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A technique for recognizing systems of lines 
is presented. In this technique the heuristic of the 
problem is not embedded in the recognition 
algorithm but is expressed in a figure of merit. A 
multistage decision process is then able to recognize 
in the input picture the optimal system of lines 
according to the given figure of merit. Due to the global 
approach, greater flexibility and adequacy in the 
particular problem is achieved. The relation between 
the structure of the figure of merit and the complexity of 
the optimization process is then discussed. The method 
described is suitable for parallel processing because the 
operations relative to each state can be computed in 
parallel, and the number of stages is equal to the length 
N of the curves (or to log2 (N) if the approximate 
method is used). 
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1. Introduction 

The recognition of curves is often an important and 
critical stage in image processing. In some cases--e.g, in 
bubble chamber photograph analysis or in character 
recognition the image is already line-like. In other 
applications it is reduced to a line-like image by means 
of derivative techniques (gradient, Laplacian). Then the 
problem arises of finding a system of curves in the 
picture which is meaningful to the next step in the proc- 
essing. For a deep analysis and comparison of the 
known techniques for edge and curves detection see [1 ]. 
A particular field in which curve detection plays a pivo- 
tal role is, for instance, television bandwidth reduction 
through transmission of coded contours [2,3 ]. 

For most applications, we can distinguish two phases 
in the processing of line-like figures as follow. 
(1) A set of  procedures which operates on the input 
picture with the purpose of eliminating most of  the local, 
uncorrelated noise. Characteristics of this stage are that 
operation takes place on a local basis and that a reper- 
tory of methods exists for filtering and enhancing which 
is practically problem-independent. These operations 
are usually simple because the number of points to be 
processed is often very high. 
(2) A more sophisticated "ad hoc" recognition proce- 
dure. This phase is usually global, and context is used 
for solving ambiguous situations. 

This scheme applies, for instance, to fingerprint 
analysis: it is too complicated to follow dermatoglyphics 
directly on the original figure, and thus a first phase of 
"information concentration" is required [4]. 

The presence of a "preproeessing" and a "process- 
ing" is not too satisfactory from an information point of 
view. In fact a filter, if optimal, must always be 
"matched" to the class of images to be found. On the 
other hand, a " tuned" procedure is often very expensive 
in programming time, because the heuristic of  the prob- 
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tern must bc 'built  in" in the program and usually can- 
not be given as a datum. An(4her disadvantage is i n  
flexibiIhy: minor changes in the processing technique or 
in the characteristics of the source can require repro. 
gramming of largc sc.ctions. 

tn this paper a recognition technique is prese~'~ted 
which is based on dan determination of" the optimal sys- 
tem of curves in a picture whh respect to a given figure 
of merit (fo~), Therefore die heuristic corn:ent of the 
problem is expres~d specifying Ihe properties which a 
curve must have and the relative weights of them. Con. 
straint of  various kinds (geometrical, topological) can 
also be embedded in dye ~os~. 

The number of possible curves is usually very high 
(in the experimental results given in this paper it is 
approximately 10:9 and grows expone~atiatly with the 
tengd~ of the curves. However, R:>r a ~arge class of Frees+ 
a multistage optimization procedure {5] can be carried 
on, so that the optimum can be found during practical 
computing times. 

The idea of using dynamic programming ia pattern 
recognition and de~:ription was presented in earlier 
papers by Kovalewsky [61, He applied this method to 
the recognition of  a line of tyt~ed characters and to the 
description of i+~dividuaI handprinted characters. 

In what follows, particular relevance is given to the 
preprocessing problems~ because sequential optimiza- 
tion methods are suNcienfly fast (especially if approxi.. 
mate sofuth:m procedures are used) l}br handling Iarge 
masses of da ta  On the o~her hand, "tuned" FOM'S can 
be used which allow recognition under od~erwise pro+ 
hibifive cor~dltio~s. 

In the general case of detection of systems of lines, 
the seria|izadon of the opdmizadon problem is non- 
trivial Therefore, the "secondary optimization prob.- 
lem" [7,8} is intr(xlucxt~d+ The structural relations be+ 
tween dements of the system of  lines have a counterpart 
in the connection,s of an %nteraetkm graph2' Simple 
rul~-s fbr finding an optimal solution are Nven fbr trees, 
>cries-parallel graphs, and other particular classes of 
graphs. 

Some exverimental results are finally presented: a 
generic curve with sup~:rimpos~ed Gaussian noise is 
su+ccessfulty recognized even if + the mean square values 
of the signal and of  the noise are the same. Also, when 
there is substantially kss noise, no recognition of the 
line is Dt, s.siNe by a vis+aal insp~xction of the image. 

