
Hardcaml MSM: A High-Performance Split CPU-FPGA
Multi-Scalar Multiplication Engine

Andy Ray
aray@janestreet.com

Jane Street
London, UK

Benjamin Devlin
bdevlin@janestreet.com

Jane Street
New York City, USA

Fu YongQuah
fquah@janestreet.com

Jane Street
London, UK

Rahul Yesantharao
rayesantharao@janestreet.com

Jane Street
New York City, USA

ABSTRACT
This paper presents a split CPU-FPGA Multi-Scalar Multiplication
(MSM) engine written in Hardcaml. HardcamlMSMwas submitted
to the 2022 ZPrize cryptography competition and won 1st place
in the FPGA track. Hardcaml MSM targets the BLS12-377 elliptic
curve and is currently the lowest-latency implementation utiliz-
ing FPGAs published. For a MSM of order 226 we achieve a single-
round MSM latency of 5.518s and average power of 52W, with our
design running at 278MHz. When performing multiple rounds of
MSM with the same base points but random scalars, we are able
to further mask host I/O and memory latency and reduce latency
to 5.083s. This is a latency improvement of 13% over the previ-
ously fastest reported FPGA solution, and an improvement of 472%
when compared to state of the art open-source CPU library gnark-
crypto.

KEYWORDS
Zero-Knowledge Proofs, Multi-Scalar Multiplication, Eliptic Curve
Cryptography, FPGA, RTL Domain-Specific Language

ACM Reference Format:
Andy Ray, Benjamin Devlin, Fu Yong Quah, and Rahul Yesantharao. 2024.
Hardcaml MSM: A High-Performance Split CPU-FPGAMulti-Scalar Multi-
plication Engine. In Proceedings of the 2024 ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024,
Monterey, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3626202.3637577

1 INTRODUCTION
Zero-knowledge proofs [7] (ZKPs) are powerful cryptography tools
that allow a prover to prove that a certain statement is true with-
out revealing any other information to the verifier. ZKPs are very
attractive for applications where online privacy is paramount, for
example digital signatures [10], online voting [19], blockchain [2],
and distributed systems [23].

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0418-5/24/03
https://doi.org/10.1145/3626202.3637577

One class of ZKP getting a lot of attention recently is the Zero-
knowledge Succinct Non-interactive Arguments of Knowledge (zk-
SNARK) [6]. This type of ZKP requires no interaction between the
prover and verifier, and is compact and quick to verify.

One of themost popular zk-SNARK implementations, Groth16 [12],
requires a huge number of elliptic curve (EC) operations known as
Multi-Scalar Multiplications (MSM) and Number Theoretic Trans-
forms (NTT). Current systems that use zk-SNARKs tend to require
MSMs with millions of inputs. In this paper we focus on accelerat-
ing the MSM problem on these large-scale MSMs.

A crucial element of our successwasmaking use ofHardcaml [21].
Hardcaml is an OCaml library that can be used to design and test
hardware. Hardcaml leverages both the strong type system ofOCaml,
along with a verbose built-in circuit linter, to increase hardware de-
sign productivity, reliability, and efficiency. A built-in cycle-accurate
simulator allows for unit level tests alongside the Hardcaml source
code, which can optionally print digital ASCII waveforms. These
tests provide fast feedback on designs and help catch future bugs.

To compute large MSMs efficiently, we need to optimize a num-
ber of aspects of our system, including elliptic curve primitives,
higher-level MSM algorithms, and embedded system architecture.
While prior work has presented both MSM and ZKP engines im-
plemented in isolation on CPUs [8, 16], ASICs [25], GPUs [14, 17],
FPGAs [1, 11, 24], etc, Hardcaml’s robust design and testing capa-
bilities allowed us to integrate these optimizations into a single
design. As a result, Hardcaml MSM won first place in the ZPrize
FPGA track [9]. Hardcaml MSM implements the BLS12-377 ellip-
tic curve, and is available on GitHub[22]. We have tested Hard-
caml MSM on a VU9P FPGA running on a split-CPU architecture
offloading some tasks to the host CPU.

In summary, our contributions in this paper include:

• A fully pipelined, strongly unified mixed point adder that
also supports subtraction and only requires 7 multiplication
and 6 addition operations.

• System architecture and techniques to mask PCIe latency to
increase performance.

• A stall controller that impacts performance by only 0.543%
with simple heuristics that only require 4-deep FIFOs.

• A split CPU-FPGA architecture that allows for amore stream-
lined FPGA implementation acheiving 278MHz.

33

https://orcid.org/0009-0000-9512-2606
https://orcid.org/0009-0008-2823-549X
https://orcid.org/0009-0002-0091-5481
https://orcid.org/0009-0009-7786-0969
https://doi.org/10.1145/3626202.3637577
https://doi.org/10.1145/3626202.3637577
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626202.3637577
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626202.3637577&domain=pdf&date_stamp=2024-04-02

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Andy Ray, Benjamin Devlin, Fu YongQuah, and Rahul Yesantharao

2 PRIOR WORK
Performance of published ZKP accelerators has been steadily im-
proving. One of the first FPGA solutions available on Amazon’s
AWS FPGA cloud [11] is designed for the ZCash blockchain. This
performs better than a CPU implementation, but implements point
multiplication naively and doesn’t support large scale MSMs.

