
Poster Abstract: Efficient Knowledge Distillation to Train
Lightweight Neural Network for Heterogeneous Edge Devices

Preti Kumari
NUS, Singapore

preti@nus.edu.sg

Hari Prabhat Gupta
IIT (BHU) Varanasi, India

hariprabhat.cse@iitbhu.ac.in

Biplab Sikdar
NUS, Singapore

bsikdar@nus.edu.sg

ABSTRACT
This poster presents a novel approach that harnesses large-sized
deep neural networks to craft lightweight variants, addressing con-
straints in storage, processing speed, and task execution time on
heterogeneous edge devices. Knowledge distillation is employed to
refine the training of lightweight deep neural networks, and a novel
early termination technique is introduced to optimize resource uti-
lization and expedite the training process. This approach yields
satisfactory accuracy while accommodating diverse heterogeneous
edge device constraints.

KEYWORDS
Deep neural network, heterogeneity, knowledge distillation, sensors
ACM Reference Format:
Preti Kumari, Hari Prabhat Gupta, and Biplab Sikdar. 2023. Poster Abstract:
Efficient Knowledge Distillation to Train Lightweight Neural Network for
Heterogeneous Edge Devices . In The 21st ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’23), November 12–17, 2023, Istanbul, Turkiye.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3625687.3628409

1 INTRODUCTION
Internet of Things (IoT) applications rely on sensory data for real-
time monitoring and detection tasks [3]. Rapid data processing
within Maximum Allowable Processing (MAP) time constraints is
crucial in time-sensitive IoT applications. Deep Neural Networks
(DNNs) are incredibly well-suited for such IoT applications since
they have the specific benefit of great accuracy. Their implemen-
tation on edge devices, however, proves to be a challenging task
because of a number of resource constraints, including restrictions
on processing and storage capacity. Knowledge Distillation (KD)
transfers knowledge from larger to smaller models, a valuable tech-
nique when resources are limited for larger models [2].

This poster considers a scenario with 𝑁 number of heteroge-
neous edge devices where the memory space of the devices may
not be equal. Let a device 𝑛 consists of 𝛼𝑛 memory space, and
𝛼 = min{𝛼1, 𝛼2, · · · , 𝛼𝑁 } represents the minimum space among all
𝑁 devices. Given 𝛽 as MAP time, we focus on this challenge: How
can we create a lightweight DNN from a larger one, ensuring success-
ful task processing on each edge device under a given constraints 𝛼 and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’23, November 12–17, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0414-7/23/11. . . $15.00
https://doi.org/10.1145/3625687.3628409

Input

Output:

Large−size DNN

Designing of Lightweight

Apply dropout

Neural Networks

Training of Lightweight

networks for heterogeneous
edge devices

Trained lightweight neural 

heterogeneous setting
termination in
KD−based early

MAP(β)Space(α)

(α1, · · · , αN )

Figure 1: An overview of the proposed approach.

𝛽? We propose an approach that leverages KD to design and train
lightweight DNNs tailored for a diverse set of edge devices. Initially,
this approach creates a lightweight DNN from the larger model
using dropout techniques, taking into account the constraints of 𝛼
and 𝛽 . Subsequently, we outline a training procedure for designed
lightweight DNN, leveraging knowledge from both pre-trained and
untrained large DNNs. An early termination method is also given
to fasten the training of the lightweight DNN.

2 LIGHTWEIGHT DNN
This poster first converts a large DNN into a lightweight using
dropout techniques considering the edge device’s constraints. As-
suming we have a datasetD and a large DNN denoted as𝑀𝑙 . Subse-
quently, we employ an early termination method in KD to expedite
training and enhance precision in the resulting lightweight DNN.

2.1 Lightweight DNN using Dropout technique
Let 𝑚 and 𝑡𝑛 be the memory and processing time to complete
one Floating Point Operation (FPO) of edge device 𝑛, respectively.
Define 𝑇𝑚𝑒𝑚 = 𝑚

∑𝐿
𝑖=1 𝐹𝑖 and 𝑇𝑛𝑒𝑥𝑒𝑐 = 𝑡𝑛

∑𝐿
𝑖=1 𝐹𝑖 as the memory

usage and processing time, respectively, where 𝐹𝑖 represents the
number of FPOs needed to execute for layer 𝑖 in the lightweight
DNN. Let 𝑇𝑒𝑥𝑒𝑐 = max{𝑇 1