2. Dynamic Programming 

In dfis sectiun we briclty rc~,icw the conccpis used in 
dealing with multistage opt imizat ion processcs~ 

t..,et us state a rather gcncrat opth~fization problem: 
~al t]nd the maximurn val~lc /$40t ° the q/crit f'tmction 
g = g ( q , x . . : ,  , ~ ,  , x . v ) ,  0 .v, :g n ~ ,  i ,~ l ,  - . -  , N ;  

{b) find a vulue(& , . . .  , i~, -) £or wMch the maximum 
is actually achieved. 

I f t he va ria blcs .q . . . . . .  vx ca n ass u me o n 1 y d is<:retc 
~:alues, and no particular rcgularhy of the hulcth)n (like 
unimodality) is known the problem carl bcsoh, ed only 
by complete exhatlsthm. }Iowever, if the merit t'tlactiorl 
g is a sum of  terms, each of  which depends nrl only a Kw 
variables, then a multistage opt imizat ior l  procedure 
applies. For  instance, if 

. d < ,  " '  , :v,.) .... ~ ,~ ( :q ,  xY 4 g,~(x~,  x .0  + ' . .  
' g ,. ~ ( x  ~ , x,,~), ( 1 )  

then the ib l tow[ng recursion forrnula can be used [5j: 

/ i ( x~)  = O, 

X ~ + / x + . )  .... m a x  ( g d x . ,  x+,.,) + ~ M x ~ ) ) ,  

~herek = l , .  N -  l andO <" < . - , +.::, x, ~ ~ .....: z~ f~ , The. in- 
termediate v a l u e s j ~ ( x + ~ ) ,  0 2~{ x ~  < n~+l, and the 
vaIues m,+~(x**.~) of x,  fbr which the maximum is 
achieved must be saved in a table with e-~+~ entries. Thus, 
at the end of this phase, N tables have been stored. The 
f o  r m u l a 

M = m a x  f~.(xN) 
aN 

solves part (a )of  :the original problem. Part (b) is solved 
by :~:anning the stored tables with the recursion formula 

2~ ...... m,~q = arg maxf~.(~',,), 
~ g  

in Table I we show a simple numerical example. It is 
easy to see that in this case the number of operations re* 
quired using dynamic programming is much less than 
it is for the e×haasdon method If for instance, n~ .... n, 
i I, •. , N, then roughly n+N addmom' arid tests are 
required t\.~r the dynamic programming method and 
, ? N  additions and n ~+ tests for the brute fbrce method. 
This improvement is obtained at the expense of an 
amount of storage roughly equal u:~ n s: +~.~ nN. * ;Note that 
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Table l 

N .... 3;  n~ = 2 ;  n2 = 3 ;  n3 = 2 

g(x~ , x2 , x~) = g~(x~ , x2) + g~(x~ , x.O 

g~(x~, x~) 
x~/x2 0 1 2 

0 7 3 8 
1 4 5 4 

A(x~) = 0 

0 7 0 
1 5 1 

A(x2) 

0 7 5 8 I 
1 1 7 5 8  I 

x2/x3 e~(x~, x~) 0 1 

_ 2 4 6 8 4  
3 7 

g2(x2, X3) f2 q- g2 
0 1 2 0 1 2 

4 8 3 11 13 11 
6 4 7 13 9 15 

f3(x3) m3(xz) 

M =  15; mar = 1 

~ 3  = m N  = 1 

Y2 = m3(-~3) = rn3(1) = 2 

xl = rm(x2) = m2(2) = 0 

1 The n 2 part is used in interstage optimizations and thus must be 
high speed memory, while the nN part is used for storing functions 
mi and therefore can be allocated in peripheral devices like disks 
or drums. 

with this scheme constrained problems can also be 
treated, because the constraints can be formally inserted 
in the merit function. Let us consider for instance the 
following well-known problem: 

maximize 

~,(xl,  . . . ,  x,,) = g~(x~) + g2(x.~) + . . .  + g,,(x,,) 

with the constraint 

N 

x ~ =  c; x i > _ O ,  i =  1, . . . , N .  
i = 1  

With the new set of  variables, 

i 

Yi  = ~ x k ,  i = 1, " " , N ,  
k = l  

the above problem becomes 

maximize 

g,(Yl,  " "  ,YN)  = g~(Yl) q- g2(y2 --  Y~) -1- "'" 
+ gN(yN - -  y.v-1) 

with the constraints 

y i  - -  Yi-1 >_ O; y i  _< c, i = 1 , ' " ,  N ,  yo = O. 

Introducing the "infinite step function" 

s (x )  = a very great number if  x < O, 
s (x )  = 0 if x >  O, 

we have finally: 

maximize 

~(y~ , - . . ,  y~) 
hr 

= ~ (gk(yk --  yk--1) --  S(yk --  yk--1) - -  S ( C  - -  yk)) 
k = l  

N 

= E gk (yk ,  yk--1). 
k = l  

This problem is now of the form (1) and thus can be 
treated with the dynamic programming approach. 

