
MedPart: A Multi-Level Evolutionary Differentiable Hypergraph
Partitioner

Rongjian Liang
rliang@nvidia.com

NVIDIA
Austin, TX, USA

Anthony Agnesina
aagnesina@nvidia.com

NVIDIA
Austin, TX, USA

Haoxing Ren
haoxingr@nvidia.com

NVIDIA
Austin, TX, USA

ABSTRACT
State-of-the-art hypergraph partitioners, such as hMETIS, usually
adopt a multi-level paradigm for efficiency and scalability. How-
ever, they are prone to getting trapped in local minima due to their
reliance on refinement heuristics and overlooking global struc-
tural information during coarsening. SpecPart, the most advanced
academic hypergraph partitioning refinement method, improves
partitioning by leveraging spectral information. Still, its success
depends heavily on the quality of initial input solutions. This work
introduces MedPart, a multi-level evolutionary differentiable hy-
pergraph partitioner. MedPart follows the multi-level paradigm
but addresses its limitations by using fast spectral coarsening and
introducing a novel evolutionary differentiable algorithm to op-
timize each coarsening level. Moreover, by analogy between hy-
pergraph partitioning and deep graph learning, our evolutionary
differentiable algorithm can be acceleratedwith deep graph learning
toolkits on GPUs. Experiments on public benchmarks consistently
show MedPart outperforming hMETIS and achieving up to a 30%
improvement in cut size for some benchmarks compared to the
best-published solutions, including those from SpecPart—moreover,
MedPart’s runtime scales linearly with the number of hyperedges.

CCS CONCEPTS
•Hardware→Methodologies for EDA; •Mathematics of com-
puting→ Hypergraphs.

KEYWORDS
hypergraph partitioning, GPU acceleration, gradient descent
ACM Reference Format:
Rongjian Liang, Anthony Agnesina, and Haoxing Ren. 2024. MedPart: A
Multi-Level Evolutionary Differentiable Hypergraph Partitioner. In Pro-
ceedings of the 2024 International Symposium on Physical Design (ISPD ’24),
March 12–15, 2024, Taipei, Taiwan. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3626184.3633319

1 INTRODUCTION
Hypergraphs are a natural extension of traditional graphs, repre-
senting connections among more than two vertices through hyper-
edges. They are, therefore, particularly adept at modeling complex
multi-way relationships, rendering them invaluable across many

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ISPD ’24, March 12–15, 2024, Taipei, Taiwan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0417-8/24/03.
https://doi.org/10.1145/3626184.3633319

fields [4]. In particular, a hypergraph problem of critical importance
in VLSI is the balanced min-cut netlist partitioning problem [10].
This problem aims to divide the netlist hypergraph into two or
more nearly equal-sized parts while minimizing the number of hy-
peredges (=nets) connecting vertices (=gates/modules) in different
partitions. It is a fundamental combinatorial optimization problem
with direct applications to floorplanning, placement, and the latest
3D ICs tier-partitioning.

1.1 Related Works
State-of-the-art hypergraph partitioners, such as hMETIS [10], KaHy-
Par [16], and PaToH [8], usually adopt a multi-level paradigm,
progressively coarsening hypergraphs to explore a vast solution
space efficiently. These coarser partitions then serve as starting
points for finer-level refinement. Such a paradigm tends to be scal-
able because it focuses on partitioning smaller, more manageable,
coarser-level graphs, reducing the computational burden. However,
multi-level partitioners may encounter local optima in practice due
to two critical limitations outlined in [7]: (i) Hypergraph coarsening
predominantly considers local structures, neglecting global hyper-
graph characteristics, (ii) Refinement heuristics can become trapped
in local minima. In response, SpecPart [7] introduces spectral in-
formation to refine partitioning, albeit reliant on initial solutions.
However, when the initial solution is far from the global optimum,
SpecPart may still fall short of achieving global optimality.

Evolutionary algorithms, such as genetic algorithms (GA) [5],
have found applications in hypergraph partitioning. While these
algorithms excel in systematic exploration in discrete space, they
often lack efficiency in local search. Consequently, prior research
has commonly resorted to hybrid approaches that combine evolu-
tionary algorithms with local search techniques. In addition, evolu-
tionary partitioners necessitate a substantial number of evolution
generations to converge, resulting in heavy evaluation workloads,
especially for large hypergraphs.

A graph neural network (GNN)-based graph partitioner intro-
duced in [15] defines a differentiable loss function representing
the partitioning objectives. It employs backward propagation to
optimize the GNN parameters, enabling the GNN to predict par-
titioning solutions, even for previously unseen graphs. However,
its loss function involves multiplications matrices of size 𝑁 × 𝑁 ,
where 𝑁 represents the number of vertices, limiting its scalability.
Moreover, it is not designed to handle hypergraphs.

1.2 Contributions
In this work, we develop a multi-level evolutionary differentiable
hypergraph partitioner named MedPart. It follows the multi-level
paradigm but addresses its limitations by fast spectral coarsening

3

https://doi.org/10.1145/3626184.3633319
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626184.3633319
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626184.3633319&domain=pdf&date_stamp=2024-03-12

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Rongjian Liang, Anthony Agnesina, & Haoxing Ren

and a novel evolutionary differentiable optimizer with a global
view at each level. Moreover, by analogy between hypergraph par-
titioning and deep graph learning, our evolutionary differentiable
optimizer can be accelerated with deep graph learning toolkits on
GPUs. Our contributions are summarized as follows:

(1) We introduce a fast spectral hypergraph coarsening algorithm
based on emerging graph signals. It can progressively coarsen
a graph with hundreds of thousands of nodes in seconds.

(2) We propose an evolutionary differentiable algorithm that inte-
grates GA and gradient descent (GD) for optimization at each
coarsening level. In the GD search, we place a probability on
assigning a vertex to each partition. With a differentiable and
computing-efficient loss function, GD optimizes the assignment
probabilities end-to-end. GA is employed to systematically gen-
erate good starting points to help the GD escape local optima.

(3) Our framework generalizes to many constraint-driven parti-
tioning problem formulations. As long as the loss function can
be optimized with differentiable optimization, both discrete and
continuous objectives can be targeted, thereby expanding the
space of problems that can be solved beyond traditional min-cut
and ratio cut bipartitioning formulations.

(4) We accelerate the evolutionary differentiable algorithm with
deep graph learning toolkits on GPUs by drawing an analogy
between hypergraph partitioning and deep graph learning.

(5) Experimental results applied to balanced hypergraph biparti-
tioning on publicly available benchmarks show that MedPart
consistently outperforms the leading partitioner hMETIS, and
achieves up to a 30% improvement in cut size compared to the
best-published solutions for some benchmarks—moreover, Med-
Part’s runtime scales linearly with the number of hyperedges.

