
Beyond HCI: The Need for Accessibility Across the CS Curriculum
Yasmine N. Elglaly

Western Washington University
elglaly@wwu.edu

Catherine M. Baker
Creighton University

catherinebaker@creighton.edu

Anne Spencer Ross
Bucknell University
a.ross@bucknell

Kristen Shinohara
Rochester Institute of Technology

kristen.shinohara@rit.edu

ABSTRACT
Few instructors include accessibility in computing education cur-
riculum despite its importance in the computing field. Prior work
on accessibility and CS education vary on what accessibility knowl-
edge is appropriate for future computing professionals and is cov-
ered mainly in Human-Computer Interaction (HCI) and web design
courses. In practice, there is no comprehensive list of learning objec-
tives to characterize Accessibility as a competency even though it is
an increasingly desired skillset across computing broadly. Moreover,
in the soon-to-be-released CS2023, the Accessibility Knowledge
Unit is nested within HCI. This placement fails to highlight the
role accessibility plays throughout the CS curriculum, nor does
it provide sufficient structure to guide CS educators. Thus, these
efforts may not be enough to prepare future tech professionals with
adequate accessibility skills to meet growing industry demand. We
argue that Accessibility should be its own Knowledge Area within
the CS curriculum. We present a set of knowledge units with topics
and illustrative learning objectives for an Accessibility Knowledge
Area in Computing Education. These objectives were produced
through synthesizing computing education and accessible comput-
ing literature and discussions among the authors, who are subject
matter experts in both computing education and accessibility. In
this position paper, we make the case that Accessibility should be
incorporated into computer science across the curriculum beyond
just HCI, and we demonstrate how the knowledge units spans the
different facets of computing. In addition to highlighting the cross-
curriculum importance of Accessibility, the presented Knowledge
Area outline provides structure for future work in creating teaching
resources and guiding curricular integration.

CCS CONCEPTS
• Human-centered computing → Accessibility theory, con-
cepts and paradigms.

KEYWORDS
Accessibility, curriculum, CS education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630788

ACM Reference Format:
Yasmine N. Elglaly, Catherine M. Baker, Anne Spencer Ross, and Kristen
Shinohara. 2024. Beyond HCI: The Need for Accessibility Across the CS Cur-
riculum. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630788

1 INTRODUCTION
Digital accessibility practices lead to creating technologies and
digital content that is accessible to people with disabilities. These
practices include the development of assistive technologies, i.e.,
technical solutions that are designed specifically for users with dis-
abilities, such as screen readers. Digital accessibility also involves
implementing software so that it is accessible to users with disabili-
ties and compatible with assistive technologies. Achieving software
accessibility requires a breadth of accessibility knowledge through-
out the software creation lifecycle. It is crucial that all computing
students learn about digital accessibility in their undergraduate
computing programs across the computing curriculum.

Most computing programs place accessibility within Human-
Computer Interaction (HCI) and design courses, if they address it
at all [24, 51]. There is a wealth of knowledge on what and how
to incorporate accessibility in digital design courses [45, 47, 50].
However, there has been limited effort in teaching accessibility to
non-design students or in computing courses that are not centered
around HCI [30]. This lack of comprehensive coverage of accessi-
bility in computing programs produces computer science graduates
with limited or no accessibility knowledge and skill and who do
not meet growing industry demand for such competency [14, 46].

Current efforts are underway to revise the ten-year-old computer
science curricular guidelines by ACM and IEEE to match innovative
and cutting edge technologies and problems of the day [16]. As part
of this effort, for the first time, Accessibility will be encapsulated
within the HCI Knowledge Area. This inclusion marks a key step
forward in recognizing the importance of Accessibility in usability
and good user interface design and and reflects the increased in-
dustry need for attention to making technologies accessible. In this
new curricular guidance, Accessibility comprises a Knowledge Unit
outlining a fundamental learning objective of the HCI Knowledge
Area. While this curricular change is important to ensuring that
Accessibility is taught within computing at all, concepts covered
within HCI will be limited to understanding users and issues reflect-
ing user interface and interaction design. Meanwhile, underlying
design and development require attention to Accessibility to be able
to fully support Accessibility across the full functionality of the
system. For example, databases storing images and videos must be