These concepts are extensible to merit functions 
more general than (1). In general, a multistage optimiza- 
tion method can be described as a procedure in which 
the optimization is carried out separately for each vari- 
able x~. Of course, this optimization must be performed 
for all the values of the independent variables which 
"interact" with the variable x i .  An interact ion graph  

[7,8] can help in explaining this concept. In this graph, 
vertices V~ correspond to variables x~ and two vertices 
IV~ and V~ are connected with an (undirected) arc iff the 
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variables x~ and x;  i/ , ter~ct: namely, if there exists at 
least one term of  the merit function which depends on 
both x~ and x j .  For  example, if the merit t ract ion is of 
the form: 

g ( x i  , x~ , xa , x.~ , x~) 

= x,)  + + x,0 
÷ g 4 ( x t ,  x.~, x~) (2) 

then the interaction graph of Figure l(a) is obtained. 
Now we carry on optimization with respect to variable 
x ; .  Let x~:, • . .  , x~ be the variables whica interact with 
x ; .  The merit function can clearly be written as 

g(x~ , . . .  , x.v) = ]h(xl , x q  , . . .  , x¢,) + h~ 

where h~ does not depend on x~.. Thus h~ can be sub- 
stituted with 

/h~,~(x~ , . . .  , x~,) = max~ h~(x~ , x ~  , . . .  , x~,) .  

The cost  of the elimination of the variable x~ (in com- 
puting time and storage) is evidently substantially de- 
pendent on the number of  points m which constitute the 
domain of  the function h~op~. If  n~ = n~ . . . . .  
n.¥ = n, then m = n'. The exponent s is called the 
dimens ion  of the stage x~. After elimination of the 
variable x~, an optimization problem of  the same type 
as the previous one is obtained. It is easy to see that the 
interaction graph of  the new problem is derived from 
the interaction graph of  the old problem by erasing 
vertex V~ and connecting all pairs of  vertices of  the set 
(V~, , .--  , V,.). For  instance, if we eliminate xe from 
the merit function (2) we get 

g~(x~ , x~) = max (g~(x~ , x~) + g~(x~,  x~)),  
Z2 

~(x~ , X~,  x ~ ,  x~) = gs(x~,  Xa) + g~(x~, x , )  

+ g~(x~,  x,~, m ) .  

The graph of  the new problem is shown in Figure 1 (b).~ 
A multistage optimization process can be seen as a 

step-by-step elimination of  all the variables. Any  se- 
quence of optimization steps corresponds to "parsing" 
the interaction graph according to some rewriting rules 
[9}. In a sense, the operations to be taken at every step 
represent the semantic meaning attached to the parsing. 

In general, the order in which the variables are elimi- 
nated is very important in determining the amount  of 
computing time and storage required: usually the dimen- 
sion of" the step with maximal dimension must be 
minimized. Thus a new optimization problem, which 
is called the s e c o n d a r y  op t im i za t ion  p r o b l e m ,  arises. 
Various methods exist for its solution [7 8~. However, 
for most of  our applications, this problem can be optb 
really solved with simple rules. Some examples are given 
in Section 6. 

Vig. I, (a) A~i interacfio~ graph. (b) The same graph after elimina. 
tio~ of vertex V~. 

V~ 
V~ 

..... ,\.', / \,, \, 
. . . . .  \ \ / '\ \ 

• / "\ \ \  

, \ "% / \ ", 
/ \\ / 

\,, ..... // ii \ .... 
\ \ // I \ , 

\ ...................................... 2. / ~ ........................................ ~., 
I/~ IQ V, V., 

(a) (b) 

Fig. 2. The interaction graph of the FOM (4). 

Vi V2 V 3 

} 
) 
I 

I 
I 

Ply- ~ V1 
1 
i 

] 
} 

Fig. 3. Optimization process for finding a low-curvature curve of  
length 4. (a) Given image. (b) Interaction graph. (c), (d), (e) Inter- 
action graph after elimination of the variables z~, z~ and z~, z,z~ 
and za, respectively. (f) Optimal line. 

1 2 3 4  

2 i 3 5 7 5 /  . . . .  

I 0 I V~ V~ V3 V~ L ................ 

(a) (8) 

(c) (d) (e) 

t 2 3 4  

2 5 7 { 

(f) 



Table II 

1 2 3 4 

l 1 0 7 1 
2 3 5 7 5  
3 6 0 1  7 
4 1 0 1 0 

. . . . . . . . . . . . . . . . .  

z~ (a) (b) (e) 

z2 = 2,3 ~ 2,4 ] 5 0 5 
/ 1 , 4 j l  1 o 

z =2,2 / 3 , 4 1 7  1 

Table IV 

1 2 3 4  

1 1 0 7  i 2 3 5 7 
3 6 0 1  
4 1 0 1  

z4 = 3,1 

z3 (p) (a) (c) 

2,2 12 5 17 
2,1 6 3 9 
4,1 --~ 1 --~o 
4,2 6 0 6 
3,2 13 0 13 

(d) (e) 

