
Application Defined Networks
Xiangfeng Zhu1 Weixin Deng1 Banruo Liu2 Jingrong Chen3 Yongji Wu3

Thomas Anderson1 Arvind Krishnamurthy1 Ratul Mahajan1 Danyang Zhuo3
1University of Washington 2Tsinghua University 3Duke University

Abstract
With the rise of microservices, the execution environment
of many cloud applications has become a set of virtual ma-
chines or containers connected by a flexible and feature-rich
virtual network. We argue that the implementation of such
virtual networks should be completely application-specific
and not layered on top of general-purpose network abstrac-
tions from the Internet age. Such layering tends to more
than double the latency and CPU usage of applications. We
propose application-defined networks in which developers
specify network functionality in a high-level language and
a controller generates a custom distributed implementation
that runs across available hardware and software resources.
Experiments with a preliminary prototype suggest that, com-
pared to the state of the art, ADN reduces latency by up to
20x and increases the throughput by up to 6x.

CCS Concepts
• Networks → Programming interfaces; Cross-layer
protocols;

Keywords
Application Networking, Service Mesh, Microservices
ACM Reference Format:
Xiangfeng Zhu, Weixin Deng, Banruo Liu, Jingrong Chen, Yongji
Wu, Thomas Anderson, Arvind Krishnamurthy, Ratul Mahajan,
Danyang Zhuo. 2023. Application Defined Networks. In The 22nd
ACM Workshop on Hot Topics in Networks (HotNets ’23), Novem-
ber 28–29, 2023, Cambridge, MA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3626111.3628178

1 Introduction
Since the dawn of the Internet, the design and implementa-
tion of data networks has valued generality—the ability to

This work is licensed under a Creative Commons Attribution International 
4.0 License.
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628178

support a wide range of applications—and has used a modu-
lar organization to meet this goal in a practical manner. The
Internet architecture is organized as a layered stack of pro-
tocols. Each protocol offers a specific functionality, building
atop one or more lower-layer protocols.
Generality and modularity, however, impose bandwidth,

compute, and latency overhead [27]. Application messages
may be wrapped first in HTTP, then in TCP, and then IP,
and are processed in sequence by multiple protocols at the
sender and the receiver. Even so, the general network often
cannot support all the requirements of a given application.
The result is that it does too much for some applications
(at a high cost) and too little for others [1, 2, 30, 38, 56]. For
instance, many distributed applications need load balancing
across replicas, which the Internet does not provide, forcing
applications to engineer their own solutions via middleboxes.
High overhead and imperfect application support may

be inevitable for a general network, but many networks
today are built to support a single application. The key
driver for such application networks is microservices [29],
where application logic is split across many (sometimes thou-
sands [47, 65]) services. Communication between microser-
vices has rich requirements, such as load balancing, rate
limiting, authentication, access control, and telemetry. Engi-
neers use service meshes such as Istio [19] and Linkerd [21]
to build networks that meet these requirements. These net-
works are virtually isolated and have specific ingress and
egress points to communicate externally. Application net-
works are widespread, in use at 90% of organizations that
develop cloud applications [13].

The tragedy of today’s application networks is that, even
though they serve a single application, they are built using
the same abstractions designed for general-purpose com-
munication. Service meshes assume that applications emit
IP packets that contain other standard protocols (e.g., TCP,
HTTP, and gRPC). A local proxy intercepts these packets
and, in the manner of middleboxes, parses and unwraps the
network packets. It then applies the network policies and
wraps the packets again before sending them to the receiver.
The receiver has a local proxy as well, which also unwraps
the packet, processes it, and wraps it again before handing
it off to the application.

87

https://doi.org/10.1145/3626111.3628178
https://doi.org/10.1145/3626111.3628178
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626111.3628178&domain=pdf&date_stamp=2023-11-28


This architecture of service meshes has significant down-
sides. Depending on the configuration, it can increase mes-
sage processing latency by up to 2.7-7.1x and CPU usage by
up to 1.6-7x [3, 9, 12, 52, 66]. Layering also hides or obscures
information, which makes it hard to implement application-
specific network policies (e.g., choosing replicas based on
information in the application’s RPC) [4, 14]. Finally, be-
ing general, service mesh implementations are large and
complex, so it is almost impossible to accelerate them via
programmable kernel, NICs, and switches [28, 49, 50, 60].

We argue for application networks to be fully customized
to the application and its deployment environment. The key
challenge in realizing this vision is: how to enable custom
application networks without excessive burden on each ap-
plication’s developers to implement their own network func-
tionality? We propose to address this challenge via Appli-
cation Defined Networks. ADNs run atop a network with
basic layer-2 connectivity, similar to that provided by cloud
virtual networks. Anything else that the application needs
is expressed in a high-level, domain-specific language. We
orient the specification language around processing RPC
messages emitted by the application because that processing
is most relevant [37, 59, 64]. A compiler takes this specifica-
tion and generates an efficient, distributed implementation
across available hardware and software resources, and a run-
time controller dynamically reconfigures the network based
on workload and failures.

