
A Global Survey of Introductory Programming Courses
Raina Mason

Southern Cross University
Gold Coast, Australia

raina.mason@scu.edu.au

Simon
Unaffiliated

Wadalba, Australia
simon.unshod@gmail.com

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Tom Crick
Swansea University

Swansea, United Kingdom
thomas.crick@swansea.ac.uk

James H. Davenport
University of Bath

Bath, United Kingdom
j.h.davenport@bath.ac.uk

ABSTRACT
We present results of an in-depth survey of nearly 100 introduc-
tory programming (CS1) instructors in 18 countries spanning six
continents. Although CS1 is well studied, relatively few broadly-
scoped studies have been conducted, and none prior have exceeded
regional scale. In addition, CS1 is a notoriously fickle and often
changing course, and many might find it beneficial to know what
other instructors are doing across the globe; perhaps more so as we
continue to understand the impact of the COVID-19 pandemic on
computing education and as the effects of Generative AI take hold.
Expanding upon several surveys conducted in Australasia, the UK,
and Ireland, this survey facilitates a direct comparison of global
trends in CS1. The survey goes beyond environmental factors such
as languages used, and examines why CS1 instructors teach what
they do, in the ways they do. In total the survey spans 84 institu-
tions and 91 courses in which a total of over 40,000 students are
enrolled.

CCS CONCEPTS
• Social and professional topics → Computing education;
Computer science education; CS1.

KEYWORDS
CS1; CS 1; CS-1; COVID-19; Global; Instructors; Introductory Pro-
gramming; Novice Programmers; Programming Languages; Teach-
ing Languages; Survey
ACM Reference Format:
Raina Mason, Simon, Brett A. Becker, Tom Crick, and James H. Davenport.
2024. A Global Survey of Introductory Programming Courses. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630761

1 INTRODUCTION
The introductory programming sequence is the foundation of most
computing degrees and has been studied extensively [7, 35]. The
many variants of this course, often called CS1, almost always focus

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630761

on learning the basics of programming and most often introduce
students to one or more specific programming languages [50]. The
term ‘CS1’ was introduced in Curriculum ’78: Recommendations
for the Undergraduate Program in Computer Science (A Report of
the ACM Curriculum Committee on Computer Science) [1]. Curricu-
lum ’78 specified eight core courses, with short names CS1–CS8.
CS1 and CS2 remain in common use as shorthand for the first pro-
gramming course and the first data structures & algorithms course,
respectively. Hertz [32] notes that “while there is wide agreement
on the connotation of CS1 and CS2, there is little agreement as to
the denotation of these terms”. A recent random sampling of 500
US undergraduate degree programs in computer science found that
100% of both ABET-accredited and non-accredited programs had
a CS1 course, with perfect inter-rater reliability (using three tech-
niques) [8]. Thus it is safe to say that CS1 courses are ubiquitous in
the CS curriculum. It is also well known that students face many
struggles in these courses [46]. This gives them a reputation of
being “hard to learn” [39] although this notion has been disputed
and has led to an unhealthy reputation [3, 55]. It has also been
argued that educators’ expectations of CS1 students are unrealis-
tic [34], and some research has explored what exactly is expected
of CS1 students by analyzing hundreds of syllabi [6]. CS1 has also
changed over the decades, and is continuing to evolve [21], in terms
of approach and languages [7], changes that have been reflected
in model curricula [44, 45, 58], country-specific national policy in-
terventions [9, 22, 63], as well as broader critical analysis of the
foundational programming knowledge, skills and experience re-
quired for developing sustainable software and systems [61, 62],
including an increasing focus on the craft aspect of learning pro-
gramming (e.g. “software carpentry” and “codemanship” [13, 14]).
The increased focus on CS1 might also have been driven in part by
extensive developments in K-12 computing education across vari-
ous countries and jurisdictions – with significant focus on coding
and programming – including new statutory national curricula and
pre-university level qualifications (e.g. [10, 27, 41, 49, 51]).

2 RELATEDWORK
CS1 research is often considered particularly challenging, one rea-
son being that it sits in an ecosystem that is undergoing constant
change. A very non-exhaustive list of examples include:

• Programming languages change and evolve, as do first pro-
gramming environments;

799

https://orcid.org/0000-0002-1009-5520
https://orcid.org/0000-0003-2285-283X
https://orcid.org/0000-0003-1446-647X
https://orcid.org/0000-0001-5196-9389
https://orcid.org/0000-0002-3982-7545
https://doi.org/10.1145/3626252.3630761
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630761
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630761&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Raina Mason, Simon, Brett A. Becker, Tom Crick, & James H. Davenport

• The use of programming languages in the outside world
changes, for example the increased visibility of data sci-
ence and machine learning, which are often programmed in
Python in modern times;

• Students’ backgrounds change: several educational systems
now insist (with varying degrees of success) that program-
ming be taught in schools, which changes what might be
expected of CS1 students in universities;

• Curiously, parents (and students) have views about the first
programming language in a way that they do not seem to
have in other subjects (a professor of Russian would be as-
tounded if a parent asked “what is the first author studied?”).

Although much research has been conducted on CS1 [7, 35] un-
til recent years there were relatively few broadly scoped surveys,
reviews, and meta-analyses – although two early papers were pre-
sented at the ACM SIGCSE Technical Symposium. In 2002 Vasiga
presented historical data on introductory programming papers [60],
and in 2004 Valentine conducted a review of introductory program-
ming papers, organizing them into somewhat idiosyncratic groups
based either on their approach or on their content: experimental,
‘John Henry’, ‘Marco Polo’, ‘Nifty’, philosophy, and tools [59].

