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ABSTRACT
This paper presents our solution for the ACM RecSys Challenge ’23
(http://www.recsyschallenge.com/2023/) organized by ShareChat,
focusing on the domain of online advertising. The goal was to
predict the install probability of advertisements, addressing the
problem of deep funnel optimization and user privacy issues. Fol-
lowing the flow of impression → (click, install), the data was com-
posed of subsampled impressions with their click and install re-
sults, upon which all feature information was anonymized. Our
solution tackles this problem by emphasizing three key aspects:
improving feature interaction learning in DNN, modeling relation-
ships between click and install, and integrating diverse models to
enhance overall performance. Notably, we designed a model archi-
tecture of Deep Cross Attentional Factorization Machine (DCAF)
that outperformed other leading deep recommender systems such
as DCN and DeepFM. With this approach, our team, Corca, ac-
complished 7th place on the final leaderboard with an NBCE of
6.015522. The implementation details can be accessed on GitHub at
https://github.com/corca-ai/recsys-challenge-2023.
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1 INTRODUCTION
Online advertising has become a crucial part of any online medium
with a significant user base, creating value by exposing personalized
advertisements to users with the goal of eventual sales. In the past,
advertisers were charged based on impressions or clicks, but the
advertising funnel has evolved to focus on actions (install, purchase)
that are closer to sales. The ACM RecSys Challenge 2023, organized
by ShareChat, aims to optimize this deep funnel by predicting install
probability.

The dataset was composed of advertising serving data for 22
consecutive days. The first 21 days were provided with labels
(is_clicked, is_installed) to use for train, with the 22nd day
reserved for test.

Table 1: Label distribution

(is_clicked, is_installed) Distribution

(0, 0) 67.73%
(1, 0) 14.87%
(0, 1) 10.29%
(1, 1) 7.11%

Predicting user response to advertisements has been a long-
standing task in the field. Various methods, such as logistic re-
gression [15], factorization machine (FM) [14], and deep learning
models [21], have been used to predict click-through rate (CTR).
Recent studies have also explored predicting deeper actions, such
as install or purchase, by applying multi-task learning to account
for preceding actions [9, 10]. However, most of these studies as-
sume sequential behavior, which differs from the Challenge dataset
where 59% of installs occur without a previous click. Table 1 shows
the distribution of labels.

Another interesting aspect of the dataset was the anonymization
of all features and their contents, highlighting the importance of
user privacy. In the dataset, only the day information (f_1) was
provided explicitly, while remaining columns were described solely
by their type: categorical (f_2-f_32), binary (f_33-f_41), and nu-
merical (f_42-f_79). Given this level of obscurity, our objective
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was to develop a solution that minimizes the need for domain ex-
pertise in feature engineering, thus shifting the responsibility of
feature interaction modeling to deep learning models.

Figure 1: Overall pipeline of the proposed recommender sys-
tem

To address the challenges above, we introduce a model leveling
deep funnel optimization by leveraging deep neural network (DNN)
and FM to capture complex feature interactions. Furthermore, we
incorporate multi-task learning to model various levels of task
relationship between click and install behaviors. We also explore
classical approaches using prominent CTR models and Gradient
Boosting Decision Tree (GBDT) models. The final result is obtained
through a weighted sum of these models.

The Challenge was evaluated based on Normalized Binary Cross
Entropy (NBCE), defined as Equation 1. Test data records are defined
as 𝑁 with labels 𝑦𝑖 ∈ {0, 1} and estimated probability 𝑝𝑖 where
𝑖 ∈ {1, 2, 3, ...𝑁 }.

𝑁𝐵𝐶𝐸 =
− 1
𝑁

∑𝑁
𝑖=1 𝑦𝑖 log 𝑝𝑖 + (1 − 𝑦𝑖 ) log (1 − 𝑝𝑖 )

−(𝑝 log 𝑝 + (1 − 𝑝) log (1 − 𝑝)) (1)

The remainder of this paper is organized as follows. Section 2
describes the preprocessing and feature engineering techniques
applied. Section 3 provides detailed information on the models
employed in our solution, followed by ensemble methods in Sec-
tion 4. Our results and conclusions are shared in Section 5 and 6,
respectively.

2 PREPROCESSING AND FEATURE
ENGINEERING

2.1 Preprocessing
Null Values. More than a third of the data contained null values,
making their imputation crucial. Most of the features were filled
with either 0 or mean values. As illustrated in Fig 2, f_51 in partic-
ular showed a differing distribution from others, which we filled
with its grouped mean value on another column.

