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A technique for recognizing systems of lines
is presented. In this technique the heuristic of the
problem is not embedded in the recognition
algorithm but is expressed in a figure of merit. A
multistage decision process is then able to recognize
in the input picture the optimal system of lines
according to the given figure of merit. Due to the global
approach, greater flexibility and adequacy in the
particular problem is achieved. The relation between
the structure of the figure of merit and the complexity of
the optimization process is then discussed. The method
described is suitable for parallel processing because the
operations relative to each state can be computed in
parallel, and the number of stages is equal to the length
N of the curves (or to log, (V) if the approximate
method is used).
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1. Introduction

The recognition of curves is often an important and
critical stage in image processing. In some cases-~e.g. in
bubble chamber photograph analysis or in character
recognition—the image is already linelike. In other
applications it is reduced to a line-like image by means
of derivative techniques {gradient, Laplacian). Then the
problem arises of finding a system of curves in the
picture which is meaningful to the next step in the proc-
essing, For a deep analysis and comparison of the
known techniques for edge and curves detection see [1].
A particular field in which curve detection plays a pivo-
tal role is, for instance, television bandwidth reduction
through transmission of coded contours [2,3].

For most applications, we can distinguish two phases
in the pracessing of line-like figures as follow.

(1) A set of procedures which operates on the input
picture with the purpose of eliminating most of the local,
uncorrelated noise. Characteristics of this stage are that
operation takes place on a local basis and that a reper-
tory of methods exists for filtering and enhancing which
is practically problem-independent. These operations
are usually simple because the number of points to be
processed is often very high.

{2) A more sophisticated “ad hoc’ 1ecognition proce-
dure. This phase is usually global, and context is. used
for solving ambiguous situations.

This scheme applies, for instance, to ﬁngerprmt
analysis: it is too complicated to follow dermatoglyphics
directly on the original figure, and thus a first phase of
“information concentration” is required [4].

The presence of a “preprocessing” and a “‘process-
ing” is not too satisfactory from an information point of
view. In fact a filter, if optimal, must always be
“matched” to the class of images to be found. On the
other hand, a “tuned” procedure is often very expensive
in programming time, because the heuristic of the prob-
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fent must be “built in™ in the program and uwsually can-
not be given as a datum. Acnother disadvamiage 8 .
flexibihizy: minor igﬁﬂﬂgkfﬁ tn the provessing technmgue of
it the charactenistics of the source can requite repro-
gromming of large sections.

in this paper a recognition fechnigue is presented
which is based on the determunanon of the optinal sy
temn of curves in a2 ploture with respect to a given iguw
of merit {Fos), Thercfore the heunstic content of the
problem 15 expressed specitiving the propeiies which &
curve must have and the relative weights of them. Co
siraint of various kinds {geometrical, topological} can
also be cmbedded in the row.

The number of possible curves 15 uwsually very hugl
{in the caperimental results given in this paper i is
approximately HPY and grows exponentally with the
length of the ourves, However, for a large class of poas,
a mullistage optimization procodure {3] ean be carried
on, so that the optimum can be found during practical
Computing Hmes,

The idea of using dynamic programuung in patlorn
recognition and description was presented in earbier
papers by Kovalewsky 161 He applied tins method 1o
the recogmition of a line of typed characters and to the
description of individual bandprinted characters,

In what follows, particular relevance is given to the
preprocessing probloms, because sequential optimiza-
tion methods are sulficiently fast {especially i approxi-
mate solution procedures are used) for handling large
masses of data. On the other hand, “tuned™ FOM’s can
be used which allow recognition under orherwise pro-
hibutive conditions.

In the general case of detection of spstems of lines,
the sepmlization of the optimuzation problem 5 non.
tz‘éviﬂ? Fherefore, the “secondary optniealion prob
lem™ ?éf s introduced. The structural relations be-
vween slements of the system of lines have a counterpart
in the connections of an Yinteraction graph”™ Bimple
rades for finding an opumal solwion are given for trees,
series-pavallel graphs, and other particular classcs of
graphs.

Some oxperimental resulis are fnally presented: a
generic curve with superimposed Gaussian noise i
sugcesafully reengrazed even if the mean square vslues
ol the sigral and of the noise are the same. Also, when
thers s substantislly less noise, no recognition of the
ling s possible by a visug! inspection of the tmage.

