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ABSTRACT businesses can ensure the quality and reliability of their wire-

Spectrum monitoring is vital for optimizing wireless spectrum
usage, minimizing interference, and ensuring efficient com-
munication systems. In large-scale monitoring systems, the
issue of trust in sensor data becomes critical. Separate from
the issue of malicious actors, there must be an underlying
level of trust in the basic quality of a sensor’s data. A sensor
can be compromised by physical obstructions, improper in-
stallation, or incorrect descriptions. This paper introduces an
automated approach for evaluating RF sensor quality, lever-
aging airplane transponder signals to assess obstructions and
other known man-made signals across frequency bands to
quantify obstruction severity. Our experiments demonstrate
the effectiveness of these techniques in automatically calibrat-
ing sensors without supervision.
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1 INTRODUCTION

Spectrum monitoring will play a crucial role in tomorrow’s
wireless networking landscape. By continuously monitoring
the spectrum, regulatory authorities, service providers, and
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less networks. Spectrum monitoring also facilitates the de-
tection of unauthorized or illegal transmissions, aiding in
the enforcement of regulations and the prevention of harm-
ful interference. Some recent examples are the potential for
interference from 5G cellular networks in airplanes’ radio
altimeters [29] and GPS systems [24]. Data on true inter-
ference levels provided by spectrum monitoring is crucial
for understanding and resolving such situations. By provid-
ing valuable insights into spectrum usage patterns, spectrum
monitoring supports the planning and deployment of future
wireless networks, enabling the seamless operation of various
applications and services that rely on wireless connectivity,
such as telecommunications, IoT, and public safety.
Covering large geographical areas continuously presents
significant challenges when performing spectrum monitor-
ing [3], [37]. The sheer scale requires a substantial deploy-
ment of monitoring equipment and resources, which can be
costly and time-consuming. As a result, distributed monitor-
ing has been a long-standing problem in this area. Crowd-
sourcing holds significant potential in spectrum monitoring
due to its ability to engage a large number of participants
to cover large geographical areas [14]. In this approach, par-
ticipants set up a spectrum sensor node such as a Software-
Defined Radio (SDR) that captures and transmits spectrum
related information to the cloud. We envision a distributed
system in which node operators offer spectrum sensing as a
service and users pay to rent these services from operators.
A key problem hindering the realization of this idea is how
users can trust the quality of data offered by each operator.
There are numerous problems that affect the quality of data
such as the efficiency of the antenna and the sensitivity of the
SDR in the desired spectrum bands, potential obstruction of
the antenna in relation to the signal source, and installation
issues such as damaged antenna cables. Consequently, if users
require multiple sensors, manually testing each individual
node becomes impractical, presenting a significant scaling
issue. Note that these nodes are set up by random people
around the world, and no assumptions can be made about the
quality of the setup. Furthermore, since node operators are
paid for these services, there is a potential incentive to provide
fabricated or incorrect data in order to receive reimbursement.
Therefore, we propose an automatic calibration mecha-
nism that evaluates the capability of a sensor node to accu-
rately receive transmissions within specific frequency bands.
We believe that this system will enable a trusted crowd-
sourced network of spectrum sensors and will have a great
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impact by enabling spectrum resource virtualization. The idea
behind our automatic calibration system is to compare the
signals received by a sensing node with known signal sources
in various frequency bands. At a high level, we draw inspi-
ration from the ambitious concept of cognitive radios [32],
which aims to achieve full-awareness sensing. However, the
application of cognitive radio ideas has been mostly limited
to dynamic spectrum sharing. We revisit this concept by con-
sidering many sources of RF transmissions, with the goal of
providing accurate evaluations of sensor nodes.

We address two technical challenges in our work: 1) How
can we automatically determine the presence of obstructions
around a sensor node? For instance, the reception of a node
can be affected by nearby buildings or mountains. 2) How
can we automatically assess the reception capability of a node
across frequency bands? For example, can a node truly receive
the entire claimed range of 100 MHz to 6 GHz?