Decoupling the specification of the network functionality
from its implementation allows us to generate implementa-
tions customized for the application and avoid the fundamen-
tal trade-off between doing too little or too much that any
general-purpose implementation must make [56]. Further,
because we know the semantics of network processing, we
can apply optimizations such as selectively offloading net-
work functions to hardware and parallelizing or reordering
them while preserving semantics. It also allows us to scale
network processing without disruption, as the number of
microservice instances changes or the workload scales.
We develop a preliminary ADN prototype to evaluate

our proposed approach. It instantiates the desired network
functionality by auto-generating modules of mRPC [25]. Our
experiments show that ADN can reduce the end-to-end RPC
latency by 17–20x and increase the RPC throughput by 5-
6x compared to implementing the same functionality using
Envoy [18], the most popular proxy for service meshes. We
also find that, compared to hand-optimized implementations,
the overhead of generated implementations is only 3–12%,
while reducing the lines of code by two orders of magnitude.

ProxyService A

OS

NIC

underlay network

Proxy

OSNIC

Service B.1
Compression

NIC

Proxy Service B.2

OS

Load Balancer

RPCRPC RPC

TCP TCP

HTTP

IP

HTTP

IP

HTTP

Access ControlDecompression

Figure 1: Packet processing in service meshes.

2 The curse of generality

We highlight the pitfalls of building application networks
with general abstractions using an example. We view ap-
plications as sources and sinks of RPC messages and the
"network" as everything that happens to RPCs between ap-
plication send and receive. Consider an application with two
microservices, A and B. Service B is shared, and its two in-
stances, B.1 and B.2, hold a subset of the object identifier
space. The application developer wants the network to 1)
load balance RPC requests from A to B.1 or B.2 based on the
object identifier in the request, 2) compress and decompress
the RPC payload, and 3) perform access control based on
user and object identifiers in the RPC request.
One could implement these network policies along with

the application code itself, but that is not practical. Network
policies often evolve independently from the application
logic, and it is not practical to modify the application source
and re-deploy each time they change. Further, for trust is-
sues, some network policies (i.e., access control) must be
enforced outside the application. Thus, the developer needs
to implement the network outside of the application, even
though it is meant to serve only this application.

Preferring generality, the application developer today does
not use a custom request processor that could inspect and
manipulate the message to achieve the desired policy. In-
stead, they lean on a standardized protocol, say HTTP, that
allows arbitrary information to be embedded in its headers
and modifies the application to add headers for object and
user identifiers. Because they choose HTTP, TCP and IP are
also chosen as additional layers into which application in-
formation is wrapped. Our application does not care about
these layers otherwise.

Then, the developer selects a module that can enforce their
policies; this functionality is common in L7 proxies [7, 11, 18].
Finally, they need a mechanism such that the application’s
traffic reaches this module when sent to B. This can be ac-
complished by intercepting and rewriting the IP packets (e.g.,
using iptables) generated by the application or using DNS
to resolve B.1 and B.2 to the address of the module. Once
the routing module gets the packet, it parses it to extract the
HTTP header and sends it along to the right version of B.

88



Figure 1 shows the resulting packet path and processing.
The application RPC library serializes the request message,
and the kernel network stack (configured by iptable rules)
forwards the message to the proxy, which typically needs
to parse the message headers and deserialize the payload to
enforce the desired policy. The proxy then re-encodes the
headers and re-serializes the message for transport.
Service meshes [19, 21] today follow this architectural

paradigm. The proxies are called sidecars, and they run as a
separate user-space process (or container), intercepting and
manipulating all incoming and outgoing packets. The key
advantage of this approach is that it can support a range of
applications, but it has significant downsides too.
High overhead. Packets travel up and down the stack, and
they are encoded and decoded multiple times. This has high
overhead in terms of application latency and server CPU.
SPRIGHT shows that service meshes can reduce throughput,
increase latency, and increase CPU utilization by 3-7x [52]
(on top of an already high baseline [42, 51]). A dominant
component of service mesh overhead is parsing all the pro-
tocol headers to recover wrapped information [66]. They
also sometimes implement functionality that overlaps with
that of lower layers (e.g., retries, rate limiting) because the
application desires different semantics [24].
Non-portability. With service meshes, developers imple-
ment desired network behaviors by choosing and chaining
specific software plugins such as load balancers and loggers.
Such network functions can only run within the context of
the sidecar and use vanilla IP for transport. This limitation
runs up against the increasingly programmable nature of the
OS kernel (via eBPF), and the availability of programmable
networking hardware (NICs and switches). Parsing and pro-
cessing for many standardized protocols are almost impos-
sible to offload to kernel [49, 62] or hardware [28, 50, 60].
As just one difficulty, using programmable networking hard-
ware often requires custom header designs due to hardware
constraints [41, 45]. A P4-based programmable switch has ac-
cess to about the first 200 bytes of each network packet [63].
To offload load balancing, we must put the field the load
balancer needs into the first 200 bytes of the packet, which
may not happen with multiple layers of header wrapping.
Poor extensibility. High overhead and non-portability of
current application networking architecture meshes might
be more tolerable if they were highly extensible, but that is
not the case. Network policies that are hard to express using
standard protocols are hard to build and deploy. Consider a
request routing policy that sends RPC requests of type T2 to
a specific service instance, but only when it follows an RPC
of type T1. For such custom functionality, service meshes
offer a plugin framework. However, low-level abstractions
used for such plugins (IP or HTTP packet, not RPCs) make