PipeZK [25] presents an ASIC ZKP accelerator, which targets
both theMSMandNTTproblems, but only shows results forMSMs
up to order 220. They also do not attempt to map their accelerator
to widely available FPGAs, which we believe poses a different set
of challenges.

PipeMSM [24] presents a FPGA-basedMSMaccelerator, but only
shows results forMSMs up to order 220. In addition, the point adder
is implemented using projective coordinates and requires a larger
number of multipliers and adders.

CycloneMSM [1] presents a FPGA-based MSM accelerator for
MSMs up to order 226. While this design includes several novel
optimizations, including a multi-cycle pipelined point adder also
using Twisted Edwards coordinates, we present precomputations
and new architecture they do not take advantage of.

A next-genGPU implementation [14] shows higher performance
than Hardcaml MSM, but our architecture introduces several new
optimizations that are novel and beneficial.

3 THE MSM PROBLEM
In general, the Multi-Scalar Multiplication (MSM) problem is to
take a list of scalars and points and compute the sum of each of
the points scaled by its corresponding scalar, modulo a large 𝜆-bit
prime also known as its security-value, as shown in (1). Here 𝑁 is
the scale of the MSM, 𝑠𝑖 is a 𝛿-bit scalar, and 𝑝𝑖 is an 𝜆-bit EC point.

𝑀𝑆𝑀 =
𝑁∑
𝑖=1

𝑝𝑖𝑠𝑖 (1)

Elliptic curve cryptography (ECC) allows for smaller keys than
non-EC cryptography such as RSA, while providing the same level
of security. For example, a small 228-bit ECC key requires as much
time to crack as a much larger 2,380-bit RSA key.

Implementing the MSM requires two elliptic curve operations:
point addition and point doubling. These operations can be op-
timized with efficient modulo reduction algorithms such as Bar-
rett [3] orMontgomery, and better-than-𝑂 (𝑛2)multiplication tech-
niques such as the Karatsuba [13] algorithm.

A naive algorithm using repeated point addition of scalar-point
sums can compute MSMs with a few thousand inputs. When the
scale of a MSM increases into the range of more than a million
points, other algorithms such as Pippengers [20] provide much bet-
ter performance. Pippengers is discussed in more detail in the ar-
chitecture section. Figure 1 shows how the MSM problem relies on
optimized EC primitives, and feeds into the overall ZKP algorithm.

4 HARDCAML MSM
Hardcaml MSM is a split CPU-FPGA accelerator written in Hard-
caml and integrated into an Amazon AWS FPGA cloud F1 instance
using Vitis. Hardcaml MSM won first place in the recent ZPrize

Arithmetic in Fp
(Karatsuba multipliers, Barrett reduction)

ECC (BLS12-377)
(Twisted Edwards Transforms,

fully pipelined adders)

MSM and NTT
(Pippengers, specialized

Fourier Transforms)

zk-SNARKs
(Groth16)

In order to accelerate
zk-SNARKs we need to
optimize each level of
the problem

Figure 1: Breakdown of the ZKP algorithm into MSM, NTT,
and EC primitives.

Driver
- Transforms points to Twisted Edwards
coordinates
- Filters adverse points
- Computes final Pippenger’s sums and
doubles while FPGA calculates next round of
MSMs

PCIe 3x16 (32 GB/s)

16GB DDR4

Fully pipelined
Twisted Edwards
point adder and
subtractor
(7M + 6A)

HLS kernel

AWS shell

FPGA (AWS VU9P)
~16GB/s

HLS kernel

~19GB/s AXI4

CPU

Pippengers controller, hazard
detection, and dispatch

 Bucket URAM
(1508-bits wide,
4k deep)

x20

Stall FIFOs
(1108-bits
wide, 512
deep)

x20

One
operation
has a
latency of
238 clock
cycles

~16GB/s AXI4-Stream

1131-bit extended
twisted Edwards
coordinates with z =1

1508-bit extended
twisted Edwards
coordinates

Design is built in Vitis which allows for
mixing of C++ HLS kernels and
automatic frequency scaling for
maximum performance

~ 35GB/s

253-bit scalars

Figure 2: Top-level architecture of Hardcaml MSM.

competition, and at this time is the fastest reported FPGA solution
to the large-scale MSM problem in accelerating ZKPs.

We target the BLS12-377 curve, which is popular in many ZKP
systems due to its high security level, and which can be trans-
formed into other coordinate systems that allow for faster hard-
ware implementations. In BLS12-377 𝜆 is 377 bits and 𝛿 is 253 bits.

4.1 Top-Level Architecture
Figure 2 shows the top level architecture of Hardcaml MSM.

34

Hardcaml MSM: A High-Performance Split CPU-FPGA Multi-Scalar Multiplication Engine FPGA ’24, March 3–5, 2024, Monterey, CA, USA

We implement a version of Pippenger’s algorithm to solve the
MSM problem. Pippenger’s algorithm reformulates the dot prod-
ucts from (1) into smaller dot products over buckets, where each
bucket represents a small contiguous slice of the scalar: 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤].