Our solution for the first challenge involves utilizing Auto-
matic Dependent Surveillance — Broadcast (ADS-B) wireless
messages transmitted by nearby airplanes. These messages
inform air traffic controllers about location and speed of an
aircraft. ADS-B operates at a frequency of 1090 MHz and
relies on line-of-sight communication. Consequently, any ob-
struction significantly degrades the signal. Since airplanes
fly in all directions, we can assess the reception capability
of a stationary sensor node from various angles. For the sec-
ond challenge, we measure the signal quality from known
sources covering a wide frequency range. For example, cel-
lular networks are an excellent candidate for this purpose, as
they operate in different frequency bands ranging from a few
hundred MHz to 6 GHz. With the advent of 5G, this range
has extended to tens of GHz. Additionally, in dense urban
environments cellular networks can provide some diversity
in spatial measurements. Even if a signal is not present in the
exact band of interest, there are often signals in neighboring
bands sufficiently close to estimate receiver performance.

We have implemented this idea using software-defined ra-
dios and conducted evaluations by receiving and decoding
ADS-B messages. Our measurements demonstrate the effec-
tive determination of obstructions around a sensor node using
ADS-B messages. Additionally, we showcase the capability
of utilizing diverse signals such as 4G/5G mobile networks
and broadcast TV signals to assess the impact of obstructions
across different frequency bands.

In this paper, we make the following contributions:

e We propose a methodology that utilizes existing wireless
signals to automatically evaluate the quality of data pro-
vided by nodes in a network of spectrum sensors.

e We leverage ADS-B messages from nearby airplanes to
determine the obstructions around a sensor node.

o We utilize signals across various frequency bands to assess
the impact of obstructions on a sensor node’s reception.
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2 OVERVIEW

In this section, we briefly explain the architecture of spectrum
monitoring networks. These networks consist of tens, hun-
dreds, or even more sensor nodes that are deployed over large
geographical areas. Each sensor node comprises a software-
defined radio (SDR) capable of capturing wireless signals
across a wide frequency range and a host processor that re-
ceives the raw I/Q data from the SDR. The host processor can
be a low-power single-board computer such as a Raspberry Pi
or a more powerful edge device. The host may perform vari-
ous processing tasks on the I/Q data, such as signal detection
or computing the Fast Fourier Transform, before transmitting
the data to the cloud for storage and further processing.

Wireless signals exhibit variations across locations and
over time, making spectrum monitoring challenging, partic-
ularly over large geographical areas. This underscores the
importance of volunteers who contribute by installing sen-
sor nodes. Their involvement is crucial for the success of
large-scale spectrum monitoring systems. Encouragingly, net-
works of volunteer-run sensor nodes have been successfully
employed for aircraft (FlightAware) and weather monitoring
(Citizens Weather Observing Program). To achieve the wide-
spread adoption of such systems, it is essential to incentivize
volunteers. Installing and maintaining sensor nodes requires
time, effort, and financial resources. Therefore, volunteers
should be compensated for the services they provide. One ap-
proach to address this is virtualization. Sensor node operators
can offer virtualized spectrum monitoring resources, which
users then rent and pay for accordingly.

However, a significant concern arises regarding trust in the
data generated by systems operated by other individuals. In
particular, if those individuals are incentivized to offer low-
quality or fabricated data, it becomes crucial to address this
trust issue [7]. This paper focuses on tackling the question of
data quality in spectrum monitoring systems operated by third
parties. Our objective is to develop an automated evaluation
process for sensor nodes without requiring human supervision.
Through obtaining I/Q data from a node, we aim to calculate
the quality of the data it generates. This technique is then
applied to all sensor nodes within the network.

Two key aspects need to be assessed for each sensor node.
Firstly, we evaluate the node’s ability to receive signals from
different directions. The antenna connected to the SDR may
have directional gains, and certain directions might be ob-
structed by physical structures such as buildings or mountains.
Consequently, the sensor might not be able to receive wire-
less signals from some directions properly. Our intention is
not to disentangle antenna pattern from physical occlusions,
but rather to determine where the combination of the two
allows reception from different directions. The second as-
pect involves assessing the reception capability of the sensor
node across various frequency bands. Different frequencies
have widely varying propagation characteristics. Therefore,
we need to evaluate the impact of obstructions detected in
the first step on the reception capability of the sensor across
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different frequency bands. Our aim is to quantify this aspect
through passive testing, as active signal generation from other
nodes may not be feasible due to distance, lack of transmis-
sion capability, and legal restrictions on transmission in most
frequency bands.