2 PRELIMINARY
This section presents some preliminaries necessary for the under-
standing of MedPart. We first offer the mathematical framework for
hypergraph partitioning, our problem at stake. We then introduce
the spectral coarsening and genetic algorithms used in MedPart.
Finally, we present the mechanism of message passing in graph
neural networks, which will serve as the basis for efficient imple-
mentations of MedPart routines.

2.1 Hypergraph Partitioning Formulation
A hypergraph 𝐻 is defined as a pair 𝐻 = (𝑉 , 𝐸) where𝑉 represents
the set of vertices 𝑣 ∈ 𝑉 with associated weight𝑤𝑣 , and 𝐸 represents
the set of hyperedges where an hyperedge 𝑒 ∈ 𝐸 is a subset of 𝑉
with associated weight 𝑤𝑒 . Given a positive integer 𝑘 ≥ 2 and
a positive real number 𝜀 ≤ 1

𝑘
, letting𝑊 =

∑
𝑣∈𝑉 𝑤𝑣 , the 𝑘-way

balanced hypergraph partitioning problem can be mathematically
formulated as:

min
𝑆={𝑉1,𝑉2,...,𝑉𝑘 }

cutsize𝐻 (𝑆) =
∑︁

{𝑒 |𝑒⊈𝑉𝑖 ,∀𝑖 }
𝑤𝑒 (1)

s.t. ∪𝑘𝑖=1 𝑉𝑖 = 𝑉 and 𝑉𝑖 ∩𝑉𝑗 = ∅, 0 ≤ 𝑖, 𝑗 ≤ 𝑘, (2)(
1
𝑘
− 𝜀

)
𝑊 ≤

∑︁
𝑣∈V𝑖

𝑤𝑣 ≤
(
1
𝑘
+ 𝜀

)
𝑊, 0 ≤ 𝑖 ≤ 𝑘, (3)

where Eq. (2) ensures that 𝑆 is a 𝑘-way disjoint partitioning solution
of 𝑉 , and 𝜀 is the allowed imbalance between partitions (Eq. (3)).
We say that 𝑆 is an 𝜀-balanced partitioning solution.

For simplicity but without loss of generality, this work focuses
on traditional bipartitioning scenarios where 𝑘 = 2,𝑤𝑣 = 1,∀𝑣 ∈ 𝑉 ,
and 𝑤𝑒 = 1,∀𝑒 ∈ 𝐸. Note, however, that our framework readily
applies to more general scenarios.

2.2 Spectral Graph Embeddings and Coarsening
Let 𝐺 = (𝑉 , 𝐸,𝑤) be a weighted graph. The Laplacian matrix 𝐿𝐺 of
G is defined as follows:

𝐿𝐺 (𝑢, 𝑣) = −𝑤𝑒𝑢,𝑣 , if 𝑢 ≠ 𝑣,𝑢, 𝑣 ∈ 𝑉 ,

𝐿𝐺 (𝑢,𝑢) =
∑︁
𝑣≠𝑢

𝑤𝑒𝑢,𝑣 , for 𝑢 ∈ 𝑉 .

Suppose the eigenvalues of 𝐿𝐺 are 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑁 and the cor-
responding eigenvectors are 𝒖1, 𝒖2, . . . 𝒖𝑁 , where 𝒖𝑖 , 1 ≤ 𝑖 ≤ N is a
vector of length of 𝑁 (# of vertices). An effective way to represent
the graph’s global structure information is to embed the graph into
an 𝑛-dimensional space using the first 𝑛 (1 ≤ 𝑛 ≤ 𝑁) eigenvectors
of the graph Laplacian matrix, also known as the spectral graph
embedding technique. Next, the graph vertices close to each other
in the low-dimensional embedding space can be aggregated to form
the coarse-level nodes and, subsequently, the reduced graph. How-
ever, calculating the eigenvectors of the original Laplacian graph is
very costly, especially for large graphs.

A fast spectral coarsening method is developed in [9] based on
emerging graph signal processing techniques. A graph signal 𝒈 =

{𝑔1, 𝑔2, . . . , g𝑁 } is defined as a vector that ensembles the individual
values on all vertices. A random graph signal 𝒈 can be expressed
with a linear combination of eigenvectors of the graph Laplacian, i.e.,
𝒈 =

∑𝑁
𝑖=1 𝛼𝑖𝒖𝑖 . Instead of directly using the first few eigenvectors of

the original graph Laplacian as the graph embedding, [9] proposes
to apply a low-pass graph filtering function to 𝑛 random graph
signal vectors to obtain smoothed vectors for 𝑛-dimensional graph
embedding, which can be achieved in linear time. Applying the
smoothing function on 𝒈, a smoothed vector 𝒈̃ can be obtained
as the linear combination of the first few eigenvectors, i.e., 𝒈̃ =∑𝑛
𝑖=1 𝛼𝑖𝒖𝑖 , 𝑛 ≪ 𝑁 . It is suggested in [9] that these smoothed graph

signals preserve important spectral properties.

2.3 Genetic Algorithms
A general framework of GA is outlined in Alg. 1. The GenOffspring
function, as indicated in Line 3, generates a fresh set of solutions
referred to as “offspring.” These offspring are created based on the
genetic operations of mutation and crossover applied to the individ-
uals in the current population. The UpdatePopulation function in
Line 5 incorporates the offspring into the existing population based
on the fitness scores of the current population and the offspring.

Maintaining population diversity is critical in GAs to prevent
premature convergence and effectively explore the entire search
space. Various offspring generation and population update methods
have been proposed to ensure diversity. For example, tournament
selection [17] is a commonly used method for selecting individuals
from a population to serve as parents for the next generation. It

4

MedPart: A Multi-Level Evolutionary Differentiable Hypergraph Partitioner ISPD ’24, March 12–15, 2024, Taipei, Taiwan

Algorithm 1: Genetic Algorithm
Input: I: number of generations; initial population
Output: best solution
/* Evaluation */

1 fitness_scores = EvalFitness(population)
/* I generations */

2 for 𝑖 ← 1 to I do
/* Generate offspring by crossover and mutation */

3 offspring = GenOffsppring (population, fitness_score)
/* Evaluation */

4 offspring_fitness_scores = EvalFitness(population)
/* Update population and fitness score */

5 population, fitness_scores = UpdatePopulation(population, fitness_scores,
offspring, offspring_fitness_scores)

6 end
7 return best solution among population

mimics a tournament-style competition among individuals to deter-
mine who will be chosen as parents. Deterministic crowding [13]
is a population update mechanism that ensures diversity by replac-
ing a parent with its offspring only if the offspring is more fit and
genetically similar to the parent, aiming to explore distinct regions
of the solution space. In addition, GAs, while adept at systematic
exploration in discrete spaces, often lack efficiency in local search,
leading to common hybrid approaches that combine evolutionary
algorithms with local search techniques in prior research.