17 2,2 

Table III 

1 2 3 4  

t 1 0 7 1  
2 3 5 7 5  
3 6 ~ 1 7  
4 1 10 

z3 = 2,2 1,3 0 7 0 7 
1,2 --o00 1 --~o 

z, = 3,1 /2,316 7 1  12 

Table V 

3. An Algor i thm for the Opt imal  Detect ion of  a 
Low-Curvature Curve 

In this and in the next two sections we are concerned 
with the problem of  extracting f rom a picture one line of  
fixed length which is opt imal  according to some given 
FOM. The underlying idea is that  it is easier and more 
flexible to embed the heuristic of  the problem in an FoM 
than in the recognition algori thm itself. We will first take 
a particular FOM and then generalize to a wider class. 

The picture is entered in the form of  a rectangular 
array [aij], i = 1, . . , ,  r, j = 1, . . . ,  c. The v a l u e a i i  
gives the gray level or optical density of  the point of  

2 The reduction method we have shown for (1) can be obviously 
interpreted as the reduction of a simple chain-like interaction graph. 
3 In this example, the length N of the curve is given. See Section 6 for 
the case in which N is determined by the optimization process itself. 

(p) (a) (c) Z 4  

l 1111,~43 ~ 17 1 18 17 0 17 
12 7 19 
16 1 17 

2,1 18 3 21 
2,2 12 5 17 
2,3 10 7 17 
2,4 17 5 22 
3,1 17 6 23 
3,2 5 0 5 
3,3 6 1 7 
3,4 16 7 23 
4,1 17 1 18 
4,2 14 0 14 
4,3 17 1 18 
4,4 19 0 19 

(d) ( e ) - - - ~  

23 3,1 / 

integer coordinates 
are neighbors  if  

m a x ( [ / -  r l , l j - - s [ )  = 1. (3) 

With this definition, any point  which is not in the first 
or last row or column has exactly 8 neighbors. A curve  
is defined as any sequence of  points P1, " ' "  , P~ such 
that  Pk and P~- i ,  k = 1, . .  • , N -- 1, are neighbors. 
Given any point of  a curve, in order to determine the 
successive point, it is sufficient to give an octal number.  
I f  the correspondence is regular, this number  gives the 
discrete slope of  the curve; thus the difference (mod 8) 
between successive values of  the slope gives the curva ture  
of  the curve. Now let us assume that  our  goal is to 
recognize a low-curvature black curve hidden in both 
additive and subtractive noise. A good figure of  merit 
could be, for instance, the sum of gray levels along the 
curve, minus the sum of  the curvatures at every po in t?  
That  is, if z~ = (x~, Yd are the coordinate vectors of  
the points of  the curve, the figure of  merit is 

g ( z l ,  . . .  , z~ )  
/g N - - 1  

= ~ a(z , )  - q ~  (d(z ,+ l ,  z , )  - d(z,, z,-O rood 8) (4) 
i ~ l  i = 2  

and j.  Two points (i, j )  and (r,  s) 
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[:Jg. 4(a). An example  o f  ~ lot~ c u r v a t u r c c u r v e  the g~a> f~ttclasi b Fig. , ! ( b  l h c  ,urn,. cu~xc of  t:{gurc 4(a af ic !  ;Mditi.~m ot n,~!~/~at 
is 5. ~]oisc o[  n?c;m xadtw 5 a n d  sta~adard de f l a t ion  1. 
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a? ? f ? f ~ f ~  f f f ; ~ a ;  F ! a ? f  f ; f ; f : : f ? r  f ~ f a ~ f ~ f a f ~ f  f ~a 

~ f  f ~ f ~ ? f ? t ? r * e ~ f  f t ~ f ~ f ~ f  I f ? ~ I ~ f  f ~ ? ? f f  f f f ) ® ~  

? e ~ f m ] f ? f e ~ f f f e ? ~ f f f f f ~ f f ~ t f 2 f f ? f f i e f f f f ~  
~ f  f ?  f ? ~ f ? e f ? f ~ f  f f f ~ $ f ? ~  f ] f ~ f f ? ' f f  f f f ~ : ? f  f f *  

~ f f f ~ f ? ? f f e ? f ? f e r ? ? $ f f e ? e ® ~ 1 ? ? : e ? f e f ? ! ? ? f ~ f f  

f f f * ~ * ~ e f  f f f f  f ? f  I ? ? :  f ~ : ~ f ~ f ~ f f  f f f ~ ? f  f f ? f  f ~ ~ 

with the constraints 

max ( :r~..~ -- .r~ , y~÷~ -- 3,,: ) = 1, 
(d(z,.+I , z~) - d ( c i ,  z~_t) rood  8) ~ 1. 