𝑒𝑥𝑒𝑐 ,𝑇
2
𝑒𝑥𝑒𝑐 , · · · ,𝑇𝑁𝑒𝑥𝑒𝑐 }, then the objective

function of a lightweight DNN (𝑀𝑠 ) with the given constraints as
min 𝜔𝑇𝑚𝑒𝑚 + (1 − 𝜔)𝑇𝑒𝑥𝑒𝑐 ,
subject to 𝑐1 : 𝑇𝑚𝑒𝑚 ≤ 𝛼, 𝑐2 : 𝑇𝑒𝑥𝑒𝑐 ≤ 𝛽, 𝑐3 : 𝐴𝑐𝑐 ≥ 𝐴𝑐𝑐𝑡ℎ, (1)

where 𝜔 and 𝐴𝑐𝑐𝑡ℎ are weight factor and desired accuracy, respec-
tively. To solve Eq. 1, we apply a heuristic-based dropout on 𝑀𝑙 to
prune unimportant connections, yielding a lightweight DNN with
scaled weights. We estimate an optimal dropout rate (𝑑) for our
resources and accuracy needs. Define𝑄𝑏 and𝑄𝑎 as the connections
count before and after dropout. Then the dropout rate is given as
𝑑′ = 𝑑 × max{

√︃
𝑄𝑏
𝑄𝑎
, (1 − 𝑖𝑡𝑟

𝑐×𝑖𝑡𝑟𝑚𝑎𝑥 )}, where 𝑖𝑡𝑟𝑚𝑎𝑥 and 𝑐 are the
required number of iterations for dropout and a hypermeter, respec-
tively. Let 𝑀𝑙 = {𝑊𝑖 , 𝑍𝑖 : 1 ≤ 𝑖 ≤ 𝐿}, where 𝑍𝑖 is a binary matrix
indicating network connection states at layer 𝑖 and 𝐿 is the total

546

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625687.3628409&domain=pdf&date_stamp=2024-04-26


SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

number of layers in𝑀𝑙 . To apply dropout in a large DNN𝑀𝑙 to layer
𝑖 , we create a binary mask 𝑍𝑖 matching its shape. We then scale the
mask values and replace 𝑖 with 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝑖, 𝑍𝑖 ) = 𝑖 ×

(
𝑆𝑖𝑧𝑒 (𝑍𝑖 )
𝑆𝑢𝑚 (𝑍𝑖 ) .𝑍𝑖

)
.

This process is iterated to meet memory and execution constraints
on resource-limited devices, minimizing performance impact.

2.2 Training of lightweight DNN
The lightweight DNN (𝑀𝑠 ) undergoes training via the KD technique,
employing the guidance of a pre-trained (𝑀𝑝

𝑙
) and an untrained

(𝑀𝑢
𝑙

) large DNN. Incorporating𝑀𝑝
𝑙

and𝑀𝑢
𝑙

boosts𝑀𝑠 performance,
addressing challenges with hard logit targets and mitigating per-
formance deterioration resulting from random initialization.

We propose an early termination technique for 𝑀𝑢
𝑙

at epoch ℎ,
with ℎ < 𝐸, to save resources during 𝑀𝑠 training, where 𝐸 is the
cumulative epochs needed for the training process. The choice of
ℎ can vary due to differences in memory space on heterogeneous
edge devices, where 𝛼 = min{𝛼1, 𝛼2, . . . , 𝛼𝑁 }. After ℎ epochs, the
training of 𝑀𝑢

𝑙
terminates and 𝑀𝑠 continues only under the guid-

ance of trained𝑀𝑝
𝑙

. On each epoch, we compare the performance of
𝑀𝑠 using the combined loss (L𝑐𝑏 (·)) of 𝑀𝑠 and 𝑀𝑢

𝑙
which includes

cross-entropy loss L𝐶𝐸 (·), attention loss L𝐴𝐿 (·), and distillation
loss L𝐷𝐿 (·). The combined loss is defined as 𝜆1L𝑠𝐶𝐸 + 𝜆2L𝐴𝐿 +
𝜆3L𝐷𝐿 + 𝜆4L𝑙𝑢𝐶𝐸 . After ℎ epoch, the comparison is conducted using
the loss (L𝑠

𝑐𝑏
) of 𝑀𝑠 which is 𝜆1L𝑠𝐶𝐸 + 𝜆2L𝐴𝐿 + 𝜆3L𝐷𝐿 . Here, 𝜆𝑖

(for 1 ≤ 𝑖 ≤ 4) represents the fractional contribution of different
loss functions, with 0 ≤ 𝜆𝑖 ≤ 1. The optimization formulation of
the loss is defined as

min L = 𝑥 (L𝑐𝑏 ) + (1 − 𝑥) (L𝑠𝑐𝑏 ),
subject to 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1, 0 < {𝜆1, 𝜆2, 𝜆3, 𝜆4} < 1, (2)

where 𝑥 = 1 till the training of untrained model 𝑀𝑢
𝑙

, else 𝑥, 𝜆4 = 0.
Given varying edge device capabilities, the degree of model com-
pression will differ. When the model undergoes substantial com-
pression, it needs to be trained for a certain number of epochs to
attain a reasonable level of accuracy. Let 𝑠𝑖𝑧𝑒𝑠 and 𝑠𝑖𝑧𝑒𝑙 be the sizes
of lightweight and large DNNs, respectively. The minimum number
of epochs to which the model must be trained is 𝑒 = 𝐸

(
1 − 𝑠𝑖𝑧𝑒𝑠

𝑠𝑖𝑧𝑒𝑙

)
.

