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ABSTRACT
Tra�c modeling of Datacenter Network (DCN) today is over-
simpli�ed, deviating from the ground truth. Adopted by nu-
merous researchers, the common practice relies on the as-
sumptions of tra�c homogeneity and independence for ease
of use. Based on our investigation of a real-world tra�c
dataset, we disprove these assumptions and point out the
severe �delity issue of the common practice that could in-
validate many motivations and conclusions from in�uential
research works. In this paper, we present Encore, a DCN
tra�c modeling framework for �ne-grained tra�c model-
ing and high-�delity synthetic tra�c generation. Leveraging
machine learning techniques, Encore e�ectively extracts and
preserves essential distribution and sequential features from
raw tra�c. Preliminary experiments demonstrate that the
tra�c generated by Encore not only restores the key features
of real tra�c but also achieves high consistency when used to
evaluate network performance. We envision further expand-
ing Encore to full-process tra�c modeling and generation,
and expect these critical improvements in tra�c models can
facilitate the DCN performance evaluation and optimization.
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1 INTRODUCTION
Tra�c modeling and generation play an important role in
the Datacenter Network (DCN). Tra�c models extract and
preserve key features from raw tra�c and use these fea-
tures to guide the generation of synthetic data, which can be
widely used in various scenarios, including but not limited
to evaluating network performance, testing new network
designs, and fueling data-driven approaches.

The most commonly used method to model tra�c in DCN
is quite simple and has gained favors from many researchers
over the years. It models the �ow-level tra�c based on the as-
sumptions of homogeneity and independence, and generates
new tra�c by repetitive independent sampling from a global
average distribution of �ow sizes. By studying the public
tra�c data of a real DCN [5] we found these assumptions
untenable in practice. Real tra�c exhibits evident hetero-
geneity of �ow size distribution and temporal correlation of
�ow size sequences. Failing to include such characteristics
in tra�c modeling could induce severe �delity problems in
the generated tra�c, and potentially invalidate important
results of network performance evaluation and optimization.
In this paper, we envision a better DCN tra�c modeling

that satis�es the following requirements: 1. �delity. It should
preserve �ne-grained key tra�c characteristics such as sta-
tistical, temporal, and spatial features. 2. ease of use. It should
be easily used to generate previously unseen synthetic tra�c.
3. con�dentiality. The generation process should not rely on
the presence of original tra�c data. 4. explainability. The
model parameters should hold clear physical meanings and
the generation process should be explainable. The common
practice favors the latter three requirements to the extreme at
the expense of sacri�cing �delity. However, we believe that
the �rst criterion (�delity) should always come �rst, without
which none of the other characteristics would matter.

Modeling tra�c in DCN involves a number of issues: local-
ity modeling, statistical modeling, and sequential modeling.
In this paper, we �rst tackle the problem of pair-level �ow
size modeling and present our vision of the whole system
design including all factors listed above. Pair-level �ow size
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modeling takes the �ow trace between a pair of hosts (a
source and a destination) and extracts statistical (�ow size
distributions) and temporal (sequential dependency between
�ow sizes) features for tra�c generation.
We propose Encore, a framework for �ne-grained DCN

tra�c modeling and high-�delity synthetic tra�c generation.
Facing intertwined features of tra�c traces, Encore adopts a
divide-and-conquer philosophy and designs di�erent models
for several well-de�ned tasks. For pair-level distributional
and sequential modeling, Encore adopts the Variational Au-
toencoder (VAE) [10] to model the distribution of �ow size
distributions. Taking the distribution as input, Encore uses
the Gated Recurrent Unit (GRU) [6] to model the sequen-
tial features of tra�c that can be used to generate unseen
tra�c traces that satisfy high-order dependency features.
With the �ow size distribution explicitly linking the two
models, readable statistical information is preserved for bet-
ter explainability. Preliminary results provide evidence that
compared with the common practice, Encore e�ectively pre-
serves crucial tra�c characteristics including diversity in
distributions and sequential structures. We utilize Encore to
generate tra�c traces for DCN performance evaluation and
the results show high consistency with the ground truth.

With Encore, we make the following contributions:
• Based on our investigation of real-world DCN traf-
�c, we point out the fundamental de�ciencies of the
common practice of tra�c modeling: unreliable as-
sumptions of tra�c heterogeneity and independence.

