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ABSTRACT
Hand-grip strength is a widely recognized indicator of muscle
strength and overall health of individuals, particularly among older
adults. Hand-grip strength measurements are typically obtained
using dynamometers or specifically tailored devices, limiting the
context in which measurements can be taken to health checks
and clinical settings. In this demo, we showcase a new smart ring,
namely HIPPO. The smart ring implements an innovative approach
that offers a non-intrusive and opportunistic way to extract hand-
grip strength measurements from individuals. HIPPO re-purposes
off-the-shelf light sensors available in existing wearable devices,
e.g., smartwatches, and exploits the principle of light reflectivity,
such that as an individual interacts with everyday objects, changes
in their surfaces can be used to derive the hand-grip measurements.
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1 BACKGROUND
The human hand is an incredible natural engineering wonder that
performs essential daily tasks and is a powerful indicator of our
overall health. Hand-grip strength, measured by the force applied
by hand muscles when squeezing an object, provides insight into
the integrity of a complex network of muscles that extend beyond
the hand itself. This seemingly straightforward measure goes be-
yond the hand, offering a valuable assessment of overall muscular
strength and health. Research has shown that hand-grip strength
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is associated with several health conditions and diseases, including
cardiovascular health, cognitive function, mortality and muscle loss
to mention some [1].

Existing methods for assessing an individual’s hand-grip strength
pose usability challenges due to their limited applicability and their
need for specialized equipment. For instance, the most common ap-
proach involves using a dynamometer, which provides a categorical
assessment of hand-grip strength (e.g., weak, normal, strong) based
on established reference tables derived from extensive clinical stud-
ies [1]. Using the dynamometer and other specialized devices limits
the number of measurements taken over time as they require to be
taken in a controlled (clinical) setting. In this demo, we showcase a
new smart ring, namely HIPPO. The smart ring uses an innovative
light-sensing approach to extract hand-grip measurements from
individuals in a non-intrusive manner. Indeed, as people interact
with various everyday objects, HIPPO leverages these interactions
to obtain hand-grip measurements opportunistically. We demon-
strate in this demo the performance of our smart ring to extract
hand-grip measurements from different objects, including a dispos-
able cardboard cup, plastic cup and washing sponge. Measurements
are validated using a dynamometer baseline (ground truth).

2 THE HIPPO METHOD
The HIPPO [2] method to extract hand-grip measurements is illus-
trated in Figure 1. A light sensor (comprising a light source and a
photoresistor) is worn on the user’s hand (little finger), integrated
into the exterior of a smart ring, and is used to measure changes
in light reflectance as the user interacts with malleable objects
(Figure 1(a)). When the object is held normally in the hand, its
surface covers the light sensor, resulting in an approximately con-
stant intensity of reflected light (Figure 1(b)). This constant value
serves as the reference value to derive hand-grip strength. As the
user applies grip on the object, the surface changes, influenced by
the applied force and the object’s material resistance (Figure 1(c)).
These alterations in the object’s surface impact the intensity of the
reflected light, resulting in a fingerprint of reflection patterns on the
object’s surface. HIPPO monitors the changes in light reflectance
and estimates the hand-grip strength from these changes.

3 SMART RING PROTOTYPE
Prototype: We have designed a prototype of a smart ring that
incorporates light sensors consisting of a red laser diode (650nm,
5mW, 3-5V) and a photoresistor (5MΩ). These sensors are easily
integrated into a flexible 3D printing ring design. The ring connects
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Figure 1: HIPPO overview.
to a computing board, which analyzes the incoming light data. We
utilize the wireless M5StickC PLUS ESP32 development board for
the computing board (Figure 3 (a)). This board controls the light
sensor’s sampling frequency (5Hz) and uploads the collected data
to a centralized server in real-time. Changes in light are then read
in analog voltage, and subsequently transformed to digital one. The
M5StickC Plus has built-in Wi-Fi connectivity, a 120mAh battery
(3.7V), and an LCD screen to display the board’s activities.
Mobile application: We have developed an Android mobile ap-
plication that receives and analyzes the data collected from the
smart ring. The application provides a graphical interface that com-
municates to individuals its hand-grip strength (Figure 2). Besides
this, the application also adopts the user-friendly and categorical
standards used by the dynamometer, such that hand-grip strength
measurements are fairly intuitive to understand.

Figure 2: HIPPO smart ring and mobile application.

Demo procedure: Before starting the demonstration, hand dimen-
sions are measured from the individuals wearing the ring. Following
this, we gather essential participant information to enter the mo-
bile application, including name, age (in years), gender (M/F), and
hand dimensions (breadth and length in centimeters). Notice that
this information is also collected when measuring hand-grip using
the dynamometer in clinical settings, allowing better estimations
of hand-grip strength. After this, a baseline of hand-grip strength
is obtained from the participant using the dynamometer. To do
this, the participant is instructed to maintain a seated position on
a chair, ensuring both feet remain in contact with the floor while
the back remains against the chair’s backrest. The participant is
also instructed to use its dominant hand and maintain its elbow
to a precise 90-degree angle throughout the assessment. Once the
measurements are obtained, the participant is instructed to wear
the ring and perform the same procedure. This allows us to make
our results comparable between approaches.