A 2018 ITiCSE working group led by Luxton-Reilly and Simon
produced a 52-page literature review of introductory programming
research, processing thousands of papers and citing 761. Other sim-
ilar and recent work processed 777 SIGCSE Technical Symposium
papers focusing on CS1, identifying several trends in the first 50
years of research on these courses [7].

A longitudinal study of programming languages and environ-
ments in CS1 courses in Australasia was conducted by de Raadt
et al. in 2001 [23] and continued by various authors in 2003 [24],
2010 [37], and 2013 [36]. This study received scant attention outside
Australasia, with one paper in 2014 reporting on a short survey in
the USA and noting that “we need to get a better picture of how
programming languages are used in academia internationally” [57].

Following a 2016 iteration of the Australasian study [38], the sur-
vey was taken up by Murphy, Crick, and Davenport in the UK [43]
and by Becker in Ireland [2], with both studies using the same
instrument provided by the original authors. For the work reported
in this paper, several of these authors joined forces, using the same
instrument to survey a global audience with the same questions
and to look for commonalities and differences.

2.1 Research Questions
Our research questions are closely related to the survey questions,
as taken from the regional studies already mentioned.

RQ1 What programming languages are used in introductory pro-
gramming courses, with what relative frequencies, and why
are they chosen?

RQ2 What programming environments are used with the selected
programming languages and why are they chosen?

RQ3 What paradigm is being taught – regardless of what para-
digm(s) the language may support?

RQ4 How prevalent is online delivery of courses?
RQ5 What resources are commonly provided to students?

3 METHOD AND CONTEXT
All project members received appropriate IRB/HREC/ethics ap-
proval from their institutions prior to collecting data. In geographic
terms, we set out to conduct a survey based on the earlier ones [2,
38, 43], but with global reach. In temporal terms, the context of our
survey has two features of particular interest, neither of which was
part of our research design. We discuss these in Sections 3.1 and 3.2

Invitations to take part in the survey were circulated on a num-
ber of mailing lists: principally SIGCSE-members, but also lists of
computing educators in various countries and regions that might
not be directly reached by SIGCSE-members, for language or other
reasons. Those who were teaching one or more introductory pro-
gramming courses were invited to complete the survey for one or
more of those courses; others were asked to forward the email, if
practical, to somebody who was teaching such a course at their
institution or in their region. The survey questions can be accessed
at dx.doi.org/10.5281/zenodo.10171742.

3.1 Impact of the COVID-19 Pandemic
The survey was conducted in late 2021 and early 2022. This led to
the first of our unintended temporal features: many universities
and colleges around the world [31, 40, 52, 65] had faced rapid transi-
tions from face-to-face to ‘emergency remote teaching’ and then to
more planned online learning, teaching, and assessment [17, 18, 64].
They were now contemplating when and how, and perhaps even
whether, to return to face-to-face teaching [12, 67]. During our
survey, some institutions would have still been teaching and as-
sessing online only, while others had already returned to campus,
wholly or partly, with widespread impacts on students [19, 20, 42],
faculty [15, 16], and institutions [33, 66]. ITiCSE working groups
in 2021 and 2022 have looked at these issues specifically for the
discipline of computing [53, 54].

Addition to the Survey Instrument. The survey instrument was the
same as used in three distinct regional surveys [2, 38, 43], but
with one additional question explicitly referring to the COVID-
19 pandemic: “How do you think the COVID-19 pandemic has
impacted on the teaching of introductory programming?”

3.2 Generative AI
The second unintended temporal feature of our work is that this
is the last snapshot of introductory programming as it was before
code-generating AI tools became prevalent. Conferences sponsored
by or in cooperation with ACM SIGCSE1 saw their first publications
involving generative AI in early 2022. The majority of this work to
date has focused on CS1, as noted recently at the SIGCSE Technical
Symposium by Becker et al. [5]. Our snapshot is therefore important
as generative AI is widely expected to significantly and permanently
alter the landscape of CS1 [4, 11, 28] and beyond [29] – and indeed
society more broadly [25, 26]. Evidence of the impact of Generative
AI on CS1 is apparent in practice [48] and in the emergence of
teaching materials such as a new textbook that advocates learning
AI-assisted programming in CS1 courses (using GitHub Copilot and
ChatGPT) from day one [47].
1SIGCSE sponsored conferences are the ACM SIGCSE Technical Symposium, ACM
ITiCSE, ACM ICER, and ACM CompEd. SIGCSE in-cooperation conferences can be
found at sigcse.org/events/incoop.html.

800

https://dx.doi.org/10.5281/zenodo.10171742
https://sigcse.org/events/incoop.html

A Global Survey of Introductory Programming Courses SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

3.3 Demographics
There were a total of 153 respondents to the survey, but many
of these abandoned the survey after the opening questions about
country and institution. Respondents were next asked to identify
the course about which they were responding, so that we could
identify and remove duplicates. When the incomplete responses
and duplicates were removed, a total of 91 responses were identified
that had at least the programming language question completed.
These responses became our data set.

3.3.1 Countries. The responses were dominated by those from
the USA, followed by Australia, Ireland, England, and Canada. The
number of responses per country can be seen in Table 1. The ‘Other’
entry represents one response each from Brazil, Denmark, Finland,
Italy, Kenya, Portugal, Scotland, and Slovenia.