• We design Encore, a DCN tra�c modeling framework
for �ne-grained tra�c modeling and high-�delity syn-
thetic tra�c generation.

• We present our vision of full-process tra�c modeling
and generation based on Encore and discuss possible
technical roadmaps to achieve it.

The rest of this paper is organized as follows: §2 provides
the background of DCN tra�c modeling and our motivation.
The design of Encore is presented in §3 and preliminarily
evaluated in §4. Our vision of full-process tra�c modeling
and generation is shown in §5, and §6 concludes the paper.

2 DCN TRAFFIC MODELING
In this section, we introduce the basic concepts of �ow-level
tra�c modeling in DCN, followed by the de�ciencies of the
current common practice to motivate our research.

2.1 Flow-level Tra�c Modeling
Tra�c modeling in DCN can be conducted at the packet [2]
or �ow level [12]. In this paper, we choose the latter since the
concept of �ow is essential in DCN, and Flow Completion
Time (FCT) is one of the most concerned performance met-
rics in DCN [7]. A �ow is a set of packets sharing the same

(a) Distribution heterogeneity (b) Sequential depen-
dency

Figure 1: Structures in real DCN tra�c
�ve-tuple (source/destination IP address, source/destination
port, transport protocol) with two important features: its
start time (the sending time of the �rst packet) and its size (the
sum of all packet sizes). A tra�c trace is a series of �ows
sharing the same source and destination ordered by their
start time. Tra�c modeling refers to the procedure of ab-
stracting key features from raw tra�c traces, such as spatial,
temporal, and statistical features.

2.2 Why DCN Needs Tra�c Models?
Tra�c is the input and one of the key variables in DCN. A
great deal of conclusions cannot be correctly drawn without
tra�c as the condition. One cannot prove something works
(e.g., a new congestion control algorithm can reduce the tail
latency) or something is better (an algorithm outperforms
another) without the tra�c for evaluation.

Although tra�c is being generated and transmitted all the
time and everywhere, many practical concerns (e.g., policy,
privacy, and legal restrictions) impede such data from being
shared freely [20]. Even if one has access to real tra�c, there
are still many restrictions on its usage. For example, when
applying the tra�c to a di�erent topology or requiring high-
load tra�c that does not appear in the dataset, raw data have
limited variety and �exibility. As an alternative, the tra�c
model can generate synthetic data tomeet the needs of awide
range of tasks, including evaluating network performance,
testing new designs and training data-driven models.

2.3 Why DCN Needs Better Tra�c Models?
The common practice of tra�c modeling and generation is
incredibly simple: A global �ow size distribution is used to
model tra�c and to generate new tra�c between a source
and designation pair, �ow sizes are independently sampled
following this single distribution to form a size sequence.
Notwithstanding its over-simplicity, this method is popu-
larly used by literature studies with profound in�uences on
network research [1, 3, 4, 8, 11, 13, 21].
This common practice relies on two key assumptions: 1.

�ow size distributions are homogeneous, i.e., �ow sizes of dif-
ferent host pairs follow the same distribution. 2. �ow sizes are
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Figure 2: Encore framework

independent, i.e., they are generated independently following
this distribution. However, real-world network tra�c is a
lot less ideal. We derive the �ow-level tra�c demand from a
publicly available real-world packet trace [5] to demonstrate
that real tra�c conforms to neither of the above assumptions.
In particular, we acquire 1,000 traces and investigate their
�ow size distributions and �ow size sequences.

Figure 1a shows the global average �ow size distribution
and that of each trace from individual pairs. We observe
that the average distribution is not representative of the en-
tire dataset. Mixing traces containing mostly elephant �ows
with those containing mostly mice �ows to form an aver-
age distribution casts away the information on size diversity
therefore signi�cantly compromising the model accuracy.
Figure 1b shows the sequential dependencywithin each trace.
We measure this dependency using the deviation of high-
order distributions of �ow sizes since temporal dependency
would render certain tuples/triplets/quadruples of �ow sizes
to appear more frequently compared with independent sam-
pling. Speci�cally, we randomly permute the �ows within
each trace to eliminate their temporal dependency and calcu-
late Jensen-Shannon Divergence (JSD) between the original
traces and the permuted ones of di�erent orders. The results
demonstrate the evident existence of temporal structures.
Even though the common practice has many problems,