When providing hand-grip strength measurements using the
smart ring, the participant needs to hold an object and initiate

Figure 3: Smart ring prototype; a) HIPPO in action, b) HIPPO
performance

the measurement process by pressing the "START MEASURING"
button on the app. Subsequently, the app acquires data from the
smart ring and awaits stabilization, typically taking approximately
30 seconds. Once the app shows " ✓" symbol, the participant then
needs to squeeze the selected household object with the maximum
grip force for 2 to 3 seconds, then release the grip and push the
"STOP MEASURING" button on the app. Following this procedure,
participants can visualize their hand-grip strength displayed on the
app interface and opt to save the data if desired.

4 DEMONSTRATION RESULTS
HIPPO prediction models: HIPPO prediction models are built
using classical regression and classification machine learning algo-
rithms. These models are trained with the data of 14 participants
(equal genders) and considered three common household objects
(disposable cup, plastic cup and kitchen sponge) for the experiments.
Please refer to our paper to obtain more details and insights about
the performance of our models [2].
Results: Figure 3 (a) shows hand-grip strength extracted from a
plastic cup. Besides this, Figure 3 (b) shows that hand-grip strength
measurements obtained by both, the dynamometer (True hand-
grip) and the smart ring (Predicted hand-grip). From the figure,
we can observe a fair linear relation between the two methods,
suggesting that hand-grip estimations are correct even in different
ambient light conditions and sources. Indeed, our experiments were
performed in different scenarios, considering different ambient light
and types of grip. Overall, the accuracy for the hand-grip strength
prediction is around 91.9%. Lastly, measurements obtained by the
smart ring are visualized through our mobile application for the
convenience of the user.
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of 0.9 km/h. Despite their divergent designs these robots both of-
fer around 3 hours of battery life and a 3 hour recharge cycle
for a duty cycle of 50%. One approach to extending battery life
is trophallaxis [4], wherein robots recharge each other in the field.
For example, evo-bots [4] take 160 minutes to charge a peer for 30
minutes of operation, achieving a 15.79% duty cycle.

3 DESIGN
The design of FreeBot has four major elements, each of which are
sketched here at a high level due to space constraints.

Reconfigurable charge storage is provided by an array of four
15F 5.5V super-capacitors, each with an equivalent series resistance
of 50mΩ and a peak current of 23A. The capacitors are connected
in a switched array, which enables the FreeBot to (i.) draw working
power from one capacitor at a time, (ii.) connect all capacitors in
parallel for infrastructure charging and (iii.) connect any subset of
the capacitors to the charging port in order to perform trophallaxis.
As FreeBots can only charge peers where a positive differential
exists, sequential use of capacitors maximizes opportunities for
trophallaxis which is possible in all cases where the charging peer
has over 25% available charge and the receiver has less than 100%.

Charge conditioning and monitoring: power to the motors
and MCU is regulated to 3V by an efficient boost converter which
can supply up to 3A and operates down to 0.5V. The charge level
in all capacitors is monitored by the ADC of the controller MCU
connected via a low power voltage divider.

Motor, driver and control: The FreeBot uses four 3V DC motors
with a 1:100 gearing and rotary encoder to monitor rotation speed.
An efficient motor driver regulates speed based upon input from a
software controller. Omni-directional movement is supported via
differential control of the mecanum wheels.

4 EVALUATION
We provide an initial evaluation of the FreeBot in terms of (i.) speed,
(ii.) charge autonomy and (ii.) re-charge time.

Speed: The FreeBot has a maximum speed of 1.24km/h and
minimum speed of 0.34km/h. This is in line with the speed of
contemporary battery powered platforms [4, 5, 7].

Autonomy: The FreeBot has a maximum autonomy of 24 min-
utes running at top speed with no payload and can carry over
2.5kg, an order of magnitude more than prior swarm robotics plat-
forms [4, 5, 7].

Charging: Using a dedicated 40A charger, FreeBot charges from
0-5V in 12s. The time required to perform trophallaxis is dependent
upon the charge levels of the donor and recipient and is 50% efficient.
To provide a worst-case example, using trophallaxis to charge an
empty (0V) robot from a nearly full (5V) peer takes 6 seconds.
Afterwards both robots have a charge autonomy of 6 minutes.

Reflection on the features of FreeBot, show that while charge
autonomy is limited, the overall duty cycle of the robot is high at
over 99% for the dedicated charger and over 98% when performing
trophallaxis (excluding travel time). This is far higher than prior
swarm robots such as the Kilobot [7] or e-Puck [5] at 50%, making
FreeBot a good fit with always-on scenarios such as test-beds.

5 DEMONSTRATION
We will demonstrate the FreeBot using the following equipment:

(1) Three to five FreeBots operating on a table-top.
(2) A dedicated 40A desktop charging unit.
(3) A phone application to control the FreeBots.
(4) A live visualization of network-wide robot charge levels
The demonstration will show the FreeBots being interactively

navigated by the authors in an omnidirectional fashion using the
mecanum wheels. Robots will be recharged using the dedicated
charger and trophallaxis. Attendees will be invited to take control of
the robots and perform similar actions themselves. The live charge
visualisation will show degrading charge levels and rapid re-charge
as the robots perform various actions.

6 FUTURE WORK AND CONCLUSIONS
This paper introduced the FreeBot an open source platform for
battery free swarm robotics that provides: (i.) fast charging, (ii.) rea-
sonable autonomy and (iii.) rapid trophallaxis. Our future work will
focus on building out platform support for experiments with large
numbers of FreeBots. Key issues include: dense mobile networking,
localization, sensing and distributed coordination of the swarm.
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