Table 1: Number of respondent courses per country

Country Respondents Percentage

USA 48 54%
Australia 8 8%
Ireland 6 7%
England 5 6%
Canada 4 4%
Germany 3 3%
New Zealand 3 3%
India 2 2%
Jordan 2 2%
Poland 2 2%
Other 8 9%

For further analysis (as in Figure 1), these responseswere grouped
into ‘Americas’ (Canada, Brazil, USA: 53 responses), ‘British Isles’
(UK and Ireland: 12), ‘Europe’ (10), ‘Oceania’ (Australia and New
Zealand: 11), and ‘Other’ (5).

3.3.2 Class Sizes. Respondents were asked “approximately how
many students are undertaking this course this year (across all
cohorts, locations, and modes)?” The 89 responses to this question
ranged from 20 to 6,000 students, with a total of 40,362. Table 2
shows the number of courses for each range of class sizes.

Table 2: Number of students by course

Course
size

0- 50- 100- 200- 500- 1k- 2k- 5k+
50 99 199 499 999 <2k <5k

Courses 13 14 21 17 14 7 2 1

3.3.3 Years of Experience of Respondents. Guzdial remarked that
“On many campuses, teaching introductory courses typically falls
to less-experienced instructors” and that “this can have negative
consequences” [30]. In contrast 66% of the instructors answering
this question have at least 10 years of experience (Table 3). This
likely indicates that CS1 instructor experience is appreciated. There
is the possibility of survey bias, however. For instance it is possible

that less experienced teachers did not complete the survey with the
same frequency as those with more experience.

Table 3: Experience teaching programming

Years 0-2 2-5 5-10 10-20 20-30 >30

Respondents 4 6 17 20 20 14

4 RESULTS
Here we summarize our findings to each research question.

4.1 Programming Languages
RQ1 asked what programming languages are used in CS1 courses,
with what relative frequencies, and why they are chosen.

4.1.1 Languages Being Used. Table 4 shows the number of institu-
tions and courses using each language.

Table 4: Language use – institutions and courses

Language Institutions Courses

Python 39 40
Java 39 39
C++ 12 12
C 9 10
JavaScript 3 3
Processing 2 2
Racket 2 2
Scala 2 2
Go* 1 1
Bash* 1 1

* Used only in combination with another language

Figure 1: Percentage of language in each region

The total numbers of institutions and courses are greater than the
number of respondents, as some courses/institutions use more than
one language. Of those using a single language, 30 used Java, 29
used Python, six used C, four used C++, two each used Scala and
Processing, and one used Racket. Seventeen courses used multiple
languages. It makes very little difference whether we count these

801

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Raina Mason, Simon, Brett A. Becker, Tom Crick, & James H. Davenport

languages fractionally or as complete counts – although the choice
does affect the relative positions of Python and Java, vs C++ and C,
as both pairs are quite close in prevalence. Go and Bash are used
only in multi-language courses. While not surprising for Bash, it is
perhaps more surprising for Go, which was used only in a course
that also used C and Java. Racket occurred once by itself and once
jointly with Java.

There are some variations by geographical region (see Figure 1),
such as the relative prevalence of C and C++. However, these must
be considered with caution. For example, the prevalence of C in
‘Other’ is remarkably high, but this whole group comprises just
seven languages in five courses from India (2), Jordan (2), and Kenya
(1), making it unwise to draw conclusions from these results.

4.1.2 Reasons for Choice of Language. As with the most recent
Australasian survey [56], the most common reason selected for
choice of programming language was pedagogical benefits (Fig-
ure 2). In the UK survey [43], this was equal first with relevance to
industry, and in the Irish survey [2] the most common reason was
relevance to industry, which is ranked fourth in our survey. In view
of the increasing industry use of Python in such areas as machine
learning and data analysis, it is perhaps surprising that this reason
ranks lower than platform independence and availability and cost
to students. Several reasons for this may exist, such as a difference
between a department’s actual reasons and the ones it might give
to students and parents.

Figure 2: Reasons for choice of language

4.1.3 Reasons to Consider Changing Language. Respondents were
asked what reasons might prompt them to consider changing the
programming language they were using. Responses are shown
in Figure 3. Whilst pedagogical benefits is also the top reason to
change, this is followed strongly by industry relevance, possibly
indicating a tension between these reasons for choice.

4.2 Programming Environments
RQ2 asked what programming environments are used with the
selected programming languages and why they are chosen.

Figure 3: Reasons to consider change of language

4.2.1 Programming Environments Being Used. A quarter of the
respondents reported not using a programming environment as
such (Table 5), instead relying on text editors and command-line
compilers. The table also shows a substantial number of courses
using more than one environment, with one using five different
environments. Of the environments that are being used, Figure 4
shows a remarkably uniform spread, with just a few, led by Eclipse
and Visual Studio, standing clear of the crowd.

Table 5: Number of environments used in a course

Environments 0 1 2 3 4 5

Courses 22 37 14 5 2 1

Figure 4: Programming environments used

4.2.2 Reasons for Choice of Environment. In contrast with the rea-
sons for choice of programming language, pedagogical benefits
ranks only seventh among the reasons for choice of programming

802

A Global Survey of Introductory Programming Courses SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

environment. However, it is clear from Figure 5 that the higher-
ranked reasons are all student-centric. Asked whether the same
environment is used in other courses in the degree, around two-
thirds of respondents said that it was.