2. Dypamic Programming

cetion we briclly review the concepts used 1n

|
deuhing wiih mulisstage optimization provessss.

Let us spaie 8 rather general of aiznmmu“en problem:
{ay find the maximum value A7 of the mert Moction
g oglvg, a0 DS S, s b N

{by find a value {5, -, Fut for which the maximum
1s actually achieved.

I the wanables &, .. vy cun asanme only discrete
walues, and no particular regulariy of the function (ke
wamedelity) is known, the problem can be solved only
by complete exhaustion, However iF the meriy function
zis asum of terms, each of which depenids onondy afe
variables, then @ mulistage optimization procedure
applizs. For instance, if

= gilxy, X)) b g, xe b
+ .}T:)\“’ri{lx"d—i § -"s'!«)y “)

gl 0wl
then the followiog recursion formula can be used [3]:

max  (gilxs . Xeg) b flxad,

Grading

whered = 1, - N~ land 0 < jf; fe.y - The ine
iﬁ,rm&idmk Vit uaﬂjg‘,;g, word, 05 Xuo % nayy, and the
values s ixea) of xe for which the maximum i
achieved must be saved 10 a table with sy, entries. Thus,
at the end of this phase, & tables have been stored. The
formula
M = max flxy)
X

solves part {(a) of the original problem. Part (b} 15 solved
bﬁ« scanning the s;u?mzd tables with the recursion formula
Fuw = My = arg max fulx.),

im

k= N = 1oL

o e g {7 3
x = eyl Frend,

[n Table | we show a simple numerioal vxample, It is
easy (o see that in this case the number of operations re-
guired using dynamic programing is much less than
it is for the exhaustion method, I for instance, »#y = 7,
jow 1, - N then roughly #28 additions and tests are
re::quirm for the dvﬂzsmis: programming method and

YA additions and #” tests for the brute-force method.
%?aaa improvement i3 obtained ar the expense of an
amount of storage roughly equal to #° - pA." Neote that



Table 1
f\f = j

;o= 2y omy o= 3oy = 2

gls, Y2, X)) = gilxr, £2) + ga{Xs, x0)

| |
g1l Xxo) ! 2205, X2} |
X1/ X 01 2 } X2/ X3 i
................ B ..‘ ————
0 7 3 8 4 6
1 4 5 4 1 8 4
2 37 |
filx)) =0
xo | folxs) ma(xa) \
— - | i
0 7 o |
1 5 1 ‘
2 8 0
|
Salxe) Vgalxe, x0) | o+ 82 } filxs) | ms(xs)
] i ,,,
0 7 58| 4 8 3 |111311 13 i
1 7 58| 6 4 7 113 915 15 2
M=15 my=1
;; = My = 1
}2 = m;g(J_Ca) = m;(l) = 2
X1 = ma(xs) = ma(2) = 0

1The »? part is used in interstage optiraizations and thus must be
high speed memory, while the #N part is used for storing functions
m; and therefore can be allocated in peripheral devices like disks
or drums.
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with this scheme constrained problems can also be
treated, because the constraints can be formally inserted
in the merit function. Let us consider for instance the
following well-known problem:

maximize

8o, o, xx) = mlx) + golxa) + -+ - + galxw)

with the constraint

N
ZXf:C;

=1

x;>0, i=1---,N.

With the new set of variables,

yi:\g;lxk) iﬁl:"'yN:

the above problem becomes
maximize

cya) = g(p) + gl — ) + -
+ gN(yN - yN—l)

g(ylw

with the constraints

yi"y'i*lzg; yiSC;i:l;"')Ny

Introducing the “infinite step function”

s(x) = a very great number if x <0,
s(x) =0 ifx >0,

we have finally:

maximize

gys - » ¥w)
= kZ_l {(ge(ye — Y1) — s(pe — Vet) — s(e — ¥i))

¥
= ;ék(}’k, Vi)

This problem is now of the form (1) and thus can be
treated with the dynamic programming approach.
These concepts are cxtensible to merit functions
more general than (1). In general, a multistage optimiza-
tion method can be described as a procedure in which
the optimization is carried out scparately for each vari-
able x; . Of course, this optimization must be performed
for all the values of the independent variables which
“interact” with the variable x;. An irnferaction graph
[7,8] can help in explaining this concept. In this graph,
vertices V; correspond to variables x; and two vertices
V; and V; are connected with an (undirected) arc iff the
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variables x, and x; inreracr: namely, if there exists at
least one term of the merit function which depends on
koth x, and x; . For exarmple, if the merit function i3 of
the form:

g(x! g Ky, Xz, Xy f‘r)