2.4 Message Passing in Graph Neural Networks
Message passing is a core process in GNNs through which ver-
tices in a graph communicate and exchange information with their
neighboring nodes to aggregate and update their features. Fig. 1
outlines the message-passing process. Each vertex in the graph
is associated with an initial feature vector. The GNN computes a
message for each vertex by combining information from neigh-
boring vertices and applying transformations to the aggregated
features. Deep graph learning toolkits, such as Deep Graph Library
(DGL), accelerate message passing in GNNs by leveraging efficient
data structures, advanced caching and memoization techniques,
parallelism, and GPU acceleration.

Figure 1: Message passing in graph neural networks. A message
is computed for each vertex by combining information from its
neighboring vertices and applying transformations to the aggre-
gated features. This mechanism will enable efficient loss/objective
computation during partitioning.

3 MEDPART MULTI-LEVEL OPTIMIZATION
3.1 MedPart Overview
Fig. 2 depicts the overview of MedPart. MedPart takes as input a
hypergraph and two constraint parameters, 𝑘 (# partitions) and 𝜀
(allowed imbalance), and outputs the best partitioning solution. It
comprises two key phases: (1) Spectral coarsening on the hyper-
graph, which progressively reduces the size of the hypergraph and
constructs the graph coarsening levels top-down; (2) Coarse-to-fine
partitioning, applying bottom-up our evolutionary differentiable

Figure 2: Overview of MedPart. (a) Spectral graph coarsening on
a hypergraph. The hypergraph transformed to a clique expansion
graph is progressively coarsened into several clusters for scalability.
Projection matrices encoding the coarsening for use in (b) are built
concurrently. (b) Multi-level optimization framework of MedPart.
Partitioning assignments at coarser level 𝑙 are used as a starting
point for evolutionary differentiable optimization at finer level 𝑙 − 1.
algorithm from the coarser level to the finer level. There, the coarser
partitions serve as starting points for finer-level refinement. We
introduce the following notations to simplify the presentation.

• The integers 𝑁0 > 𝑁1 > . . . > 𝑁𝐿 denote the vertex counts
at different levels of graph coarsening. Fig. 2 (a) illustrates the
notion of graph coarsening levels, where level 0 represents the
finest granularity, and level 𝐿 is the coarsest level.
• 𝒙 (𝑙) represents a partitioning solution at level 𝑙 , which is a matrix
of size 𝑁𝑙 × 𝑘 . Each row of 𝒙 (𝑙) is a one-hot vector encoding the
partition block assignment of a vertex. Without causing confu-
sion, we will omit the subscript 𝑙 in 𝒙 (𝑙).
• 𝒙̃ (𝑙), also a matrix of size 𝑁𝑙 × 𝑘 , represents the continuous
relaxation of the partitioning solution at level 𝑙 . In this matrix,
each (𝑖, 𝑗)-th element corresponds to the probability of assigning
the 𝑖-th vertex to the 𝑗-th partition block. It is important to note
that for any vertex 1 ≤ 𝑖 ≤ 𝑁𝑙 , the sum of probabilities across all
partition blocks is equal to 1.
• 𝑷 𝑗←𝑖 represents the binary projection matrix of size 𝑁 𝑗 × 𝑁𝑖

that maps a partitioning solution at level 𝑖 to level 𝑗 . In Fig. 2,

suppose a partitioning solution at level 2 is 𝒙 (2) =
[
1 0
0 1

]
and

𝑷1←2 =


1 0
1 0
0 1
0 1

 , then 𝒙 (1) = 𝑷1←2 · 𝒙 (2) =


1 0
1 0
0 1
0 1

 , the corre-
sponding partitioning solution at level 1. Please note that the
projection matrix 𝑷 𝑗←𝑖 can also be applied to continuous parti-
tioning solution 𝒙̃ (𝑖). Furthermore, to reduce the memory over-
head, we implement 𝑷 𝑗←𝑖 as a sparse matrix.

5

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Rongjian Liang, Anthony Agnesina, & Haoxing Ren

Algorithm 2: Evolutionary Differentiable Hypergraph Par-
titioning Algorithm
Input: I: number of generations; M: population size; Th: stagnation threshold

S: number of GD steps; T: checkpoint steps
X0 ← {𝒙01 , 𝒙

0
2 , . . . , 𝒙

0
M }: initial population

Output: 𝒙∗ : best partitioning solution
/* Evaluation */

1 scores(X0) = EvalFitness(X0)
/* I generations */

2 for 𝑖 ← 1 to I do
/* GA iteration */

/* Generate offspring population by crossover and mutation */

3 {𝒄𝑖1, 𝒄
𝑖
2, . . . , 𝒄

𝑖
M } ← GenOffspring(X𝑖−1, scores(X𝑘−1))

/* Evaluation */

4 scores({𝒄𝑖1, 𝒄
𝑖
2, . . . , 𝒄

𝑖
M }) = EvalFitness({𝒄𝑖1, 𝒄

𝑖
2, . . . , 𝒄

𝑖
M })

/* in parallel by batching */

5 for𝑚 ← 1 to M do
/* GD epoch */

6 Initialize the best solution for the current GD run: 𝒄∗𝑖𝑚 ← 𝒄𝑖𝑚 ,
scores(𝒄∗𝑖𝑚) ← scores(𝒄𝑖𝑚)

7 Select hyper-parameters 𝜋𝑖𝑚
8 Initialize continuous solution: 𝒄̃𝑖𝑚 ← Relax(𝒄𝑖𝑚)
9 for 𝑠 ← 1 to S do
10 GD update of 𝒄̃𝑖𝑚 with 𝜋𝑖𝑚
11 if (𝑠 MOD T == 0) or (𝑠 == S) then
12 𝒄𝑖𝑚 ← Discretize(𝒄̃𝑖𝑚)
13 scores(𝒄𝑖𝑚) = EvalFitness(𝒄𝑖𝑚)
14 if scores(𝒄𝑖𝑚) better than scores(𝒄∗𝑖𝑚) then
15 𝒄∗𝑖𝑚 ← 𝒄𝑖𝑚
16 scores(𝒄∗𝑖𝑚) ← scores(𝒄𝑖𝑚)
17 end
18 end
19 end
20 end

/* Gather best solutions from GD outcome */

21 C∗
𝑖
← {𝒄∗𝑖1, 𝒄∗

𝑖
2, . . . , 𝒄

∗𝑖
M }

22 scores(C∗
𝑖
) ← {scores(𝒄∗𝑖1), scores(𝒄∗

𝑖
2), . . . scores(𝒄∗

𝑖
M) }

/* Update population with deterministic crowding */

23 X𝑖 , scores(X𝑘) ←
UpdatePopulation(X𝑖−1, scores(X𝑘−1), C∗𝑖 , scores(C

∗
𝑖
))

/* Early stop criterion */

24 if the best fitness score does not improve for over Th generations then
25 𝒙∗ ← best solution from X𝑖

26 return 𝒙∗

27 end
28 end
29 return best solution 𝒙∗ among X𝐼

3.2 Spectral Coarsening and Multi-Level
Optimization

MedPart follows the multi-level paradigm and uses a fast spectral
coarsening technique to build the graph’s coarsening levels. Before
coarsening, the input hypergraph 𝐻 = (𝑉 , 𝐸) is transformed into a
clique expansion graph [2],𝐺𝐻 , by replacing each hyperedge 𝑒 ∈ 𝐸
with an edge for each pair of vertices in the hyperedge. Fig. 2 (a)
illustrates the construction of a clique expansion graph from a
hypergraph. Note that 𝐺𝐻 has precisely the same vertices as 𝐻 .
Hence, the coarsening results on 𝐺𝐻 also apply to 𝐻 .

