negligible. When this
swimmer moves to 1𝑚, the detection recall reduces to 99.5% owing
to strong splashing interference to the receiver. By extending the
detection window size to three, the performance improves to 100%.
This result indicates that AquaHelper can detect SOS signals under
typical splash interference. We also observe some weak human
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Figure 20: Performance with different SNR levels.
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Figure 21: Effect of depths in the water.

voice in the received signal, which can be mitigated by the multi-
scale detection of AquaHelper as well.

Blockage of Line-of-sight path. Human bodies in the swim-
ming pool may block the LoS path between the transmitter and
receiver. Therefore, we asked a swimmer to stay at 1𝑚 away from a
receiver to intentionally block the direct propagation path and eval-
uate the performance in non-LoS scenarios. The result in Fig. 19(a)
(Occlusion-1m) shows that AquaHelper can successfully detect all
SOS chirps. This is because low-frequency SOS signals with diffrac-
tion can bypass human bodies. Thus, the blockage of LoS paths has
a minimal influence on SOS detection.

Splash of swimmers on system specificity. We also evaluated
the impact of interference on specificity, i.e., to what extent the
splash can cause false alarms. Similar to the experiment before, the
swimmer swims and splashes at 1𝑚 and 5𝑚 in front of the receiver,
while the smartwatch does not transmit signals in this experiment.
The result is shown in Fig. 19(b). AquaHelper has a 100% specificity
when no swimmer is present since normal underwater noise can
be removed by the lowpass filter. However, performance decreases
when there is a swimmer nearby. Specifically, when the distance be-
tween the swimmer and the receiver is 5𝑚, the specificity decreases
to 97.8%. This value further drops to 96.6% as the distance reduces
to 1𝑚. This is because the intense splash can produce high-energy
noise resulting in false alarms if we only monitor the signal within
one window. When increasing the window size to three, the energy
of splash noise is dispersed, and the specificity improves to 98.3%
and 100% at 1𝑚 and 5𝑚, respectively. By combining five detection
windows, the specificity at 5𝑚 also increases to 100%. Except for
strong interference, another reason for false alarms is that we use a
relatively low threshold and trade the specificity for a higher detec-
tion recall due to the utmost importance of saving a life. We believe
occasional false alarms are acceptable in practice as long as we do
not miss any potential SOS signals. In real-world scenarios, we can
adjust the detection window size and the detection threshold to
balance the detection recall and specificity. It is also possible to
automatically calibrate them periodically by transmitting a known
number of pseudo-SOS signals based on a constant false alarm rate
for different swimming pools and environmental conditions.

7.4 Performance v.s. SNR
Figure 20(a) shows the SNR distribution of collected SOS signal
samples. The SNR is defined as the signal peak to the sum of the
remaining noise after dechirp. We can see that 90% of chirps have
an SNR higher than -15.4 dB, which can be handled by our chirp-
based SOS detection. To test the performance of AquaHelper in even

more challenging scenarios, we conducted a trace-based experiment
with data from different SNR levels. In particular, we collected SOS
chirps at a distance of 1𝑚 from the transmitter in the swimming
pool as clear traces. Subsequently, Gaussian noise was introduced
at various levels to generate the required SNR. The result is shown
in Fig. 20(b). We can observe that the performance of AquaHelper
increases along with SNRs, and can achieve 100% detection recall at
-16 dB. Using three windows for dechirp, AquaHelper can reliably
detect the SOS chirps at -20 dB. Aggregating five detection windows
further decreases the minimum SNR requirement to -22 dB. This
result demonstrates that AquaHelper can successfully detect SOS
signals with a low SNR, and multi-window aggregation can further
improve its performance in ultra-low SNR scenarios.