324

https://doi.org/10.1145/3626252.3630788
https://doi.org/10.1145/3626252.3630788
mailto:kristen.shinohara@rit.edu
mailto:catherinebaker@creighton.edu
mailto:permissions@acm.org
mailto:elglaly@wwu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630788&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Yasmine N. Elglaly, Catherine M. Baker, Anne Spencer Ross, & Kristen Shinohara

developed with fields for alternative text or captions; choosing secu-
rity and verification techniques have accessibility implications such
a input and timing; and operating system APIs must be compatible
with assistive technology input. Moreover, building general aware-
ness of accessibility supports building organizational maturity in
accessibility. To comprehensively ensure software engineers and
developers are knowledgeable about accessibility—so that they can
provide adequate support for systems that underlie usability and
core functionality—Accessibility must be included as a Knowledge
Area in its own right, and not just a Knowledge Unit within HCI.

We pose Accessibility should be a distinct Knowledge Area
within the CS curriculum. Toward that goal, we present core Acces-
sibility Learning Objectives structured within core CS objectives,
knowledge-area specific objectives, and non-core objectives. Fol-
lowing the model of CS2023, core CS objectives should be covered in
every computer science program, knowledge-area (KA) objectives
should be covered by programs that wish to specialize in the area,
and non-core objectives structure guidance for providing additional
depth or breadth to students. As subject matter experts in comput-
ing education and accessibility research with more than 40 years
of collective experience, we formulated these learning objectives
by leveraging prior work, community input, and our breadth of
knowledge and experience. First, we reviewed the current state of
accessibility education and desired outcomes as highlighted by the
technology industry, for instance by analyzing related research to
document curricular trajectories, e.g., [10, 42, 46]. Next, we defined
the learning objectives in consultation with the Bloom’s Taxonomy
[25], which categorizes cognitive learning levels, from lower-order
thinking skills (remembering, understanding) to higher-order skills
(applying, analyzing, evaluating, creating). Last, we arranged the
learning objectives from foundational concepts to more advanced
skills or knowledge. We used the ACM 2023 curriculum terminology
to describe the level of the desired learning outcomes, following
the sequence of CS Core, Knowledge Area, and Non-Core.

We iteratively reviewed and refined the learning objectives. We
also compiled a list of resources that can be used to achieve these
learning objectives1 .

2 ACCESSIBILITY EDUCATION IN THE CS
CURRICULUM

2.1 The Future of Tech is Accessible
In the US, the recently proposed ADA Title II Web and Mobile App
Accessibility Rule would require state and local government entities
make their web pages accessible [17], creating demand for accessi-
bility knowledge and skills. Research increasingly shows that the
tech industry desires accessible products, at least to meet legal and
compliance requirements [46], but also because accessible design
is considered good design. Top tech companies have recently put
in concerted effort to make tech products usable by people with
disabilities (e.g., Google [5], Microsoft [43], Apple [3]). While it is
helpful to design user interfaces that are accessible to people with
disabilities, underlying system design and development practices
are often unable to meet accessible design needs. In addition, re-
search on the landscape of tech jobs shows that few employers

1https://accessibilityeducation.github.io/resources.html

appear to recruit based on accessibility skills, yet they require em-
ployees to fulfill accessibility compliance tasks, and to train and
mentor coworkers in accessibility knowledge and skills [42, 46].
This approach results in tech employees not primarily tasked with
accessibility-focused work, yet responsible for ensuring compli-
ance [46], manifesting as a requirements and skills gap. Ultimately,
Accessibility is overlooked as a key component in tech design and
development, and as a result is not allocated resources and effort.

Further complicating the issue for employers, the demand for
user interface and user experience designers with accessibility skills
continues to grow, but few applicants have skills and competency in
Accessibility to meet that need [14]. Recent industry research found
a disparity between needs and employee competencies, specifically
that “there is a significant disconnect between understanding acces-
sibility standards and creation of content that actually adheres to
them” [14]. Thus, accessibility is emerging as a desired skill among
tech companies who report issues recruiting job candidates with
the necessary skills and know-how. This issue is compounded by
the lack of exposure to accessibility for computer science graduates.
For instance, few faculty report including accessibility in their com-
puting courses, and most of those faculty are HCI experts [51]. As
a result, few computing graduates are equipped with accessibility
knowledge and skills [46], and even fewer have an understanding
of accessibility beyond the surface.