Next, we apply to 𝐺𝐻 the graph signal processing-based fast
spectral coarsening method discussed in Section 2.2. This process
gradually reduces𝐺𝐻 to a graph with only few vertices, potentially
just 2 or 3, and concurrently constructs the projection matrices
𝑷0←1, 𝑷1←2, . . . , 𝑷𝐿−1←𝐿 .

Once the graph coarsening levels have been established, Med-
Part generates partitioning solutions progressively, starting from
the coarsest granularity level and advancing to the finest granular-
ity, as depicted in Fig. 2 (b). For levels where the total number of
all possible solutions (=2𝑁𝑙−1) is small enough, MedPart employs

Algorithm 3: Generation Offspring GenOffspring

Input: X = {𝒙1, 𝒙2, . . .}: current population;
scores(X) : fitness scores of the population;
N_cro: offsping size from crossover; N_mut: offsping size from mutation;
N_tour: tournament size; N_cp: number of crossover points;
p_cro: mutation rate for crossover offspring;
p_mut: mutation rate for mutation offspring

Output: {𝒄1, 𝒄2, . . .} : offspring
/* Initialize offspring */

1 offspring← {}
/* Generate off-springs by crossover */

/* In parallel by tensor operations with PyTorch */

2 for 𝑖 ← 1 to N_cro do
/* Tournament selections */

3 𝒑1 = TournamentSel(X, scores(X), N_cp)
4 𝒑2 = TournamentSel(X, scores(X), N_cp)

/* Align parent 2 with parent 1 */

5 if | |𝒑1 − 𝒑2¬| |1 < | |𝒑1 − 𝒑2 | |1 then
6 𝒑2 ← 𝒑2¬
7 end

/* Generate an offspring by crossover */

8 𝒄 ← Crossover(𝒑1, 𝒑2, N_cp)
/* Mutation */

9 𝒄 ← Mutate(𝒄, p_cro)
10 Append 𝒄 to offspring
11 end

/* Generate off-springs by mutation */

/* In parallel by tensor operations with PyTorch */

12 for 𝑖 ← 1 to N_mut do
/* Tournament selection */

13 𝒑 = TournamentSel(X, scores(X), N_cp)
/* Mutation */

14 𝒄 ← Mutate(𝒑, p_mut)
15 Append 𝒄 to offspring
16 end
17 return offspring

enumeration to create the optimal partitioning solution. In cases
where the number of potential solutions is too large, our evolution-
ary differentiable algorithm is employed to generate a population
of high-quality solutions. These coarser-level solutions are then
mapped to solutions at finer levels using the projection matrices
𝑷𝑖←𝑗 and act as starting points for the optimization process at those
finer levels. Upon completing the optimization at level 0, the finest
granularity level, we report the best-found partitioning solution.

Note that solution 𝒙 (𝑙) at level 𝑙 can be mapped to solution
𝒙 (0) at level 0 by 𝒙 (0) = 𝑷0←1𝑷1←2 · · · 𝑷𝑙−1←𝑙 · 𝒙 (𝑙). Thus, an
evaluation framework developed for the original hypergraph𝐻 can
be seamlessly applied to assess solutions at any coarsening level.

4 EVOLUTIONARY DIFFERENTIABLE
HYPERGRAPH PARTITIONING

We develop an evolutionary differentiable algorithm that combines
a genetic algorithm with gradient descent to optimize partitioning
at each graph coarsening level. Thanks to their fast convergence
and robust scalability, GD methods find widespread application
in optimizing extensive continuous problems. By introducing con-
tinuous relaxation to the partitioning space, where each vertex’s
assignment to a partition block is associated with a probability,
we effectively re-frame the partitioning problem to align with the
GD optimization framework. Subsequently, after obtaining contin-
uous partitioning solutions via GD, we convert them into discrete
partitions by assigning each vertex to the block with the high-
est probability. It is essential to highlight that the initial solutions
greatly influence the performance of GD, and poor initialization
can result in getting stuck in local minima. Recognizing this, we

6

MedPart: A Multi-Level Evolutionary Differentiable Hypergraph Partitioner ISPD ’24, March 12–15, 2024, Taipei, Taiwan

utilize GA to generate favorable starting points, enabling GD to
escape local optima more effectively.

Alg. 2 presents our evolutionary differentiable algorithm. It starts
with an initial population of partitioning solutions, evaluating their
fitness scores. It leverages GA and GD to improve these solutions
iteratively. GA generates offspring solutions by crossover and muta-
tion in each generation, which are fine-tuned using GD. GD involves
the transformation of solutions into a continuous space and their
iterative refinement to search for better solutions. At predefined
checkpoints, solutions are discretized and evaluated for fitness. Af-
ter the GD epoch, GA updates the population according to the GD
outcome. The algorithm reports the best-discovered solutions upon
reaching the generation limit or the stagnation threshold.

4.1 Genetic Algorithm for Partitioning
In this subsection, we delve into the details of the GA component
within Alg. 2, specifically focusing on the GenOffspring function
in Line 3 and the UpdatePopulation function in Line 23. We uti-
lize tournament selection in GenOffspring and a deterministic
crowding technique in UpdatePopulation to address the diversity
concerns discussed in Section 2.3.

Alg. 3 outlines the process of offspring generation by crossover
and mutation for partitioning. The tournament selection function
TournamentSel(X, scores(X), N_cp) in Line 3 selects individu-
als from a population to serve as parents for the next generation.
Each tournament involves random selection of N_cp individuals
from the population X, and then outputs the one with the best
fitness score. Crossover(𝒑1,𝒑2, N_cp) in Line 8 represents N_cp-
point crossover of 𝒑1 and 𝒑2, while Mutate(𝒑, p) in Lines 9 and 14
represents random mutation of 𝒑 with probability p.

It is essential to consider the concept of “permutation symmetry”
in partitioning, where rearranging vertices between two partition
blocks maintains overall quality. For instance, in a 4-vertex graph,
assigning vertices 1 and 2 to block 1 and vertices 3 and 4 to block 2
is equivalent to assigning vertices 1 and 2 to block 2 and vertices
3 and 4 to block 1. This property is important when performing
crossover operations on two partitioning solutions. As a result,
we align the solutions before crossover. The alignment process is
outlined in Lines 5-7 in Alg. 3, where | | ∗ | |1 is the L1-norm and ¬
inverts the bits (=rearranges vertices between two partition blocks).