7.5 Effect of Depths
We conducted an evaluation of AquaHelper at varying depths with
a distance of 15m from the receiver, and the results are illustrated
in Fig. 21. At a shallow depth of 0.3m, the detection recall reached
99.38%. However, as the depth increased to 0.6m and 1m, the detec-
tion performance gradually declined to 95.12% and 81.9%, respec-
tively. A substantial drop in recall rate occurred at a depth of 1.5m,
decreasing to 44.37%. When the smartwatch was submerged at the
bottom of the pool (1.8m), the detection recall further decreased to
14.3%. This decline can be attributed to the fact that commercial
smartwatch speakers are designed for use in the air, and as the wa-
ter depth increases, so does the water pressure, hindering speaker
vibration and SOS transmission. In this case, we enlarged the de-
tection window size to three, which improves detection recalls to
98.1% at 0.6m and 91.1% at 1m, respectively. By aggregating five
windows, AquaHelper achieved a recall rate of 97.9% at a depth of
1m. This result suggests that AquaHelper can effectively detect SOS
signals using a single window during the early stages of drowning.
As the depth increases, AquaHelper needs more detection windows
to accumulate and detect weaker SOS signals. Nevertheless, the
performance after multi-window aggregation remained unsatis-
factory for deeper locations (>1m). This observation underscores
the hardware limitations inherent in commercial smartwatches.
Yet, it is worth mentioning that some companies are introducing
smartwatches specifically designed for underwater activities, such
as Garmin Descent Watch [11] and Apple Watch Ultra 2 [8]. These
advancements hold promise for achieving improved performance
in deeper waters.

A cost-effective strategy to address this depth impact is deploy-
ing multiple receivers at the pool bottom. To this end, we repeat
the experiment with the receiver positioned at the pool bottom,
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and the result is displayed in Fig. 21(b). In this case, the detection
recall at depths of 1m and 1.5m exhibited substantial improvements,
reaching 97.5% and 94.4%, respectively—significantly higher than
the performance observed previously. This improvement is mainly
because the distance between the transmitter and receiver is dra-
matically reduced. When we applied a window size of three and five,
the detection recalls were further enhanced to 95.5% and 96.1% at
1.5m, respectively. At a depth of 1.8m (i.e., the bottom), AquaHelper
still maintains comparable performance due to the closer distance.
As hydrophones become affordable (28 USD per unit), we believe
it will be economical to deploy a few more at the bottom of the
swimming pool to alleviate the depth impact.

7.6 Baseline Comparison
We compare our work with AquaApp [22], which modulates SOS
signals using Frequency Shift Keying (FSK). AquaApp builds a
generic underwater communication channel for mobile devices and
is not optimized for SOS transmission in low-SNR scenarios. In
addition, it requires a two-way channel estimation to determine
the optimal channel frequency. The two-way channel estimation,
however, is not feasible over a long range as the low SNR may cause
the excitation signal to be lost during transmission. Therefore, we
use three uniformly distributed frequencies in the frequency band
(1.5, 2.5, and 3.5 kHz) in our experiments, where the transmitter is
25𝑚 away from the receiver. Fig. 22 shows the detection perfor-
mance comparison between AquaHelper and AquaApp. The chirp-
based design of AquaHelper achieves the highest detection recall
(99.5%) due to its energy accumulation property and resilience to
channel-selective fading. While low-frequency signals experience
less attenuation, the part of underwater noise at 1.5 kHz results in
a low detection recall (91.8%). The performance improves to 93.8%
at a frequency of 2.5 kHz due to less noise. However, the detection
recall decreases to 71.6% at a frequency of 3.5 kHz. Despite less
noise at this frequency, the signal suffers from severe attenuation
underwater. As a result, the detection of weak acoustic signals be-
comes more challenging. In comparison, benefiting from a series of
optimization (e.g., unique chirp signals, high-order chirp aggrega-
tion), our work AquaHelper can achieve almost 100% in the same
experiment settings.