there are reasons that make it favorable among researchers.
On the one hand, it’s incredibly easy to use. With the model,
one can generate unlimited tra�c satisfying certain statisti-
cal features by repeatedly sampling from a given distribution.
On the other hand, it’s explainable. The parameters in this
model are probabilities with clear physical meanings. What’s
more, it has great con�dentiality. Keeping only the statistical
information, this method does not require the original tra�c

to be available for generation, preventing information leak-
age. With that being said, none of the above compensate for
its poor �delity. It only has coarse-grained distribution mod-
eling while completely ignoring the sequential modeling of
temporal dependency, losing information essential to tra�c
reconstruction. The main goal of this paper is to devise a
tra�c modeling method that addresses the �delity problem
while preserving other characteristics, which can extract and
preserve su�cient key features of the original tra�c and be
easily used to generate realistic synthetic tra�c.

3 ENCORE
We present Encore, a DCN tra�c modeling framework that
aims to address the vital �delity problems of common prac-
tice: modeling �ow size distributions and sequences.

3.1 A Tra�c Model that DCN Needs
Figure 2 overviews the Encore framework, which consists
of a training and a generation phase. The former is respon-
sible for extracting essential features from real tra�c data
and delivering several trained models to the latter for traf-
�c generation. We choose the VAE to model the �ow size
distributions for its excellent capability of extracting latent
features from data and generating from “thin air”. The GRU
is selected to model the sequential structure of tra�c traces
to strike a balance between decent accuracy and e�cient
training. We will get to the details in §3.2 and §3.3.
At a high level, the training phase consists of the follow-

ing steps: Break the original �ow list down by grouping the
�ows by their host pairs to acquire a series of traces ( 1�). For
each trace, we place the �ow sizes into # = 30 buckets with
hand-picked boundaries (we will discuss the implications
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of this choice in §5) and count the frequency of each �ow
size to get the real size distribution ( 2�). With Encore-VAE
and Encore-Sequential modules, we perform model infer-
ence in an attempt to reconstruct the input distribution or
the original sequence ( 3�). Using the loss calculated by the
di�erence between the reconstructed data and the input ( 4�),
we iteratively update the models until the loss is su�ciently
low or the training steps reach a predetermined value ( 5�).
The generation phase of Encore is much simpler. After

sampling a vector of latent variables from a standard normal
distribution, the VAE decoder transforms it into a �ow size
distribution and passes it to the sequential models to generate
a sequence of �ow sizes.

3.2 Distribution Modeling
Encore uses VAE to model �ne-grained �ow size distribu-
tions, that is, the distribution of �ow size distributions. Given
a set of distributions, we aim to extract the essential latent
features among them for later creation. The Encore-VAE
model is composed of an encoder and a decoder, each imple-
mented with a Neural Network (NN) [19]. The encoder takes
a given probability distribution of �ow sizes and encodes
it into a vector in the latent space by which the decoder
tries to reconstruct the distribution. The models are trained
to minimize the reconstruction error while restraining the
latent variables to the standard normal distribution with an
additional loss item (Kullback-Leibler Divergence) that mea-
sures the di�erence between the latent distribution and the
standard normal distribution. After training, the decoder can
generate �ow size distributions similar to the inputs taking
only random variables sampled from a given distribution.

3.3 Sequence Modeling
The Encore-Sequential model is responsible for generating
sequences of �ow sizes given �ow size distributions, which
can be achieved using Recurrent Neural Networks (RNN) [6,
9, 18] in their conditional forms. In this work, we use GRU
for this task. Modeling long sequences is inherently di�cult
for sequential models. In the special case of tra�c generation,
we contend that modeling arbitrary long sequences is neither
feasible nor necessary. We choose to model size sequences
with a length of ! = 16 to make a trade-o� between pre-
serving su�cient sequential information and e�cient model
training, that is, we use the model to generate sequences of
16 consecutive �ows and concatenate them to form longer
traces. Another problem is how to incorporate the �ow size
distribution as a condition. We �nd the initial hidden state is
a decent choice to place this additional information. We use
an auxiliary NN, SizeToHidden, to embed the �ow size distri-
bution into the initial hidden state of GRU. When generating

(a) Accuracy (b) Coverage

Figure 3: Performance of distribution modeling

new tra�c, at each step, GRU generates a probability distri-
bution of the next sizes. Instead of taking the one with the
highest probability, we sample the next size from this distri-
bution to manually introduce randomness to improve trace
diversity. Otherwise, we would end up with almost exactly
the same traces as the original ones, which is against the
primary purpose of generating previously unseen tra�c.