𝑀𝑆𝑀 =
𝑊 −1∑
𝑤=0

2𝑤𝐵 (
𝑁−1∑
𝑖=0

𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤]) (2)

Here 𝐵 is the bucket size in bits and𝑊 is the number of slices. 𝑝𝑖
and 𝑠𝑖 are elements of the prime and scalar fields respectively, and
the product𝑊𝐵 must be greater than or equal to 𝛿 , the number of
bits in the scalar field.

The computational cost is broken down in (3) below, with the
bucket sums, triangle sums, and final accumulation shown. Here
A and D represent the cost of point additions and doubles respec-
tively. To calculate the bucket sums

∑𝑁−1
𝑖=0 𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤], for a given

slice, we create 2𝐵 buckets, one for each possible value of 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤].
Then, in each 𝑏𝑢𝑐𝑘𝑒𝑡𝑏 , we sum all the 𝑝𝑖s such that 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] = 𝑏.
One the host CPU, we calculate the triangle sums by multiplying
each 𝑏𝑢𝑐𝑘𝑒𝑡𝑏 by 𝑏 and adding them all together to get a sum for
the slice. Finally, we combine the slice sums into the result of the
MSM.

𝑐𝑜𝑠𝑡 = (𝑁𝐴︸︷︷︸
bucket sums

+ 2𝐵+1𝐴
2︸ ︷︷ ︸

triangle sums

+ 𝑊𝐷 +𝐴︸ ︷︷ ︸
final accumulations

) 𝛿
𝑊

(3)

For large-scale MSMs (𝑁 = 220 and greater), the bulk of the
computation lies in the bucket sums. For example, on the BLS12-
377 curve with 𝑁 = 226 and𝑊 = 16, the bucket sums require over
1 billion point additions, while the rest of the computation requires
only about 8,000 operations. Because of this, we compute bucket
sums on the FPGA, while in parallel performing triangle sums and
final accumulations on the CPU.

Because the base points 𝑝 do not change over multiple rounds of
a a given ZKP, we can precompute curve and coordinate transfor-
mations on 𝑝 and store them in DDR memory on the FPGA board.
We then need to send only the scalars 𝑠 to the FPGA to compute
the MSM.

In order to pick values of bucket size 𝐵 and number of slices𝑊 ,
we take into account the amount of memory used on the FPGA and
the amount of time required to compute the triangle sums and final
accumulations on the CPU. Previous work [1] reduced the number
of bucket sums required by using a small number of large slices
(𝐵 = 16). However, all the buckets for a slice of this size cannot fit
in the FPGA’s URAM. Values of 𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] are not pre-sorted, as
the scalars contain random values picked at runtime.

Instead, HardcamlMSMuses a larger number of small slices (𝐵 =
13).Thismaps verywell to Xilinx FPGAURAMmemory primitives,
such that each bucket is only 2 URAMs deep, can be floorplanned
in such a way to allow for a high Fmax, and all bucket URAMs can
fit onto the FPGA to be operated in parallel. On a VU9P this uti-
lizes roughly 60% of the URAM available. Note that using 𝐵 = 16
would mean that each bucket needs to be 16 URAMs deep, mak-
ing it impossible to fit all bucket URAM on the FPGA, and limiting
Fmax. Having all bucket URAMfit onto the FPGA allows us to com-
pletely parallelize the inner point additions, such that every 𝑝𝑖𝑠𝑖

we stream into the FPGA can be processed immediately, without
requiring sorting.

Depending on the depth of our mixed-point adder, we may sub-
mit an operation to a bucket that already has a pending operation
in the adder pipeline. To solve this problem we implement a stall
controller with FIFOs that can hold per-bucket 𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] until
that bucket is ready. We have provided modeling tools and found
the throughput impact of this is only on average 0.543%, leading
to very shallow FIFOs 4-deep that can be implemented logically in
BRAM memory primitives.

The board we targeted has 64GiB of DRAM, split over 4 x DDR4
interfaces. Our point transformations only require 8.8GiBwhich al-
low us to localize access to a single interface. We implement FPGA-
CPU communication using open-CL libraries in Vivado Vitis. For
the interface between our Hardcaml MSM core and AWS shell on
the FPGA, we make use of HLS kernels that allow frequency scal-
ing and merging of data streams as they arrives from DRAM and
PCIe. Rather than using a fixed clock, Vitis will attempt to find the
maximum frequency possible, and then scale the provided clock
post-implementation to allow for the highest Fmax.

4.2 Twisted Edwards Coordinates and
Precomputation

The BLS12-377 curve has fixed parameters 𝑎 and 𝑏. Affine points
(𝑝𝑥 , 𝑝𝑦) in Weierstrass form on the curve follow the form

𝑝2𝑦 = 𝑝3𝑥 + 𝑎𝑝𝑥 + 𝑏
Point addition in this form requires expensive inversions that

wewant to avoid.This section shows transformations onto a Scaled
Twisted Edwards curve that will lead to very efficient hardware
point addition operations.