= g, Xo) + Zolxa, x) -+ galxs, X
. p £
+ gilxy, g, Xl (D

then the Interaction graph of Figure I{a) is obtained.
Now we carry on optimization with respect to variable
x.. Let x,,, -+, x;, be the variables whica interact with
x; . The merit function can clearly be written as

> .’Cg!‘} "i’“ ;1:3

Thus A can be sub-

gy, oo Xy = Al , Xy, o

where ke docs not depend on x;.
stifuted with

:"'h

The cost of the elimination of the variable x. {in com-
puting time and storage) is evidently substantially de-
pendent on the number of points m which constitute the
domam of the function Ay, . If m = np = .- =
ax = n, then m = n'. The exponent s is called the
dimension of the stage x,. After elimination of the
variable x;, an optimization problem of the same type
as the previcus one is obtained. It is easy to see that the
interaction graph of the new problem is derived from
the interaction graph of the old problem by erasing
vertex ¥, and connecting all pairs of vertices of the set
(V. . --, V.1 For instance, if we eliminate x, from
the merit function {2} we gel

kX, e Xe) = maNe Alxy, xg, e

s X;‘,}.

g5l , X} = max {@x, xy) + golxy, xa}),

ks
Bl x5, X, x50 = gslx, x3) + g:{x:, x9
+ gudx, Xa, X5

The graph of the new problem s shown in Figure 1{(b) z

A multistage optimization process can be seen as a
step-by-step elimination of all the variables, Any se-
gquence of optimization steps corrcsponds to “parsing”
the interaction graph according to some rewriting rules
[91. In & sense, the operations {0 be taken at every step
represent the semantic meaning atiached to the parsing.

In genersl, the order in which the variables are eimi-
nated is very important in determining the amount of
computing time and storage required: usually the dimen-
sipn of the step with maximal dimension must bhe
minimized. Thus a new optimization problem, which
is called the secondary eptimization problem, arises
Various methods exist for its solution [7,8]. However,
for most of our applications, this problem can be opti-
mally solved with simple rules. Some examples are given
i Section 6,

Az

Fig. 1. {a) A interaction graph. (b The same graph alier climing.
tion of vertex ¥y
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Fig. 2. The interaction graph of the vom (4],
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Fig. 3. Optimization process for finding a low-curvature curve of
length 4. {3) Given image. (b) Interaction graph. (¢), (d), {e) Inter-
action graph afier climination of the variables z,, z; and 2y, 722
and zy , respectively. () Optirnal line.
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Table 11 Table 1V
123 4 ‘ 7y (a) (b) (c) (d) (&) Z; i(D) (a) (c) 1‘((1) {e)|
o A B i 23 4 i
1107 1} zz=23124l5 0 s 6 314 . 22 112 5 17 17 20
2013 5 7 5 1401 1 0 Pt o7 1] 2,116 3 9 L
106 01 7| =22 1347 1 6 213575 Ze=30 1 40t 1 e
4’1010 L S 316 01 7 4216 0 6
e 4 ]1 01 0f 32013 0 13
i
Table T Table V
1234 z2 |{p) (a) (b) (©) Hd) (e) zi. | (p} (m) (¢) (d) (e}
1;1071[“:2,2 1,310 7 0 7 12 2,3 1,1 17 1 18 23 3,1
2‘3575‘ 1,2/ ~20 1 —w= S 1,2 17 0 17
3176017 z4=3,1 2,316 7 1 12 1,3 12 7 19
4‘1010 ‘ 1,4 16 1 17
T 2,1 18 3 21
22 | 12517
I 2.3 07 17
2,4 | 17 5 22
3,1 17 6 23
3,2 50 5
3,3 6 1 17
3,4 16 7 23
4,1 17 1 18
4,2 14 0 14
4.3 17 1 18
4,4 9 0 19

3. An Algorithm for the Optimal Detection of a
Low-.Curvature Curve

In this and in the next two sections we are concerned
with the problem of extracting from a picture one line of
fixed length which is optimal according to some given
FOM. The underlying idea is that it is easier and more
ftexible to embed the heuristic of the problem in an FoM
than in the recognition algorithm itself. We will first take
a particular FOM and then generalize to a wider class.