7.7 Effect of Orientations
We conducted orientation evaluations with a distance of 15𝑚 be-
tween the transmitter and receiver. Five orientations were tested,
as illustrated in Fig. 23. The detection recall is 99.8% and 99.5%
when the smartwatch speaker is facing toward the receiver (0◦)

or horizontally perpendicular to the receiver (horizontal 90◦), re-
spectively. As the speaker turns to horizontal 180◦, which indicates
that the speaker faces backward to the receiver, the performance
decreases slightly to 98.5%. This is because the sound of the smart-
watch speaker attenuates significantly in the opposite direction.
When the smartwatch is facing toward the bottom of the swim-
ming pool (vertical 90◦), the detection recall is 98.9%. This is mainly
because the signal power is radiated to the deep bottom of the pool
and attenuated more. When the smartwatch faces toward surfaces
(vertical −90◦), the performance increases to 99.4%. Our results
show that the orientation of the smartwatch speaker can affect the
detection performance because of its directional nature. To achieve
full coverage, more receivers can be deployed around the pool wall
and bottom.

7.8 Contribution of Components
We use the Accumulated SNR (ASNR) [62] to quantify the detectable
strength of SOS signals, which is defined as the power of the signal
peak over the noise floor after the dechirp process. To evaluate the
contribution of different components of AquaHelper, we measure
the ASNR gain of each component in Fig. 24. The baseline for
comparison is the ASNR obtained from standard dechirp with a
single window. Multiple window aggregation demonstrates the
highest ASNR gain, with a boost of 2.9 dB and 4.6 dB for two and
three windows, respectively. This gain can be attributed to the
proportionally increasing signal power after combining multiple
windows. The coherent combination of two receivers results in a
lower gain of 1.4 dB due to different channel losses for each receiver.
The spectral high-order chirp contributes the lowest gain of 0.2
dB because the high-order chirp with weak power is susceptible
to noise interference. Note that the results of receiver combining
and high-order chirp incorporation are obtained using only one
window and can be further increased by aggregating more windows.
Overall, AquaHelper effectively improves the ASNR, maximizing
the likelihood of SOS detection and facilitating early rescue efforts.
By leveraging the diversity of chirps in the frequency, temporal,
and spatial domains, the weak SOS signal can be detected as long
as we accumulate chirps with enough windows and receivers.

7.9 Location Estimation
Our SOS visualization can be extended for swimmer localization
by finding the position with the highest likelihood. We pre-marked
20 positions uniformly distributed in the pool as the ground truth,
and users were asked to wear the smartwatch and transmit five
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SOS chirps at each location. We compare AquaHelper with a TDoA-
based localization baseline [17]. Figure 25 shows the CDF of the
localization error of two methods, which indicates the Euclidean
distance between the ground truth and estimated 2D locations. The
median localization error is 1.36𝑚, outperforming the baseline by
2.01𝑚. It is because the baseline suffers from multipath interference.
Considering the large size of a swimming pool, this result indicates
that AquaHelper is capable of achieving a satisfactory level of local-
ization accuracy, sufficient to assist lifeguards in locating drowning
swimmers more efficiently. Given the low cost of hydrophones, we
can deploy more receivers to achieve better performance. Thus,
AquaHelper has the potential to serve as a building component
for various applications in swimming pools. For instance, it can
be used to track kids or seniors in water parks and evaluate the
performance of amateur swimmers. We also believe our method can
be extended to support 3D localization by deploying hydrophones
at different depths, which will be explored in the future.

8 Related Work
Underwater Communication and Localization. While the field
of underwater acoustic communication and localization has wit-
nessed a substantial body of work [16, 20, 24, 32, 41, 51, 52, 54, 58],
most of them are designed for specialized high-power underwater
communication equipment. Recent developments have seen the
utilization of specialized piezoelectric transducers to achieve low-
power underwater communication and localization [14, 27, 31, 37],
enabling numerous applications, including Underwater GPS [32],
underwater imaging [13], and low-power machine learning under-
water [66]. Unlike the existing works, our research takes on the
distinct challenges brought about by the integration of lightweight
smart mobile devices, including limited bandwidth, low transmis-
sion power, and noise interference in practical swimming pools. To
this end, we develop AquaHelper, a system capable of transmitting
acoustic SOS signals using compact wearable devices and detect-
ing them even in extremely low-SNR scenarios. We accomplish
this through a series of novel techniques, including incorporat-
ing high-order harmonics, multi-scale window aggregation, and
multi-receiver synchronization and coherent combining.