CompressionLoad 
Balancer

RPC processing chain

Configuration 1: In-app policies

Decompre
ssion

Access 
Control

Service A

SA L C D A SB

Configuration 2: Kernel/SmartNIC offloading

L C D A

Single application binary

eBPF in kernel

Configuration 3: Reordering and switch offloading

C L A D
P4 for programable switch

Configuration 4: Scaling out RPC processing

C A L D
D
D

L

Service B

SA SB

SA

SA

SB

SB
SB
SB

Figure 2: Possible realizations of a RPC processing
chain (described in §2).

them hard to develop [4, 14] and the isolation mechanisms
for safely running these plugins (e.g., Web Assembly) further
drive up the overhead [66].

3 Application defined networks
Given the pitfalls of building application networks using
general-purpose abstractions and implementations, we ad-
vocate building them in a way that is fully customized to the
application and its deployment environment. The network
and the software stack under the application should offer
no protocols or abstractions by default except for a (virtual)
link layer that can deliver packets to endpoints based on
a flat identifier such as a MAC address. Cloud virtual net-
works (e.g., AWS VPCs [17]) provide this abstraction, and
technologies like VXLAN [16] can implement it anywhere.

Everything else that the network does is specified by the
application developer in a domain-specific language (DSL).
We propose to structure this specification as a chain of ele-
ments, each an operation on an RPC message between two
services. A controller decides how to realize the specification
in the application’s deployment environment. Depending
on available resources, RPC processing may happen in the
RPC library (e.g., gRPC), in-kernel (e.g., using eBPF), in a
separate process (as today), on a programmable hardware
device, or in a mix of locations. The controller can also opt
to run multiple element in parallel or reorder them.
Figure 2 shows how a controller may realize the desired

RPC processing described in §2 in different deployment envi-
ronments. Configuration 1 shows the case where it deploys
the load balancer and compression as part of the RPC li-
brary (akin to gRPC proxyless [6]). Configuration 2 moves
these functions to the OS kernel on the sender side and to a
SmartNIC on the receiver side. Configuration 3 moves load
balancing and access control to a programmable switch and
also reorders the processing after automatically determin-
ing that reordering preserves semantics. In this example,
not compressing the RPC field that the following load bal-
ancer uses is enough to preserve semantics. Configuration 4
replicates RPC processing to increase throughput.

89



The exact choice of configuration depends on (1) resources
available in the deployment environment, (2) the security
model (e.g., mandatory RPC policies should not be enforced
inside the same application binary), and (3) the current work-
load. Our main observation is that once we have a high-level
specification of desired network behavior, we can automati-
cally generate a highly efficient implementation. How the
RPC message is packaged on the wire and what headers are
needed are also automatically determined.

4 Key Research Questions
Realizing the ADN concept requires answering a few key
research questions.
Q1: What abstractions should our DSL provide to specify RPC
processing? The abstractions should be high-level, indepen-
dent of the underlying platforms, while being amenable to
efficient implementation. They should also 1) allow a range
of automatic optimizations such as re-ordering, offloading,
and generating minimal headers; and 2) enable reasoning
about the internal state of elements because that is key for
seamless migration and scaling [32].1
We also want to enable developers to reuse code of ele-

ments developed by others, instead of having to implement
their own each time. Element reuse needs careful considera-
tion because there are no standard headers (like HTTP), and
an element that manipulates an RPC field of one application
may not necessarily work in another. Finally, we should al-
low developers to specify message ordering and reliability
constraints and any element location constraints (e.g., the
encryption element must be co-located with the sender).
Q2: How to translate the high-level specifications to efficient
distributed implementation across a range of hardware and
software platforms? This includes both the low-level code
(e.g., eBPF, P4) and packet header design for cross-device
communication. When multiple elements run on the same
device, we should be able to do cross-element optimizations.
Finally, we need to determine the minimum set of headers
needed to satisfy the network requirements.
Q3: How to determine the location(s) where network processing
happens across available resources and expand/collapse pro-
cessing based on workload, without disrupting applications?
When a new application is deployed, the ADN controller
needs to pick an initial configuration based on the speci-
fication and available resources. Once the application has
been running, it may need to reconfigure (e.g., picking a

1Specifying network processing using chained elements is not new. A semi-
nal system is Click [39] which enables building modular packet processing
pipelines. Packet processing is specified as a directed graph of elements,
where each element is C++ code that can use any C++ data structure. Be-
cause of these design choices, Click elements are hard to offload and hard
to migrate and scale up/down [32, 53].