3 AUTOMATIC CALIBRATION

In this section, we delve into the details of the techniques
we have devised to assess the capabilities of sensor nodes in
terms of receiving signals from various directions and across
diverse frequency bands. Furthermore, we present preliminary
experimental results that validate these techniques.

3.1 Evaluating directional reception

In order to evaluate the efficacy of a node in receiving wire-
less signals from different directions, we measure how well
it can receive ADS-B signals transmitted from nearby air-
planes (within a 100 km range) . ADS-B (Automatic De-
pendent Surveillance-Broadcast) is a wireless network that
allows aircraft to broadcast their position, altitude, and ve-
locity information to other aircraft and ground stations. This
information is transmitted over two frequencies: 1090 MHz
and 978 MHz. ADS-B Ground stations are typically located at
airports and other strategic locations, and they receive ADS-B
transmissions from aircraft. Airplanes broadcast their posi-
tion and velocity at least two times per second when they
are airborne [34]. These messages are not encrypted. There-
fore, they can be received and decoded by any receiver within
range. We exploit this open architecture and receive ADS-B
messages on the sensor we want to evaluate. These messages
reveal which directions have an unobstructed view and which
directions are occluded.

We use the dump1090 program [10] to decode the signal
we receive on the SDR. dump1090 provides RSSI informa-
tion, but transmit power can be between 75 and 500 W [28],
limiting the utility of this information from one measurement
on one receiver. We use the ICAO aircraft address to identify
the airplane that transmitted a given ADS-B message. Re-
ceiving ADS-B messages from a distant airplane is a strong
indicator that the field of view is open in that direction. How-
ever, not receiving any messages from a direction does not
necessarily indicate blockage. It could be the case that there
were no aircraft in that direction at the time of measurement.
Therefore, we combine the data we receive on a node with
the data we retrieve from another source to see if there is
any airplane in the direction from which we received no mes-
sages. We query the FlightRadar24 website' through an API
to acquire the ground truth when we evaluate a node.

Procedure: We run the dump1090 program on the sensor
node for 30 seconds to give the node enough time to receive
messages from all airplanes in the vicinity. We dump all the

!FlightRadar24.com is a popular flight tracking website that provides real-
time information on aircraft positions, flight routes, and other flight-related
data. It utilizes a dense crowd-sourced network of ground and satellite ADS-B
receivers to gather comprehensive data from airplanes.
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decoded messages into a file. 15 seconds into the measure-
ment, we retrieve all flight data from FlightRadar24 in a radius
of 100 km from the location of the sensor. At the end of the
measurement, we go through all flights reported by Fligh-
tRadar24 and compare their unique ICAO aircraft address
with the messages we decoded using dump1090. If the flight
is found, we mark it as an observed airplane. FlightRadar24
reports a latency of 10 s, meaning reported aircraft are within
2.5 km of reported location, sufficient for our purpose. Next,
we evaluate this methodology to see if it can tell if the field
of view is obstructed or not for different directions.

Experiment setup: We connect a BladeRF xA9 SDR to a
Microsoft Surface Pro acting as the host machine. We attach
a wide-band antenna with a frequency range of 700 MHz to
2700 MHz to the SDR. The tablet runs Ubuntu 22.04. We
use a Python script that runs dump1090 and queries Fligh-
tRadar24 using the Python FlightRadarAPI library [16]. We
place the node in three locations. Location (I) is located on
the rooftop of an apartment building on the 6th floor. It has
an open field of view to the west as indicated by the yellow
shaded area in the figure. Some building structures on the
rooftop obscure its view in other directions. Location Q) is be-
hind a window that faces southeast on the 5th floor. Because
of the buildings to the left and right, this location has a narrow
field of view. Finally, Location () is inside the building on
the 5th floor at least 8 meters away from windows, with no
field of view to the outside.