First, we convert points inWeierstrass form to points on aMont-
gomery [18] curve, with the following formula (𝐴 and 𝐵 are curve
parameters):

𝐵𝑦2 = 𝑥3 +𝐴𝑥2 + 𝑥 (4)
An elliptic curve in Weierstrass form is equivalent to a Mont-

gomery curve with 𝐴 = 3𝛼𝑠 and 𝐵 = 𝑠 , where 𝑠 =
√
3𝑎2 + 𝑎

−1
and

𝛼 is one of the roots of 𝑥3 + 𝑎𝑥 + 𝑏 = 0.
A Twisted Edwards curve has the following formula, where 𝑎

and 𝑑 are parameters of the curve.

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

𝑎 =
𝐴 + 2
𝐵

, 𝑑 =
𝐴 − 2
𝐵

(5)

Once we have this curve transformation we can convert points
onto the Twisted Edwards curve [4] by

𝑥𝑚𝑜𝑛𝑡 = 𝑠 (𝑥𝑤𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 − 𝑎) , 𝑦𝑚𝑜𝑛𝑡 = 𝑠𝑦𝑤𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠

𝑥𝑡𝑤𝑖𝑠𝑡 =
𝑥𝑚𝑜𝑛𝑡

𝑦𝑚𝑜𝑛𝑡
, 𝑦𝑡𝑤𝑖𝑠𝑡 =

𝑥𝑚𝑜𝑛𝑡 − 1
𝑥𝑚𝑜𝑛𝑡 + 1

(6)

The catch here is that not all points can be mapped–points with
𝑥𝑚𝑜𝑛𝑡 = −1 or 𝑦𝑚𝑜𝑛𝑡 = 0 are not valid on a Twisted Edwards
curve, and there are 5 such adversarial points on the BLS12-377
curve. Because of our split CPU-FPGA architecture, we are able to

35

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Andy Ray, Benjamin Devlin, Fu YongQuah, and Rahul Yesantharao

filter these out on the host and if we encounter them, the portion of
theMSM result they contribute to is calculated by a CPU side-band
process without transformation.

While prior art [1] takes advantage of this transform, we take it
further by transforming the curve into a Scaled Twisted Edwards
Curve [5], given by

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (
√

−3𝑎𝑠 − 2
𝑠

)𝑥𝑡𝑤𝑖𝑠𝑡 , 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑦𝑡𝑤𝑖𝑠𝑡 (7)

Another transformation unique to Hardcaml MSM is as follows.
We take our points on the Scaled Twisted Edwards Curve in affine
coordinates and transform them into Extended coordinates (8) which
contain redundant values 𝑧 and 𝑡 but allow for a shorter point ad-
dition formula.

𝑥𝑒𝑥𝑡 =
𝑦𝑎𝑓 𝑓 − 𝑥𝑎𝑓 𝑓

2
, 𝑦𝑒𝑥𝑡 =

𝑦𝑎𝑓 𝑓 + 𝑥𝑎𝑓 𝑓

2
𝑡𝑒𝑥𝑡 = 4𝑑𝑥𝑎𝑓 𝑓 𝑦𝑎𝑓 𝑓 , 𝑧𝑒𝑥𝑡 = 0

(8)

Table 1 compares results of the number of field operations re-
quired after applying our transformations. Here M, S, D, and A
represent the number of field multiplies, squares, multiplication
by a constant, and additions or subtractions respectively.

When compared to prior work, our implementation achieves
the smallest amount of field operations with only 7M and 6A. The
previous best Scaled Twisted Edwards implementation, from the
Explicit-Formulas Database [5] (EFD), achieves 7M + 8A + 2D, but
it is not strongly unified, meaning doubling is not supported and
special care would need to be taken to avoid the case when two
points are identical.

4.3 Triangle Sum Offloading
After our controller has detected that a given bucket has finished
processing all 𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤], it starts streaming the bucket values
back to the host CPU. As the host is receiving these, it starts both
the triangle sums and final accumulations for each bucket, and
starts sending new 𝑠 to the FPGA for further MSM rounds. Trans-
ferring data while both the CPU and FPGA are doing meaning-
ful work masks the PCIe I/O penalty. Because we use many small
buckets rather than a few large buckets, we can simultaneously
calculate a new MSM once one bucket has been sent to the host,
before all buckets have finished. We also do not rely on a fast CPU,
as the triangle sums are much easier to calculate than the bucket
sums. After the triangle sums are finished, the host CPU reverses
the Scaled Twisted Edward transforms and sums in any adversarial
𝑝𝑖𝑠𝑖 that it has stored.

4.4 Streaming Scalar Transformation
Kernels written in C++ and transformed via Vivado HLS combine
the 𝑝s in the FPGA’s DDR memory and the 𝑠s streaming from the
CPU into 𝑝𝑖𝑠𝑖 , allowing the FPGA to start work as soon as it re-
ceives the first input.