Figure 5: Reason for choice of environment

4.3 Paradigm Taught
RQ3 asked what paradigm is taught – regardless of what para-
digm(s) the language may support. Four options were given – pro-
cedural, object-oriented, functional, and logical. Table 6 shows that
43 courses taught procedural followed by 32 object-oriented, with
only a handful taught using functional (3) or other (4).

Table 6: Paradigm taught

Paradigm procedural OO functional logical other

Courses 43 32 3 0 4

This result contrasts with the 2016 UK survey [43], where object-
oriented was a clear leader. In the 2017 Australasian survey, the
procedural paradigm had a clear majority [38]. While there are sim-
ilarities between the latest Australasian data and this survey, note
that this data may not be reliable: Mason and Simon [38], noted that
some respondents claimed to teach functional programming using
C, prompting them to wonder whether they and the respondents
had the same understanding of functional programming.

4.4 Online Offerings
RQ4 asked about the prevalence of completely online delivery of
courses. When asked “Do you have options for your course where
students are not required to attend any regular lectures, workshops,
labs, or tutorials, but can complete their study online?” 38 respon-
dents said yes and 43 said no.

Of the 38 ‘yes’ respondents, 17 reported that this was the case
prior to the COVID-19 pandemic and 20 said that it was not. When

those who offered online options during COVID-19 were asked
if they intend to keep offering online delivery post-pandemic, 20
answered affirmatively, six said no, and 12 were still considering
whether they would continue online offerings (Table 7).

Table 7: Online delivery before, during, and after COVID-
19, of respondents who were currently teaching online. One
respondent did not answer the ‘before’ question. The 43 re-
spondents who did not offer online options during COVID-19
are not reflected in this table (denoted by ‘X’).

online option before during after (intended)

Yes 17 38 20

No 20 X 6

Maybe N/A N/A 12

These results show that of those who did offer an online op-
tion during COVID-19 (38) about half were already offering online
options prior to the pandemic. It also shows that the number intend-
ing to continue online offerings after COVID-19 was only slightly
greater than the number who had been using them before the
pandemic (17 before, 20 intending to after). Interestingly, only six
intended to not offer any online options after COVID-19, while
nearly a third (12/33) of those that did offer online options during
COVID-19 were undecided about continuing with online offerings.
It is likely that the timing of our survey is the reason for this – the
COVID-19 pandemic was still ongoing (to various degrees) when
respondents completed the survey. Thus, the decision whether to
continue offering online options after the worst of the COVID-19
restrictions, had likely not yet been resolved for these 12 respon-
dents. It is also possible that the advent of Generative AI (discussed
in Section 3.2) may have influenced survey responses for those
responding late in the survey timeframe.

4.5 Resources Provided to Students
Respondents provided a wide range of resources to students (Fig-
ure 6). Over 50% of instructors provided lecture slides or notes,
worked examples, discussion boards or forums, recorded lectures
(possibly a COVID-19 artifact), assignment hints, and/or specified
a textbook. Least popular were glossaries of keywords, topic sum-
maries, and publisher-supplied slides or notes. Respondents also
provided other resources, including automatic feedback systems,
peer mentors, additional workshops for specific skills development,
extensive screencasts (or other videos including animations or
YouTube videos), a repository of code developed in class, and/or
peer code presentations. We did not include ‘office hours’ as one of
the choices provided in this question, but perhaps we should have
done so, considering that not all courses may provide this resource.

5 LIMITATIONS
One significant limitation of this study is that responses were very
US-dominated, and even beyond the US, most respondents were
from English-speaking regions. We also did not ask any gender-
related questions. A well-defined question would be “what is the
gender of the respondent?”; however to ask the “gender of the

803

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Raina Mason, Simon, Brett A. Becker, Tom Crick, & James H. Davenport

Figure 6: Percentage of courses using each resource.

instructor” is less well-defined. In a large class (andmost CS1 classes
are large: see Table 2) there will be many teaching assistants, and
the student will have much more interaction with those than with
the primary professor(s). So in terms of the influence of the gender
of the instructors, the teaching assistant is possibly more important.
Indeed, we asked nothing about teaching assistants, a vital part of
large course delivery. This could well be a survey in its own right.

6 CONCLUSION AND FUTUREWORK
Ten years since Stefik and Hanenberg [57] noted the absence of
an international picture of the programming languages used in
introductory programming courses, we have provided that picture
and more besides. We have established that Java and Python are in
a clear joint lead; that the difference is not so stark among program-
ming environments; and that most instructors consider pedagogical
benefits to be a prime factor in the choice of programming language.

We have collected a wealth of data, and future work will include
deeper analysis of that, including qualitative analysis of the free-
response questions in the survey. It is instructive to compare our
global (but US-dominated) findings with those of the earlier surveys
in Australasia, the UK, and Ireland. For example, Figure 1 shows
that Python just beats Java in the British Isles, whereas the 2016
UK survey [43, Figure 2] had Java with a 4:1 lead over Python. This
could be a sign of the times.

Most importantly, this or a similar survey should be conducted
a few years from now, when the world of (computing) education
has hopefully come to terms with the end of the pandemic, and the
impacts of Generative AI.

ACKNOWLEDGMENTS
We are grateful to the creators of the survey for permission to use
it, and to the instructors who completed the survey.

REFERENCES
[1] Richard H. Austing, Bruce H. Barnes, Della T. Bonnette, Gerald L. Engel, et al.