Results: Figure 1 shows the results of this experiment in
the three locations described above. The shaded area shows
the unobstructed field of view. Each point on these plots rep-
resents an airplane within 100 km of the sensor. Blue points
represent airplanes that the sensor successfully received at
least one ADS-B message from during the 30 second mea-
surement period. Gray points are airplanes that no message
was received from. Recall that we know there was an airplane
at the location indicated by gray points based on ground truth
data from FlightRadar24. All three plots in Figure 1 show
a clear correlation with their respective fields of view. Fig-
ure 1(a) indicates the sensor could receive ADS-B messages
from many airplanes up to 95 km from the sensor in the west
sector of the plot, which matches the field of view at Location
(D. The building structure prevented reception of messages
from distant airplanes in the other sectors of the plot. Fig-
ure 1(b) shows that the narrow field of view at location Q)
allowed the sensor to receive ADS-B messages from a few
airplanes in the slim unobscured direction up to 80 km away.
Finally, Figure 1(c) shows that the sensor inside the building
could only receive some messages from airplanes very close
to the sensor. For each location, ADS-B transmissions within
20 km of the receiver have a chance of being received regard-
less of direction, likely due to a combination of multipath
reflections and penetrating walls. This only limits accuracy in
a small portion of the effective reception area. We repeated
these experiments over 10 times at these locations, obtaining
similar results. These experiments show that binary presence
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Figure 1: ADS-B performance for measuring directionality. ® message received for airplane, ® message was not received

or absence of ADS-B messages, along with their content for
location and ID, is a useful indicator for field of view even
when lacking additional transmitter information.

3.2 [Evaluating reception across frequencies

SDRs offer the advantage of supporting a wide frequency
range, making them versatile enough for many applications.
In the context of renting a sensor node, it becomes crucial
for users to assess the node’s performance within frequency
bands relevant to their needs given differing propagation and
reception characteristics. Therefore, our automatic evaluation
technique aims to effectively characterize the node’s perfor-
mance at all frequency bands supported by the node. Note
that ADS-B messages characterize a node at the 1090 MHz
frequency band only. In other words, if our first technique
determines a node is fully or partially obstructed, we would
like to know how the obstruction impacts its capability in
other bands.

To accomplish this, we utilize known signals in a variety
of frequency bands. One excellent candidate source of such
signals is 4G/5G cellular networks because they operate in
a wide range of spectrum. Moreover, the locations of their
towers and the frequency bands they use are known. Mobile
networks in North America can operate from as low as 617
MHz all the way to 4499 MHz in 4G networks. In addition,
5G also supports millimeter-wave bands from 24 to 48 GHz.
Broadcast TV is another good source of known signals that
covers the sub-600 MHz range down to 85 MHz in most parts
of the world. In this section, we perform some measurements
using these two systems to demonstrate their potentials in
evaluating sensors.

Cellular Networks

Experiment setup: We use a BladeRF xA9 with the same
setup as before in the three locations indicated in Figure 2?.
We utilized srsUE [31] as software client user equipment.
This tool is an integral component of the open-source srsSRAN
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Figure 2: Mobile network experiment testbed
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Figure 3: Cellular networks: different frequency bands

project, which provides a complete software stack for both
4G and 5G networks. srsUE is able to scan for nearby cellu-
lar networks and measure their Reference Signal Received
Power (RSRP). RSRP quantifies the strength of the received
signal from the base station, serving as a crucial indicator of
the signal quality experienced by mobile devices. There are
databases such as cellmapper.net that show cellular towers in
a region with their exact channel (i.e., ARFCN). This infor-
mation can be used to configure srsUE to scan the frequency
bands of interest. Figure 2 illustrates the location of cellular
towers used in this experiment with respect to the experiment
site.

Results: Figure 3 shows the performance of a node when
placed on a rooftop, behind a window, and inside the building
far from windows (i.e., locations (1), @), and (3) as described


cellmapper.net
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Figure 4: Broadcast TV: different frequency bands

above). In this experiment, we measure the RSRP from five
nearby 4G/5G cellular base stations as illustrated in Figure 2.
The downlink frequencies of the base stations at towers 1 to
5 are 731, 1970, 2145, 2660, and 2680 MHz, respectively.
The coverage range in the low-band (i.e., tower 1) is up to
40 km, while the range is 1.6 to 19 km for the mid-band (i.e.,
towers 2-5). All of these towers are 500 to 1000 meters from
the experiment site, therefore, we expect excellent reception
for these towers in the absence of obstructions.

