# A Man-Machine Approach Toward Solving the Traveling Salesman Problem 

Patrick Krolak and Wayne Felts<br>Vanderbilt University, Nashville, Tennessee and<br>George Marble<br>Washington University, St. Louis, Missouri

The traveling salesman problem belongs to an important class of scheduling and routing problems. It is also a subproblem in solving others, such as the warehouse distribution problem. It has been attacked by many mathematical methods with but meager success. Only for special forms of the problem or for problems with a moderate number of points can it be solved exactly, even if very large amounts of computer time are used. Heuristic procedures have been proposed and tested with only slightly better results. This paper describes a computer aided heuristic technique which uses only a modest amount of computer time in real-time to solve large (100-200) point problems. This technique takes adyantage of both the computer's and the human's problem-solving abilities. The computer is not asked to solve the problem in a brute force way as in many of today's heuristics, but it is asked to organize the data for the human so that the human can solve the problem easily.

The technique used in this paper seems to point to new directions in the field of man-machine interaction and in the field of artificial intelligence.

Key Words and Phrases: heuristic procedures, computer-aided heuristic technique, man-machine interaction, artificial intelligence, assignment problem, mask of the assignment, rubber band tour generator, interaction process, traveling salesman problem

CR Categories: 3.57, 3.66, 5.30

## Introduction

The traveling salesman problem is easily stated in the following manner. Suppose a salesman is to visit $n$ cities (nodes, customers, etc.), visiting each only once, how does he schedule his itinerary so that he travels only a minimum distance (or pays a minimum travel expense)? For the purposes of this paper, distances between cities are assumed to be the same in either direction.

This problem, which is related to numerous other problems such as board wiring, scheduling, and routing, has been the subject of intensive research for many years. To date, the efforts have been rather disappointing. No exact algorithm has ever claimed to solve problems of over 65 cities, and most heuristic algorithms require large amounts of computer time to provide satisfactory solutions to problems for that size or larger. In this paper the authors report on a man-machine approach that provides reasonable performance on very large problems ( 200 cities).

Careful studies have been made of currently used heuristics, of existing theory on the properties of the optimal solution, and of methods a man may use to solve this problem without either of the previously mentioned tools. The results indicate that giving a man a map of the cities he is to visit does not provide him with sufficient information to find reasonable solutions when the number of cities is large. On the other hand, giving a computer a distance matrix and generating a large number of random starting tours which are cleaned up by various heuristics which make local improvements produces excessively long computer run times before a satisfactory tour is produced and/or accepted. Clearly then, any successful approach to producing a tour whose distance is the minimum mileage, or very close to it, at
The research for this paper was supported in part by NSF grant GK-4975 L/C.
an aceptable cost in compute the and man power wh have to be some combination of the above.

A tivision of labor seems best. The computer or ganizes the data and pertoms the numerous caknations. The human uses hs eyes and probem solbige skills to create solntions and to dret the mompts at improvement. A key step in our process is the imita one of organiang the datia so that a haman can see the imporam features of the problem and integrate these pieces of information into a complete solution. Anoher feature of our approach is to have the computer provide the human with a number of alternative solumons so that he can see which regions the computer has probably corectiy conected and which ones still need work.

## Theory

In approaching the traveling salesman problem, previous authors have taken wo distinct tacks. One group tried to create an cxact algonithm through a branch-and-bound type of solution [1, 21, Such an agorthm generally made heavy use of the fact that the traveling salesman problem is closely connected to another prob. lem called the assignment problem. The other group tried to solve the problem by creating an initial tour by some simple rule (random, nearest neighbor, etc) and then improving this wur by various methods $[3,4]$. This generally involves improving a small section of the tour at a time Unfortunately, ff the initial tour is a very bad one, this local improvement will sull provide only a slighty better result even after a great deal of effort. For small problems one can generate a katge number of diferent inital tours, improve them, and use the best result with fair confence that it is an optmal or at least a near optimal tour. For large problems this approach requires several hours of computer time, and the result. ing cast of en exceds the worth of the study. One recent man-machine study $(5)$ to which the authors' attention was called white this paper was in preparation attempted to speed up this heuristic process by turning the controt of these local improventents over to the human. Our work attempts to go beyond that effot by bringing the human in much eanter and by giving him tools that expand his problem-solving ablity. To do this it wili be necessary: (l) to help focus the human's attention on those items which will probably be part of any near optimal tour; (2) to indicate regional and global ceatures of any speche probkm trat mukh play a part in the developnent of ary good tout; and (3) 10 provide alternative points of view so that the human can see aceas for improvemen in his solution and so that he can form an estimate of when be has reached the point of dimmishing return in his efforts.