In UpdatePopulation (Line 23 in Alg. 2), we employ the deter-
ministic crowding replacement technique. If an offspring 𝒄 results
from mutating its parent 𝒑 and exhibits a superior fitness score, 𝒑
is substituted with 𝒄 . When an offspring 𝒄 is generated through the
crossover of parents 𝒑1 and 𝒑2, 𝒑1 is replaced by 𝒄 only if 𝒑1 is
more similar to 𝒄 (as measured by the L1-norm) than 𝒑2, and 𝒄 pos-
sesses a better fitness score. Similarly, 𝒑2 is substituted with 𝒄 if 𝒑2
exhibits greater similarity to 𝒄 and 𝒄 boasts a superior fitness score.
An offspring will replace its parents if and only if the offspring is
both more fit and genetically similar to the parent. Compared with
greedy replacement methods, deterministic crowding prioritizes
diversity and can lead to more robust solutions over time.

Tournament selection, crossover, mutation, and deterministic
crowding replacement operations can seamlessly and efficiently be
implemented using tensor operators in PyTorch [11]. This capability
paves the way for harnessing the power of GPU acceleration in GA.

4.2 Differentiable Hypergraph Partitioning
Here, we provide an in-depth explanation of the gradient descent
component within Alg. 2 (specifically, Lines 5 to 20).

4.2.1 Continuous Relaxation and Differentiable Costs. In 𝑘-way
partitioning, each vertex within a hypergraph is assigned to one of
the 𝑘 distinct partition blocks. To make the search space continuous,
we relax the categorical allocation of vertex 𝑣 to a partition block
using a softmax function over all partition blocks:

𝑝𝑣,𝑖 =
exp (𝑤𝑣,𝑖 ·𝑇)∑

1≤ 𝑗≤𝑘 exp (𝑤𝑣,𝑗 ·𝑇)
,

where 𝑇 represents a hyper-parameter named temperature. Val-
ues 𝑝𝑣,𝑖 , (𝑣 ∈ 𝑉 , 1 ≤ 𝑖 ≤ 𝑘), parameterized by 𝑤𝑣,𝑖 ∈ R, can be
interpreted as the probability of assigning the vertex 𝑣 to partition
block 𝑖 . Consequently, the partitioning task reduces to learning a
set of continuous variables𝑊𝑝 = {𝑤𝑣,𝑖 }. Furthermore, to bridge
the gap between continuous and discrete solutions during GD opti-
mization, we progressively increase the temperature 𝑇 to enforce
convergence to a unique partition decision for each vertex.

The expectation of total vertex weight on a partition block 𝑖 is:

𝑊𝑖 =
∑︁
𝑣∈𝑉

𝑝𝑣,𝑖 ·𝑤𝑣 . (4)

Then the 𝜀-balanced constraint (Eq. (3)) can be relaxed into a differ-
entiable objective:∑︁

1≤𝑖≤𝑘
ReLU

(
𝑊𝑖 −

(
1
𝑘
+ 𝜀

)
𝑊

)
+ ReLU

((
1
𝑘
− 𝜀

)
𝑊 −𝑊𝑖

)
, (5)

where ReLU(𝑥) = max{0, 𝑥}.
We also devise four differentiable proxies for the cut size, as

depicted in Fig. 3 (b). These proxies are based on amatrix, denoted as
𝑃 , which represents the probabilities of partition block assignments
for all vertices within a hyperedge. The dimensions of matrix 𝑃

are 𝑛 by 𝑘 , where 𝑛 corresponds to the number of vertices in the
hyperedge. In the example provided in Fig. 3 (b), the matrix 𝑃 is as

follows: 𝑃 =


0.1 0.9
0.3 0.7
0.2 0.8

 . Each row in 𝑃 represents the probability

distribution of partition block assignment for a vertex. Our cut size
proxies are primarily designed to assess the similarity among these
probability distributions for all vertices within a hyperedge. Greater
similarity corresponds to a smaller cut size. Our four proposed cut
size proxies are as follows:

ProdSum(𝑃) = sum(prod(𝑃,𝑑𝑖𝑚 = 0)) (6)
MeanEntropy(𝑃) = sum(entropy(Mean(𝑃,𝑑𝑖𝑚 = 0))) (7)
MeanMSE(𝑃) = MSE(𝑃, mean(𝑃,𝑑𝑖𝑚 = 0)) (8)
MaxSum(𝑃) = sum(max(𝑃,𝑑𝑖𝑚 = 0)) (9)

Here, we adopt notations from the PyTorch library. The operations
denoted by prod(), mean(), sum(), max(), and entropy() can be
realized using corresponding tensor operators in PyTorch bearing
the same names. Additionally, MSE refers to the calculation of the
mean squared error. Fig. 3 (b) provides an illustrative example for
the calculation of our cut size proxies. A larger value of ProdSum
corresponds to a smaller cut size, while smaller values of the other
proxies also indicate a smaller cut size.

7

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Rongjian Liang, Anthony Agnesina, & Haoxing Ren

Figure 3: Batch cut size evaluation and optimization on the Hypergraph-Node Relationship graph. A batch of candidate assignments for each
node is aggregated into the hyperedges to calculate objectives. (a) Batch cut size evaluation with discrete node to partition assignments. (b)
Batch differentiable cut size optimization with soft probabilistic node to partition assignments. By analogy with deep graph learning, both
cut-size evaluation and optimization can be accelerated with deep graph learning toolkits on GPUs.

The final cost function is defined as a weighted sum of the 𝜀-
balanced objective (Eq. (5)) and the four cut size proxies (Eqs. (6–9)),
where the weights are hyper-parameters.

4.2.2 Interaction with GA. As illustrated in Line 8 of Alg. 2, our
GD optimization starts with initial solutions derived by applying
the Relax() function to the offspring generated through GA. The
𝒙̃ = Relax(𝒙) operator, transforming a binary solution 𝒙 to a
continuous counterpart 𝒙̃ , is defined as follows:

𝒙̃ (𝑖, 𝑗) = 0.5 − 𝛼, if 𝒙 (𝑖, 𝑗) = 0,
𝒙̃ (𝑖, 𝑗) = 0.5 + 𝛼, if 𝒙 (𝑖, 𝑗) = 1,

where 0 ≤ 𝛼 ≤ 0.5 is a hyper-parameter.
Inversely, the 𝒙 = Discretize(𝒙̃) operator in Line 12 of Alg. 2

transforms a continuous solution 𝒙̃ to a discrete solution 𝒙 by
applyting argmax to each row of 𝒙̃ . Additionally, the MOD() function
in Line 11 represents the modulus operator.