Figure 3 shows that RSRP is very high indicating excellent
reception for all 5 towers when the sensor is placed on the
rooftop. The sensor either has a line of sight to the tower or
is partially obstructed. However, Figure 3 reveals significant
signal attenuation when the sensor is not installed outside. A
missing bar indicates that the signal was too weak for srsUE
to decode successfully. When the sensor is placed inside a
building at location () it can only decode wireless packets
from tower 1. This is because tower 1 operates in the 700 MHz
band. 700 MHz signals can penetrate buildings much better
than mid-band signals from towers 2 through 5, although
the difference varies based on building materials. When the
sensor is placed behind a window at location (2) the signal is
attenuated significantly but it can still see the signals coming
from Towers 1, 2, and 3. However, the obstructions around
location 3 kill the signal completely at higher frequencies.
These findings are inline with cellphone reception at these
locations. A phone shows only one or two bars when placed
at these locations and its connection is very weak.

Broadcast TV

Experiment setup: We employ broadcast TV signals to
extend the previous cellular network frequency response ex-
periment down to 200 MHz. The physical setup is identical
to the previous experiment. However, to measure signal qual-
ity, we developed our own program using the GNU Radio
software environment [11]. The SDR was configured with
a fixed gain to prevent measurement differences from auto-
matic gain control. The received power was measured by
bandpass filtering a desired ATSC channel, then applying
Parseval’s identity to measure the band’s power by running
the magnitude-squared time-domain samples through a very
long moving average filter for a live measurement.

Results: We measure the received signal strength from
multiple TV broadcast towers up to 50 km away from the
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experiment site. Figure 4 shows the results for the 3 exper-
iment locations. The experiment shows that at locations ()
and Q) the building structure degrades reception, but we are
still able to receive a relatively strong signal. The exception
to this behavior is the very strong signal at 512 MHz when
the sensor is placed behind a window. This is because the
tower broadcasting at this frequency is in the field of view of
the sensor and the building structure minimally impacts the
signal. This experiment shows that despite some attenuation
at locations 2) and Q) they can be used for sub-600 MHz
spectrum measurements.

Furthermore, combining the results from multiple experi-
ments, including ADS-B, cellular networks, and broadcast TV,
can provide additional insights such as determining whether
an installation is indoor or outdoor. For instance, if the sensor
consistently receives all signals with high quality when placed
on a rooftop, it can be inferred that the sensor is installed out-
doors. Conversely, if there is significant signal degradation
observed at specific locations, such as 2) and (3), at higher
frequencies, it suggests that the sensor is located inside a
building. By analyzing the combined experimental data, valu-
able information about the installation environment and the
placement of the sensor can be deduced. These deductions
can be used to independently verify claims about a node in-
stallation.

3.3 Applications in other domains

We have focused on automatic evaluation in the context of
crowd-sourced networks of spectrum sensors. However this
technique applies to many other systems. For instance, wire-
less networking in the Citizens Broadband Radio Service
(CBRS) [20] is becoming a hot research topic due to its unique
multi-tier access system. Since the maximum transmission
power in CBRS systems depends on the installation specifics,
every CBRS modem is required to self-report its location,
indoor/outdoor status, installation situation, and other rele-
vant information. The methodologies proposed in this paper
provide valuable insights that can aid in the development
of an automatic verification system to validate the reported
information from CBRS modems. This can contribute to en-
suring the integrity and reliability of CBRS networks and
their compliance with regulatory requirements.

4 RELATED WORK

The area of cooperative and distributed spectrum sensing is
particularly important in light of tiered access systems like
CBRS [20] and TV whitespace[9]. However, much existing
work such as [14] and [7] focuses on detecting or preventing
malicious actors, but does not address the limitations of poor
siting or equipment setup.

There has always been a desire to automatically calibrate
any sensor or communications system to reduce the cost and
risk of deployment, and prevent human errors. Solutions
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vary from dedicated hardware used to send or receive cal-
ibration signals, such as in [15], to lower-cost “blind” cali-
bration schemes such as [19] which use a-priori unknown
signals during operation. Blind calibration has the additional
advantage that it can often be conducted during operation and
used to adapt to performance variations as conditions change.
Hall [12] coined the term “signals of opportunity” (SoO) for
useful pre-existing signals in the radio environment. SoOs can
be used for sensor localization [12],[17], passive radar [6],
and hardware calibration [21],[1],[33],[4]. Wi-Fly [2] uses
ADS-B So0s as an indicator for presence of an opportunistic
relay node, a sort of control calibration signal.