The picture is entered in the form of a rectangular
array lag), i =1, --+, r, j =1, «+-, ¢. The value a;;
gives the gray level or optical density of the point of

2 The reduction method we have shown for (1) can be cbviously
interpreted as the reduction of a simple chain-like interaction graph,
# In this example, the length N of the curve is given. See Section 6 for
the case in which & is determined by the optimization process itself.
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integer coordinates { and j. Two points (4, j) and (r, 5)
are neighbors if

max (i—r|,[j—s]) =L 6)

With this definition, any point which is not in the first
or last row or column has exactly 8 neighbors. A curve
is defined as any sequence of points Py, ---, Py such
that P, and Py, k= 1,---, N — 1, are neighbors.
Given any point of a curve, in order to determine the
successive point, it is sufficient to give an octal aumber,
If the correspondence is regular, this number gives the
discrete slope of the curve; thus the difference (mod 8)
between successive values of the slope gives the curvature
of the curve. Now let us assume that our goal is to
recoguize a low-curvature black curve hidden in both
additive and subtractive noise. A good figure of merit
could be, for instance, the sum of gray levels along the
curve, minus the sum of the curvatures at every point.®
That is, if z; = (x;, y) are the coordinate vectors of
the points of the curve, the figure of merit is

g, rn )
= 2 ae) — g @lze, 20) = d(zs, 20) mod 8) (4)

May 1971
Number 5



the gray intensity

Fig, 4{ar, An example of a low curvature curve
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In formula (4), a{z;) are gray levels and dlz..., z:) is
the slape of the curve between points P, and Py .
As explained in Section 2, the constrainis can be
thought of as embedded in the rom. The interaction
graph for this problem is shown in Figure 2. Figure 3
{a) gives a simple picture of 4 rows and 4 columns
which we will use as a running example. A curve with
4 points is sought, and thus Pigure 3{b? gives the
interaction graph. The coeflicient ¢ is assumed to be 1

in the multistage opiimization process the variables
are elinanated starting from 2, to z» . Let vs consider
the first step, namely the elimination of vertex ¥, . The
variable z; interacts with variables z, and z; . Thus the
cutput of the first step will be a table which for every
value of z, and z; gives (i) the optimal sum of all the
terms of the ment fuaction which contain the variable
zy, and (i) a value of z, for which the optimum is
achieved. Note that the number of entries of this table
will be 87c because only B values of z; for each value of
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z, satisfy the first constramnt.® For each cntry of the
table, the values of z; to be considered in the optimiza-
tion are only 3, for the second constraint of the problem.
In Table Il we can follow the cowmputation of one
entry of the table, For z, = (23 and 2z = (2)2), we
have:

value of the term alzy) for all admissible z; |
value of the term g(d(f, - A} — d(fy, — A)
for all admissible z; ;

(¢} the difference between (a) and (b},

{c) the maximal value of {c) with respect to z,

(e a value” of z for which (d) is obtained.

{a} the
(b} the
mod 8}

Figure 3 {¢} is the new interaction graph.

L Actualty, they are less than ¥ for border effects.

“in this and in the other stages the maximal value (d) must be
urique, but it can be aitained for many different values of . This
means that many curves have the same optimal cost.



Fig. A{e). The same curve of Figure 4(a) after addition of normal
noise of mean value 5 and standard deviation 2.
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Let us now consider the elimination of the kth
variable, k = 2, , N — 2. A table is available which
gives, for every value of z, and z,,1, the optimal value
(with tespect to z1, - -+, zx.1) of the sum of the terms
of the original oM which contain at least one variable
in the set {z;, -+, ze1 ). Thus, as we saw in Section 2,
the output of the previous &k — 1 stages appears as a
term in the merit function of the present stage. A new
tabic is now computed in the usual way which gives,
for every allowed value of z,, and zxee, the output of
the first & stages and the optimal value of z; . Table
11 gives, for z; = (2,2) and z, = (3,1),

(p) the value of the output of the previous stages for all
admissible z; ;

(a) the value of the term a{z:) for all admissible z; ;
(b) the value of the term g(d(zy, z;) — d(z;, z:) mod
8) for all admissible z, ;

{¢) the value (p) + (a) — (b);

(d) the maximal value of (c) with respect to 2 ;

{¢) a value of z, for which (d) is achieved.