In formula (4), a(zO are gray levels and d(z~.~, z~) is 
the slope of  the curve between points P~ and P~+~. 
As explained in Section 2, the constraints can be 
thought of as embedded in the toM. The interaction 
graph for this problem is shown in Figure 2. Figure 3 
(a) gives a simple picture of  4 rows and 4 columns 
which we wilt use as a running example. A curve with 
4 poit~ts is sought, and thus Figure 3(b) gives the 
interaction graph. The coefficient q is assumed to be 1. 

In the muItistage optimization process the variables 
are eliminated starting from & to z~,~+ Let us consider 
the first step, namely the dim?nation of  vertex V~ The 
variable z~ interacts with variables z~ and z,~. Thus the 
output of  the first step will be a table which for every 
value of  z~ arid z:, Nves (i) the optimal sum of  all the 
terms of" the merit function which contain the variable 
z~, and (ii) a value o f  z~ fi)r which the optimum ]s 
achieved. Note  that the number of  entries o f  this table 
wilt be 8re because only 8 vatues of  z:~ fk~r each value of  
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z2 satisfy the first constraintJ For each entry of the 
table, the values of  zt to be considered in the optimiza.. 
tion are only 3, tbr the second constraint of the problem. 
In Table II we can follow the computat ion of  one 
entry of  the table. For z~ = (2,3) and z:~ = (2,2), we 
have: 

(a) the value of  the term a(&) fbr all admissible & ; 
(b) the value of  the term q(d( / ;  -.- J;) -- d(J~ - - . / i )  
rood 8) fo r  all admissible & ; 
(c) the difference between (a) and (b); 
(d) the maximal value of  (c) with respect to z~ ; 
(e) a value s of  z~ for which (d) is obtained. 

Figure 3 (c) is the new interaction graph. 

Actually, they are less than 8 for border effects, 
~' In this m~d in the other stages the maximal value (d) must be 
unique, bat it can be attained for many different values of  ::,. 'This 
means that many curves have the same optimal cost, 



Fig. 4(c). The same curve of F:igure 4(a) after addition of normal Fig. 4(d). The same curve of Figure 4(a) after addition of normal 
noise of mean value 5 and standard deviation 2. noise of mean value 5 and standard deviation 3. 

• . _ , ~ , 

t , ~ f ~ ? ~ f ? ? ? ~ ? ~ @ , ~ * 3 }  : ~ f ~ }  ~ } ~ @ f ~ I f ® ? f  ~f~ 

?~f~fIS:~)f ?®®~:**?~,,:~??~:? ? f ,~ f f~?~)~!  
, , ~ ? ~ ® ~ ) : * ~  , ~ , ~ f ~ : ) ~ ? ? ~  ? i ? f ~ ? f ~ ®  
?k f?~?)~)~ f *~) ) , f?~??~ ~,?!??~?~}I$~,~?)B~ 

? ~ , } ) ? ® ~ , ® ~ I ~ , ~ f ) ? l e , :  : , ,  ~ I ~  ?~?f??~ 
}~,)~ f ~ f , ~ , ® ~ ? ~ ) f ?  m~f~,m??e?~? *)f}~?)~?~ 

f~,!@)~f®!~f~@ ~f~:®f~B~)?~ ~,?~*,?f,~I:®.f 
~!?~f ~??~f~ ® ~ f ~  ~ ® ¢ ~ ! ? ~ f ~ f ) ~  
f ? ~ ? e f f f ~ f ) ~ f ? ~  )?*f~e)f~®©?! !~ ~ )ffL~ 

~ !  ~,~))®®?,®???I~: k?)~}~?f®~*? £?~ l? * ) f~ .  

~ f ~ : I ~ f f } ) ~ } f  * ~  f ~ ? ~ ® ® ~ ? ® ? f ~ ! ® ~  1 ~ ?  

:m~?~?Ef~f~f )~)~f.@?f, ? ~ , ~  : , I f  f~ ! 

. ? ! ~ ? ® ~ ® ? . . ? f ~ @ ? f f ~ : f ? ~ l ~ ) ~ f ~ ? l , ® ~ . ~ f ~  

? }~?~®®f~ l ! ! f . ~® .? ) ) f®~ f®?E ,~ :?? )?~ f?~ I !  
~!®!~.N?? ~ ! ? ~ , ~ ? ~ ? f * ~ ? ~ I ? , ? ~ I ® } ? f f ~  

,f  I!®f®N ~f®~?l?~:®~N~ff.?~@f ?f ) f f * ~ ) ~ l ~ !  