1979. Curriculum ’78: Recommendations for the Undergraduate Program in
Computer Science – A Report of the ACM Curriculum Committee on Computer
Science. Communications of the ACM 22, 3 (1979), 147–166. https://doi.org/10.
1145/359080.359083

[2] Brett A. Becker. 2019. A Survey of Introductory Programming Courses in Ireland.
In Proc. of ITiCSE’19. 58–64. https://doi.org/10.1145/3304221.3319752

[3] Brett A. Becker. 2021. What Does Saying That ‘Programming is Hard’ Really
Say, and about Whom? Communications of the ACM 64, 8 (2021), 27–29. https:
//doi.org/10.1145/3469115

[4] Brett A. Becker, Michelle Craig, Hieke Keuning, Natalie Kiesler, et al. 2023. Gen-
erative AI in Introductory Programming. In ACM/IEEE-CS/AAAI Compuitng Cur-
ricula 2023 Curricular Practices Volumes. https://csed.acm.org/large-language-
models-in-introductory-programming/

[5] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard – Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proc. of SIGCSE’23. 500–506. https://doi.org/10.1145/3545945.3569759

[6] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal About
Our Expectations of Introductory Programming Students?. In Proc. of SIGCSE’19.
1011–1017. https://doi.org/10.1145/3287324.3287485

[7] Brett A. Becker and Keith Quille. 2019. 50 Years of CS1 at SIGCSE: A Review
of the Evolution of Introductory Programming Education Research. In Proc. of
SIGCSE’19. 338–344. https://doi.org/10.1145/3287324.3287432

[8] Richard Blumenthal. 2022. Alignment among Normative, Prescriptive, and De-
scriptive Models of Computer Science Curriculum: The Effect of ABET Accredi-
tation on CS Education. ACM Transactions on Computer Science Education 22, 3
(2022). https://doi.org/10.1145/3513141

[9] David Bowers, Alan Hayes, Tom Prickett, Tom Crick, et al. 2023. The Institute
of Coding Accreditation Standard: Exploring the Use of a Professional Skills
Framework to Address the UK Skills Gap. In Proc. of UKICER’23. https://doi.org/
10.1145/3610969.3611121

[10] Neil C. C. Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
The Resurgence of Computer Science in UK Schools. ACM Transactions on
Computer Science Education 14, 2 (2014), 1–22. https://doi.org/10.1145/2602484

[11] Peter Brusilovsky, Barbara J. Ericson, Cay S. Horstmann, Christian Servin, et al.
2023. Significant Trends in CS Educational Material: Current and Future. In Proc.
of SIGCSE’23. https://doi.org/10.1145/3545947.3573353

[12] Tom Crick. 2021. COVID-19 and Digital Education: A Catalyst for Change?
ITNOW 63, 1 (2021). https://doi.org/10.1093/itnow/bwab005

[13] Tom Crick, James H. Davenport, and Alan Hayes. 2015. Innovative Pedagogical
Practices in the Craft of Computing. Advance HE. https://www.advance-
he.ac.uk/knowledge-hub/innovative-pedagogical-practices-craft-computing.

[14] Tom Crick, James H. Davenport, Alan Hayes, and Tom Prickett. 2023. Teaching
Programming Competencies: A Role for Craft Computing?. In Proc. of UKICER’23.
https://doi.org/10.1145/3610969.3611140

[15] TomCrick, Cathryn Knight, and RichardWatermeyer. 2022. Measuring the Impact
of COVID-19 on the Health and Wellbeing of Computer Science practitioners. In
Proc. of SIGCSE’22. https://doi.org/10.1145/3478432.3499129

[16] Tom Crick, Cathryn Knight, and Richard Watermeyer. 2022. Reflections on
a Global Pandemic: Capturing the Impact of COVID-19 on the UK Computer
Science Education Community. In Proc. UKICER’22. https://doi.org/10.1145/
3555009.3555027

[17] Tom Crick, Cathryn Knight, Richard Watermeyer, and Janet Goodall. 2020. The
Impact of COVID-19 and “Emergency Remote Teaching” on the UK Computer
Science Education Community. In Proc. of UKICER’20. https://doi.org/10.1145/
3416465.3416472

[18] Tom Crick, Cathryn Knight, Richard Watermeyer, and Janet Goodall. 2021.
The International Impact of COVID-19 and “Emergency Remote Teaching” on
Computer Science Education Practitioners. In Proc. of EDUCON’21. 1048–1055.
https://doi.org/10.1109/EDUCON46332.2021.9453846

[19] Tom Crick, Tom Prickett, and Jill Bradnum. 2022. Exploring Learner Resilience
and Performance of First-Year Computer Science Undergraduate Students during
the COVID-19 Pandemic. In Proc. of ITiCSE’22. 519–525. https://doi.org/10.1145/
3502718.3524764

[20] Tom Crick, Tom Prickett, Christina Vasiliou, Neeranjan Chitare, et al. 2023.
Exploring Computing Students Post-Pandemic Learning Preferences with Work-
shops: A UK Institutional Case Study. In Proc. of ITiCSE’23. 173–179. https:
//doi.org/10.1145/3587102.3588807

[21] Quintin Cutts, Maria Kallia, Ruth Anderson, Tom Crick, et al. 2023. Considering
Computing Education in Undergraduate Computer Science Programmes. In Proc.
of ITiCSE’23. https://doi.org/10.1145/3587103.3594210

[22] James H. Davenport, Tom Crick, and Rachid Hourizi. 2020. The Institute of
Coding: A University-Industry Collaboration to Address the UK’s Digital Skills
Crisis. In Proc. of EDUCON’20. 1400–1408. https://doi.org/10.1109/EDUCON45650.
2020.9125272

[23] Michael de Raadt, Richard Watson, and Mark Toleman. 2002. Language Trends
in Introductory Programming Courses. In Proc. of InSITE 2002. 229–337.