Figure 3(d) shows the interaction graph after the two
first stages.
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i'-'ig 4(d}. The same curve of Figure 4(a) after addition of normal
noise of mean value 5 and standard deviation 3.
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The last stages are in general slightly different
because the dimension decreases toward zero. Table
1V gives, for zy = (3,1):

(p) the value of the output of the previous stages for all
admissible z; ;

(a) the value of the term a(z;) for all admissible z; ;
{¢c) thesum (p) + (a);

(d) the maximal value of (c);

(¢) a valuc of zy for which (d) is achieved.

Table V gives:

(p) the value of the output of the previous stages for
all admissible z; ;

(a) the value of the term a(z4) for all z; ;

(c) the sum (p) + (a);

{d) the maximal value of (¢);

(e) a value of z, for which (d) is achieved.

The table scanning is done as explained in Section
2; in our example, we know from Table V (e) that z,

(3,1). Thus from Table 1V(e) we have z; = (2,2).
Finally from Tables 1lI{e) and It{e) we get z» = (2,3)
and z; = (3,4). The optimal curve is shown in Figure
3(f).
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4. Some Experimental Resulis

The algorithm explained in Section 3 was imple-
mented in SAIL {an extension of aLGor) on the poe-10
of the Swnford Artificial Intslligence Progect, and it 1s
available from the suthor. For testing its performances,
4 noisy picture generator was programined, using
Comm. ACM  Algorithms 266 {1G] and 267 {ilL
Pictures are represented with & I6-evel gray scale,
and are printed with superimposed characters for
obtaining the impression of different gray levels
through different percentages of blackensd area.

Figure 4{a) is an example of a low-curvature ling,
whose points have a gray level of 3, This picture has 35
lines and 43 colummns, In Figures 44b), (o), {d), and (e}
an independent amount of noise 13 added o every
point. The statistical distribution of the noise at every
puint i3 pormal, with mean value 5 and standard
deviation 5 = 1, 2, 3, and 5, respectively, Note that the
line is stil cigar in Pigure 4(b}, hardly recognizable in
Figure 4{c) and guite unrecognizable o Figures 44d}
and 4ie), In Figure 5a) we 5 the optimal line found
in the image of Figure 4(d). The length is 45 and the
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weight factor ¢ is equal to 5. Note that only small,
iocal distortions have occurred. In Figures 5(b) and
fe) we see the much worse case of Figure 4(¢) for & =
4G and ¢ = 2 and 3, respectively. Note that in this
case the mean sguare value of the sigpal is locally
equal to the mean square value of the noise. For bigger
values of noise, the recognition becomes marginal and
the found curve often turns on itself, repeating the most
marked pieces,

The computing time for each curve was 10 minutes
{5 minutes is sufficient if the rick of starting from both
endpoints iy used, see Scetion 5).

5. Some Classes of Figures of Merit for the Optimal
Detection of One Curve

A simple extension of the rom used in Section 3 is
an ¥ouM in which gvery variable interacts with & sub-
sequent variables.® Such an Fou will be called of 1ype
k. For the algorithm of Section 3, we had k = 2. Note
that & 1 because at least the neighborhood con-



Fig. 3(b). Optimal carve detected in the noisy picture in Figure
die), length & = 4D curvature cost g =
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Fig. 5{c). Optimal curve detected in the noisy picture in Figure
4(e}, length NV = 40, curvature cost ¢ = 5.
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straint is always present. The form of an rom of type k
will be '
¥
gz, -+, 7w ='Z; g:dzs, -
Note that the functions g; can be different from stage
to stage; this feature allows the user to construct an
rom which “looks for” curves of particular shape. For
instance, if the character “5” must be found, a roughly
horizontal straight segnient should be sought first;
then a sharp left turn, a straight vertical segment, a
sharp lelt turn, and a smooth right turn should be
found. These expectations, which correspond to a
priori probabilities of a Bayesian decision process, can
be built in the roM giving high cost to unexpected
features and vice versa. The type k of the figure of merit

y Zidi—1)-

¢ Except the last & variables.