In order to reduce the number of buckets required we perform a
transformation on 𝑠 on the FPGA in realtime. Each 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] repre-
sents an unsigned integer in the range [0, 2𝑏−1]. We can transform
𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] into the signed range [−2𝑏−1, 2𝑏−1 − 1] by subtracting

2𝑏 and propagating the carry for each 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] as it streams into
the FPGA. We can exploit this because our mixed-point adder im-
plements subtraction cheaply and all 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] < 0 can be added
into positive bucket URAM slots by instead subtracting its value,
meaning a 213 bucket can be implemented by a 212-deep URAM.

4.5 Fully Pipelined Unified Point Adder
Our 4-stage unified mixed-point adder takes advantage of the pre-
vious optimizations to allow for a high Fmax of 278MHz, shown
in Figure 3. Our fully-pipelined adder can accept new input ev-
ery clock cycle and has a latency of 238 clock cycles. Both input
points A and B are in extended coordinates; point B inputs origi-
nate from DRAM, converted from affine coordinates, and have a
fixed initial 𝑧𝑒𝑥𝑡 coordinate of zero. Pipe blocks pipeline data that
is not being modified in that stage. We provide an input subtract
or add that when set will perform a 𝑃𝐴 − 𝑃𝐵 operation instead of
addition, required due to our signed scalar transformation. When
performing subtraction, the first-stage multiplication and second-
stage subtractions have their operands switched. Instead of doing
a full reduction to [𝜆 − 1, 0] for each multiplication, we selectively
perform a cheaper coarse modular reduction using Barrett reduc-
tion after the first and third stages.

4.6 Stall Controller
Figure 4 shows our stall controller and hazard detection dataflow.
The hazard we must avoid is while a pair of points for a target
bucket are being added together, any other points for the same
bucket would corrupt its data. We implemented a stall controller
and scalar shift register for the purpose of tracking which buck-
ets could be processed, along with stall FIFOs to temporarily hold
points in the case a bucket was busy. Our experiments showed that
a 4-stage pipeline maximized our Fmax without a significant wors-
ening of latency or stall rate.

Our stall controller tries to keep the point adder as busy as possi-
ble with a few simple heuristics. We need to track if data is present
in any of the 238 pipelines and check if a new coefficient would
cause a hazard. Naively done, this would require 238 comparators
in parallel and then a wide OR reduction for each pipeline in the
adder that can potentially contain valid data, which would impact
Fmax.

4.6.1 Scalar Tracking. Our stall controller processesmultiple slices
on successive clock cycles rather than all in parallel. This means
that for 𝑠𝑙𝑖𝑐𝑒𝑤 , at clock cycle𝑤 , we only check hazards for its buck-
ets. The locations in the point adder with data from the same-slice
are deterministic. This architecture means we only need to com-
pare and logically OR reduce at most 12 of the 253-bit scalars in the
pipeline rather than all 238.

4.6.2 Stall Point FIFO. When we detect a hazard the 𝑝𝑖 and W-bit
scalar slice 𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤] are placed in a stalled point FIFO and we
insert a bubble into the pipeline for that cycle. There are separate
FIFOs for each bucket being processed, and because we only need
to process one stall FIFO per clock cycle, all stall FIFOs can actually
be logically mapped to a single wide BRAM.

36

Hardcaml MSM: A High-Performance Split CPU-FPGA Multi-Scalar Multiplication Engine FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Table 1: Number of field operations for a point addition.

Curve Coordinate System Adder Type Number of Field Operations
Hardcaml MSM Scaled Twisted Edwards Extended Strongly unified mixed 7M + 6A

Cyclone MSM [1] Twisted Edwards Extended Strongly unified mixed 7M + 8A +1D
Strongly unified 9M + 8A +1D

Pipe MSM [24] Twisted Edwards Projective Strongly unified 12M + 17A + 3D

EFD [5] Weierstrass Projective Add only 7M + 4S + 9A + 4D
Scaled Twisted Edwards Strongly unfied 7M +8A + 2D

PA

t

z

y

x

PB
(z=0)

t

y

x

Point from bucket
URAM

Point from stall
FIFO or DRAM

From controller PIPESubtract
or Add

X
A

X
B

X
C

PIPE

D

-
E

-

F

PIPE

-
G

+
H

X
Pre Y3

X
Pre X3

X
T3

X
Z3

Fine-grained
reduction with BRAM

-
X3

+
Y3

PIPE

PIPE

PY

t

z

y

x

z

Coarse modular reduction with
Barret’s reduction algorithm

Written to bucket
URAM

Blocks will
optionally swap

operands

PIPE blocks insert FFs

Figure 3: 4-Stage fully-pipelined unified mixed-point adder.

URAM
slice0238-pipeline scalar shift register

…

Stall
FIFO0

…

Stall
FIFO19

4-deep
Single
BRAM

… … …..

0 19 20 39 40 21
9

22
0

..

23
7

At timew controller checks for
slicew bucketb hazard with a
12-input scalar (253-bit) OR

Points for slicew are processed every
W=20 clock cycles so scalars will

always be at deterministic locations
in the shift register

238-pipeline point adder

… … ….. …

Points and scalars from
DRAM or slices

URAM
slice19…

…

2B buckets

Figure 4: Dataflow of points and scalar tracking for hazard
detection.