Let us now consider  the e l iminat ion of  the kth  
variable,  k = 2, • •. , N -- 2. A table is avai lable  which 
gives, for  every value of  zk and  zk+l, the op t imal  value 
(with respect  to z l ,  • • • , zk_l) o f  the sum o f  the te rms 
of  the original  FOM which conta in  at  least one variable 
in the set {z~, . . -  , zk-1}. Thus,  as we saw in Section 2, 
the ou tpu t  o f  the previous k - 1 stages appea r s  as a 
t e rm in the meri t  funct ion o f  the present  stage. A new 
table is now c o m p u t e d  in the usual way which gives, 
for every al lowed value of  zk+l and zk+2, the output  o f  
the first k stages and the op t imal  value of  z~. Table  
l I I  gives, for za = (2,2) and z4 -- (3,1), 

(p) the value of  the ou tpu t  o f  the previous stages for all 
admissible  z~ ; 
(a) the value of  the t e rm a(z2) for all admissible  z~ ; 
(b) the value of  the t e rm q(d(z~, z3) - d(za, z2) rood 
8) for all admissible  z~ ; 
(c) the value (p) + (a) - (b);  
(d) the max imal  value of  (c) with respect  to z2 ; 
(e) a value o f  z~ for which (d) is achieved.  

Figure  3(d) shows the interact ion g raph  af ter  the two 
first stages. 
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The  last stages are in  general  slightly different 
because the d imens ion  decreases toward  zero.  Table  
IV  gives, for z4 = (3,1): 

(p) the value o f  the ou tpu t  o f  the previous stages for all 
admissible  za ; 
(a) the value o f  the t e rm a(z3) for  all admissible  z3 ; 
(c) the sum (p) + (a);  
(d) the max imal  value of  (c); 
(c) a value o f  z~ for  which (d) is achieved. 

Tab le  V gives: 
(p) the value o f  the ou tpu t  o f  the previous stages for 
all admissible z4 ; 
(a) the value o f  the t e rm a(z4) for  allz4 ; 
(c) the sum (p) + (a);  
(d) the max imal  value of  (c); 
(e) a value o f  z~ for which (d) is achieved. 

The  table scanning is done  as explained in Section 
2; in our  example ,  we know f rom Table  V (e) that  z4 
= (3,1). Thus  f rom Table  IV(e)  we have z3 = (2,2). 
Final ly  f rom Tables  I l I (e )  and II(e)  we get z~ = (2,3) 
and zl = (3,4). The  op t imal  curve  is shown in Figure 

3(0. 
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4. Some Experimental Results 

The algorithm explained in Section 3 was imple- 
memed in SAIL (an extension of ALGOL) on the PDP-10 
of the Stanford Artificial Intelligence Project, and it is 
available from the author. For testing its performances, 
a noisy picture generator was programmed, using 
Comm~ ACM A~gorithms 266 [10] and 267 Ill]. 
Pictures are represented with a 16-tevel gray scale, 
and are printed with superimposed characters for 
obtainir~g the impression of different gray levels 
through different percentag~es of' blackened area. 

Figure 4(a) is an example of a low-curvature line, 
whose points have a gray level of 5. This picture has 35 
lines arid 45 columns. In Figures 4(b), (c), (d), and (e) 
an independent arrmunt of noise is added to every 
point. The statistical distribution of the noise at every 
point is rmrmal, with mean value 5 and standard 
deviation s = t, 2, 3, and 5, respectively. Note that the 
line is still clear in Figure 4(b), hardly recognizable in 
Figure 4(c) and quite unrecognizable ir~ Figures 4(d) 
and 4(e). In Figure 5(a) we sec the optimal line %und 
in the image of Figure 4(d). The Iength is 45 and the 

weight factor q is equal to 5. Note that only stoat1, 
local distortions have occurred. In Figures 5(b) and 
(c) we see the much worse case of Figure 4(e) for N = 
40 and q = 2 and 5, respectively. Note that in this 
case the mean square value of  the signal is locally 
equal to the mean square value of the noise. For bigger 
values of noise, the recognition becomes marginal and 
the found curve often turns on itself, repeating the most 
marked pieces. 

The computing time for each curve was 10 minutes 
(5 minutes is suflicient if the trick of starting from both 
endpoints is used, see Section 5). 

5. Some Classes of Figures of Merit for the Optimal 
Detection of One Curve 

A simple extension of the ~oM used in Section 3 is 
an ~'o~ in which every variable irlteracts with k sub-. 
sequent variables. 8 Such an FOM will be called of type 
L For the algorithm of Section 3, we had k = 2. Note 
that k 2 1 because at least the neighborhood con- 



Fig. 5(b), Optimal curve detected in the noisy picture in Figure Fig. 5(c). Optimal curve detected in the noisy picture in Figure 
4(e), length N = 40 curvature cost q = 2. 4(e), length N = 40, curvature cost q = 5. 
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straint is always present. The form of  an FOM of  type k 
will be 

N 

g(Zl ,  "'" , ZN) = ~ g~(zi ,  " ' " ,  Z{+k-1). 
1=1 

Note that  the functions g~ can be different f rom stage 
to stage; this feature allows the user to construct  an 
FOM which " looks for"  curves of  particular shape. For  
instance, if  the character "5"  must be found, a roughly 
horizontal straight segment should be sought first; 
then a sharp left turn, a straight vertical segment, a 
sharp left turn, and a smooth  right turn should be 
found. These expectations, which correspond to a 
priori probabilities of  a Bayesian decision process, can 
be built in the FOM giving high cost to unexpected 
features and vice versa. The type k of  the figure of  merit 

6 Except the last k variables. 
7 Note that it is not necessary to use a computer word for every 
entry in the tables. In fact, the tables used in the final scanning con- 
tain the optimal variables only. Thus a few bits are usually sufficient 
tbr each entry. 