The emphasis on user interface design and interaction is im-
portant to ensuring access for disabled users, but the underlying
technology must also be built to support accessible front-end design.
Accessibility can be affected by the early stages of selecting the
libraries and frameworks to use for a project. Similarly, testing must
be updated to incorporate accessibility to ensure the final product is
accessible. Testing for accessibility requires knowledge about acces-
sibility and accessible user interfaces, and it also requires knowing
how to work with people with disabilities appropriately as usability
testers. As we discuss below, these needs demonstrate that Accessi-
bility skillsets are broadly applicable across computing and should
not be relegated only to surface-level design choices.

2.2 Curricular Guidelines do not
Comprehensively Cover Accessibility

Current computer science curriculum guidance, in place since 2013,
do not explicitly include accessibility as a key knowledge area.
Including Accessibility as a knowledge unit within HCI in the up-
dated CS2023 curricular guidelines asserts accessibility as a core
part of user interface and user interaction design and development
and will inform curricular elements [16]. For example, these guide-
lines will ensure future graduates understand how people with
a variety of disabilities use technology, and know about various
assistive technologies that provide access to computing technology.
Although inclusion in updated curricular guidelines is an impor-
tant first step, restricting Accessibility to HCI disregards the need
for understanding assistive technology and accessible solutions at
the development and engineering phases. We emphasize that, to
support accessible user interface design, underlying systems should
be engineered to be accessible through low-level infrastructure to
propagate accessibility via native controls and operations [48]. In

325

https://accessibilityeducation.github.io/resources.html

Beyond HCI: The Need for Accessibility Across the CS Curriculum SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

the worst case, students of computing outside of HCI will not be
aware of Accessibility as an important component of computing.

Despite the need to include Accessibility as a Knowledge Area
across computing curriculum, there is not yet clear structure or guid-
ance for what should be taught, what pedagogies are appropriate,
and how to assess learning for Accessibility skill and competency
[38]. Our Accessibility Knowledge Area outlines important topics
organized by Knowledge Units. This structure helps organize exist-
ing curricular development efforts, highlights areas with particular
need of material development, and guides programs in choosing
topics to encorporate. Guidance from our Knowledge Area can
help build computing pedagogy to meet specific tech demands for
accessibility skills [38].

3 ACCESSIBILITY KNOWLEDGE AREA
We began by delineating five fundamental accessibility knowledge
units: Disability Awareness, Accessibility Design, Accessibility Im-
plementation, Accessibility Evaluation, and Accessibility Profession
and Continuous Learning. These knowledge units represent clus-
ters of competencies sought after in the technology industry [42],
but that are not comprehensively covered in computing programs
[24, 46]. For each knowledge unit, we outline a list of topics and
for each topic we suggest illustrative learning objectives. These
topics draw from related work, our experience, and ongoing dis-
cussions among researchers and industry in accessibility education
workshops and panels [23, 36].

We structured the topics and their associated learning objectives
in line with the format of the CS2023 Curriculum. The topics were
organized into three tiers of knowledge: the CS core, the Knowledge
Area (KA) core, and the Non-Core. The CS core level corresponds
to the fundamental concepts essential for every computer science
program. The KA core level presents the option to dive further
into a specific knowledge area, enhancing the curriculum’s depth
and scope. Lastly, the Non-Core level outlines advanced learning
for those who want to specialize in accessibility, going beyond
foundational knowledge.

3.1 Knowledge Unit 1 - Disability Awareness
An essential component to digital accessibility is knowledge about
disabilities, assistive technologies, and general context on disabled
experiences. This unit outlines goals for exposing students to the
range of disabled experiences that inform digital accessibility.

Throughout this unit, it is important to forefront disability-aware
perspectives in framing disability as a wide and nuanced experience,
highlighting disabled people as active contributors to their envi-
ronment and communities. Disabled people are advocates, creators,
and engineers, and are not just passive recipients of “charity”. A
robust education in digital accessibility must include understand-
ing the experiences of disabled people. These topics are essential
to motivating the need for digital accessibility, understanding ac-
cessibility best practices from a human-centered perspective, and
contextualizing practices within societal systems.

(1) CS Core
(a) Basic categories of disabilities. List broad categories

of disability, including: vision, auditory, motor, and cog-
nitive [20]. Understand that disability can be permanent,

temporary, or situational, and that disability is a varied
and nuanced experience that extends beyond these basic
classifications [32].