[24] Michael de Raadt, Richard Watson, and Mark Toleman. 2004. Introductory
Programming: What’s Happening Today and Will There Be Any Students to
Teach Tomorrow?. In Proc. of ACE’04. 277–282.

[25] Yogesh K. Dwivedi et al. 2021. Artificial Intelligence (AI): Multidisciplinary
Perspectives on Emerging Challenges, Opportunities, and Agenda for Research,
Practice and Policy. International Journal of Information Management 53, 101994
(2021). https://doi.org/10.1016/j.ijinfomgt.2019.08.002

804

https://doi.org/10.1145/359080.359083
https://doi.org/10.1145/359080.359083
https://doi.org/10.1145/3304221.3319752
https://doi.org/10.1145/3469115
https://doi.org/10.1145/3469115
https://csed.acm.org/large-language-models-in-introductory-programming/
https://csed.acm.org/large-language-models-in-introductory-programming/
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3287324.3287485
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3513141
https://doi.org/10.1145/3610969.3611121
https://doi.org/10.1145/3610969.3611121
https://doi.org/10.1145/2602484
https://doi.org/10.1145/3545947.3573353
https://doi.org/10.1093/itnow/bwab005
https://www.advance-he.ac.uk/knowledge-hub/innovative-pedagogical-practices-craft-computing
https://www.advance-he.ac.uk/knowledge-hub/innovative-pedagogical-practices-craft-computing
https://doi.org/10.1145/3610969.3611140
https://doi.org/10.1145/3478432.3499129
https://doi.org/10.1145/3555009.3555027
https://doi.org/10.1145/3555009.3555027
https://doi.org/10.1145/3416465.3416472
https://doi.org/10.1145/3416465.3416472
https://doi.org/10.1109/EDUCON46332.2021.9453846
https://doi.org/10.1145/3502718.3524764
https://doi.org/10.1145/3502718.3524764
https://doi.org/10.1145/3587102.3588807
https://doi.org/10.1145/3587102.3588807
https://doi.org/10.1145/3587103.3594210
https://doi.org/10.1109/EDUCON45650.2020.9125272
https://doi.org/10.1109/EDUCON45650.2020.9125272
https://doi.org/10.1016/j.ijinfomgt.2019.08.002

A Global Survey of Introductory Programming Courses SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

[26] Yogesh K. Dwivedi et al. 2023. “So What If ChatGPT Wrote It?” Multidisciplinary
Perspectives on Opportunities, Challenges and Implications of Generative Con-
versational AI for Research, Practice and Policy. International Journal of Infor-
mation Management 71, 102642 (2023). https://doi.org/10.1016/j.ijinfomgt.2023.
102642

[27] Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, et al. 2019. An
International Comparison of K-12 Computer Science Education Intended and
Enacted Curricula. In Proc. of Koli Calling’19. 1–10. https://doi.org/10.1145/
3364510.3364517

[28] James Finnie-Ansley, Paul Denny, Brett A. Becker, et al. 2022. The Robots Are
Coming: Exploring the Implications of OpenAI Codex on Introductory Program-
ming. In Proc. of ACE’22 (Virtual Event, Australia) (ACE ’22). ACM, NY, NY, USA,
10—-19. https://doi.org/10.1145/3511861.3511863

[29] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
et al. 2023. My AI Wants to Know If This Will Be on the Exam: Testing OpenAI’s
Codex on CS2 Programming Exercises. In Proc. of ACE’23 (Melbourne, VIC,
Australia) (ACE ’23). ACM, NY, NY, USA, 97—-104. https://doi.org/10.1145/
3576123.3576134

[30] Mark Guzdial. 2018. It Matters a Lot Who Teaches Introductory Courses if We
Want Students to Continue. https://computinged.wordpress.com/2018/06/22/it-
matters-a-lot-who-teaches-introductory-courses-if-we-want-student-to-
continue/.

[31] Joanne Hardman, RichardWatermeyer, Kalpana Shankar, Venkata Ratnadeep Suri,
et al. 2022. “Does Anyone Even Notice Us?” COVID-19’s Impact on Academics’
Well-being in a Developing Country. South African Journal of Higher Education
36, 1 (2022), 1–19. https://doi.org/10.20853/36-1-4844

[32] Matthew Hertz. 2010. What Do "CS1" and "CS2" Mean?: Investigating Differences
in the Early Courses. In Proc. of SIGCSE’10. 199–203. https://doi.org/10.1145/
1734263.1734335

[33] Alastair Irons and Tom Crick. 2022. Cybersecurity in the Digital Classroom:
Implications for Emerging Policy, Pedagogy and Practice. In Higher Education in
a Post-COVID World: New Approaches and Technologies for Teaching and Learning.
231–244. https://doi.org/10.1108/978-1-80382-193-120221011

[34] Andrew Luxton-Reilly. 2016. Learning to Program is Easy. In Proc. of ITiCSE’16.
284–289. https://doi.org/10.1145/2899415.2899432

[35] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, et al. 2018.
Introductory Programming: A Systematic Literature Review. In Proc. of ITiCSE’18.
https://doi.org/10.1145/3293881.3295779

[36] Raina Mason and Graham Cooper. 2014. Introductory Programming Courses in
Australia and New Zealand in 2013 - Trends and Reasons. In Proc. of ACE’14.