…
Update

Data Plane
Processors

ADN Program

Processors

Feedback

Control Plane

Compiler Controller

Figure 3: ADN Architecture.

Access 
Control

-- Block users that do not have write permission
SELECT FROM input JOIN ac_tab ON input.name = 
ac_tab.name WHERE ac_tab.permission = 'W';

username permission

usr1 R

usr2 W

ac_tab:

Processing Logic Internal State

Figure 4: An element that implements access control.

configuration in Figure 2) according to the current workload.
When the workload increases, we may need to scale out the
RPC processing chains onto more compute devices. Such
reconfigurations should not disrupt the application.

5 A Potential Approach
We outline a potential approach to realizing ADN, which
answers the aforementioned questions. Figure 3 shows the
architecture. The input program describes the network func-
tionality as a chain of ADN elements in our DSL. The control
plane includes a compiler and a runtime controller, while the
data plane consists of hardware or software-based processors
that execute network functionality.
5.1 Programming Abstraction

As a primary programming abstraction, we draw inspiration
from stream processing systems like Dataflow SQL [15] and
view each RPC as a tuple with one or more fields. Elements
process an incoming stream of tuples, and their processing
logic is specified in a SQL-like DSL, which is then compiled
to native device code. Each element can read or write internal
states modeled as tables. The processing logic outputs zero
or more tuples. When an RPC is modified, the output fields
differ from the input fields. Downstream elements in the
pipeline can read and further edit these fields.

Figure 4 shows an element that implements access control.
The element holds its state in the ac_tab table that stores a
mapping between username to permission. It uses this state
to generate an output table based on the input table, which
has a single row with incoming RPC. The element blocks
users who do not have write permissions and is executed
upon every RPC arrival, sending new outputs downstream.
A SQL-like language provides a foundation for the com-

piler to infer which fields are read or written by an element,
when it is safe to re-order elements, and what information
needs to be communicated between elements (headers). We
can build on it to enable additional capabilities that we need.

90



However, SQL cannot express certain forms of complex
processing that we need. One such class is operations like
compression and encryption. We can model these as user-
defined functions for which developers provide platform-
specific implementations. This approach is similar to how
Tensorflow [22] requires platform-specific implementation
of complex operators. Another class of complex processing
involves "shaping" the RPC stream via mechanisms such as
timeouts, retries, and congestion control. We can introduce
special elements of type filters to express their operation. Sim-
ple filters will be expressed in (extended) SQL, and complex
ones will use operators with platform-specific implementa-
tions. Depending on application needs, these operators may
even wrap around an existing protocol such as TCP.

5.2 Control Plane

The ADN controller is a logically centralized component that
has global knowledge (acquired via cluster managers such
as Kubernetes [10]) of the network topology, service loca-
tions, and available ADN processors. It provisions network
processing on available processors.
In response to workload changes and failures, it also mi-

grates and scales ADN elements. The decoupling of code and
state, and the tabular nature of state, enables us to reconfig-
ure the network without disrupting applications. To migrate
or scale out a load balancer, the controller can copy over its
state and start running a new instance; while reducing the
number of load balancer instances, it can merge their states
and kill some instances. Some reconfigurations may require
us to put the network in intermediate states to prevent tran-
sient disruptions [35, 48, 55]. State decoupling also enables
us to hot-update element processing logic [34].
The ADN compiler takes ADN elements (defined in our

SQL-like DSL) and generates efficient implementations for
the target platform. Internally, the compiler first converts
the program into an intermediate representation (IR). It then
applies a set of optimizations on the IR. For example, if two
elements do not operate on the same RPC fields, they can
be executed in parallel. Finally, the compiler translates opti-
mized IR into platform-native code.

5.3 Data Plane

The ADN data plane is composed of ADN processors that
carry out the low-level executions of ADN elements. Each
processor acquires the compiled version of the RPC pro-
cessing logic from the control plane and periodically sends
reports of logging, tracing, and runtime statistical informa-
tion back to the controller. ADN processors can be realized
in either software (for example, in the form of RPC libraries,
user-space proxy, or eBPF) or hardware (such as SmartNIC
or programmable switches). An ADN processor might only
manage a portion of a processing graph, and if that’s the

Logging ACL Fault
0

25

50

75

100

RP
C 

Ra
te

 (k
rp

s)

Logging ACL Fault
0

250

500

750

1000

1250

La
te

nc
y(

us
)

gRPC+Envoy ADN+mRPC Hand-coded mRPC

Figure 5: Performance of ADN compared to Envoy and
hand-coded mRPC modules.

case, the RPC headers might convey additional information
intended for the utilization of downstream processors.