Common Denominator Features. We discovered that majority of
numerical features had a common denominator. To ensure consis-
tency in the scale of each data point, each feature was divided by
its respective common denominator before applying the logarith-
mic scale transformation. We have detailed the specific values of
common denominator in Appendix A.

Figure 2: Density distribution for f_51

Outliers. Outliers were treated by applying clipping techniques. For
some data points, we employed the Interquartile range (IQR) as a
range for clipping. However, in cases where the application of the
IQR range resulted in only one remaining value, we opted to use a
larger range for a subset of the data.

2.2 Feature Engineering
The unavailability of the feature information posed challenges in
creating domain-specific features. Table 2 shows techniques imple-
mented based on data analysis.

Binary Encoding. To tackle the long tail distribution issue [22] in
certain numerical features (f_52 to f_57), we applied binary encod-
ing by excluding the most frequent value and setting all others to 1
for each feature. While this approach may cause information loss,
it showed promising performance when combined with LightGBM
[7].

Feature Grouping. Features of high correlation were grouped for
information gain and to discover underlying patterns.

Frequency Encoding. Our dataset showed decrease in the frequency
distribution in relation to a metric loss increase. To alleviate this, we
applied Inverse Document Frequency (IDF) approach from TF-IDF,
which weighs words based on their frequency of occurrence in the
bag-of-words [8].

Target Encoding. Target encoding [17] was applied to capture the
interaction between categorical features and the target variable.
Target encoding and Catboost target encoding [4] were used with
smoothing to prevent overfitting. We observed an increase in the
NBCE for certain features over time. To capture recency, 𝑛 recent
days were used in encoding.

3 MODELS
3.1 Deep Cross Attentional Factorization

Machine
We propose Deep Cross Attentional Factorization Machine (DCAF)
as illustrated in Fig 3, which combines a DNN that can automati-
cally learn feature interactions, a cross network that can help un-
derstand boundary-degree interactions, and Attentional FM (AFM)
[18] that can focus on understanding the relationships between
important features. This model effectively captures the essential
low-order features and demonstrates substantial improvements in
model performance. The leaderboard score improved from 6.148542
to 6.026862.
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Table 2: Feature engineering for each model. Each of our models used distinct sets of features based on their characteristics.

DCAF MMoE DL CatBoost LightGBM

Binary Encoding X X X X O

Feature Grouping X f_3-f_4 f_3-f_4 X f_44-f_47, f_48-f_50

Frequency Encoding O O O X X

Target Encoding(TE)
(smoothing, recent days)

Mean TE
(10, 7)

Catboost TE
(5, all)

Catboost TE
(5, all)

Mean TE
(5, 3)

Mean TE
(5, 7) + (5, 3)

Target Encoding
- elapsed day X O O X X

ReLU activation function and Adam optimizer were used for
training with a learning rate of 5e-4 and weight decay of 1e-5.
Dropout with a probability 0.1 was set to prevent overfitting.

Figure 3: Deep Cross Attentional Factorization Machine ar-
chitecture

3.2 Multi-Task Model
To leverage both click and install information provided in the
dataset, we selected Multi-gate Mixture-of-Experts (MMoE) [9].
MMoE is a model that combines multiple experts using a gate
network, enhancing performance with high-correlated tasks. It em-
ploys expert networks to learn different aspects of the data and a

gating mechanism to determine their influence, improving overall
prediction accuracy.

The cases where install events occurred without preceding click
events conflicted with prior research [10] assumptions of sequen-
tial user actions. For events where installs occurred without any
clicks, we modified the data by labeling them as all clicked. This ap-
proach enhances the correlation between click and install, leading
to improved performance of MMoE.

CatBoost target encoding and inverse frequency encoding were
used for feature engineering. MADGRAD [3] was chosen as the
optimizer with a learning rate of 1e-4, along with 5-fold cross-
validation. It produced a leaderboard score of 6.049729.

3.3 Other Deep Learning Models
We incorporated a range of models, including FiBiNET [6], Product-
based Neural Network (PNN) [13], Wide & Deep Learning (WDL)
[2], Deep Factorization Machine (DeepFM) [5], and Operation-
aware Neural Networks (ONN) [19]. Table 3 shows the individual
performance of these models.