A related problem to calibrating frequency and angle re-
sponse for spectrum monitoring exists in the space of wireless
sensor network localization [22], where the potentially un-
known positions of each sensor must be identified. Depending
on the localization algorithm, parameters such as gain [5] and
phase [30] may also be required. Calibration becomes partic-
ularly important in environments with heterogeneous sensors
and sensing modalities [36]. Many of these techniques, how-
ever, are enabled by having simultaneous access to multiple
sensor nodes observing the same signals whereas our pro-
posal is intended to be self-sufficient on a single node. Vision
systems such as LiDAR and cameras can take advantage of
environmental features such as light sources [23] and geome-
try [13] along with other constraints to automatically calibrate.
The analogs in our system would be fixed transmitters and
mobile transmitters, such as aircraft.

Distributed spectrum sensing networks such as SpecNet
and Spectrum Observatory have gained in popularity and
complexity over the past decade [8],[35],[27],[38]. These
networks have relied on relatively expensive SDR hardware
without radio calibration. The Electrosense and RadioHound
projects are closest to our vision of crowd-sourced networks
with inexpensive hardware. Electrosense [25] is a crowd-
sourced network of spectrum sensors that collect and ana-
lyze data from the electromagnetic spectrum. Electrosense
sensors are designed using inexpensive and easily accessible
software-defined radio (SDR) front-ends and embedded plat-
forms like Raspberry Pi, enabling worldwide deployment at
a relatively low cost. Unfortunately, Electrosense does not
have an automatic calibration system. The quality of data
provided by each node is unknown unless individually and
manually tested, preventing large-scale operation. The Radio-
Hound [18] project aims to achieve better control over signal
quality while maintaining low-enough cost for distributed
deployment through a custom analog frontend which enables
low-cost commercial SDRs to tune to frequencies and achieve
dynamic ranges beyond their designed capabilities. However,
the RadioHound nodes still require manual calibration upon
deployment.

S DISCUSSION AND CONCLUSION

In this paper, we propose two methodologies for automatically
evaluating sensor nodes in distributed spectrum monitoring
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systems. Firstly, we utilize ADS-B messages from nearby air-
planes to assess the field of view of a sensor node. Secondly,
we leverage known signals across different frequency bands
to quantify the impact of obstructions on sensor performance.
These methodologies contribute to enhancing the accuracy
and reliability of sensor node evaluation in spectrum moni-
toring networks. However, in order to enable an end-to-end
automatic verification system the following topics require
future study:

¢ End-to-end system: An end-to-end system must decide
when to perform ADS-B measurements to gain as much
information as possible, as flight schedules vary over time.
Then, use model-based or ML-based techniques to calibrate
a sensor given the observed and ground-truth airplane loca-
tions. An example of such techniques is using algorithms,
such as k-nearest neighbors (KNN) or a support vector
machine (SVM), to estimate the true sensor field of view.
Some recent studies have started looking at ML-based tech-
niques to obtain different types of information from signals
of opportunity, such as using Wi-Fi and cellular signals to
determine if a device is indoor or outdoor [26].

o Establishing trust: Incorporating trust into the system is
essential to ensure the reliability and integrity of the col-
lected data. This becomes particularly important for policy
makers and regulatory enforcement purposes. However, it
is crucial to address the challenge of preventing sensor
nodes from fabricating data, as incentivizing volunteers
through monetary compensation might inadvertently lead
to poor installation practices or even the submission of false
information.

o RF sources: Although we have utilized ADS-B, broadcast
TV, and cellular network signals for calibration in this study,
there exists a wide range of other RF sources that can
contribute to the evaluation process. Future work will focus
on identifying and incorporating additional RF sources
to enhance the comprehensiveness and accuracy of the
calibration techniques employed.

o Other types of calibration: While our current work pri-
marily focuses on evaluating the impact of environmental
factors on the reception capabilities of spectrum sensors,
it is important to acknowledge that different applications
may require additional types of calibration. For instance,
if precise measurements of absolute received signal power
are needed, further techniques would be necessary as SDRs
are not inherently calibrated for this purpose.
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