" Note that it is not necessary to use a computer word for every
entry in the tables. In fact, the tables used in the final scanning con-
tain the optimal variables only. Thus a few bits are usually sufficient
for each entry.
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gives roughly the length of the features which can be
sought. A proper weight can be given to the position
in the picture and to the orientation of the features.
Furthermore, no rigid specification of the features is
required, because a different cost can be assigned to
every possible deformation of them.

The storage and time requirements grow pretty fast
with the type k. On the contrary, no substantial extra
cost is paid for a complicated (and, it is hoped, more
efficient) FoM of a given type. Roughly speaking, and
taking into account the neighborhood constraint, the
number of entries in the table of one intermediate stage
is F = rc8" and the same is the number of partial
optimizations required at every stage. Of course, F de-
creases if other constraints are present, c.g on the
curvature; this corresponds to limiting the variety of
features of length k& which we consider. F is also the
amount of fast memory required by the entire process.
The total number 7 of optimizations and the amount of
slow storage required is.instead Nre8* . Note that this
number grows linearly with &, while the number of
curves among which the optimum is sought grows ex-
ponentially with N.
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This method is suttable for paraliel computation: in
fact, at every siage, the optimizations can be carried
on at the same time for all the points of the image.
Furthermore, only local storage 13 necessary, and for
simple FosM’s no complicated operations like mulii-
plications or divisions arve required.

Figures of merit which are more general than the
can be allowed without too big
an increase in compuwational effort. For example,
assume that an I-shaped curve is looked for, but that
no exact locaton of the corner along the curve
known. The destgn of & suiiable figure of merir can be
sketched in the following way:

{1} the curve begins and ends with straight segments:
thus in the first and last stages turns in both directions
must be costly;

(2 a sharp left turn must become cheap in the central
stages; E}ou*mr one turn gnly must be present, so that
if a turn has occurrad in an early central stage, no turns
must be present in successive central stages.

I{ the interaction graph of the above FOM 15 drawn,
it is clear that every central vertex must by connected
with all the precedent central vertices in order 1o know
whether or not the turn has already occurred. As a
result, the dimensionality of the central stages 15 very
high, so that storage reguirements are prohibitive. A
quite different situation arises if the information about
the turn is “added” to the decision variables of all the
central stages: namely, s,hc variables z, of central stages
will be z; = {x,, y;, &;) where b, 15 a Boolean variable
which specifics thhnf or not the turn has already
cocurred. In this way the number of entries of the
central tables will only be doubled, and no extra
connections will be added to the interaction graph. This
trick can zasily be extended to the case in which the
average dircction or the average curvature of the entire
segment of curve determined in the previous stages must
be known,

In all the cases considered above every stage of the
optimization process corresponds to the determination
of one point of the best curve. However, in low-
definition cases It can be convenient to determine at
every stage an entire segmeny of the curve. If interaction
with only the previous stage is allowed, this application
seems to be close to Kovalewsky's method 6] for
description of handprinted characters. The advantage
of low-definition methods is essenfially that bigge
features can be considered without increase in dimen-
stonality. In particular, elementary segments can have
a bigger number of allowed values of the slope, On the
contrary, no reduction in computing time can be
expected because the reduced number of stages is

class deseribed above
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balanced by the bigger number of decwions allowed at
every stage.

A reduction in slow storage and computulg time {as
much as 50 pereent) can be achieved f the rom s
symmetric with respect to the two exdremes of the
curve. in fact, in this case it is sufficicnt to find the best
pair of optimal hail-curves which smoothly concatenate.
From the point of view of the interaction graph, it
corresponds to start the elimination of vertices {from
both sides and to recognize that symmetrical stages will
eive oxactly the same outpuf.

[ {a) the computing time or (b} the storage require-
ments become too heavy, approximate methods can be
devised. In case (a), and if the curve is homogeneous, 4
subeptimal cueve of length NV = pg can be computed as
the optimal concatenation of p curves of length g,
For instance, in the example of Section 3 a standard
g-stage optimizalion process can determine, for cach
noint of the picture and for ecach direction, the best
curve of fength ¢. Then a p-stage process can use as
elementary segments the curves which are the output of
the first process. In fact, inductively, if for each poini
and cach direction we know the best chain of (k — 1)
segments, we can determine the best chain of & seg-
ments optimizing among the only three segments which
can be smoothly added to the precedent chain. In
conclusion, this approxunate solution can be obtained
in p < ¢ stages, while N = pg stages are required for
the exact sofution, This trick can be iterated more than
once; if at each stage we take as elementary segmenis
the optimal curves of the previous stage, a reduction {0
log:N stages is achieved.