6 Preliminary Prototype and Evaluation

To help evaluate the feasibility and performance of the ap-
proach above, we implemented a prototype. Our prototype
integrates with Kubernetes. We created a Kubernetes cus-
tom resource [20] called ADNConfig which developers use
to provide ADN programs. The ADN controller watches for
changes to this resource or to the deployment (e.g., a new
service replica). It updates the data plane processors when
either changes. Our prototype only supports the mRPC [25],
a managed RPC system service, as the processor. We use
TCP/IP as the transport for mRPC. The ADN compiler con-
verts the high-level SQL-based DSL to Rust-based mRPC
modules (i.e., implementation of engines). Work on support-
ing other platforms is ongoing.

We implemented several elements in our DSL. The ones we
use in our evaluation are: 1) Logging, which records both the
request and response to a file, 2) Access Control List (ACL),
which inspects RPC arguments and drops RPCs based on
a set of rules, and 3) Fault Injection, which aborts requests
based on a configured probability. Interestingly, standard
SQL syntax was rich enough for these elements.
Experimental Setup. We evaluate our prototype using a
simple client-server application. The client keeps sending
128 concurrent RPC requests using a single thread. Both
the RPC request and response contain a short byte string.
The ADN network specification chains the three elements
mentioned above. That is, RPCs are logged, access controlled,
and some of them are dropped.

We compare the performance of the prototype to the stan-
dard approach of using Envoy proxy with gRPC. We also
compare against hand-written mRPC modules to understand
the ease of development in our DSL versus Rust (the language
of mRPC) and the performance impact of auto-generated
code. The mRPC modules were written by mRPC develop-
ers for high performance. We run the experiments on two
machines with two Intel 10-core Xeon Gold 5215 CPUs and
256GB RAM, Ubuntu 20.04. We use Envoy v1.20.

91



Results. Figure 5 shows the results. ADN provides a 5–6x
higher RPC rate and 17–20x lower RPC latency compared
to using Envoy for the same network functionality. The
performance overheads of using Envoy is from the current
service mesh architecture, which needs to parse/serialize
standard protocol (gRPC, HTTP) headers and has extra mar-
shalling/unmarshalling of RPC payloads. Envoy’s RPC pro-
cessing is also more expensive because the filters for logging,
access control, and fault injection are more general with
more knobs than our application needs.

Compared to hand-optimized mRPC modules, ADN mod-
ules have 3–12% lower performance. This degradation is
primarily due to the programming abstraction of ADN. In
terms of lines of code, a proxy for ease of development, ADN
elements have tens of lines of SQL, whereas hand-written
mRPC modules have hundreds of lines of Rust.

7 Discussion

DoADNs require application source codemodification?
No. We can realize ADNs without source code modification
by modifying RPC libraries like gRPC. Applications send and
receive RPC messages via such libraries, and our modifica-
tions will process messages and forward them to other pro-
cessors based on the implementation determined by the ADN
controller. By linking against the modified library, ADNs can
be a drop-in replacement for existing service meshes [19, 21].
How do ADN applications communicate externally?
ADN focuses on building a network tailored to an application
but this application may need to communicate with other
applications and external clients. As with service meshes,
such communication can happen via designated ingress and
egress locations for an application. The ingress locations
translate incoming IP packets into the ADN format, and the
egress locations do the reverse translation.

When two ADN-based applications communicate, instead
of translating the sender ADN’s messages to a standard for-
mat and then translating the standard format to the receiver
ADN’s format, we can directly translate information between
the two ADNs. Such "application peering" not only removes
one translation step but also eliminates the need to "down-
shift" application messages to IP and back.
Are there other domains where the ADN approach
applies? Yes. There are domains beyond microservices
where custom communication functionality is needed to
support distributed application endpoints, including data an-
alytics [43, 61], and distributed ML training [41, 58]. These
domains can also benefit from the ADN approach of auto-
generating a network implementation based on a high-level
specification. We do expect, however, that the specification
language for different contexts will be different to accommo-
date the unique needs of each domain.

8 Related Work

Reducing the overhead of application networks. The
overhead of application networks (e.g., service meshes) is
well-recognized and there are ongoing (not productized yet)
efforts to lower them [5, 8]. These approaches aim to lower
the performance overheads of application networks for some
types of processing but they fall back to sidecars in the gen-
eral case. They also still follow the same set of standardized
network abstractions. ADN is a fundamentally different ap-
proach: remove (almost) all standard network abstractions
and create a fully custom network implementation.
ServiceRouter [57] lowers the overhead of application