## Step 1. Organizing the Data To Suggest a Tour

The problem whit smply givis someone a map marked with the cittes he is supposed to comenect is that in most case his eyes will have dificulty in perceiviog
any order or patem. The athors have found that the following technupe is extronely helpht in sotwing this problem.

Suppose that you are a salesman who bust visit a number of ctics which dre quite far apart and that in cach city you hate two or more castomets who are farly close wagther. In getrat, the time you spend in planoing your tour yolds the greatest savings in mileage reduction if got abrecty decte on the order in wheh you visi the citiss rather than spem the same time on deciding how to visit your customess within cach city. This observation lead us to conclude that we would like fond the chater centers or fegions around which a high density of customers is located. How can we do this eficiently?

The Assignment Problem. Associated with every traveling salesman probtem is another problem a alled the assignment problem. Let us denote the distance beWeencity $i$ and city $j$ as $d_{i,}$. Then the associatod assignment problem can be stated as
$\min Z=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{2}, x_{i}$,
with
$\sum_{j=1}^{n} x_{i j}=1, \quad i=1, \cdots, n$,
$\sum_{j=1}^{n} x_{n}=1, \quad j=1, \cdots, n$,
where $x_{i j}=0$ or 1 . Here we interprel $x_{i j}=1$ as meaning that we travel from city ito city $j$. Since it is necessary to forbid travel between a city and itself, we let $d_{0}=\infty$. Although any feasible traveling salesman tour is necessarily a solution to the associated assignment problem, the optimal assignment is not neeessarily a feasible solution to the traveling satesman problem. In fact, the optimal assignment is generally a collection of disioint subtours frequently of length 2. This result leaves branch-and-bound algorithms very litte to work with and hence leads to their poor performance in large problems [6]. However, Shapiro [2] notes that there is a high correspondence between the optimal traveling salesman's tour and the associated assignment solution. That is, it is not uncommon for the vast majority of assignment subtours to be the links of the traveling salesman's tour. Thus the assignment solution indicates local order.

Assignment of the Assignment. If wa think of the subtours found in on solution of the assignment in our previous cxample as being the visits to customers within one city, we can now see how to proceed. Let us find the geometric means of all the subtours of the optimat assignment - that is, find the center of gravity of the cities on the subtour. These geometric means are now the location of the "ctty," and if we calculate the distance matrix for these "cities" and solve the resalting assignment probtem refered to as the second level assignment or the assignment of the assignment, we find how the "cities" are regionally clustered. Carrying this
operation to higher levels we get fewer and fewer "cities" in each level. At each level the resulting subtours locate, like a map, first the cities, then county seats, then state capitals, etc. This information next tells us which regions are likely to be connected to which regions. The correspondence between the observed traveling salesman tour and the second level assignment is also high, as is the third level, but reliability of the prediction falls as we go higher in level. The information is then presented to the problem solver as in Figure 1.

Mask of the Assignment. The assignment subtours have been observed to make up a large part of the traveling salesman optimal tour [2]. We will call these subtours primary links. The authors have found that solving another assignment problem gives many of the links that connect these subtours. This assignment problem is referred to as the mask of the assignment and is defined as similar to the assignment with the exception that all the $d_{i j}=\infty$ for those $x_{i j}=1$ in the optimal solution of the original assignment. In effect, we are forbidding the assignment subtours in order to find the next best collection of subtours. The optimal subtours of the mask of the assignment are referred to as the secondary links.

The mask of the assignment is also drawn up (Figure 2) and, together with the assignment of the assignment's results, forms the input to our problem-solver.

## Step 2. Human Generated Tour

At the end of Step 1, the problem-solver has before him data that has been found to be a major portion of other optimal traveling salesman tours. It is now up to him to integrate all of the data into a tour. The human problem-solver has one advantage that no computer has in that he can "see" the whole problem. This is not merely a comment on man's visual capabilities; rather it is a recognition of his ability to conceptualize. Thus a human can envision a solution which accounts for interactions between all of the regions that must be connected and can avoid the pitfalls of the typical nearest neighbor approaches.