(b) Motivations for accessibility. Draw from human, legal,
and business cases. Recognize accessibility benefits over
one billion disabled persons [4], in addition to people with
temporary and situational disabilities [7]. Recognize that
current software development does not keep pace with
accessibility needs [20, 48].

(c) Assistive technology. Demonstrate awareness of some
assistive technology like screen readers, switch devices,
captions, voice command.

(d) Ethics. Apply the principles outlined in the ACM Code
of Ethics and Professional Conduct to assess the ethical
implications of technology for people with disabilities [2].

(2) KA Core:
(a) Basic models of disability. Understand that there are

different models of disability, and be able to define key
ones, e.g., the medical model (which views disability as
problem in the person) vs. the social model (which views
disability as a contextual problem that is disabling).

(b) Experiences of disability. Build on the broad categories
of disability to be aware of more variation and depth in
user experiences. For example, knowledge of discussions
on language used in disabled communities; dynamics of
identifying as disabled versus not.

(c) Ableism and etiquette. Be familiar with the “Nothing
About Us Without Us” movement [26], specifically, that
disabled people face systemic biases. Understand etiquette
for interacting with people with disabilities (e.g., do not
move wheelchairs, talk to people not their interpreters).

(d) Intersectionality. Understand how disability intersects
with other identities such as race, gender, location, socio-
economic status and how it may compound systemic in-
justices or change community dynamics [49].

(e) Use common assistive technology. Perform basic func-
tions using some assistive technology such as screen-
readers, switch access, and digital magnifier.

(f) Make a case for accessibility. Make a pitch for why ac-
cessibility is important. Draw from human, legal, business,
and software inaccessibility prevalence information.

(3) Non-Core:
(a) Advanced models of disability. Understand more nu-

anced models of disability beyond the medical and social
models, such as the legal/ethical model [29]. Understand
the strengths and critiques of each.

(b) Disability identities. Consider broader ranges and en-
vironments of disabled experiences, for example, people
who are chronically ill; discussions on language used in
disabled communities; dynamics of identifying as disabled
versus not [39].

(c) History of accessibility. Be familiar with disabled peo-
ple’s roles in the evolution of the telephone, text messag-
ing, and other technical systems. Understand how disability-
led advocacy and activism contributed to passing acces-
sibility legislation: the sit-in demonstrations to push the
passing of Section 504 of the Rehabilitation Act [26].

326

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Yasmine N. Elglaly, Catherine M. Baker, Anne Spencer Ross, & Kristen Shinohara

3.2 Knowledge Unit 2 - Accessibility Design
Several approaches to technology design have been leveraged to
support improved accessible design, including Universal Design
[21] and Ability Based Design [55]. In practice, most accessible
design work is driven by compliance and usability [46]. The recently
published ADA Title II Web and Mobile App Accessibility Rule
details a technical standard for web accessibility [17] and will drive
a need for tech professionals with accessibility design competency
to meet requirements.

Central to the Title II Web and Mobile App Accessibility Rule
is the Web Content Accessibility Guidelines (WCAG), created by
the World Wide Web Consortium (W3C), and which comprises a
set of design recommendations to make web content accessible to
people with disabilities [33]. Future tech professionals will need to
be familiar with WCAG, how to meet compliance, and to under-
stand what tools and processes enable them to design and maintain
systems and apps that are compliant.

(1) CS Core
(a) Design guidelines and knowledge. Describe users with

disabilities using proper language. Apply W3C accessibil-
ity guidelines to design. Gain knowledge of Web Content
Accessibility Guidelines, what it means to be compliant,
and how to meet compliance. Become familiar with spe-
cific details such as how to choose appropriate colors,
layout design, and font selection, and know how to use
design tool annotations.

(b) Methods and approaches. Be familiar with design meth-
ods and approaches that include accessibility. Understand
how to collect software requirements from users with dis-
abilities, e.g., ask deaf participants if they prefer a caption-
ist or an interpreter prior to conducting usability studies.

(c) Assistive technology awareness. Understand the pro-
cess of designing technology specifically for people with
disabilities as the main target users.