networks for a specific functionality (request routing), by
supporting multiple deployment modalities based on the
service and its environment. ADN will enable this capability
for diverse, developer-specified network functionalities.
Application-specific network customization. Clark and
Tennenhouse articulated the shortcomings of fixed network
layers over three decades ago and proposedApplication Level
Framing (ALF) [27] for packets. Others too have made simi-
lar observations and explored alternatives [26, 33, 40] where
headers and some network functionality are customized to
the applications. We take this perspective further. Instead
of looking at the network as a communication substrate for
layer-3/4 connectivity, we view the "network" in applica-
tion networks as including all the rich processing (e.g., load
balancing, telemetry, access control). We also argue for high-
level specifications and auto-generated implementations.
High-level network programming. There is a rich line of
work on specifying aspects of network behavior in a higher-
level language and automatically generating low-level im-
plementations. Declarative Networking [46] uses Datalog
to express layer-3 control plane protocols such as OSPF;
NetKat [23] and similar languages [31, 36, 54] express end-
to-end packet forwarding based on layer 2-4 headers; and
Rubik [44] expresses middlebox processing of IP packets. We
draw inspiration from these works, but our target domain
is different—application-specific abstractions and message
processing, without relying on the existing layered model.

9 Conclusion

With ADN, developers specify the network functionality
desired by the application in a high-level language. A dis-
tributed implementation that is customized to the application
and deployment environment is then automatically gener-
ated. ADNs not only fit the application like a glove—they
have all the functionality that the application needs and
nothing more—but they can also leverage heterogeneous
hardware and scale with the workload.

92



Acknowledgement

We would like to thank the anonymous reviewers for their
helpful feedback. This work is supported by NSF (grants
CNS-2238665, FMiTF-2219863), UW FOCI and its partners
(Alibaba, Amazon, Cisco, Google, Microsoft, and VMware).

References
[1] 2003. RTP: A Transport Protocol for Real-Time Applications. https:

//www.rfc-editor.org/rfc/rfc3550.
[2] 2007. Stream Control Transmission Protocoltrp. https://www.

rfc-editor.org/rfc/rfc4960.html.
[3] 2021. Benchmarking Linkerd and Istio: 2021 Redux. https://linkerd.io/

2021/11/29/linkerd-vs-istio-benchmarks-2021/.
[4] 2022. Building simplified service mesh API for de-

velopers. https://events.istio.io/istiocon-2022/sessions/
building-simplified-service-mesh-api-for-developers/.

[5] 2022. Cilium Service Mesh – Everything You Need to Know. https:
//isovalent.com/blog/post/cilium-service-mesh/.

[6] 2022. gRPC Proxyless Service Mesh. https://istio.io/latest/blog/2021/
proxyless-grpc/.

[7] 2022. HAProxy: The Reliable, High Performance TCP/HTTP Load
Balancer. http://www.haproxy.org/.

[8] 2022. Introducing Ambient Mesh. https://istio.io/latest/blog/2022/
introducing-ambient-mesh/.

[9] 2022. Istio: Performance and Scalability. https://istio.io/latest/docs/
ops/deployment/performance-and-scalability/.

[10] 2022. Kubernetes: Production-Grade Container Orchestration. https:
//kubernetes.io/.

[11] 2022. NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy.
https://www.nginx.com/.

[12] 2022. Performance Impacts of an Istio Ser-
vice Mesh. https://pklinker.medium.com/
performance-impacts-of-an-istio-service-mesh-63957a0000b.

[13] 2022. Service meshes are on the rise — but greater understanding and
experience are required. https://www.cncf.io/wp-content/uploads/
2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf.

[14] 2022. Taming Istio Configuration with Helm. https://events.istio.io/
istiocon-2021/sessions/taming-istio-configuration-with-helm/.

[15] 2022. Use Dataflow SQL. https://cloud.google.com/dataflow/docs/
guides/sql/dataflow-sql-intro.

[16] 2022. What is network virtualization? https://www.vmware.com/
topics/glossary/content/network-virtualization.html.

[17] 2023. Amazon Virtual Private Cloud (Amazon VPC). https://aws.
amazon.com/vpc//.

[18] 2023. Envoy. https://www.envoyproxy.io/.
[19] 2023. The Istio service mesh. https://istio.io/.
[20] 2023. Kubernetes Custom Resources. https://kubernetes.io/docs/

concepts/extend-kubernetes/api-extension/custom-resources/.
[21] 2023. The world’s lightest, fastest service mesh. https://linkerd.io/.
[22] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. TensorFlow: a system for large-Scale machine
learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16). 265–283.

[23] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic foundations for networks. Acm sigplan notices 49, 1 (2014),
113–126.

[24] Sachin Ashok, P Brighten Godfrey, and Radhika Mittal. 2021. Lever-
aging Service Meshes as a New Network Layer. In Proceedings of the

Twentieth ACM Workshop on Hot Topics in Networks. 229–236.
[25] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xinhao Kong,

Thomas Anderson, Matthew Lentz, Xiaowei Yang, and Danyang Zhuo.
2023. Remote Procedure Call as a Managed System Service. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). 141–159.

[26] Isabelle Chrisment, Delphine Kaplan, and Christophe Diot. 1998. An alf
communication architecture: Design and automated implementation.
IEEE Journal on Selected Areas in Communications 16, 3 (1998), 332–344.