The problem-solver then draws the tour and compares how well it uses the primary and secondary links of the assignment problem and its mask, and how well it connects regions grouped by the second and higher level assignment problems, etc. In general, the problemsolver will find that a good tour has a number of features: (1) it seldom has rapidly oscillating sawtooth curves; (2) it is smoother-more like a polygonal approximation to a curve, particularly in areas with a high density of points; (3) it appears to have a high ratio of enclosed area to perimeter. A tour with long narrow necks which wind back on themselves is to be avoided.

If two or more problem-solvers use this information to generate independent trial tours, it is worthwhile to compare the solutions. The comparison generally results in a composite tour that requires much less computer time to reduce the tour to final form. The cost of having two or more people draw a tour is relatively small since
the data has already been prepared, and even with a 200 -city problem a tour can be generated in half an hour.

The generation of a tour provides two benefits that should not be overlooked. The first is that by going through the thought process the problem-solver will become familiar with the features of the problem. In the event that the model and the real problem do not completely correspond, this familiarity should allow the problem-solver to adjust the model results to include these difficullies in a more intelligent manner. Since this frequently occurs in applications, this benefit should not be minimized as to its importance. Secondly, in generating a tour and making the comparison and evaluating the results, the problem-solver develops a feeling for places where his solution is weak and where it is in need of only a little work. This experience determines which of several heuristics will be used in the cleanup phase and where they will be applied. For some applications the process could very well stop here since frequently only a reduction of several percent in total length results from further effort.

## Step 3. Computer Generated Initial Tours

For the sake of comparison or to suggest to the problem-solver other approaches to solving the problem, a collection of heuristics is made available to produce initial tours. The authors have tried to generate several heuristics that produce a near optimal tour using only a minimum amount of computer time. They succeeded in generating a number of different heuristics, the details of which form the subject of another paper [7]. The authors call one of these heuristics the "Rubber Band Tour Generator" because the manner in which it generates a tour is similar to stretching a rubber band around the regional assignment data. These heuristics, however, have been found to produce tours that are very nearly optimal in computer times that are relatively short ( $1-2$ minutes of Sigma VII time on a 100 -city tour) and do not grow rapidly with an increase in problem size. Besides being fast and accurate the heuristic makes use of the data generated by Step 1 .

## Step 4. Tour Review

The problem-solver now has several proposed tours which are evaluated and compared with one another. The data from Step 1 is compared with each of the tours, and a decision is made whether to work with one of the proposed tours or a composite of the tours. Generally, after some experience the problem-solver is able to recognize some superior features or ideas in each of the tours generated in Steps 2 and 3 and finds it to his advantage to begin work with a composite.

At this point the reviewer is concerned with two types of problems. One type concerns the difficulties that arise because the eye is not able to resolve small trade-offs. These questionable areas are resolved by applications of point replacement, by the interchange of two or more links with another set, or by other routines that are commonly used in traveling salesman heuristics.

Fig. 1. Display of the first through third level assignment problems.


In general, the result of this kind of improvement is a very small reduction in total length. The other type of problem, much more difficult to see and to handle, occurs when the connection of one region to another has been made incorrectly. Locating regions where a major segment of the tour is incorrectly drawn can be done in a number of ways. The intersection set of the primary and secondary links and the current tour often shows many regions completely connected while other regions are very disjoint. These disjoint regions are often the areas that require major changes to be made in the tour. The comparison between the computer's heuristics, such as the "Rubber Band Tour Generator," and one or more solutions drawn by individual problem-solvers reveal regions, particularly those interior regions of very large problems, which can be interconnected in a variety of ways. The set of cities found in these regions is generally moderately large, and the number of combinations of the various ways to interconnect the various regions is also fairly large. Hence the need for a regional tour improvement routine is evident.

The result of this step is to pinpoint the problem areas and decide on the order of application of regional and local heuristics.

## Step 5. Final Improvements in the Tour

The problem-solver now applies the local and re gional improvement routines to the proposed tour. Th local routines are simple routines such as the poir routine which removes a given point from the tour an inserts it between two adjacent cities if it finds that thi reduces the total distance. A heuristic such as deseribe by Limn [4] for the replacement or interchange of two o more links is also available. The regional improvemer routines are really traveling salesman optimization pre grams which have been shown to be able to solv problems of moderate sizes reliably and rapidly. Th problem-solver determines that a region of the probler has not been properly handied. The only problem abou using a traveling salesman optimization program is tha the final result must match up with the remainder of th tour. This match-up can be handled by replacing th true distances by a zero distance wherever the tour is cul This forces the resulting regional tour to include arti ficial links which will match up with the remainder of th tour. The regional routine has the sections of the tou being clipped off the original tour and the location o zero distance links as inputs. The regional improvemen routine currently being used by the authors is based on

Fig. 2. Mask of the assignment problem.