4.3 Acceleration By Deep Graph Learning
Toolkits

When executed on GPUs, our evolutionary differentiable optimiza-
tion process can be significantly accelerated using deep graph learn-
ing toolkits, such as DGL [18]. This acceleration capitalizes on the
analogy between hypergraph partitioning and deep graph learn-
ing and is facilitated by a specialized heterogeneous graph named
the Hypergraph-Node Relationship (HNR) graph. As depicted in
Fig. 3, the HNR graph comprises two distinct vertex types: node
vertices, corresponding to nodes within the given hypergraph, and
hyperedge vertices, representing the hyperedges in the original
hypergraph. Edges are introduced between a node vertex and a
hyperedge vertex only if the corresponding nodes and hyperedges
are affiliated in the original hypergraph. We have identified two
critical analogies between deep graph learning and hypergraph
partitioning using the HNR graph framework:
(1) Cut size evaluation as forward propagation on HNR graph: In

deep graph learning, forward propagation resembles a sequence
of message passing steps, as illustrated in Fig. 1. This process
computes messages for each vertex by aggregating information
from neighboring vertices and applying feature transformations.
In intermediate GNN layers, these messages update vertex fea-
tures. In contrast, message aggregation occurs in the final GNN

layers, potentially followed by additional transformations for
loss computation. For cut size evaluation, each node vertex
within the HNR graph is associated with a one-hot vector en-
coding the partition block allocation of the corresponding node
in the original hypergraph, as shown in Fig. 3 (a). Subsequently,
every hyperedge vertex combines the partitioning solution vec-
tors from all incoming node vertices, forming the matrix 𝑃 in
Eq. (6). After applying the ProdSum operator to 𝑃 , the result is
1 if all corresponding nodes within the original hypergraph’s
hyperedges are assigned to the same partition block; otherwise,
it is 0. Ultimately, the total count of uncut hyperedges is ob-
tained by summing the outcomes of the hyperedge vertices. If
we consider the one-hot solution vectors on node vertices as
features, then the computation of the uncut hyperedge count
can be viewed as message passing within a single-layer GNN.

(2) Cut size optimization as backward propagation on HNR: Back-
ward propagation in graph learning is the process of computing
gradients with respect to the loss function and back-propagating
these gradients through the layers of the GNN to update the
model parameters. In the context of differentiable partitioning
discussed in Section 4.2, we can relax the one-hot solution vec-
tors on node vertices to continuous and treat them as trainable
parameters, as depicted in Fig. 3 (b). By implementing differen-
tiable operators as defined in Eqs. (5–9), the continuous parti-
tioning solutions can be optimized using backward propagation
techniques, akin to the standard GNN training process. This
enables the refinement and learning of continuous partitioning
solutions in an end-to-end manner.

Leveraging the insights outlined above, we effectively implement
the cut size evaluation steps depicted in Lines 4 and 13 of Alg. 2,
as well as the GD optimization iterations in Line 10, by harnessing
deep graph learning toolkits, such as DGL.

Furthermore, to leverage the parallel computational capabilities
of GPUs effectively, we have devised batch-based approaches for
both cut-size evaluation and differentiable optimization, as illus-
trated in Fig. 3. Rather than processing a single partitioning solution
at a time, we now handle a batch of solutions concurrently: all𝑀
GD trials in Line 5 of Alg. 2 are executed simultaneously. This in-
novative approach significantly enhances computational efficiency
and harnesses the full power of parallel GPU processing.

8

MedPart: A Multi-Level Evolutionary Differentiable Hypergraph Partitioner ISPD ’24, March 12–15, 2024, Taipei, Taiwan

5 EXPERIMENTAL VALIDATION
Our graph coarsening is implemented with the fast graph Laplacian
linear solver LAMG [12] inMatlab, while the remaining components
ofMedPart are implemented in Python, leveraging the deep learning
toolkits PyTorch and DGL. All experiments are conducted on a
server with AMD EPYC 7742 processors and an NVIDIA A100 GPU
with 80GB memory. In our evolutionary differentiable algorithm,
we configure the number of generations 𝐼 to be proportional to the
logarithm of the vertex count 𝑁𝑙 at the current graph coarsening
level. We set the population size 𝑀 as the maximum population
size that our GPU memory can accommodate for a given test case,
since all 𝑀 gradient descent trials will be executed concurrently
on the GPU. We set the number of GD steps 𝑆 to 60. We employ
the widely recognized gradient descent solver with momentum,
Adam [1], in our differentiable optimization.

We compare MedPart with a leading hypergraph partitioner
hMETIS [10] and a state-of-the-art partitioning solution refinement
method SpecPart [7] on two sets of publicly-available benchmarks
(ISPD98 VLSI Circuit Benchmark Suite [3] and Titan23 Suite [14]).
The statistics of these benchmarks are summarized in Table 1 and
Table 2, respectively. MedPart operates in two distinct modes: “from-
scratch optimization” and “refinement.” In the first mode, MedPart
conducts optimization from scratch. In the refinement mode, initial
partitioning solutions derived from running hMETIS five times,
each with different random seeds (as provided in [6]), serve as the
starting points for MedPart, which then enhances and refines these
solutions. To avoid any possible confusion, we adopt these conven-
tions:𝑀𝑒𝑑𝑃𝑎𝑟𝑡 and𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ represent the cutsizes of MedPart in
“from-scratch optimization” mode and “refinement” mode, respec-
tively. The cut sizes of SpecPart are provided in [7], which refines
the solutions obtained from hMETIS [10] and/or KaHyPar [16].

5.1 Results on ISPD98 Benchmarks
Table 1 compares the cut sizes obtained by MedPart on the ISPD98
VLSI circuit benchmark with those from hMETIS, SpecPart, and
the best-published results. Regardless whether 𝜀 is 2% or 10%, run-
ning MedPart once from scratch consistently outperforms running
hMETIS five times with different random seeds. The best-published
results for the ISPD98 VLSI circuit benchmark are well-established
baselines. MedPart’s results exhibit an average gap of approximately
5% for 𝜀 = 2% and 3.4% for 𝜀 = 10%, demonstrating their optimal-
ity. Additionally, MedPart in its “refinement” mode yields results
comparable to the state-of-the-art refinement method, SpecPart.

5.2 Results on Titan23 Benchmarks
Table 2 shows results on the Titan23 benchmarks. These are chal-
lenging due to many high-degree hyperedges. MedPart significantly
outperforms hMETIS, with a 10% improvement for 𝜀 = 2% and an
impressive 25% for 𝜀 = 20%. In some cases, like sparcT1_core, Med-
Part even achieves solutions surpassing the best-published results
by up to 30%. Generally, MedPart excels in smaller Titan23 test
cases, mainly because GPU memory constraints necessitate a small
population size for large hypergraphs, potentially causing prema-
ture convergence. To address this, we plan to explore multi-GPU
optimization and mixed-precision gradient descent techniques in
the future.

Figure 4: MedPart runtime on hypergraphs with different # of edges.