[27] David D Clark and David L Tennenhouse. 1990. Architectural consid-
erations for a new generation of protocols. ACM SIGCOMM Computer
Communication Review 20, 4 (1990), 200–208.

[28] Tianyi Cui, Wei Zhang, Kaiyuan Zhang, and Arvind Krishnamurthy.
2021. Offloading load balancers onto SmartNICs. In Proceedings of the
12th ACM SIGOPS Asia-Pacific Workshop on Systems. 56–62.

[29] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017.
Microservices: yesterday, today, and tomorrow. Present and ulterior
software engineering (2017), 195–216.

[30] Bryan Ford. 2007. Structured streams: a new transport abstraction. In
Proceedings of the 2007 conference on Applications, technologies, archi-
tectures, and protocols for computer communications. 361–372.

[31] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. 2011. Frenetic: A
network programming language. ACM SIGPLAN Notices 46, 9 (2011),
279–291.

[32] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling innovation in network function control. ACM
SIGCOMM Computer Communication Review 44, 4 (2014), 163–174.

[33] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim,
Michel Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella,
David G Andersen, et al. 2012. XIA: Efficient support for evolvable
internetworking. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). 309–322.

[34] Michael Hicks, Jonathan T Moore, and Scott Nettles. 2001. Dynamic
software updating. ACM SIGPLAN Notices 36, 5 (2001), 13–23.

[35] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul
Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014.
Dynamic scheduling of network updates. ACM SIGCOMM Computer
Communication Review 44, 4 (2014), 539–550.

[36] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick
Feamster, and Russ Clark. 2015. Kinetic: Verifiable dynamic network
control. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). 59–72.

[37] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. 2019. R2P2: Making RPCs first-class datacenter citizens. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 863–880.

[38] Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP:
Congestion control without reliability. ACM SIGCOMM Computer
Communication Review 36, 4 (2006), 27–38.

[39] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. 2000. The Click modular router. ACM Transactions on
Computer Systems (TOCS) 18, 3 (2000), 263–297.

[40] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolin-
skiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. 2007. A data-
oriented (and beyond) network architecture. In Proceedings of the 2007
conference on Applications, technologies, architectures, and protocols for
computer communications. 181–192.

[41] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network Aggregation
for Multi-tenant Learning. In 18th USENIX Symposium on Networked

93

https://www.rfc-editor.org/rfc/rfc3550
https://www.rfc-editor.org/rfc/rfc3550
https://www.rfc-editor.org/rfc/rfc4960.html
https://www.rfc-editor.org/rfc/rfc4960.html
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://linkerd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/
https://events.istio.io/istiocon-2022/sessions/building-simplified-service-mesh-api-for-developers/
https://events.istio.io/istiocon-2022/sessions/building-simplified-service-mesh-api-for-developers/
https://isovalent.com/blog/post/cilium-service-mesh/
https://isovalent.com/blog/post/cilium-service-mesh/
https://istio.io/latest/blog/2021/proxyless-grpc/
https://istio.io/latest/blog/2021/proxyless-grpc/
http://www.haproxy.org/
https://istio.io/latest/blog/2022/introducing-ambient-mesh/
https://istio.io/latest/blog/2022/introducing-ambient-mesh/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://kubernetes.io/
https://kubernetes.io/
https://www.nginx.com/
https://pklinker.medium.com/performance-impacts-of-an-istio-service-mesh-63957a0000b
https://pklinker.medium.com/performance-impacts-of-an-istio-service-mesh-63957a0000b
https://www.cncf.io/wp-content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf
https://www.cncf.io/wp-content/uploads/2022/05/CNCF_Service_Mesh_MicroSurvey_Final.pdf
https://events.istio.io/istiocon-2021/sessions/taming-istio-configuration-with-helm/
https://events.istio.io/istiocon-2021/sessions/taming-istio-configuration-with-helm/
https://cloud.google.com/dataflow/docs/guides/sql/dataflow-sql-intro
https://cloud.google.com/dataflow/docs/guides/sql/dataflow-sql-intro
https://www.vmware.com/topics/glossary/content/network-virtualization.html
https://www.vmware.com/topics/glossary/content/network-virtualization.html
https://aws.amazon.com/vpc//
https://aws.amazon.com/vpc//
https://www.envoyproxy.io/
https://istio.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://linkerd.io/


Systems Design and Implementation (NSDI 21). 741–761.
[42] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina

Delimitrou. 2021. Dagger: Efficient and fast RPCs in cloud microser-
vices with near-memory reconfigurable NICs. In Proceedings of the
26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 36–51.

[43] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXas-
cale Infolab. 2019. The Case for Network Accelerated Query Process-
ing.. In 9th Biennial Conference on Innovative Data Systems Research
(CIDR 19).