Fig. 3. Final tour $=21282$ units, 5.7 minutes CPU time, 76 minutes terminal time.



|  |  | Rubber Tamer |  | Olerac |  | Man Machoth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number －incest | Froblem ＂umber | Tome | Cost | Time | 60＜ | Then | C036 |
| 100 | 24 | 1.312 mma | 2128 |  | 31437 | $\begin{aligned} & 4.87 \\ & (76 m i n .) \end{aligned}$ | 212820 |
| 10 | 25 | 1．ay mex． | 2353 | 23 \％min | 2259．3 |  | 22193．3 |
| 100 | 26 | 1．10 man | 2156 |  | 21032．5 |  | 20832． |
| 100 | 27 | 1.373 rnixa | 2140 | 22 man | 269？ |  | 212063 |
| 12） | 28 | 1 120 mat． | 2274 | 19 trim． | 22190 |  | 22115．6 |
| 150 | 10 | $2.6 \%^{2}$ mans | 2746 | 37 mm | 26990 | $\begin{aligned} & 3.6 \\ & (3 \mathrm{~min} .) \end{aligned}$ | 26763．2 |
| 150 | 31 | 2.750 min | 2850 | $43^{3}$ matro | 26320.1 |  | 26316.4 |
| 200 | 12 | 5.198 mm． | $3{ }^{2} 40$ |  | 2966 |  | 29823．1 |
| 20 | 33 | 4．612 man | 2946 | 190 min ． | 31424.5 | $\begin{aligned} & 8.83 \\ & \text { Tomin }\} \end{aligned}$ | 20678.2 |

Table If Cwoinater of the Example


| city | 城 | \％ | City | X | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Maxaber | Comrd | Coma | Numbecr | Coore | Coord |
| 2 | 1930 | 99 | 51 |  | 號？ |
| 2 | 23䋨 | 酎 | 52 | 368．4 | 92 |
| 3 | 351 m | 1671 | 53 | 376 | 825 |
| 4 | $4{ }^{4}$ | 334 | 54 | 2519 | 13\％ |
| 5 | 388 | 8 | 5 | 2945 | ＋622 |
| 4 | \＄8．4 | 6\％ | 矣 | 953 | 253 |
| \％ | $2 \%$ | ${ }^{148}$ | 53 | 26228 | 69\％ |
| 8 | 1286 | 535 | $3{ }^{3}$ | 2607 | 983 |
| 3 | 2716 | ＋432 | 39 | 898 | 3綀的 |
| 10 | 713 | 1325 | 80 | 2139 | 1806 |
| 11 | 1251 | $189 \%$ | 4 | 2423 | 818 m |
| 12 | 2728 | \％ | 0 | 20\％ | 185980 |
| 13 |  | 6ts | 53 | H15 | 嗉空 |
| 14 | 3633 | $15 \% 3$ | 64 | 2585 | 302 |
| 15 | 12．4． | P96\％ | 6.5 | 327 | 26.5 |
| \％ | 123 | －82 | 6 | 243 | 3程 |
| \％ | 8284 | 194＊ | ＊？ | 5917 | 687 |
| 18 | 238 | 32085 | 6 | 2931 | 92 |
| 㛵 | 63 | 673 | 89 | 2573 | 399 |
| 20 | 2596 | 16\％ | \％ | \％ | 67， |
| 23 |  | Wor | 31 | 3915 | 1673 |
| 22 | 33 | 83 | 72 | 58 | 1539 |
| 23 | $180 \%$ | 178 | 7 | 28 ck | 553 |
| 24 | 374 | 1485 | 76 | 523 | 3765 |
| 25 | 2574 | 546 | 83 | 839 | 420 |
| $2 \%$ | \％${ }_{\text {㥻 }}$ | 24 | 76 | 3693 | 100 |
| 23 | 267\％ | 1525 | 7 | 215 | 1619 |
| $2{ }^{3}$ | f7es | \％ | 38 | 362\％ | 59 |
| 39 |  | 9，${ }^{\text {cha }}$ | \％ | ${ }^{3}$ 管 | 1448 |
| 30 | $35 \%$ | 3075 | m | 3 37 |  |
| 3 | 1208 | 62 | 敗 |  |  |
| 38 | 1424 | 172 | 5 | 第动盛 | 143 |
| 33 | 黣3 | \％${ }^{\text {c／}}$ | 3） | 290 | 1605 |
| 14 | \％緒坴 | 1528 | 8 c | 69 | 1324 |
| 35 | 3573 | 1968 | 多 | 315 | 等緆 |
| 36 | 緒产 | 素等 | 新 | 3）${ }^{3}$ |  |
| \％ | 3 ${ }^{\text {a }}$ | 3598 | 8 | 2886 | 123 |
| 㠮 | 29\％ | 1393 | 噱 | 189 | 9\％ |
| $3{ }^{3}$ | 3479 | 42 | \％ | 淘教 | 12A |
| 46 | $2 \mathrm{c}+3$ | 236 | 考教 | 318 | 5020 |
| \％ | 3／85 | 1763 | S 1 | 1625 | 1685 |
| 4 | 723 | 23 | 5 | 吉教？ | 760． |
| 43 | 34.87 | 为者 | 等 | \％ 7 \％${ }^{\text {c }}$ | 1040 |
| 4.4 | 290 | 39 | 3 | 22 | 9\％${ }^{7}$ |
| 45 |  | 183 | 5 | 3 | 43 |
| 4， | 3） | 数殓 | \％ | 翟嘘 | 菏2 |
| s？ | 3 | 13等 | 5\％ | 97\％ | 342 |
| ＊ 4 | 颔教寺 |  | 鐇 | 178\％ | 3絓2 |
| 9\％ | 縣 | 95 | 3 | 絞農 | 擞陶 |
| 30 | 3x\％ | 47\％ | 163 | 教多 | 保铭 |