343 

gives roughly the length of the features which can be 
sought. A proper  weight can be given to the position 
in the picture and to the orientation of the features. 
Furthermore,  no rigid specification of  the features is 
required, because a different cost can be assigned to 
every possible deformation of  them. 

The storage and time requirements grow pretty fast 
with the type k. On the contrary,  no substantial extra 
cost is paid for a complicated (and, it is hoped, more 
efficient) FOM of  a given type. Roughly speaking, and 
taking into account the neighborhood constraint, the 
number of  entries in the table of  one intermediate stage 
is F = rc8 k-1 and the same is the number of  partial 
optimizations required at every stage. Of course, F de- 
creases if other constraints are present, e.g. on the 
curvature; this corresponds to limiting the variety of 
features of length k which we consider. F is also the 
amount  of  fast memory  required by the entire process. 
The total number  T of  opt imizanons and t he amount  of  
slow storage required is instead Nrc8 k-1.7 Note that this 
number  grows linearly with N, while the number of  
curves among which the op t imum is sought grows ex- 
ponentially with N. 
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This method is suitable for parallel computati(m: in 
fitct, at every stage, the optimizations can be carried 
o~, at the same time f\>r all tile points of" the image. 
Fur thermore,  only local storage is necessary, and for 
simple FoM's no complicated operations like multi- 
plications or divisions are required. 

Figures of  merit whictl are more general than the 
class described above can be allowed without too big 
an increase in computat ional  effort. For  example, 
assume that an L-~shaped curve is looked %r, but that 
no exact location of  the corner along the curve is 
known. Tile design of  a suitable figure of merit can be 
sketched in the %llowing way: 
(1) the curve begins anci ends with straight segments: 
thus in the first and last stages turns in both directions 
must be costly; 
(2) a sharp left turn must become cheap in :the central 
s tages ho,aever, one turn o~ty must be present, so that 
if a turn has occurred in an early central stage, no turns 
must be present in successive central stages. 

If the interaction graph of  the above FO~ is drawn, 
it is clear that every central vertex must be connected 
with all the precedent central vertices in order  to know 
whether or not the turn has already occurred. As a 
result, the dimensionality of the central stages is very 
high, so that storage requirements are prohibitive. A 
quite di~"~rent situation arises if the information about  
the turn is "added"  to the decision variables of all the 
central stages; namely, the variables z~ of central stages 
will be z~ = (x  , ~.. b~) where b~ is a Boolean variable 

, • o 

which specifies whether or not  the turn has already 
occurred. In this way the number of  entries of the 
central tables will only be doubled, and no extra 
connections witt be added to the interaction graph. This 
trick can easily be extended to the case in which the 
average direction or the average curvature of  the entire 
segment of  curve determined in the previous stages must 
be known. 

In all the cases considered above every stage of the 
optimization process corresponds to the determination 
of  one point of  the best curve. However, in low- 
definition cases it can be convenient  to determine at 
every stage an entire segment o f  the curve. If" interaction 
with only the previous stage is allowed, this application 
seems to be close to Kovalewsky's method {6] for 
description of handprinted characters. The advar~tage 
of  tow.-definition methods is essentially that bigger 
features can be considered without increase in dimen- 
sionality. In particular, elementary segments can have 
a bigger number of  allowed values of  the slope. O~ the 
contrary,  no reduction in computing time can be 
expected becau~e, the reduced number of  stages is 

balanced by the bigger number of  decisions allowed at 

every stage. 
A reduction i~ slow' storage and computing time (as 

much as 50 percent) can be achieved if the vo>.~ is 
symmetric with respect to the two extremes of the 
curve. In fact, in this case it is suf'licient to find the best 
pair of  optimal halgcurves which smoothly concatenate. 
From the point of view of  the interaction graph, it 
corresponds to start the eliminatio,~ of  verticcs ~?om 
both sides and to recognize that symmetrical stages will 
give exactly ttle same output.  