After 𝑒 epochs, we assess the variance of L following each epoch.
The training of 𝑀𝑢

𝑙
is stopped if the variance is essentially constant

or shows only minor variations. The procedures to construct and
train a lightweight DNN are shown in Algorithm 1.

3 PERFORMANCE EVALUATION
This section assesses the proposed research using openly available
datasets, pre-existing large-scale DNNs, and a variety of heteroge-
neous edge devices (Raspberry Pi, Samsung, and Huawei smart-
phones). We consider four established DNNs, namely DeepZero [3],
DeepFusion [4], DeepSense [5], and DT-MIL [1], designated as
𝐷1 through 𝐷4. Additionally, we have analyzed three different ap-
proaches: 𝑆1[2], 𝑆2[6], and our proposed method 𝑆3.

Figure 2(a) and Figure 2(b) demonstrate the DNNs’ accuracy and
training time, respectively. Employing schemes 𝑆1 and 𝑆2 demands
a substantial number of FPOs and parameters. Scheme 𝑆3 stands
out, significantly reducing training time for the lightweight DNN
𝑀𝑠 . The transformed lightweight DNN using 𝑆3 maintains high

Algorithm 1: Design and training of lightweight DNN.

Input: D, 𝑀𝑝
𝑙

, 𝑀𝑢
𝑙

, 𝛼 , 𝛽 , ℎ, 𝐸, 𝜆1, · · · , 𝜆4;
Output: Optimal lightweight model 𝑀𝑠 ;

1 Estimate 𝛼 = min{𝛼1, 𝛼2, · · · , 𝛼𝑁 };
2 Train teacher model (𝑀𝑝

𝑡 ) on D;
3 while not converge do
4 Apply dropout and obtain 𝑀𝑠 with 𝑄𝑎 connections;
5 Train 𝑀𝑠 using 𝑀𝑢

𝑙
and 𝑀𝑝

𝑙
for 𝑒 epochs;

6 for epoch 𝑒 + 1 ≤ 𝐸 do
7 if 𝑒 + 1 ≤ ℎ then
8 Train 𝑀𝑠 using 𝑀𝑢

𝑙
and 𝑀𝑝

𝑙
;

9 else
10 Train 𝑀𝑠 using 𝑀𝑝

𝑙
;

11 Solve Eq. 2 and Obtain optimal value of 𝜆1, · · · , 𝜆4;
12 P ← 𝑎𝑝𝑝𝑒𝑛𝑑 (L), preserve 𝑀𝑠 ;

13 Obtain 𝑀𝑠 for L at arg min{P};
14 return Optimal lightweight model 𝑀𝑠 ;

accuracy within edge device constraints, accelerating training and
conserving energy and resources.

60

80

100

D1 D2 D3 D4

A
cc

ur
ac

y
(%

)

DNN models

S1 S2 S3

100

150

200

250

D1 D2 D3 D4

Tr
ai

ni
ng

tim
e

(in
m

in
)

DNN models

S1 S2 S3

(a) Accuracy. (b) Training time.

Figure 2: Impact of DNNs on different schemes.

4 CONCLUSION
This poster introduced an approach that designs and trains a light-
weight DNN using a large-size counterpart, meeting heterogeneous
edge device constraints. It employs optimal dropout along with KD
to enhance performance. An early termination technique is intro-
duced to accelerate training and conserve resources. Experimental
validation demonstrates the proposed approach’s high accuracy on
edge devices.

REFERENCES
[1] V. M. Janakiraman. 2018. Explaining Aviation Safety Incidents using Deep Tempo-

ral Multiple Instance Learning. In Proc. ACM SIGKDD. 406–415.
[2] A. Mishra and D. Marr. 2018. Apprentice: Using Knowledge Distillation Techniques

To Improve Low-Precision Network Accuracy. In Proc. ICLR. 1–17.
[3] R. Mishra, A. Gupta, H. P. Gupta, and T. Dutta. 2022. A Sensors Based Deep Learn-

ing Model for Unseen Locomotion Mode Identification using Multiple Semantic
Matrices. IEEE Trans. Mobile Comput. 21, 3 (2022), 799–810.

[4] H. Xue, W. Jiang, C. Miao, Y. Yuan, F. Ma, X. Ma, Y. Wang, S. Yao, W. Xu, A.
Zhang, et al. 2019. DeepFusion: A Deep Learning Framework for the Fusion of
Heterogeneous Sensory Data. In Proc. ACM Sensys. 151–160.

[5] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. 2017. Deepsense: A Unified
Deep Learning Framework for Time-series Mobile Sensing Data Processing. In
Proc. WWW. 351–360.

[6] H. Zhao, X. Sun, J. Dong, C. Chen, and Z. Dong. 2020. Highlight Every Step:
Knowledge Distillation via Collaborative Teaching. IEEE Trans. Cybern. (2020),
1–12. doi: 10.1109/TCYB.2020.3007506.

547