Figure 5: Impact of multi-level optimization on MedPart. The exper-
iments are conducted on the top 15 benchmarks from the Titan23
benchmark suite, with 𝜀 set to 10%.

Figure 6: Cut sizes from MedPart and hMETIS on (a) sparcT1_core
and (b) bitonic_mesh, each across 5 runswith different random seeds.

5.3 Runtime Scalability
Fig. 4 shows the runtime scalability of MedPart in “from-scratch
optimization” mode. In general, MedPart runtime scales linearly
with the number of hyperedges. The relatively shorter runtime
observed in the two largest test cases can be attributed to the pre-
mature convergence caused by the use of a small population size.
Premature convergence will trigger an early stop in Alg. 2. MedPart,
primarily implemented in Python, has substantial room for runtime
improvement. The evolutionary differentiable algorithm dominates
the runtime of MedPart, while the graph coarsening takes only 11
seconds on the largest benchmark.

5.4 Impact of Multi-Level Optimization
We evaluate the impact of the multi-level optimization framework
using the top 15 benchmarks from the Titan23 benchmark suite
as representative examples. The results, illustrated in Fig. 5, reveal
that exclusively running the evolutionary differentiable algorithm
at the finest granularity level can result in cut sizes up to 9.6× larger
than MedPart. This finding underscores the significant role played
by our multi-level optimization framework.

5.5 Robustness of MedPart
Fig. 6 displays the cut sizes obtained from runningMedPart (in from-
scratch-optimization mode) and hMETIS on two sample test cases:
sparcT1_core (with around 100K edges) and bitonic_mesh (with

9

ISPD ’24, March 12–15, 2024, Taipei, Taiwan Rongjian Liang, Anthony Agnesina, & Haoxing Ren

Table 1: Statistics of ISPD98 VLSI circuit benchmark suite and cut sizes of different approaches. 𝑆𝑂𝑇𝐴 represents the best-published cut
sizes summarized in [6]. 𝑆𝑝𝑒𝑐 denotes the Specpart result presented in [7], which is obtained by employing SpecPart to enhance partitioning
solutions generated by hMETIS and/or KaHyPar. ℎ𝑀𝐸𝑇𝐼𝑆5 signifies the best cut size obtained from running hMETIS five times with different
random seeds (provided in [6]).𝑀𝑒𝑑𝑃𝑎𝑟𝑡 and𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5 represent the cut sizes resulting from running MedPart once from scratch and using
MedPart to refine the solutions from ℎ𝑀𝐸𝑇𝐼𝑆5, respectively. The best and the second-best results among all the methods are highlighted in red
and blue, respectively.

Statistics 𝜀 = 2% 𝜀 = 10%
Benchmark |V| |E| 𝑆𝑂𝑇𝐴 𝑆𝑝𝑒𝑐 ℎ𝑀𝐸𝑇𝐼𝑆5 𝑀𝑒𝑑𝑃𝑎𝑟𝑡 𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5 𝑆𝑂𝑇𝐴 𝑆𝑝𝑒𝑐 ℎ𝑀𝐸𝑇𝐼𝑆5 𝑀𝑒𝑑𝑃𝑎𝑟𝑡 𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5

IBM01 12752 14111 200 202 213 202 205 166 171 190 166 166
IBM02 19601 19584 307 336 339 352 339 262 262 262 264 262
IBM03 23136 27401 951 959 972 955 957 950 952 960 955 954
IBM04 27507 31970 573 593 617 583 584 388 388 388 389 388
IBM05 29347 28446 1706 1720 1744 1748 1744 1645 1688 1733 1675 1668
IBM06 32498 34826 962 963 1037 1000 1012 728 733 760 788 760
IBM07 45926 48117 878 935 975 913 916 760 760 796 773 772
IBM08 51309 50513 1140 1146 1146 1158 1146 1120 1140 1145 1131 1135
IBM09 53395 60902 620 620 637 625 623 519 519 535 520 520
IBM10 69429 75196 1253 1318 1313 1327 1295 1244 1261 1284 1259 1257
IBM11 70558 81454 1051 1062 1114 1069 1067 763 764 782 774 765
IBM12 71076 77240 1919 1920 1982 1955 1949 1841 1842 1940 1914 1872
IBM13 84199 99666 831 848 871 850 850 655 693 721 697 696
IBM14 147605 152772 1842 1859 1967 1876 1884 1509 1768 1665 1639 1605
IBM15 161570 186608 2730 2741 2886 2896 2855 2135 2235 2262 2169 2166
IBM16 183484 190048 1827 1915 2095 1972 2095 1619 1619 1708 1645 1651
IBM17 185495 189581 2270 2354 2520 2336 2338 1989 1989 2300 2024 2028
IBM18 210613 201920 1521 1535 1587 1955 1587 1520 1537 1550 1829 1550
Avg gap to 𝑆𝑂𝑇𝐴 0% 2.30% 6.20% 5.00% 3.70% 0% 2.10% 5.30% 3.40% 1.80%

Table 2: Statistics of Titan23 benchmark suite and cut sizes of different approaches. 𝑆𝑂𝑇𝐴 represents the best-published cut sizes. 𝑆𝑝𝑒𝑐ℎ20
denotes the SpectPart cut size presented in [7], which is obtained by employing SpecPart to enhance partitioning solutions generated by running
hMETIS 20 times. ℎ𝑀𝐸𝑇𝐼𝑆5 signifies the best cut size obtained from running hMETIS five times (provided in [6]). 𝑀𝑒𝑑𝑃𝑎𝑟𝑡 and 𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5
represent the cut sizes resulting from running MedPart once from scratch and refining the solutions from ℎ𝑀𝐸𝑇𝐼𝑆5, respectively. We utilize
underlining to emphasize the cut sizes achieved by𝑀𝑒𝑑𝑃𝑎𝑟𝑡 and𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5 that outperform the 𝑆𝑂𝑇𝐴.