If (a) tile comput ing time or (b) the storage require- 
ments become too heavy, approximate methods can be 
devised. In case (a), and if the curve is homogeneous,  a 
suboptimal curve of length N = pq can be computed  as 
the optima¿ concatenat ion of p curves of  length q. 
For  instance, in the example of Section 3 a standard 
q-stage optimization process can determine, f\:~r each. 
point of  the picture and t\~r each direction, the best 
curve of  length q. Then a p-stage process can use as 
elementary segments the curves which are the output  of 
the first process. In fact, inductively, if for each point 
and each direction we know the best chain of  (k -- 1) 
segments, we can determine the best chain of k seg- 
ments optimizing among the only three segments which 
can be smoothly added to the precedent chain. In 
conclusion, this approximate solution can be obtained 
in p + q stages, while N = pq  stages are required fur 
the exact solution. This trick can be iterated more than 
once; if at each stage we take as elementary segments 
the optimal curves of  the previous stage, a reduction to  
tog:2N stages is achieved. 

In case (b), the dimensionality of" each stage and 
thus the storage can be reduced if an iterative method 
is used (see [5 pp. 78-..87]). However, with iterative low-. 
dimensional methods, only local maxima are found. 

6. Recognition of Systems of Curves 

In the previous sections we discussed the dynamic 
programming approach to the determination of one 
curve. In practice, it can happen that we want to reeog-. 
nize more constrained line-like figures, e.g. circle or an 
X-shaped or R-shaped pattern. The first step in our 
method is, as usual, the determination of  a suitable 
figure of  merit. However, more complicated constraints 
are now imposed by the structure of  the image, so that 
the order  of  elimination of  variables is not trivial. In 
the general case of a system of  curves the interaction 
graph becomes a synthetic way of  describit~g the picture. 
In a sense, the interaction graph carries informatio~l 
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about  the topology  of  the system of curves, while the 
rest of  the FOM tells us the geometr ical  characteristics 
of  the elementary curves. Note  that "invisible links" 
can belong to the structure: for instance, two parallel 
straight lines can be well described by means of two 
curves with high cost on the local and average curva- 
ture, and with two perpendicular, "invisible" links of 
the same length at the extrema. 

I f  the secondary optimization problem is very 
complicated, it can be solved [7] using a dynamic 
programming technique in the lattice of  the 2 N subsets 
of  the variables. This method is based on a theorem 
which states that  after elimination of a set of  variables, 
the remaining problem (i.e. its interaction graph) is not 
affected by the order in which the variables were elim- 
inated. However,  before we use this algorithm, the 
following rules (applied in order and as many  times 
as possible) are assured to reduce the number of  
variables in an opt imal  way [8 ]. Let H,  be the subgraph 
of the interaction graph G whose vertices are the 
vertices connected to the vertex V in G; then 
(a) if H~ is complete, erase V; 
(b) if the vertex set of  Ho has cardinality 2, erase V. 

Note that if H~ has cardinality one, rule (a) always 
applies; thus it allows the solution of  all the interaction 
graphs which are trees. On the other hand, rule (b) 
allows simplification of  the chains of  serially connected 
arcs and vertices. Therefore it solves series-parallel 
graphs. The combined use of  rules (a) and (b) allows 
us to solve most  practical cases. 

In this paper  we have always considered the inter- 
action graph as derived f rom the FOM and thus as a 
datum. One could ask if the structure of  the FOM 
(namely, the interaction graph itself) also can become 
the object of  an optimization process. The simplest case 
happens when we are looking for a curve but do not 
know its length. This situation also can be reduced to 
the scheme we have followed. In fact, it is possible to 
introduce a new variable y whose value is the number 
of  stages of  the process. Of  course, it is also wise to 
normalize the FOM with respect to the length of the 
curve. In the interaction graph, the new vertex is con- 
nected with all the other vertices. However,  in this 
particular case little complexity is added if y is the last 
variable to be eliminated. In fact, if we consider the table 
corresponding to the stage k, a new dimension cor- 
responding to the variable y is added. However, for y 
> k the table does not depend on y and is equal to the 
table we had in the case of  the curve of fixed length, 
and for y < k the table depends on y only because 
variables x~, i > k, do not contribute to the FOM. 
In the general case, however, the addition of control 
variables can increase the dimensionality of  the problem. 

7. Conclusion 

We have presented a global approach to the problem 
of  finding systems of  curves in noisy pictures. This 
method allows us to give a definition, by means of an 
FOM, of what we mean by a "good curve";  then the best 
curve is found. The globality of  the method, a peculiar 
feature, also makes it flexible and good in otherwise 
unmanageable situations. For instance, large gaps can 
only be bridged by using global context. This approach 
has some drawbacks.  First, it uses a computing time 
sensibly greater than do simple local preprocessing 
techniques. However,  approximate  implementat ions of  
the optimization process and less definition in the 
p ic ture  could allow competit ive times still preserving 
globality at some extent. Second, storage requirements 
are high. Finally, many global specifications are very 
expensive for the optimization algorithm; for instance, 
the constraint that  the found curve is simple (non- 
self-intersecting) is almost  impossible to embed in an 
FOM. Many trials (perhaps interactively performed) are 
then sometimes required for finding a suitable FOM for 

/ 

a given class. 
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