(2) KA Core:
(a) Design accessible software. Apply web and mobile ac-

cessibility guidelines to make new designs accessible, and
update legacy designs. Design software that can be cus-
tomized. Distinguish between different design approaches,
including the Principles of Universal Design and how they
may be used for different kinds of disabilities. Apply in-
dustry accessibility guidelines, (e.g., from Google and Mi-
crosoft).

(b) Improve assistive technology. Apply a design process
to improve an existing assistive technology. Distinguish
between assistive technology-first designs and those that
are not.

(3) Non-Core:
(a) Special topics. Understand XR (AR/VR) accessibility guide-

lines, know how accessible design can inform AI-powered
systems. Understand design implications for users of sys-
tems powered by artificial intelligence.

(b) Design assistive technology. Apply a design process
to create a new assistive technology with people with
disabilities.

3.3 Knowledge Unit 3 - Accessibility
Implementation

This unit has two primary facets: proficiency in creating software
accessible to disabled people and implementing assistive technol-
ogy. Accessibility implementation knowledge is key to enabling
developers to build accessible software, i.e., software that can be
used by people with disabilities either directly or through the means
of assistive technology. Most assistive technologies include soft-
ware components and many of them are completely digital. Given
that developers are pivotal in crafting assistive technology, it is
imperative for computing students to learn about the relationship
between software design, accessible software development, and
how systems can support assistive technologies.

(1) CS Core
(a) Accessibility requirements. Identify and comprehend

specific accessibility requirements relevant to users with
disabilities.

(b) Software architecture. Understand the impact of soft-
ware architecture on accessibility. Evaluate and select
frameworks and libraries that support accessibility fea-
tures and conform to accessibility standards [40].

(c) Software implementation. Select templates or starter
code that follow accessibility best practices. For exam-
ple, the default mobile application in Android Studio in-
cludes accessible coding practices. Customize accessible
templates for specific requirements while maintaining the
accessibility.

(d) Assistive technology architecture. Understand the over-
all architecture of one example of assistive technology. Un-
derstand how an assistive technology, e.g., a screen reader,
interfaces with operating systems and web browsers.

(2) KA Core
(a) Accessibility guidelines. Where appropriate, apply ac-

cessibility guidelines (such as WCAG) to developed soft-
ware. For example, implement keyboard navigation so that
contents are accessed in a logical order.

(b) ARIA: Accessible Rich Internet Applications. Under-
stand the purpose of ARIA and explain the role of ARIA at-
tributes in enhancing the accessibility of web content. Iden-
tify common ARIA roles such as roles for buttons, links,
landmarks, and attributes like aria-label, aria-labelledby,
and aria-describedby. Understand when ARIA should and
should not be applied.

(c) Assistive technology code comprehension. Analyze
the code components of an open source assistive technol-
ogy, such as NVDA, the open source screen reader [8].

(d) Assistive technology configuration files. Locate the
various assistive technology setting and configuration files
for an assistive technology within an operating system.
Understand the meaning of the different attributes and
values of assistive technology settings.

(3) Non-Core
(a) Implement accessibility tools. Develop tools that aid in

the creation of accessible software. For example, create an
accessibility linter that can analyze code for accessibility

327

Beyond HCI: The Need for Accessibility Across the CS Curriculum SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

bugs and generate a report to developers. Ensure these
tools are also accessible.

(b) Accessibility APIs. Be knowledgeable of and know how
to use systems’ accessibility API, such as Apple accessibil-
ity API [3] and Java accessibility API [11].

(c) Accessibility documentation. Outline the architectural
decisions and strategies taken to achieve accessibility goals.
Document accessibility features in a software project and
communicate these features to stakeholders.

(d) Assistive technology implementation. Implement an
improvement to an existing assistive technology. For ex-
ample, implement an extension or add-on to NVDA.

(e) Assistive technology hardware interfaces. Understand
assistive technology hardware, e.g., adaptive keyboard [6],
and how they connect to and interact with standard proto-
cols, e.g., Bluetooth and USB. Specifically, understand how
the operating system and software applications recognize
and work with adaptive tools.

(f) Assistive technology documentation. Create documen-
tation detailing the components and functionalities of one
example of an assistive technology.