4.6.3 Heuristics. Wemodeled the stall controller and adder so that
we could experiment with several algorithms to find the most effi-
cient one. The algorithm we found that was the best was:

(1) If all the stall FIFOs have a least one 𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤], process
them. Else,

(2) If any of the stalled point FIFOs are full, process them. Else,
(3) Process incoming 𝑝𝑖𝑠𝑖 [𝑠𝑙𝑖𝑐𝑒𝑤]
By processing full FIFOs first, we avoid overflow. When full,

however, they must be flushed. We found that with only a 4-deep
FIFO thiswas extremely rare.Modelingwith this algorithm showed
the performance drop due to stalls was only on average 0.543%.

4.7 Optimized Field Operations
The most costly operations inside our point adder are the field
multiplications. In order to optimize these we use the Karatsuba
algorithm, which requires 𝑂 (𝑛𝑙𝑜𝑔23) ≈ 𝑂 (𝑛1.585) single-digit mul-
tiplications to multiply an 𝑛 digit number, rather than the naive
long-multiplication algorithm, which requires 𝑂 (𝑛2) single digit
multiplications.

All multiplications are using modular arithmetic, so we chose
Barret’s reduction algorithm with slight modifications to improve
the FPGA resource usage and allow a higher Fmax.We split Barrett
reduction into the coarse reduction which is used after multiplica-
tion stages, and then fine-grained reduction after addition or sub-
traction stages. We are able to avoid costly multipliers in the fine-
grained reduction step by storing reduction values in BRAMs [15].

37

FPGA ’24, March 3–5, 2024, Monterey, CA, USA Andy Ray, Benjamin Devlin, Fu YongQuah, and Rahul Yesantharao

We also replace any multiply-by-constant with one represented
in non-adjacent form (NAF). If the constant has a Hammingweight
in NAF larger than a certain threshold, we use DSP slices. Other-
wise, we use long multiplication with LUTs. We also found that
congestionwas often the cause for lower Fmax, and by selecting Vi-
vado place-and-route strategies that avoided congestion, and strate-
gically applying location constraints to the point adder and bucket
URAM, we increased post-route Fmax by nearly 10%.

Table 2: FPGA resource utilization on the AWS F1 VU9P.

LUTs FFs BRAMs URAMs DSPs DDR
(k) (k) intf

Hardcaml 388 731 419 463 2,999 1MSM
Cyclone 525 661 404 219 2,277 3MSM [1]

 2

 4

 6

 8

 10

 12

 14

 19 20 21 22 23 24 25 26 27

Hardcaml MSM 1 round

Hardcaml MSM 4 rounds

PipeZK MSM

Cyclone MSM

Pipe MSM

M
op

/s

MSM power of 2 order

Figure 5: Performance to compute a MSM on BLS12-377 for
different implementations.

5 MEASUREMENT RESULTS
We measured Hardcaml MSM on an AWS f1.2xlarge instance, tar-
geting the BLS12-377 curve with the G1 subgroup-generator. This
AWS instance contains a Intel Xeon E5-2686 v4 Processor (2.3 GHz
(base) and 2.7 GHz (turbo)) and a UltraScale+ VU9P FPGA.

Table 2 shows resource usage compared to Cyclone MSM as it
was the only other FPGA MSM accelerator implemented on AWS.
Resource counts include the overhead from the AWS shell, roughly
20%. Our implementation favored using DSPs and FFs for point ad-
dition while Cyclone MSM uses more LUTs. The increased URAM
is due to Hardcaml MSM mapping all buckets to the FPGA, while
Cyclone MSM chose to have a larger B=16 but then only a single
bucket mapped physically to the FPGA.

MSM performance was measured and shown in Figure 5 for
both single-round and four-round power of 2 scaleMSMs.We present
Mop/s as a normalized performance number for comparison, al-
though this does not take into account technology node. Here Cy-
clone MSM is implemented on the same VU9P 16nm FPGA, a 226

Table 3: Breakdown of time take in each step in Hardcaml
MSM for 𝑁 = 226.

Step Time (ms.)
Memcpy 226 scalars to special memory region 289

Transferring 226 scalars to FPGA 198
Computing bucket point adds on FPGA 4968
Copying bucket values back from FPGA 1

Doing on-host bucket sums and post-processing 470

MSM is reported as 11.7 Mop/s, compared to 12.1 Mop/s for Hard-
caml MSM when computing a single round. PipeZK is an 28nm
ASIC and acheives 5.7 Mop/s for a 220 MSM. Pipe MSM is a U55C
16nm FPGA, and acheives 3.8 Mop/s for a 220 MSM.

When we measure the time taken over multiple MSM rounds,
we see the benefits of our split architecture, and memory and PCIe
I/O optimizations. A four-round 226 MSM takes 20.331s, which per-
round gives a latency of 5.083s, and performance of 13.2Mop/s,
which is a 13% improvement over previous state-of-the-art FPGA
accelerators. As far as we can tell, prior work does not mask mem-
ory and PCIe I/O and does not gain any benefit when multiple
rounds are performed.