[37] RainaMason, GrahamCooper, andMichael de Raadt. 2012. Trends in Introductory
Programming Courses in Australian Universities: Languages, Environments and
Pedagogy. In Proc. of ACE’12. 33–42.

[38] Raina Mason and Simon. 2017. Introductory Programming Courses in Australasia
in 2016. In Proc. of ACE’17. 81–89. https://doi.org/10.1145/3013499.3013512

[39] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, et al. 2001. A
Multi-national, Multi-institutional Study of Assessment of Programming Skills
of First-year CS Students. SIGCSE Bulletin 33, 4 (2001), 125–180. https://doi.org/
10.1145/572139.572181

[40] Fiona McGaughey, Richard Watermeyer, Kalpana Shankar, Venkata Ratnadeep
Suri, et al. 2022. ‘This Can’t Be the New Norm’: Academics’ Perspectives on the
COVID-19 Crisis for the Australian University Sector. Higher Education Research
& Development 41, 7 (2022). https://doi.org/10.1080/07294360.2021.1973384

[41] Faron Moller and Tom Crick. 2018. A University-Based Model for Supporting
Computer Science Curriculum Reform. Journal of Computers in Education 5, 4
(2018), 415–434. https://doi.org/10.1007/s40692-018-0117-x

[42] Catherine Mooney and Brett A. Becker. 2021. Investigating the Impact of the
COVID-19 Pandemic on Computing Students’ Sense of Belonging. In Proc. of
ITiCSE’21 (Virtual Event, USA) (SIGCSE ’21). ACM, NY, NY, USA, 612–618. https:
//doi.org/10.1145/3408877.3432407

[43] Ellen Murphy, Tom Crick, and James H Davenport. 2017. An Analysis of In-
troductory Programming Courses at UK Universities. The Art, Science, and
Engineering of Programming 1, 2 (2017). https://doi.org/10.22152/programming-
journal.org/2017/1/18

[44] ACM/IEEE CS Joint Task Force on Computing Curricula. 2013. Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science. https://www.acm.org/education/curricula-recommendations.

[45] The Joint ACM/IEEE Task CS Force on Computing Curricula. 2001. Computing
Curricula 2001. https://www.acm.org/education/curricula-recommendations.

[46] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, et al. 2007. A
Survey of Literature on the Teaching of Introductory Programming. In Proc. of
ITiCSE-WGR’07. 204–223. https://doi.org/10.1145/1345443.1345441

[47] Leo Porter and Daniel Zingaro. 2023. Learn AI-Assisted Python Programming with
GitHub Copilot and ChatGPT. Manning Publications.

[48] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, et al. 2023. The Robots
Are Here: Navigating the Generative AI Revolution in Computing Education. In
Proc. of ITiCSE-WGR’23 (Turku, Finland) (ITiCSE-WGR ’23). ACM, NY, NY, USA,
52 pages. https://doi.org/10.1145/3623762.3633499

[49] Keith Quille, Roisin Faherty, and Brett A. Becker. 2022. Building K-12 Teacher
Capacity to Expand Uptake in a National CS Curriculum. In Proc. of SIGCSE’22.
1086. https://doi.org/10.1145/3478432.3499063

[50] Anthony Robins. 2010. Learning Edge Momentum: A New Account of Outcomes
in CS1. Computer Science Education 20, 1 (2010), 37–71. https://doi.org/10.1080/
08993401003612167

[51] Sue Sentance, Diana Kirby, Keith Quille, Elizabeth Cole, et al. 2022. Computing
in School in the UK & Ireland: A Comparative Study. In Proc. of UKICER’22. 1–7.
https://doi.org/10.1145/3555009.3555015

[52] Kalpana Shankar, Dean Phelan, Venkata Ratnadeep Suri, Richard Watermeyer,
et al. 2021. “The COVID-19 Crisis is Not the Core Problem”: Experiences, Chal-
lenges, and Concerns of Irish Academia in the Pandemic. Irish Educational Studies
40, 2 (2021), 169–175. https://doi.org/10.1080/03323315.2021.1932550

[53] Angela A. Siegel, Mark Zarb, Bedour Alshaigy, Jeremiah Blanchard, et al. 2021.
Teaching through a Global Pandemic: Educational Landscapes Before, During
and After COVID-19. In Proc. of ITiCSE-WGR’21. 1–25. https://doi.org/10.1145/
3502870.3506565

[54] Angela A. Siegel, Mark Zarb, Emma Anderson, Brett Crane, et al. 2022. The
Impact of COVID-19 on the CS Student Learning Experience: How the Pandemic
has Shaped the Educational Landscape. In Proc. of ITiCSE-WGR’22. 165–190.
https://doi.org/10.1145/3571785.3574126

[55] Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, et al. 2019. Pass
Rates in Introductory Programming and in Other STEM Disciplines. In Proc. of
ITiCSE-WGR’19. 53–71. https://doi.org/10.1145/3344429.3372502

[56] Simon, Raina Mason, Tom Crick, James H. Davenport, et al. 2018. Language
Choice in Introductory Programming Courses at Australasian and UK Universi-
ties. In Proc. of SIGCSE’18. https://doi.org/10.1145/3159450.3159547

[57] Andreas Stefik and Stefan Hanenberg. 2014. The Programming Language Wars:
Questions and Responsibilities for the Programming Language Community. In
Proc. of Onward! 2014. 283–299. https://doi.org/10.1145/2661136.2661156

[58] ACM/IEEE CS CS2008 Review Taskforce. 2008. Computer Science Curriculum
2008: An Interim Revision of CS 2001. https://www.acm.org/education/curricula-
recommendations.