3.4 Knowledge Unit 4 - Accessibility Evaluation
Software products must be tested for accessibility to ensure it can
be used effectively by individuals with disabilities, either directly or
using an assistive technology. Accessibility evaluation involves test-
ing software using a range of means, including automated, manual,
and testing with people with disabilities. It also includes testing as-
sistive technology for functional and non-functional requirements.
Beyond the US, there is a growing global acknowledgement of
accessibility laws and regulations that mandate accessibility for
digital products [17, 18]. Adhering to these regulations necessitates
proficiency in effective testing methods. CS curriculum should en-
compass knowledge and skills in accessibility testing that not only
meets legal requirements, but also actively seeks disabled users’
feedback and that enhances usability for all users.

(1) CS Core
(a) Automated accessibility testing. Recognize and use

automated accessibility testing tools, such as the open
source accessibility testing engine Axe [15] and the web
evaluation suite WAVE [12].

(b) Testing with an assistive technology. Evaluate soft-
ware accessibility by using an assistive technology, e.g.,
screen reader and a keyboard for navigation.

(c) Usability testing. Define usability testing and explain its
significance in evaluating software accessibility from the
perspective of individuals with disabilities. Specify tech-
niques for collecting feedback from users with disabilities
during testing, including surveys and interviews.

(d) Write accessibility reports. Document testing results
to be understandable and actionable.

(2) KA Core
(a) Testing tools. Compare automated testing tools and un-

derstand their limitations. Set up and configure accessi-
bility testing tools to assess websites, applications, and
documents.

(b) Testing reports. Interpret automated accessibility testing
reports. Understand the potential impact of issues on users.
Document needed improvements based on the test results.

(c) Unit testing. Write test cases that catch accessibility de-
fects, e.g., write a unit test to detect UI elements missing
alt text.

(d) User tasks. Design user tasks that represent the typical
interactions users perform using assistive technology such
as switch devices or voice recognition.

(e) Usability of assistive technology. Evaluate the usability
of a few assistive technologies, whether they are software
or hardware devices.

(3) Non-Core
(a) Test planning. Create a test plan that compliments au-

tomated testing tools with other testing approaches, and
that evaluates the software for users with different types
of disabilities, e.g., testing plan for blind users, or for users
with motor disabilities.

(b) Accessibility testing integration. Integrate automated
accessibility tests into continuous integration and contin-
uous deployment (CI/CD) pipelines.

(c) Test results. Prioritize and remediate detected accessibil-
ity issues.

(d) Assistive technology testing. Test assistive technolo-
gies for bugs. Evaluate the usability of an existing assis-
tive technology with users with disabilities. Evaluate non-
functional requirements of assistive technologies such as
security and performance.

3.5 Knowledge Unit 5 - Accessibility Profession
and Continuous Learning

Within software professions, accessibility skills are required for
both general software professions (e.g., developer, tester), as well as
accessibility-specialized roles [42]. Consequently, it is imperative
for CS curricula to overview the breadth and depth of the required
skills in these two contexts. Furthermore, maintaining up-to-date ac-
cessibility knowledge is important as accessibility standards, tools,
and assistive technologies continues to evolve. The emergence of
new technologies bring opportunities and challenges for people
with disabilities requiring constant consideration by software pro-
fessionals. Therefore, continuous and extracurricular accessibility
learning shall be integrated into the CS curriculum.

(1) CS Core
(a) Professional accessibility skills. Understand the acces-

sibility skills expected in general technology roles. Recog-
nize the need to work collaboratively with accessibility
experts and people with disabilities to ensure accessible
technology.

(b) Accessibility of emerging technology. Understand the
accessibility support and limitations of emerging tech-
nologies, such as AI-based systems, virtual reality, and
wearable devices. Apply established accessibility princi-
ples and guidelines to emerging technologies, ensuring
inclusion from the outset.

(2) KA Core

328

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Yasmine N. Elglaly, Catherine M. Baker, Anne Spencer Ross, & Kristen Shinohara

(a) Accessibility specialization. Differentiate between
accessibility-specialized positions in industry and their
required skills [14, 22].

(b) Awareness of accessibility and disability communi-
ties. Identify and locate local and online accessibility ad-
vocacy groups, disability-focused communities, organiza-
tions, and forums.

(c) Evaluate accessibility of emerging technology. Iden-
tify the accessibility implications of emerging technolo-
gies. Recognize the unique accessibility challenges that
emerging technologies pose for disabled people.

(3) Non-Core
(a) Accessibility advocacy. Develop advocacy skills to pro-

mote accessibility awareness and integration in organiza-
tions and projects.

