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ABSTRACT
The advent of the Internet of Things (IoT) has led to an increased
demand for security and real-time guarantees in distributed embed-
ded systems comprising the IoT. Securing edge-based systems with
limited resources can be especially problematic due to challenges
in adapting traditional network security protocols. In this work, we
introduce two methods to provide security guarantees in resource-
constrained devices-based ioT systems. As a case study, we pro-
pose an integration of Secure Swarm Toolkit (SST), an open-source
framework for IoT security, with Lingua Franca (LF), a software
platform for concurrent and time-sensitive applications. We report
preliminary results on our work-in-progress implementation and
experiments, followed by concrete future research plans.
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1 INTRODUCTION
Communication security is a crucial element when designing real-
time distributed systems, including the IoT. However, many newly
developed research frameworks for the IoT do not always prioritize
security [3], rendering research frameworks not suitable for com-
mercial use. Furthermore, many IoT frameworks do not provide
enough security options for resource-constrained devices.

The key security guarantees for distributed embedded systems
or IoT include cryptographic key distribution, authentication, au-
thorization, data con�dentiality, and integrity. While TLS, the most
widely used security solution for the Internet, provides the afore-
mentioned security guarantees but authorization, TLS does not
support resource-constrained embedded devices of the IoT. Data
Distribution Service (DDS) [11] is used by distributed embedded
systems, including ROS2 and AUTOSAR, however, DDS still su�ers
non-determinism in real-time embedded and IoT systems [2].

To secure existing real-time IoT frameworks, in this abstract, we
introduce our work-in-progress methods to secure time-sensitive
applications running on edge-based IoT environments.
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2 BACKGROUND
This section discusses technologies used to prototype our approach.
Secure Swarm Toolkit (SST) [6] is an open-source framework
for authorization and authentication using a key element called
Auth [7]. Auth is an edge-based local authentication and autho-
rization entity that manages and distributes cryptographic keys
for its local registered IoT entities. SST supports scalability and
heterogeneity with a C language API [4], a widely used language
for many embedded systems with resource-constrained devices.
Lingua Franca (LF) is a software platform for concurrent and time-
sensitive applications, based on reactors [9]. LF supports distributed
execution environments called federated execution. LF generates
code for distributed reactors called federates and binaries deployed
on distributed machines. Runtime infrastructure (RTI) in LF coor-
dinates time advancements and communication among federates.
LF guarantees determinism critical for real-time IoT applications
while maintaining performance [10] with lightweight computation.

3 APPROACH
We apply two methods to secure LF federated execution: (1) HMAC-
based authentication and (2) LF-SST integration.

The baseline implementation of LF’s federated execution lacks
authentication and encryption mechanisms to prevent adversarial
federates from joining the federation or sending malicious messages
(e.g., bad timing messages or sensor data). As shown in Figure 1a,
in the original protocol, the RTI only checks the federation ID1 sent
in plaintext from federates for authentication. Thus, any malicious
federate can eavesdrop on the federation ID and join the federation.
Preliminary HMAC-based Authentication: First, we applied
secure authentication to the baseline LF protocol when the federate
tries to join the federation by connecting to the RTI. We added
a simple 3-way handshake with an HMAC2 authentication pro-
cess, shown in Figure 1b. To prevent the malicious federate from
joining the federation, the RTI and the federate use a federation
ID, which was shared at bootstrapping, as a secret key, creating
the HMAC. The federate and RTI each create a random eight-byte
nonce, challenges, and responses to each other, preventing replay
attacks. This three-way handshake provides secure authentication
between two nodes, and this may be applied when con�dentiality
is less important. For example, the sensor data of a thermostat can
be in plain text, but the sensor should be surely authenticated.
Work-in-progress LF-SST integration: The next step is to add
authentication, authorization, key distribution, and data protection
using SST. When federates request a secure communication session
with the RTI, the Auth should distribute session keys after per-
forming authentication of each federate and the RTI. We anticipate
challenges during the integration of LF and SST, especially for the

1A unique identi�er in string for each federation.
2Key-hashed message authentication code.
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Figure 1: (a) Current LF protocol sending the federation ID
in plaintext (b) 3-way handshake including HMAC tags for
authentication, using the federation ID as an HMAC key.
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Figure 2: Comparison between the baseline LF and LF with
HMAC-based authentication. (a) Executable binary sizes in
KB. (b) Communication overheads for initial authentication.
(c) Total execution times of initial authentication.

encryption and decryption of messages. For example, LF’s C imple-
mentation of handling network messages involves multiple reads
due to the current design of the RTI-federate message protocols.

Another challenge is that the size of encrypted messages may
leak information about the message types, making the communica-
tion vulnerable to side-channel attacks where the attackers guess
the current state of an LF application. To address this, we apply
padding to the shorter messages when encrypting them to make
the message sizes identical, obfuscating the information of types
of messages. We also expect our LF-SST integration will address
the challenges of resource constraints, fault tolerance, support of
pub-sub communications, and data-centric security in the IoT [5, 6].

4 EVALUATION
Preliminary Evaluation: We performed experiments using our
HMAC-based authentication under two environments: (1) locally
on a laptop3 running RTI and federates, and (2) in a distributed
environment with the laptop running RTI and two Raspberry Pis4

running federates, connected to the same WiFi router. We mea-
sured the overheads in binary sizes, communication, and execution
time. As shown in Figure 2a, the binary size increased by 5 KB
with the HMAC approach, including the OpenSSL library. We mea-
sured the number of bytes sent over the network using Wireshark,
including the 66-byte-long TCP/IP headers. The communication
overhead of the HMAC approach was 283 bytes, as shown in Fig-
ure 2b. We measured the average execution time for the federate
3LG Laptop with Intel i7 and 16 GB RAM running Ubuntu 20.04.
4Raspberry Pi 4 Model B with 8 GB RAM.

Table 1: Security guarantees for integration options with LF.

Security
Guarantees

LF Options
Base HMAC TLS DDS SST

Secure Authentication N/A 3 3 3 3

Access Control N/A N/A N/A 3 3

Data Protection N/A N/A 3 3 3

Deployment Support N/A N/A N/A N/A 3

Limited Resources Support N/A N/A N/A N/A 3

to join the federation out of 40 runs. As shown in Figure 2c, the
HMAC approach’s initialization took 1.92 ms longer on average
in the distributed environment. Our HMAC-based approach only
incurs a relatively low overhead while enabling authentication.
Future Plans: In the long run, we will conduct a comparative study
of di�erent approaches to securing the edge-based, time-sensitive
IoT. The expected security guarantees for each integration option
with LF are shown in Table 1. Speci�cally, we will integrate TLS
and DDS with LF and compare them against LF-SST integration
and the baseline without security. Also, we plan to analyze the
security of the integrated platform. For example, we will use a
formal veri�cation method such as AVISPA [1], which automatically
checks the security of protocols and applications. To prove that our
approach is resistant to various attacks, such as replay attacks, we
can leverage approaches like the one used by EqualNet [8].

5 CONCLUSION
This abstract introduces our work-in-progress research to secure
distributed IoT systems with real-time requirements and resource
constraints through a case study using LF and SST. Our preliminary
experimental results using our prototype implementation of one of
our approaches show that we can provide basic security guarantees
at a minimal cost in terms of the executable size, communication
overhead, and execution time. We also sketch out our plans for
future research and evaluation of our work-in-progress approaches.
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