4 PRELIMINARY EVALUATION
In this section, we �rst put Encore to the test to examine
whether they can preserve key features of the real tra�c.
Then, we further dig into its usability by testing its ability to
maintain performance consistency in an evaluation task.

4.1 E�ectiveness of Distribution Modeling
Metrics:Measuring the quality of a synthetic dataset is much
more complex than one data point. For a single data point,
the reconstruction error is a decent measurement. However,
for datasets where there are no clear one-to-one mappings,
di�erent metrics are needed. In this paper, we consider two
metrics: accuracy and coverage. Accuracy measures how
close the generated distributions resemble the real ones, i.e.,
whether a tra�c model is correct. Coverage measures how
the generated set covers the real distributions, i.e., whether
a tra�c model is comprehensive. To be more speci�c, given
a real set ) and a generated set ) 0, both of" distributions,
we de�ne accuracy as the minimum reconstruction error
between a generated distribution and the distributions in )
and coverage as the minimum reconstruction error between
a real distribution and the synthetic distributions in ) 0.

It’s relatively easier to achieve high accuracy. An extremely
conservative model (like the common practice) can only keep
one distribution that resembles any of the " real distribu-
tions and repeat it as many times as needed for generating
new tra�c and never “makes a mistake” at the cost of poor
coverage. On the other hand, high coverage implies a tra�c
model truly reserves comprehensive information on the real
tra�c. In the pursuit of coverage, a model is encouraged
towards diversity, increasing the chances of inaccuracy. One
should carefully trade-o� between accuracy and coverage.
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(a) Second-order dependency (b) Third-order dependency (c) Fourth-order dependency

Figure 4: Accuracy of sequential dependency modeling

Figure 5: Performance consistency of Encore

We use the same 1,000 traces as before and calculate their
�ow size distributions as the ground truth. We use the Earth
Mover’s Distance (EMD) [17] to measure the di�erence be-
tween distributions. The smaller the distance, the higher the
accuracy and the coverage. Figure 3 shows the percentiles of
accuracy and coverage of Encore-Decoder and the common
practice (using the average size distribution). The results
show that while achieving excellent accuracy (outperforms
the common practice in more than 75% of cases, comparable
to the common practice at the tail), Encore-Decoder has a
remarkable performance improvement on coverage over the
common practice (over 5⇥ reduction on EMD at the tail), pro-
viding strong evidence that Encore-Decoder can e�ectively
preserve �ne-grained distribution features of real tra�c.

4.2 E�ectiveness of Sequential Modeling
Metrics:Measuring howwell tra�c models keep the sequen-
tial information is straightforward. Smaller JSDs of high-
order tuples between the generated and the original traces
indicate better preservation of the sequential structure.

Using Encore-Sequential and the common practice (inde-
pendent sampling from the distribution), we generate traces
respectively and compare their performance. Figure 4 demon-
strates that Encore is able to recreate traces with authentic
sequential dependency of di�erent orders, signi�cantly re-
ducing the JSD compared with the common practice.

4.3 What’s More: Performance Consistency
Our ultimate goal is not to obtain accurate models, but to
generate, through the models, tra�c that can assist down-
stream tasks, e.g., network performance evaluation. In this
paper, we conduct simulation-based experiments with the

ns-3 simulator [15] with a simple setting and leave more
complex scenarios for future work.
We consider a scenario where each trace traverses a bot-

tleneck whose bandwidth shrinks from 100Gbps to 10Gbps.
The �ows are controlled by DCQCN [21] with the default
parameters provided by [11]. The sending intervals between
�ows are sampled from a Poisson distribution to generate a
30% load from the view of the sender. Flows are delayed ac-
cording to the congestion states of the bottleneck link, which
is the result of the �ow size distribution and the sequential
dependency between �ow sizes. We choose the average slow-
down of �ow completion time as the performance metric and
show the evaluation results of di�erent tra�c generation
methods. Figure 5 plots the cumulative probability distribu-
tion (CDF) of experimental results for the 1,000 traces, and
take the logarithm of the results for better demonstration.