(b) Accessibility certification. Recognize accessibility pro-
fessional certifications [28, 54] and are required for some
accessibility expert positions [42].

(c) Community service. Understand the role of comput-
ing in community service with focus on the disability
community. Create a plan for connecting the computing
professionals with disability communities.

(d) Improve accessibility of emerging technology. Create
a plan to address accessibility limitations in emerging
technologies for users with disabilities.

(e) Continuous learning. Be familiar with accessibility aca-
demic and professional resources and communities to stay
informed about evolving accessibility standards and tools
[1, 9, 19].

4 DISCUSSION

4.1 Evolution of Accessibility Learning
Accessibility education in computing started as stand alone assign-
ments [41] and single courses [30]. It has evolved to become part of
some HCI and web design courses [16, 53], and in rare cases, a part
of the curriculum [52]. These efforts show the enduring need for
accessibility education and the benefits of accessibility in industry
and CS departments [31]. For these reasons, we expect comprehen-
sive coverage of accessibility knowledge and skills across the CS
curriculum is necessary and viable [23]. Further, this integration
is poised to bridge the accessibility skills gap between industry
needs and academic outcomes [46], while concurrently enhancing
the overall climate of inclusion of CS programs, particularly for
students from underrepresented backgrounds [31].

The proposed learning objectives serve as a foundational blue-
print for integrating accessibility across the CS curriculum. This
outline provides structure for the ongoing efforts to develop curric-
ular elements and integrate them into courses. In other words, this
document outlines the what of accessibility across CS and can struc-
ture efforts to explore how to integrate into the curriculum. These
objectives will need to be updated to align with evolving technology
and the changing requirements of individuals with disabilities. Ad-
ditionally, it will be necessary to revisit how objectives are mapped
to fundamental and advanced domains among ever-changing ac-
cessibility tools, which may impact the level of mastery required.

Continuous engagement among computing educators, industry ex-
perts, accessibility and disability researchers, and advocates should
drive ongoing refinement of these learning objectives.

4.2 Achieving the Accessibility Learning
Objectives

Effectively weaving accessibility throughout CS courses across the
curriculum necessitates systemic institutional endorsement. Gen-
eral computing programs are encouraged to, at minimum, integrate
the core accessibility learning objectives into their courses. Then,
they can add the knowledge area and non-core accessibility learning
objectives to their selected concentrations accordingly. For some of
the accessibility learning objectives described in this paper, there
exist suggestions regarding their potential integration within spe-
cific CS courses [37, 47]. However, there remains a need for further
research to determine the most appropriate “home courses” for var-
ious accessibility learning objectives, particularly those that might
not necessarily align with HCI courses. Our Knowledge Area helps
motivate and guide those endeavors.

It is equally important that CS instructors receive training to ef-
fectively teach accessibility topics. Faculty training can be through
professional development opportunities [35, 44]. Additionally, sev-
eral ongoing projects are working on producing accessibility teach-
ing materials [13, 19], which CS instructors can choose from and
adapt for their courses. In these efforts, HCI-related accessibility
learning objectives were used alongside various pedagogical ap-
proaches such lectures, projects, and games [24, 27, 45, 47]. For
non-HCI focused learning objectives, current accessibility educa-
tion research suggests using programming assignments to infuse
accessibility into existing core CS courses such as data structures
and computer systems [34]. More research is needed to assess the
most effective pedagogical approaches for achieving accessibility
learning outcomes in core courses.

5 CONCLUSION
This paper underscores the necessity of comprehensively teach-
ing accessibility in computer science curricula, beyond HCI. We
offer a set of knowledge units with example learning objectives
that are based on industry demands and aligned with the CS2023
curriculum model. We acknowledge the road ahead is multifaceted,
requiring collaboration between academia, industry, and the dis-
ability community. Adopting these learning objectives can bridge
the accessibility skills gap evident between industry needs and aca-
demic outcomes and promote more inclusive computing education.

6 ACKNOWLEDGMENT
This work is supported by the United States National Science Foun-
dation under grants #2121606, #2121428, #2121549, Henry Luce
Foundation - Clare Boothe Luce Fund, and Swanson Fellowship
from Bucknell University.

