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ABSTRACT
Drone technology has made significant strides this decade, trans-
forming industries and everyday activities with various applications.
One visionary area is the integration of indoor drone systems to
aid individuals in need of regular care, empowering them to live
independently. This paper introduces a cost-effective drone-based
indoor system and focuses on presenting our preliminary results on
environment mapping. Our approach prioritises affordability and
hardware-friendly technologies, ensuring accessibility. Our main
contribution is the provided solution only relies on a single camera
and is built upon a cheap programmable small-sized drone1.
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1 INTRODUCTION
Automated indoor navigation is applied in retail, healthcare, man-
ufacturing, and logistics, making indoor spaces more accessible,
efficient, and interconnected. Indoor mapping and localization is
the field of technology as the cornerstone of indoor navigation that
builds upon various technologies from electrical engineering and
computer science. The main tasks are to create detailed maps and
accurately determine the location of individuals or objects within
the indoor setting. In the recent decade, due to the proliferation of
smart devices and the advancements of wireless communication
technologies, indoor mapping and localization enjoy a wider range
of applications to help build smart environments [4].
1The demonstration of the system is provided as a YouTube video: https://youtu.be/
EAQMOytuZqQ
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Figure 1: System modules.

Drone-based research is transforming data collection and anal-
ysis in various scientific fields. Drones provide researchers with
unprecedented access to remote and hard-to-reach areas, however
is rarely explored under small-scale indoor systems. Existing works
either provide a vision for indoor drone-based systems [3] or rely
on expensive (but more functional) drones [2] that impede the
adoption from customers. In this work, we present an innovative
indoor drone assistance system solution that is built upon a low-
cost, ultra-light drone, DJI Tello Education. The system is capable
of performing simple environment mapping (implemented) and
self-localization (ongoing) by only using a single camera pointing
downwards. The computer vision techniques applied are computa-
tionally efficient and easy to deploy. Through this work, we demon-
strate that it is feasible to utilize uncomplicated and budget-friendly
technology to build a comprehensive system. This work could be
the first step toward the research and development of low-cost
indoor drone-based home assistance systems.

2 THE SYSTEM
2.1 Hardware
The camera captures the frames in real-time and uses the ESP32
module to transmit the frames to the computer using the Local
Area Network (LAN) that is created by a Wi-Fi modem. After the
computer processes the frame, it gives instructions to the drone
via LAN. When the drone receives the instruction, it travels to its
destination with the camera module strapped on the bottom.

More specifically, we used an ESP32-WROVER camera kit which
weighs about 5 Kg and cost approximately AUD $100, an ultra-light
and ultra-low-cost DJI Tello Education version that approximately
weighs 80 g and costs AUD $219, TP-Link Archer C1200 to form
LAN and personal computer to execute the programs.
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2.2 Functional Modules
The system consists of four functional modules Detector, Map-
per, Streamer, Searcher and Controller, as shown in Fig. 1. The
implementation of the Searcher module is our next step. Here, we
introduce the mapping process enabled by the developed modules.
Controller. The Controller controls the whole process of mapping.
The Controller receives and analyses the images from the Detector,
and passes instructions to the drone and the Mapper. Fig. 2 shows
the process. Assume that the drone is initially located at a random
spot and could head in any direction (Fig. 2a). In this status, the
Controller controls the process of exploring the environment until
it finds the first edge or corner (Fig. 2b). After that, the Controller
rotates the drone while keeping the direction of the drone perpen-
dicular to the edges until the drone is aligned with the detected
edge and corners (by the Detector), the controller will initiate the
Mapper and instruct the drone to follow the edges and corners
when travelling through the room. While the drone is travelling,
the Controller will instruct the Mapper to drop an “anchor" af-
ter the frame has been processed (Fig. 2c). After four corners of a
room are obtained by the Mapper, the mapping will stop as well
as the drone’s movement. An occupancy grid map, which contains
no values except the boundary that is filled with -1, will then be
constructed (Fig. 2d) and the constructed map will be sent to the
Searcher, to initiate the searching process (Fig. 2e).
Detector. The main detect function combines the corner and edge
detection functions to identify features in the image and returns
potential analysis, such as actions (i.e., what drone should take for
the next steps), steps (i.e., the magnitude of the drone should execute
the actions), and events (i.e., the situation the drone is encountering).
We used the Canny edge detection [1] and Hough Line Transform
techniques which provide information about the drone’s posture
above an edge. We utilised the Harris Corner Detection algorithm
[5] to find corner coordinates in the input image. We applied a
clustering method to identify the most prominent corner among
the detected candidates.
Mapper. The Mapper is used to construct the occupancy grid map.
While the drone is moving around the room, an “anchor" is dropped
every time a new frame is received. The map is constructed based
on the number of anchors collected for each edge, with extra one-
layer padding which is filled with “−1" in each direction to denote
the boundaries of the environment.
Streamer. This module provides an interface to display the video
stream from the ESP32 module in a Pygame window.
Searcher The searcher is designed to explore the undiscovered
area of the environment to seek items, which will be our next step.

3 EMPIRICAL STUDIES
Inspired by Absolute Trajectory Error (ATE), which is simple but
effective for a rectangular-shaped environment, we develop a met-
ric to measure the similarity of the real map and the constructed
map. Assume the occupancy map 𝐴 has shape [𝑀, 𝑁 ], our metric
compares the ratio of the number of rows and columns of the occu-
pancy map. Eq. (1) and Eq. (2) show the methods of transforming
the occupancy grid and the real-world environment to the same
dimension respectively.

(a) (b) (c)

(d) (e) (f)

Figure 2: The mapping process. The black arrow represents
the drone’s path, the red arrow represents the drone’s facing
direction, the blue points indicate the anchors, and−1 denotes
the wall. The yellow and green squares are the location of
the items. The searcher module is designed to estimate the
coordinates of these squares.

𝑓 (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 ) = 𝑓 (𝐴𝑀𝑁 ) =
𝑀

𝑁
(1)

𝑔(𝑅𝑟𝑒𝑎𝑙 ) = 𝑔(𝑤𝑖𝑑𝑡ℎ, 𝑙𝑒𝑛𝑔𝑡ℎ) =
𝑤𝑖𝑑𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ
(2)

The metric is defined as the root mean square from the error
matrices:
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Using our metric to evaluate the system’s performance yields
an average score of 0.827 for five testing videos tested on the sys-
tem. Here, numbers close to 1 denote the best performance, while
numbers close to 0 denote bad performance.

4 CONCLUSION AND FUTURE WORKS
In this paper, we have presented a cost-effective drone-based nav-
igation system. We provided our preliminary results on building
the system, creating the map, and performing searching. The sys-
tem’s robustness to the environment and real-time responsiveness
is under work to be improved. We will also further increase the
accuracy of the mapping in our follow-up works.
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