In over half of the traces, the network experiences little to
no congestion, while on the other hand, a small number of
traces lead to extreme congestion. Compared to the common
practice, the traces generated by Encore have a better con-
sistency with the ground truth obtained using the original
tra�c in terms of network performance. Bene�ting from
�ne-grained distribution modeling and accurate sequential
modeling, Encore can cover more diverse network conges-
tion situations. The common practice, on the contrary, fails
to capture this diversity and inevitably results in inaccurate
performance. Numerically, the error (measured by the EMD
to the ground truth) of Encore is an order of magnitude
smaller than that of the common practice.

5 WHAT’S NEXT: ENCORE IN ACTION
Pair-level trace modeling is a signi�cant step forward in
DCN tra�c modeling, yet the endeavor is not accomplished.
To put Encore into actual use, besides modeling �ow size
distributions and sequences, several other problems require
further exploration. Figure 6 presents our vision of the next
step of Encore, full-process tra�c modeling and generation.

In our vision, tra�c modeling is solely done by data hold-
ers (e.g., service providers) who provide models to the data
users (e.g., researchers in universities) for tra�c generation.
By only sharing models, one can preserve the authenticity of
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tra�c features while ensuring the privacy of other sensitive
information. Presented in this paper, the pair-level size model
is responsible for generating �ow sequences of di�erent size
distributions. Then, the interval model “inserts” the intervals
between �ows according to a user-de�ned load. The alloca-
tion model further incorporates the locality information into
tra�c generation by assigning each size-interval sequence
to a host pair to form a matrix of tra�c. In the following, we
will discuss the challenges of full-process tra�c modeling
and generation, and possible solutions.

5.1 Bucketing
As alluded to earlier (§3.1), we put the �ow sizes into #
buckets before counting their frequency. When generating
new �ow sizes, after choosing one bucket, we uniformly
sample within its range. The error introduced by bucketing
should also be taken into consideration. Since mice �ow
usually takes up the majority, one should place more buckets
to distinguish small �ow sizes and reduce the overall loss
in precision. However, elephant �ow can impose a greater
in�uence in the context of network congestion than mice
�ow. Therefore, coarse-gained bucketing of elephant �ow
potentially induces severe problems.

Given the number of buckets # , we can form the problem
of �nding the bucket boundaries as an optimization problem
that can be solved using heuristic search algorithms such
as the Bayesian Optimization algorithm [14]. The challenge
here is �nding the right optimization target. We contend
that one should set the target to strike a balance between
minimizing the overall and per-trace reconstruction error
while providing an upper bound for errors of elephant �ow.

5.2 Tra�c Locality
In this work, we model the statistical and temporal features
of tra�c. A critical dimension we haven’t �ddled with is
spatial, in other words, tra�c locality. In DCN, the tra�c
between two hosts depends on their locality. For example,
tra�c within a region (Rack, Point-of-Delivery) could di�er
from tra�c across a region [5, 16]. Tra�c from “hot” hosts
tends to have special statistical and temporal features.

Considering that tra�c models are often used in di�erent
topologies, such location information is less desired to be
hardwired. Instead, we want to establish a mapping relation
from the location features to other features. We can include
such features by adding amendments to Encore such as train-
ing an allocation model that takes the generated traces and
�nds a suitable place in the tra�c matrix for it.

5.3 Modeling Intervals
So far, we have focused on tra�c features regarding �ow size.
Another factor that needs attention is the intervals between
�ows. We brie�y mentioned in §4.3 that we use Poisson in-
tervals between �ows, as usually assumed by existing works.
Preliminary experiments (not shown in this paper) provide
evidence that this assumption does not always hold either.
Modeling intervals introduces new challenges since it

should also consider the role of tra�c loads, in addition to
the heterogeneity and dependency. Interval modeling aims to
address the “what if” problem of tra�c modeling, i.e., given
a tra�c load not seen in the original tra�c, can we gener-
ate plausible synthetic intervals? Since real tra�c is often
light-loaded, data users have to devise a reasonable method
to increase the load of synthetic traces when heavily loaded
tra�c is needed (e.g., for stress testing). One might con-
sider resorting to the generalizability of machine-learning
approaches when linear scaling no longer applies.

6 CONCLUSION
In this paper, we present Encore, a DCN tra�c modeling
framework for pair-level �ow trace modeling. Encore lever-
ages VAE and GRU to model �ne-grained distributional and
sequential tra�c features and generate synthetic �ow size
traces with high �delity. We hope Encore can shed light on
more practical tra�c modeling and generation in the future.
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