Statistics 𝜀 = 2% 𝜀 = 20%
Benchmark |V| |E| 𝑆𝑂𝑇𝐴 𝑆𝑝𝑒𝑐ℎ20 ℎ𝑀𝐸𝑇𝐼𝑆5 𝑀𝑒𝑑𝑃𝑎𝑟𝑡 𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5 𝑆𝑂𝑇𝐴 𝑆𝑝𝑒𝑐ℎ20 ℎ𝑀𝐸𝑇𝐼𝑆5 𝑀𝑒𝑑𝑃𝑎𝑟𝑡 𝑀𝑒𝑑𝑃𝑎𝑟𝑡ℎ5

sparcT1_core 91976 92827 977 1012 1073 1067 1073 903 903 1290 624 624
neuron 92290 125305 239 252 276 262 271 206 206 270 271 270
stereo_vision 94050 127085 169 180 213 176 184 91 91 143 93 93
des90 111221 139557 372 402 372 390 372 358 358 441 349 357
SLAM_spheric 113115 142408 1061 1061 1061 1061 1061 1061 1061 1061 1061 1061
cholesky_mc 113250 144948 285 285 301 283 283 285 345 667 281 281
segmemtation 138295 179051 118 126 183 137 114 78 78 141 78 78
bitonic_mesh 192064 235328 584 587 667 594 595 483 483 590 511 493
dart 202354 223301 788 807 849 805 810 540 540 603 593 549
openCV 217453 284108 481 510 635 751 635 481 518 554 617 554
stap_qrd 240240 290123 398 399 399 386 386 295 295 295 297 287
minres 261359 320540 215 215 215 295 215 189 189 189 181 189
cholesky_bdti 266422 342688 1156 1156 1161 1172 1161 947 947 1024 1148 1024
denoise 275638 356848 416 416 916 695 516 224 224 478 228 224
sparcT2_core 300109 302663 1227 1244 1410 1329 1319 1227 1245 1972 1148 1081
gsm_switch 493260 507821 1827 1827 5974 1722 1714 1407 1407 5352 1503 1541
mes_noc 547544 577664 634 634 699 1320 699 617 617 633 1141 633
LU230 574372 669477 3273 3273 4070 3452 3480 2677 2677 3276 2720 2741
LU_Network 635456 726999 525 525 550 597 550 524 524 528 567 528
sparcT1_chip2 820886 821274 899 899 1524 1169 1129 783 783 1029 877 889
directrf 931275 1374742 574 574 646 771 646 295 295 379 317 337
bitcoin_miner 1089284 1448151 1297 1297 1570 1562 1570 1225 1225 1255 1282 1255
Avg gap to SOTA 0% 1.9% 31.0% 19.1% 7.6% 0% 1.4% 44.0% 8.3% 2.60%

about 200K edges). In each case, both methods are executed with
different random seeds five times. It can be found from the results
that MedPart consistently produces robust outcomes, irrespective
of the random seeds used.

6 CONCLUSIONS AND FUTURE DIRECTIONS
This study presents MedPart, a multi-level evolutionary differen-
tiable hypergraph partitioning framework. Our experiments on

public benchmarks consistently show MedPart outperforming the
leading partitioner hMETIS, and achieving up to a 30% improve-
ment in cut size compared to the best-published solutions for some
benchmarks. We plan to apply our framework to other constraint-
driven partitioning problems beyond traditional min-cut and ratio
cut bipartitioning formulations.

10

MedPart: A Multi-Level Evolutionary Differentiable Hypergraph Partitioner ISPD ’24, March 12–15, 2024, Taipei, Taiwan

REFERENCES
[1] Kingma DP Ba J Adam et al. 2014. A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 1412 (2014).
[2] Sameer Agarwal, Kristin Branson, and Serge Belongie. 2006. Higher order learn-

ing with graphs. In Proceedings of International Conference on Machine learning.
17–24.

[3] Charles J Alpert. 1998. The ISPD98 circuit benchmark suite. In Proceedings of
International Symposium on Physical Design. 80–85.

[4] Alain Bretto. 2013. Hypergraph theory - An introduction. Mathematical Engi-
neering 1 (2013).

[5] Thang Nguyen Bui and Byung Ro Moon. 1996. Genetic algorithm and graph
partitioning. IEEE Trans. Comput. 45, 7 (1996), 841–855.

[6] Ismail Bustany, Andrew Kahng, Yiannis Koutis, Bodhisatta Pramanik, and Zhiang
Wang. 2023. Partition solutions, scripts and SpecPart. https://github.com/TILOS-
AI-Institute/HypergraphPartitioning

[7] Ismail Bustany, Andrew B Kahng, Ioannis Koutis, Bodhisatta Pramanik, and
Zhiang Wang. 2022. SpecPart: A supervised spectral framework for hypergraph
partitioning solution improvement. In Proceedings of International Conference on
Computer-Aided Design. 1–9.

[8] Umit V Catalyurek and Cevdet Aykanat. 1999. Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions
on Parallel and Distributed Systems 10, 7 (1999), 673–693.

[9] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng.
2019. Graphzoom: A multi-level spectral approach for accurate and scalable
graph embedding. arXiv preprint arXiv:1910.02370 (2019).

[10] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1997. Mul-
tilevel hypergraph partitioning: Application in VLSI domain. In Proceedings of

Design Automation Conference. 526–529.
[11] Jonatan Kłosko, Mateusz Benecki, Grzegorz Wcisło, Jacek Dajda, and Wojciech

Turek. 2022. High performance evolutionary computation with tensor-based ac-
celeration. In Proceedings of the Genetic and Evolutionary Computation Conference.
805–813.

[12] Oren E Livne and Achi Brandt. 2012. Lean algebraic multigrid (LAMG): Fast
graph Laplacian linear solver. SIAM Journal on Scientific Computing 34, 4 (2012),
B499–B522.

[13] Ole J Mengshoel and David E Goldberg. 1999. Probabilistic crowding: Determin-
istic crowding with probabilistic replacement. (1999).

[14] Kevin E Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. 2013. Titan:
Enabling large and complex benchmarks in academic CAD. In Proceedings of
International Conference on Field programmable Logic and Applications. 1–8.

[15] Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. 2019.
Gap: Generalizable approximate graph partitioning framework. arXiv preprint
arXiv:1903.00614 (2019).

[16] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter
Sanders, and Christian Schulz. 2016. K-way hypergraph partitioning via n-
level recursive bisection. In Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments. 53–67.

[17] Anupriya Shukla, Hari Mohan Pandey, and Deepti Mehrotra. 2015. Comparative
review of selection techniques in genetic algorithm. In Proceedings of Interna-
tional Conference on Futuristic Trends on Computational Analysis and Knowledge
Management. 515–519.

[18] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In Proceedings of International Conference on Learning Repre-
sentations Workshop on Representation Learning on Graphs and Manifolds.

11

https://github.com/TILOS-AI-Institute/HypergraphPartitioning
https://github.com/TILOS-AI-Institute/HypergraphPartitioning

	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Preliminary
	2.1 Hypergraph Partitioning Formulation
	2.2 Spectral Graph Embeddings and Coarsening
	2.3 Genetic Algorithms
	2.4 Message Passing in Graph Neural Networks

	3 MedPart Multi-Level Optimization
	3.1 MedPart Overview
	3.2 Spectral Coarsening and Multi-Level Optimization

	4 Evolutionary Differentiable Hypergraph Partitioning
	4.1 Genetic Algorithm for Partitioning
	4.2 Differentiable Hypergraph Partitioning
	4.3 Acceleration By Deep Graph Learning Toolkits

	5 Experimental Validation
	5.1 Results on ISPD98 Benchmarks
	5.2 Results on Titan23 Benchmarks
	5.3 Runtime Scalability
	5.4 Impact of Multi-Level Optimization
	5.5 Robustness of MedPart

	6 Conclusions and Future Directions
	References