the work of Oberuc［？］．This routine can hantle up to 30 cities at any one lime．The auhors have found the petformance of this routine to be satisfactory for this size problem，but it becomes less reliable for larger problems．The routine requires only a small amount of cors，which is an advantage for time－sharng．

## Step 6．Final licyiew

At this point the problem－solver has one basic de－ cision to make he must decide whether the potential undiscovered reduction in tour length is worth the ex－ pense of his and the computers time．Guha $\{8 \mid$ claims a tight bound in the optimal traveling salesman solution based on the pptimal assignment solution and what he calls the exits of the subtout．The bound is simple to calculate and can be used to estimate the maximum redubtion．IT the problem－solver has worked with similar problems，then by the time he reaches this point the problem should have a very good，if not optimal，solu－ tion．（See Figure 3．）

Actual Man－Machine Configuration．The first step of the process requires a large amount of memory and a transpontation linear programming code（a special as－ signment code is not avalable to the authors）；hence it is done under batch mode on an xos Sigma V11．Since the axhors have factities which provide a 10 － 1020 － mintute turnaround，this is not a major bottencek．

The results are ploted on a CalComp ploter，and clear mansparencies are made up to be used by the probiem－solver with a light board so that by overlaying the various results he can make comparisons rapidly． This would be a perfect application for a computer graphics systern；however，such luxuries are outside the budget of the authors．The light board ant overlays are adequate for the atuthors＇purposes and onty moderately bothersome wo work with．）

The thitd and fith steps are done under the Sigma Vles timeshating montor，and the tata is handled
through a teletype terminal. The programs are arranged so that the problem-solver can call in whatever heuristic is necessary to improve the current tour.

Handing Large Problems, One would expect the size and speed of this man-machine process to be limited by the requirement of the assignment solution. However, the authors have found that these limitations can be avoided by the following observation: that the assignment problem tends to group neighbors together, and that if one knows the optimal solution for a given problem, one can remove a subtour without changing the rest of the solution. While we are not able to envision the optimal subtours of the assignment solution, it is fairly common to find an open region which divides the cities into two or more distinct sets. If this open region or valley is wider than the average nearest neighbor distances in these distinct sets, then one can change the original assignment problem into one of solving the assignment problem on each of the distinct sets. This can be done with little fear of suboptimizing the original problem since, if the valley is of the assumed width, it is unlikely that any optimal subtour would have cities in more than one set. The authors have had no difficulty splitting 200 -city assignment problems into two 100 -city ones. The results, of course, can be recombined for the next higher level assignment if the resulting number of subtours is manageable. Even if the separation turns out to split a subtour, the resulting data would still be accurate enough to use to generate a tour.