As a subsequent step, a simple soft voting technique was em-
ployed without assigning any special weights to the models. This
average ensemble approach produced a remarkable leaderboard
score of 6.049240.

3.4 Tree-Based Models
We tried three GBDT variants: LightGBM, CatBoost [4], and XG-
Boost [1], Out of the two, LightGBM and CatBoost were used for
final prediction due to underperformance of XGBoost. For Light-
GBM, we applied target encodings based on 3 and 7 recent days,
respectively. The CatBoost model was trained separately on each
f_19, utilizing a day-fold ensemble which is splitting the dataset
into 𝐾 folds by f_1(date) and trains 𝐾 models with K-Fold cross-
validation, then combines them into an ensemble. The ensemble of
tree-based models achieved a leaderboard score of 6.069782. Table
4 shows the individual performance of tree-based models.

4 ENSEMBLE
Ensemble methods have proven effective numerous times in the
past Challenges [8, 16, 20, 23]. During our experimentation, we
tested several methods and identified two successful strategies: soft
voting mechanism and inverse sigmoid operation. Inverse sigmoid
operation is defined as Equation 2, applying 𝜎−1 on each logit
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Table 3: Individual performance of Deep Learning models

Model Leaderboard

FiBiNET 6.065765
PNN 6.063737
WDL 6.062937

DeepFM 6.065364
ONN 6.085533

Ensemble 6.049240

Table 4: Individual performance of Tree-based models

Model Leaderboard

LightGBM 6.108842
CatBoost 6.085853
XGBoost 6.153701

Ensemble 6.069782

values 𝑥𝑘 then soft voting weights𝑤𝑘 and then reapplying sigmoid
function 𝜎 .

𝑦 = 𝜎 (
∑︁

𝑤𝑘𝜎
−1 (𝑥𝑘 )) (2)

Further performance improvement was achieved by combining
models with low Pearson correlation coefficient in their outputs,
indicating that diversity in model predictions enhances ensemble
performance [11, 12]. The pipeline is shown as Fig 1.

Table 5: Performance and weight of model for ensemble

Model Leaderboard Weight

DCAF 6.026862 0.55
MMoE 6.049729 0.20
DL 6.049240 0.15
Tree 6.069782 0.10

Ensemble 6.015522

5 RESULTS
Table 5 denotes the performance of each model along with the corre-
sponding weight ratio when ensembled. The DCAF model achieved
the highest score as a standalone model, recording 6.026862. By
implementing a soft voting technique according to the indicated
weights, a score of 6.015522 was attained.

Resource-wise, all models employed in our approach were de-
signed to be lightweight, capable of training on a single NVIDIA
RTX 3090 GPU or even CPU for tree-based models. Despite this,
for live application cases where facilitating ensemble in produc-
tion is burdening, taking DCAF as the primary single model is also
recommended.

6 CONCLUSION
In this paper, we present our approach for the ACM RecSys Chal-
lenge 2023, which focused on predicting install probability from

the given advertisements in online advertising. We introduced
Deep Cross Attentional Factorization Machine (DCAF) to effec-
tively capture both low- and high-order features even under the
circumstance of limited domain knowledge feature engineering
due to anonymized data. Also, we analyzed the given task from
multiple views, including single and multi-task learning, as well as
deep learning models and tree-based models, leading to assembling
multiple models. As a result of these strategies, our team, Corca,
achieved 7th place on the final leaderboard.
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A COMMON DENOMINATOR

Table 6: Common denominator values for each column

Feature Value

f_42 0.0385640684536896
f_44 0.5711214712545996
f_45 0.5711214712545996
f_46 0.5711214712545996
f_47 0.5711214712545996
f_48 0.5711214712545996
f_49 0.5711214712545996
f_50 0.5711214712545996
f_52 0.0385640684536896
f_53 0.0385640684536896
f_54 0.0385640684536896
f_55 0.0385640684536896
f_56 0.0385640684536896
f_57 0.0385640684536896
f_60 8.07946038858253
f_61 0.1478508992888889
f_62 0.1292997091990755
f_63 0.3552210926047521
f_71 0.5711214712545996
f_72 0.5711214712545996
f_73 0.5711214712545996
f_74 0.0385640684536896
f_75 0.0385640684536896
f_76 0.0385640684536896
f_77 37.38457512430372
f_78 37.38457512430372
f_79 37.38457512430372
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