[44] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Danfeng Shan,
Tian Pan, and Chengchen Hu. 2021. Programming Network Stack for
Middleboxes with Rubik. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 551–570.

[45] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan RK Ports. 2020.
Pegasus: Tolerating Skewed Workloads in Distributed Storage with
In-Network Coherence Directories. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 387–406.

[46] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay,
Joseph M Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Tim-
othy Roscoe, and Ion Stoica. 2009. Declarative networking. Commun.
ACM 52, 11 (2009), 87–95.

[47] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping
Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing
microservice dependency and performance: Alibaba trace analysis. In
Proceedings of the ACM Symposium on Cloud Computing. 412–426.

[48] Ratul Mahajan and Roger Wattenhofer. 2013. On consistent updates in
software defined networks. In Proceedings of the Twelfth ACMWorkshop
on Hot Topics in Networks. 1–7.

[49] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo,
and Mauricio Vásquez Bernal. 2018. Creating complex network ser-
vices with eBPF: Experience and lessons learned. In IEEE 19th Interna-
tional Conference on High Performance Switching and Routing (HPSR).
IEEE, 1–8.

[50] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. 2020. AccelTCP: Accelerating network applications
with stateful TCP offloading. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). 77–92.

[51] Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Fal-
safi. 2021. Cerebros: Evading the RPC tax in datacenters. InMICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture.
407–420.

[52] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and KK Ra-
makrishnan. 2022. SPRIGHT: extracting the server from server-
less computing! high-performance eBPF-based event-driven, shared-
memory processing. In Proceedings of the ACM SIGCOMM 2022 Con-
ference. 780–794.

[53] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srini-
vas Narayana, and Ang Chen. 2021. Automated smartnic offloading
insights for network functions. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 772–787.

[54] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford,
and David Walker. 2013. Modular SDN programming with pyretic.
Technical Report of USENIX 30 (2013).

[55] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
DavidWalker. 2012. Abstractions for network update. ACM SIGCOMM
Computer Communication Review 42, 4 (2012), 323–334.

[56] Jerome H Saltzer, David P Reed, and David D Clark. 1984. End-to-end
arguments in system design. ACM Transactions on Computer Systems
(TOCS) 2, 4 (1984), 277–288.

[57] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max Kontorovich,
Josh Kirstein, Margot Leibold, Dimitrios Skarlatos, Hitesh Khandelwal,

and Chunqiang Tang. 2023. ServiceRouter: Hyperscale and Minimal
Cost Service Mesh at Meta. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). USENIX Association,
Boston, MA. https://www.usenix.org/conference/osdi23/presentation/
saokar

[58] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtárik. 2021. Scaling distributed machine learning with
In-Network aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 785–808.

[59] Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu,
Hassan Wassel, Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Krish-
namurthy, David E. Culler, and Henry M. Levy. 2023. A Cloud-Scale
Characterization of Remote Procedure Calls. In Proceedings of the 29th
Symposium on Operating Systems Principles (SOSP 23). 498–514.

[60] Brent E Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee
Vamanan, and Aditya Akella. 2021. TCP is Harmful to In-Network
Computing: Designing a Message Transport Protocol (MTP). In Pro-
ceedings of the Twentieth ACM Workshop on Hot Topics in Networks.
61–68.

[61] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.
Cheetah: Accelerating database queries with switch pruning. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. 2407–2422.

[62] Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacífico, Eler-
son RS Santos, Eduardo PM Câmara Júnior, and Luiz FM Vieira. 2020.
Fast packet processing with eBPF and XDP: Concepts, code, challenges,
and applications. ACM Computing Surveys (CSUR) 53, 1 (2020), 1–36.

[63] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. 2020.
Gallium: Automated software middlebox offloading to programmable
switches. In Proceedings of the ACM SIGCOMM 2020 Conference. 283–
295.

[64] Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian Wu, Priyaran-
jan Jha, Mosharaf Chowdhury, and Amin Vahdat. 2022. Aequitas:
Admission control for performance-critical rpcs in datacenters. In
Proceedings of the ACM SIGCOMM 2022 Conference. 1–18.

[65] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek
Parwal, Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Criti-
cal Path Analysis of Large-Scale Microservice Architectures. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). 655–672.

[66] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
Xuan Kelvin Zou, Xiongchun Duan, Peng He, Arvind Krishnamurthy,
Matthew Lentz, Danyang Zhuo, and Ratul Mahajan. 2023. Dissecting
Service Mesh Overheads. In Proceedings of the ACM Symposium on
Cloud Computing (to appear).

94

https://www.usenix.org/conference/osdi23/presentation/saokar
https://www.usenix.org/conference/osdi23/presentation/saokar

	Abstract
	1 Introduction
	2 The curse of generality
	3 Application defined networks
	4 Key Research Questions
	5 A Potential Approach
	5.1 Programming Abstraction
	5.2 Control Plane
	5.3 Data Plane

	6 Preliminary Prototype and Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	References