In case (b}, the dimensionality of cach stage and
thus the storage can be reduced if an iterative method
is used (see [S pp. 78-87 ). However, with iterative low-
dimensional methods, only local maxima are found.

6. Recognition of Systems of Curves

In the previous sections we discussed the dynamic
programming approach to the determination of one
curve. In practice, it can happen that we want (o recog-
nize more constrained line-like figures, ¢.g. cirele or an
Xﬁhup&:d or R-shaped pattern. The tml step in our
method i3, as usual, the determination of a suitable
figure of merit., However, mare complicated constraints
are now imposed by the structure of the image, so that
the order of elimination of variables is not frivial. In
the general case of a system of curves the interaction
graph becomes a synthetic way of describing the picture.
In a sense, the interaction graph carries information



about the rfopology of the system of curves, while the
rest of the rom tells us the geomeirical characteristics
of the elementary curves. Note that “invisible links”
can belong to the structure: for instance, two parallcl
straight lines can be well described by mcans of two
curves with high cost on the local and average curva-
ture, and with two perpendicular, “invisible” links of
the same length at the extrema.

If the secondary optimization problem is very
complicated, it can be solved [7] using a dynamic
programming technique in the lattice of the 2¥ subsets
of the variables. This method is based on a theorem
which states that after elimination of a set of variables,
the remaining problem (i.e. its interaction graph) is not
affected by the order in which the variables were elim-
inated. However, hcfore we use this alporithm, the
following rules (applicd in order and as many timcs
as possible) are assured to reduce the number of
variables in an optimal way [8]. Let H, be the subgraph
of the interaction graph G whose vertices are the
vertices connected to the vertex V in G; then
(a) if H, is complete, erase V;

(b) if the vertex set of H, has cardinality 2, erase V.

Note that if #, has cardinality one, rule (a) always
applies; thus it allows the solution of all the interaction
graphs which are trees. On the other hand, rule (b)
allows simplification of the chains of serially connected
arcs and vertices. Therefore it solves series-parallel
graphs. The combined use of rules (a) and (b) allows
us to solve most practical cases.

In this paper we have always considered the inter-
action graph as derived from the FoM and thus as a
datum. One could ask if the structure of the rFOM
(namely, the interaction graph itself) also can become
the object of an optimization process. The simplest case
happens when we are looking for a curve but do not
know its length. This situation also can be reduced to
the scheme we have followed. In fact, it is possible to
introduce a new. variable y whose value is the number
of stages of the process. Of course, it is also wise to
normalize the FoM with respect to the length of the
curve, In the interaction graph, the new vertex is con-
nected with all the aother vertices. However, in this
particular case little complexity is added if y is the last
variablc to be eliminated. In fact, if we consider the table
corresponding to the stage A, a new dimension cor-
responding to the variable y is added. However, for y
> k the table does not depend on y and is equal to the
table we had in the case of the curve of fixed length,
and for y < k the table depends on y only because
variables x., i > k, do not contribute to the TOM.
In the genecral case, however, the addition of control
variables can increase the dimensionality of the problem.
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7. Conclusion

We have presented a global approach to the problem
of finding systems of curves in noisy pictures. This
method allows us to give a definition, by means of an
FoM, of what we mean by a “good curve”; then the best
curve is found. The globality of the method, a peculiar
feature, also makes it flexible and good in otherwise
unmanageable situations. For instance, large gaps can
only be bridged by using global context. This approach
has some drawbacks. First, it uses a computing time
sensibly greater than do simple local preprocessing
technigues. However, approximate implementations of
the optimization process and less definition in the
picture could allow competitive times still preserving
globality at some extent. Second, storage requirements
are high. Finally, many global specifications are very
expeasive for the optimization algorithm; for instance,
the constraint that the found curve is simple (non-
self-intersecting) is almost impossible to embed in an
FoM. Many trials (perhaps interactively performed) are
then sometimes required for finding a suitable FoM for
a given class, '
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