If the splitting technique is used to break the assignment problem up into manageable pieces of, say, 100 cities, the limit on the size of the problem seems to be more a function of the problem-solver's patience and eye fatigue. Based on the authors' experience it would seem to be economically and physically possible to solve 300 -city to 600 -city problems.

## Results

To date, the results have been very encouraging. The authors have not found the problems in the current literature to be very difficult because of obvious patterns. Most of the problems were generated from a map of the United States, and most of the cities lie on the west and east coasts. Since most of the problems in the literature are under 50 cities, they are being used as training exercises. To avoid having the results tainted by a foreknowledge of the literature, one 49 -city problem based on road map distances was solved using great circle distances, and a new optimal tour of a very different character was found.

To test the performance of the method on a more challenging set of problems, Oberuc's 75 -city, 86 -city, and 100 -city problems all using great circle distances were undertaken and all of the optimal solutions were found except for the 100 -city problem where the manmachine process found a better solution. The 100 -city problem is of interest for cost comparison. Oberuc [3]
used 80 minutes of univac 1108 time (at least three times the speed of the Sigma VII) and the man-machine method required 10 minutes of cpu time and one hour of human time. The remainder of the large problems tested were randomly generated using Cartesian coordinates. The results would seem to indicate that the "Rubber Band Tour Generator" performs adequately and that the man-machine method produces answers at reasonable expenditures of both computer time and human time (see Table I).

The times given in Table I are for the Sigma VII computer. The man-machine times do not include the computer times for the assignment problems which take 0.8 minutes for the 100 -city problem and 1.8 minutes for the 200 -city problems. (CPU times are not always possible to get but certainly are under 10 minutes for any problem listed.) The time in parentheses is the amount of the human's time required to carry out the process. For those human times not given, no problems were worked on for more than 90 minutes. Based on current rates, one engineering technician man-hour is equivalent to one minute of Sigma VII time.

One further type of traveling salesman problem that would seem to have practical application is the threedimensional extension. In particular, the design of a circuit on multiple boards or the laying of ducts or pipes through a ship or a building can be formulated as a traveling salesman problem where the distance metric in the former case is
$d_{i j}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+k\left|z_{i}-z_{j}\right|$,
or in the latter case is
$d_{i j}=\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right|+\left|z_{i}-z_{j}\right|$.
This additional coordinate does not normally present any mathematical difficulty to any algorithm or heuristic but is an order of magnitude more difficult for the man-machine process. However, the authors' computational experience with Oberuc's heuristic and the manmachine process on 150 -point problems ( 30 random points on 6 boards) indicates that the man-machine process is more economical and accurate than the results of Table I.

The process has been taught to five students and they have produced results that are similar to those in Table I (errors of 0.5 percent). Although the results of the above man-machine process are not perfectly reproducible, they are surely in satisfactory range for most potential users.

For those who would like to make a comparison of their heuristics with the authors' results, the coordinates for the problem in Figures 1-3 are given in Table II.

## Conclusions and Extensions

The authors believe that so far their work has shown the man-machine approach to be an accurate and economical method of solving large traveling salesman problems. The interaction process is being carefully
studed to seck was of improung the poblem solver's whilty wenvision the imporan hatures of the problem and to increase his imagimation so that he whil pot over look regions that still need to be improted. A waining mumula is plamed, not studbes abow the leaming pros css of the problem-solver should poduct interesting resuits.

Since the trakeling saksman frobtem is akin to many other hmortant problems such as the bottencek problem and the wom collextor the sulesman returns home 大ach that he sisis a certain mumber of cities), the question anises whether these results can be extended. The atuthors bolueve the answer is a qualincd yes, if the problem has cettinn features. These eatures inotude a means of organeng the mportant data to be ukilued in the solution, a probtem that can be represemten in the fort of mants, dagrons, or chans, and a means of improving the results through the use of simple hew. ristics.

Acknownedgnents. The unthors would like to thank the computes senters of Vanderbilt University, Nashvile, Tennesce, and of Washingron Unversity, St. Lous, Missoun, for providing the necessary computer them for the study. Discussions with Dr. Leon Cooper, Washington University, provided the onginat motivathon for this study, and his comments were of great help.

Recerved July 1970 -rwised October 1970

## Refereness

1. Biture, M. D. C., Mury, K. G. Swemey, D. W, and Kam, C. An algorthm for the raveling satuman moblen Opmotions Res














 1969


 The Netherfanas, Sext, 1970