While wireless signals have seen widespread use for communi-
cation [57, 62] and ubiquitous sensing [26, 33, 38] in the air, they
encounter significant attenuation when propagating through wa-
ter. In contrast, acoustic signals demonstrate superior propagation
characteristics underwater [23]. In the research community, acous-
tic sensors in mobile devices have garnered attention, particularly
in the context of human-computer interaction [25, 59, 61, 67]. In
recent years, efforts have also been made to integrate underwater
communication and localization with mobile devices. AquaApp
[22] designs the first underwater messaging system compatible
with commercial mobile devices, which supports a communica-
tion range of up to 100𝑚 with a smartphone. AquaRanger [21]
and [23] can measure the range between two smartphones and
locate their relative positions underwater. However, these works
require smartphones with considerably higher transmission power
compared to commercial smartwatches. Furthermore, they rely
on a send-and-reply process for channel estimation and distance
measurement. This operation is impractical for wearable devices

used in swimming pools due to their low reception sensitivity and
urgent response requirements. In contrast, AquaHelper synchro-
nizes different receivers through one-way transmission, making
the transmitter transparent and minimizing the SOS response time.

Drowning Detection. Vision-based drowning detection has
been extensively studied by industry [1, 4, 5, 10] and academia
[2, 36, 44, 65]. Most of them detect the drowning incidents by ex-
amining if a person is stationary for long time in the water. Some
machine learning-based works [29, 30, 34, 35, 45] extract motion
features such as speed, posture, and limb movement to build a su-
pervised classifier and recognize drowning events. However, it is
challenging to achieve accurate and reliable detection due to the
inherently complex drowning behaviour and lack of training sam-
ples [19]. Moreover, vision-based methods suffer from poor lighting
conditions, highly dynamic backgrounds, and dim visibility of tar-
gets in the water [29]. As a complementary approach, AquaHelper
allows swimmers to actively call for help in case of an emergency
such as severe discomfort, enabling the rescue in the early stage.

Wearable sensor-based solutions [7, 9, 46, 49, 50] are more re-
silient to lighting conditions. Some works [40, 42, 46, 60] monitor
the sensor readings of human motion or vital signs (e.g., oxygen
level, respiration) to detect drowning events and then inflate an
airbag. Although these systems can detect the drowning risk, they
require swimmers to wear heavy life kits and cannot alert life-
guards for additional help, which may miss the best rescue time.
AquaHelper retrofits these systems with capabilities to transmit
SOS signals to lifegurads, and also provides necessary means to
actively call for help in an emergency. In this paper, we focus on
SOS transmission and detection, and leave the integration with
drowning event detection for future work, which is important yet
orthogonal to this research.

9 Conclusion
Drowning incidents in swimming pools represent a pressing public
safety concern around the world, with devastating consequences
for individuals and families each year. In response to this issue,
we propose AquaHelper, the first underwater SOS transmission
and detection system that can work in extremely low-SNR scenar-
ios. By leveraging lightweight wearable devices (e.g., water-proof
smartwatches) as transmitters and multiple low-cost underwater
acoustic receivers, AquaHelper can alert lifeguards promptly to sig-
nificantly increase the chances of survival for drowning swimmers.
Our experiments demonstrate the effectiveness of AquaHelper in
detecting SOS signals with high accuracy in swimming pools. As
smartwatches are becoming increasingly popular for swimmers,
we expect such a life-saving feature will become indispensable and
can potentially save hundreds of lives worldwide every year in the
near future.
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