It is not easy to do a apples to apples comparison to GPU im-
plementations as they are implemented on different technology
nodes, which was also highlighted by the ZPrize running separate
FPGA and GPU tracks. Compared to the start-of-the-art GPUMSM
accelerator byMatter Labs & Yrrid [14] running on anNVIDIAA40
we are 9x slower, although use 2.8x less power. For comparison the
A40 was built on a process node 4 generations ahead of the FPGA
we were given to implement against.

Although we implemented a split CPU-FPGA architecture, the
bulk of the time is still consumed by the FPGA. Table 3 shows the
breakdown of the time taken in each step. Note that the total time
is not the sum of these as stages of each are happening in parallel.

6 CONCLUSIONS
This paper presents Hardcaml MSM, a split CPU-FPGA MSM en-
gine written in Hardcaml, with the highest performance currently
published for an FPGA implementation targeting the BLS12-377
curve. Hardcaml won first place in the FPGA track of the 2022
ZPrize cryptography competition. For aMSMof order 226we achieve
a single-round MSM latency of 5.518s and average power of 52W,
with our design running at 278MHz. When performing multiple
rounds of MSM with the same base points but random scalars, we
are able to further mask host I/O and memory latency and reduce
latency to 5.083s.This is a latency improvement of 13% over the pre-
viously fastest reported FPGA solution [1], and an improvement of
472% when compared to state-of-the-art open-source CPU library
gnark-crypto [8].

ACKNOWLEDGMENTS
The authors would like to thank Pranjal Vachaspati for construc-
tive criticism and proofreading of the manuscript.

38

Hardcaml MSM: A High-Performance Split CPU-FPGA Multi-Scalar Multiplication Engine FPGA ’24, March 3–5, 2024, Monterey, CA, USA

REFERENCES
[1] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas Stalder,

and Javier Varela. 2022. FPGA Acceleration of Multi-Scalar Multiplication: Cy-
cloneMSM. Cryptology ePrint Archive, Paper 2022/1396. https://eprint.iacr.org/
2022/1396 https://eprint.iacr.org/2022/1396.

[2] Aritra Banerjee, Michael Clear, and Hitesh Tewari. 2020. Demystifying the Role
of zk-SNARKs in Zcash. In 2020 IEEE Conference on Application, Information
and Network Security (AINS). 12–19. https://doi.org/10.1109/AINS50155.2020.
9315064

[3] Paul Barrett. 1987. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In Advances in
Cryptology—CRYPTO’ 86, AndrewM. Odlyzko (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 311–323.

[4] Daniel J. Bernstein and Tanja Lange. 2017. Montgomery curves and the Mont-
gomery ladder. Cryptology ePrint Archive, Paper 2017/293. https://eprint.iacr.
org/2017/293 https://eprint.iacr.org/2017/293.

[5] Daniel J. Bernstein and Tanja Langea. 2007. Explicit-formulas database. https:
//hyperelliptic.org/EFD

[6] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From Ex-
tractable Collision Resistance to Succinct Non-Interactive Arguments of Knowl-
edge, and Back Again (ITCS ’12). Association for Computing Machinery, New
York, NY, USA, 326–349. https://doi.org/10.1145/2090236.2090263

[7] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-
Knowledge and Its Applications. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing (Chicago, Illinois, USA) (STOC ’88). As-
sociation for Computing Machinery, New York, NY, USA, 103–112. https:
//doi.org/10.1145/62212.62222

[8] Gautam Botrel, Thomas Piellard, Youssef El Housni, Arya Tabaie, Gus Gutoski,
and Ivo Kubjas. 2023. ConsenSys/gnark-crypto: v0.9.0. https://doi.org/10.5281/
zenodo.5815453

[9] ZPrize Commity. 2023. ZPrize. https://www.zprize.io/
[10] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.

2016. Cinderella: Turning Shabby X.509 Certificates into Elegant Anonymous
Credentials with the Magic of Verifiable Computation. In 2016 IEEE Symposium
on Security and Privacy (SP). 235–254. https://doi.org/10.1109/SP.2016.22

[11] Benjamin Devlin. 2022. ZCash FPGA Accellerator. https://github.com/
ZcashFoundation/zcash-fpga

[12] Jens Groth. 2016. On the Size of Pairing-Based Non-Interactive Arguments. In
Proceedings, Part II, of the 35th Annual International Conference on Advances in
Cryptology — EUROCRYPT 2016 - Volume 9666. Springer-Verlag, Berlin, Heidel-
berg, 305–326.

[13] A Karatsuba and Yu. Ofman. 1962. Multiplication of many-digital numbers by
automatic computers. In Dokl. Akad. Nauk SSSR - Volume 145. 293–3294.