[59] David W. Valentine. 2004. CS Educational Research: A Meta-analysis of SIGCSE
Technical Symposium Proceedings. In Proc. of SIGCSE’04. 255–259. https://doi.
org/10.1145/971300.971391

[60] Troy Vasiga. 2002. What Comes after CS 1 + 2: ADeep Breadth before Specializing.
SIGCSE Bulletin 34, 1 (2002), 28–32. https://doi.org/10.1145/563517.563350

[61] Colin C. Venters, Rafael Capilla, Stefanie Betz, Birgit Penzenstadler, et al. 2018.
Software Sustainability: Research and Practice from a Software Architecture
Viewpoint. Journal of Systems and Software 138 (2018), 174–188. https://doi.org/
10.1016/j.jss.2017.12.026

[62] Colin C. Venters, Rafael Capilla, Elisa Yumi Nakagawa, Stefanie Betz, et al. 2023.
Sustainable Software Engineering: Reflections on Advances in Research and
Practice. Information and Software Technology (2023). https://doi.org/10.1016/j.
infsof.2023.107316

[63] Rupert Ward, Oliver Phillips, David Bowers, Tom Crick, et al. 2021. Towards a
21st Century Personalised Learning Skills Taxonomy. In Proc. of EDUCON’21.
344–354. https://doi.org/10.1109/EDUCON46332.2021.9453883

[64] Richard Watermeyer, Tom Crick, and Cathryn Knight. 2022. Digital Disruption in
the Time of COVID-19: Learning Technologists’ Accounts of Institutional Barriers
to Online Learning, Teaching and Assessment in UK Universities. International
Journal for Academic Development 27, 2 (2022), 148–162. https://doi.org/10.1080/
1360144X.2021.1990064

[65] Richard Watermeyer, Tom Crick, Cathryn Knight, and Janet Goodall. 2021.
COVID-19 and Digital Disruption in UK Universities: Afflictions and Affor-
dances of Emergency Online Migration. Higher Education 81 (2021), 623–641.
https://doi.org/10.1007/s10734-020-00561-y

[66] Richard Watermeyer, Cathryn Knight, Tom Crick, and Margarida Borras Batalla.
2023. ‘Living at Work’: COVID-19, Remote-working and the Spatio-relational
Reorganisation of Professional Services in UK Universities. Higher Education 85
(2023), 1317–1336. https://doi.org/10.1007/s10734-022-00892-y

[67] Richard Watermeyer, Kalpana Shankar, Tom Crick, Cathryn Knight, et al. 2021.
’Pandemia’: A Reckoning of UK Universities’ Corporate Response to COVID-19
and its Academic Fallout. British Journal of Sociology of Education 42, 5-6 (2021),
651–666. https://doi.org/10.1080/01425692.2021.1937058

805

https://doi.org/10.1016/j.ijinfomgt.2023.102642
https://doi.org/10.1016/j.ijinfomgt.2023.102642
https://doi.org/10.1145/3364510.3364517
https://doi.org/10.1145/3364510.3364517
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://computinged.wordpress.com/2018/06/22/it-matters-a-lot-who-teaches-introductory-courses-if-we-want-student-to-continue/
https://computinged.wordpress.com/2018/06/22/it-matters-a-lot-who-teaches-introductory-courses-if-we-want-student-to-continue/
https://computinged.wordpress.com/2018/06/22/it-matters-a-lot-who-teaches-introductory-courses-if-we-want-student-to-continue/
https://doi.org/10.20853/36-1-4844
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1108/978-1-80382-193-120221011
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3013499.3013512
https://doi.org/10.1145/572139.572181
https://doi.org/10.1145/572139.572181
https://doi.org/10.1080/07294360.2021.1973384
https://doi.org/10.1007/s40692-018-0117-x
https://doi.org/10.1145/3408877.3432407
https://doi.org/10.1145/3408877.3432407
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3478432.3499063
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1145/3555009.3555015
https://doi.org/10.1080/03323315.2021.1932550
https://doi.org/10.1145/3502870.3506565
https://doi.org/10.1145/3502870.3506565
https://doi.org/10.1145/3571785.3574126
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.1145/3159450.3159547
https://doi.org/10.1145/2661136.2661156
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://doi.org/10.1145/971300.971391
https://doi.org/10.1145/971300.971391
https://doi.org/10.1145/563517.563350
https://doi.org/10.1016/j.jss.2017.12.026
https://doi.org/10.1016/j.jss.2017.12.026
https://doi.org/10.1016/j.infsof.2023.107316
https://doi.org/10.1016/j.infsof.2023.107316
https://doi.org/10.1109/EDUCON46332.2021.9453883
https://doi.org/10.1080/1360144X.2021.1990064
https://doi.org/10.1080/1360144X.2021.1990064
https://doi.org/10.1007/s10734-020-00561-y
https://doi.org/10.1007/s10734-022-00892-y
https://doi.org/10.1080/01425692.2021.1937058

	Abstract
	1 Introduction
	2 Related Work
	2.1 Research Questions

	3 Method and Context
	3.1 Impact of the COVID-19 Pandemic
	3.2 Generative AI
	3.3 Demographics

	4 Results
	4.1 Programming Languages
	4.2 Programming Environments
	4.3 Paradigm Taught
	4.4 Online Offerings
	4.5 Resources Provided to Students

	5 Limitations
	6 Conclusion and Future Work
	Acknowledgments
	References