[14] Matter Labs and Yrrid. 2023. ZPrize MSM on the GPU. https://github.com/
matter-labs/z-prize-msm-gpu-combined

[15] Martin Langhammer and Bogdan Pasca. 2021. Efficient FPGA Modular Multi-
plication Implementation. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA ’21). Association
for Computing Machinery, New York, NY, USA, 217–223. https://doi.org/10.
1145/3431920.3439306

[16] Guiwen Luo and Guang Gong. 2023. Fast Computation of Multi-Scalar Multi-
plication for Pairing-Based zkSNARK Applications. In 2023 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). 1–5. https://doi.org/10.
1109/ICBC56567.2023.10174952

[17] Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin, Haozhao Kuang,
Mingyu Gao, Ye Zhang, Haichen Shen, and Weifang Hu. 2023. GZKP: A GPU
Accelerated Zero-Knowledge Proof System. In Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Associa-
tion for Computing Machinery, New York, NY, USA, 340–353. https://doi.org/
10.1145/3575693.3575711

[18] Peter L. Montgomery. 1987. Speeding the Pollard and elliptic curve methods of
factorization. Math. Comp. 48 (1987), 243–264.

[19] MalikHamzaMurtaza, Zahoor AhmedAlizai, and Zubair Iqbal. 2019. Blockchain
Based Anonymous Voting System Using zkSNARKs. In 2019 International Con-
ference on Applied and Engineering Mathematics (ICAEM). 209–214. https:
//doi.org/10.1109/ICAEM.2019.8853836

[20] Nicholas Pippenger. 1980. On the Evaluation of Powers and Monomi-
als. SIAM J. Comput. 9, 2 (1980), 230–250. https://doi.org/10.1137/0209022
arXiv:https://doi.org/10.1137/0209022

[21] Andy Ray, Benjamin Devlin, Fu YongQuah, and Rahul Yesantharao. 2023. Hard-
caml: An OCaml Hardware Domain-Specific Language for Efficient and Robust
Design. arXiv:2312.15035 [cs.PL]

[22] Andy Ray, Benjamin Devlin, Fu YongQuah, and Rahul Yesantharao. 2023. Hard-
caml MSM. https://doi.org/10.5281/zenodo.10278449

[23] HowardWu,Wenting Zheng, Alessandro Chiesa, Raluca A. Popa, and Ion Stoica.
2018. DIZK: A Distributed Zero Knowledge Proof System. In IACR Cryptology
ePrint Archive.

[24] Charles. F. Xavier. 2022. PipeMSM: Hardware Acceleration for Multi-Scalar Mul-
tiplication. Cryptology ePrint Archive, Paper 2022/999. https://eprint.iacr.org/
2022/999 https://eprint.iacr.org/2022/999.

[25] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan Long,
CongWang, Dong Zhou, Mingyu Gao, and Guangyu Sun. 2021. PipeZK: Acceler-
ating Zero-Knowledge Proof with a Pipelined Architecture. In Proceedings of the
48th Annual International Symposium on Computer Architecture (Virtual Event,
Spain) (ISCA ’21). IEEE Press, 416–428. https://doi.org/10.1109/ISCA52012.2021.
00040

39

https://eprint.iacr.org/2022/1396
https://eprint.iacr.org/2022/1396
https://eprint.iacr.org/2022/1396
https://doi.org/10.1109/AINS50155.2020.9315064
https://doi.org/10.1109/AINS50155.2020.9315064
https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2017/293
https://eprint.iacr.org/2017/293
https://hyperelliptic.org/EFD
https://hyperelliptic.org/EFD
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.5281/zenodo.5815453
https://doi.org/10.5281/zenodo.5815453
https://www.zprize.io/
https://doi.org/10.1109/SP.2016.22
https://github.com/ZcashFoundation/zcash-fpga
https://github.com/ZcashFoundation/zcash-fpga
https://github.com/matter-labs/z-prize-msm-gpu-combined
https://github.com/matter-labs/z-prize-msm-gpu-combined
https://doi.org/10.1145/3431920.3439306
https://doi.org/10.1145/3431920.3439306
https://doi.org/10.1109/ICBC56567.2023.10174952
https://doi.org/10.1109/ICBC56567.2023.10174952
https://doi.org/10.1145/3575693.3575711
https://doi.org/10.1145/3575693.3575711
https://doi.org/10.1109/ICAEM.2019.8853836
https://doi.org/10.1109/ICAEM.2019.8853836
https://doi.org/10.1137/0209022
https://arxiv.org/abs/https://doi.org/10.1137/0209022
https://arxiv.org/abs/2312.15035
https://doi.org/10.5281/zenodo.10278449
https://eprint.iacr.org/2022/999
https://eprint.iacr.org/2022/999
https://eprint.iacr.org/2022/999
https://doi.org/10.1109/ISCA52012.2021.00040
https://doi.org/10.1109/ISCA52012.2021.00040

	Abstract
	1 Introduction
	2 Prior Work
	3 The MSM Problem
	4 Hardcaml MSM
	4.1 Top-Level Architecture
	4.2 Twisted Edwards Coordinates and Precomputation
	4.3 Triangle Sum Offloading
	4.4 Streaming Scalar Transformation
	4.5 Fully Pipelined Unified Point Adder
	4.6 Stall Controller
	4.7 Optimized Field Operations

	5 Measurement Results
	6 Conclusions
	Acknowledgments
	References