REFERENCES
[1] [n. d.]. AccessComputing. https://www.washington.edu/accesscomputing/
[2] [n. d.]. ACM Code of Ethics and Professional Conduct. https://www.acm.org/code-

of-ethics
[3] [n. d.]. Apple Accessibility. Make your apps accessible to everyone who uses

Apple devices. https://developer.apple.com/documentation/accessibility

329

https://www.washington.edu/accesscomputing/
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://developer.apple.com/documentation/accessibility

Beyond HCI: The Need for Accessibility Across the CS Curriculum SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

[4] [n. d.]. Disability. World Health Organization. https://www.who.int/health-
topics/disability

[5] [n. d.]. Google Accessibility. https://www.google.com/accessibility/
[6] [n. d.]. Keyboard and mouse alternatives and adaptations. https://abilitynet.org.

uk/factsheets/keyboard-and-mouse-alternatives-and-adaptations
[7] [n. d.]. Microsoft Inclusive Design. https://inclusive.microsoft.design/
[8] [n. d.]. NV Access. https://www.nvaccess.org/
[9] [n. d.]. Special Interest Group on Accessible Computing. https://www.sigaccess.

org/
[10] [n. d.]. Teach Access Accessibility Skills Hiring Toolkit. https://teachaccess.

github.io/accessibility-skills-hiring-toolkit/
[11] [n. d.]. The Java Accessibility API. https://docs.oracle.com/cd/E17802_01/j2se/

javase/technologies/accessibility/docs/jaccess-1.3/doc/core-api.html
[12] [n. d.]. WAVE Web Accessibility Evaluation Tools. https://wave.webaim.org/
[13] 2021. Including Accessibility in CS Education. https://accessibilityeducation.

github.io/
[14] 2022. Teach Access. Accessible Technology Skills Gap. https://teachaccess.org/

accessibility-skills-gap/
[15] 2023. Axe-core. Accessibility engine for automated Web UI testing. https:

//github.com/dequelabs/axe-core original-date: 2015-06-10T15:26:45Z.
[16] 2023. Computer Science Curricula 2023. CS2023 Version Beta. https://csed.acm.

org/cs2023-beta/
[17] 2023. Fact Sheet: Notice of Proposed Rulemaking on Accessibility of Web

Information and Services of State and Local Government Entities. https:
//www.ada.gov/notices/2023/07/20/web-nprm/

[18] 2023. Global Law and Policy. Retrieved 2023-08-18 from https://www.lflegal.
com/global-law-and-policy/

[19] 2023. Teach Access website. https://teachaccess.org/
[20] 2023. WebAIM: The WebAIM Million - The 2023 report on the accessibility of

the top 1,000,000 home pages. https://webaim.org/projects/million/
[21] Demosthenes Akoumianakis and Constantine Stephanidis. 1989. Universal De-

sign in HCI: A critical review of current research and practice. Engineering and
Construction 754 (1989).

[22] Shiri Azenkot, Margot J. Hanley, and Catherine M. Baker. 2021. How Accessibility
Practitioners Promote the Creation of Accessible Products in Large Companies.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (April 2021),
1–27. https://doi.org/10.1145/3449222

[23] Catherine M. Baker, Yasmine N. Elglaly, Anne Spencer Ross, and Kristen Shino-
hara. 2022. Including Accessibility in Computer Science Education. In Proceedings
of the 24th International ACM SIGACCESS Conference on Computers and Acces-
sibility (ASSETS ’22). ACM, New York, NY, USA, 1–5. https://doi.org/10.1145/
3517428.3550404

[24] Catherine M. Baker, Yasmine N. Elglaly, and Kristen Shinohara. 2020. A Sys-
tematic Analysis of Accessibility in Computing Education Research. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for Computing Machinery, New York, NY, USA, 107–113.
https://doi.org/10.1145/3328778.3366843

[25] Benjamin S Bloom, Max D Engelhart, EJ Furst, Walker H Hill, and David R
Krathwohl. 1956. Handbook I: cognitive domain. New York: David McKay (1956).

[26] James I. Charlton. 1998. Nothing About Us Without Us: Disability Oppression and
Empowerment. University of California Press. Google-Books-ID: ohqff8DBt9gC.

[27] Paula Conn, Taylor Gotfrid, Qiwen Zhao, Rachel Celestine, Vaishnavi Mande,
Kristen Shinohara, Stephanie Ludi, and Matt Huenerfauth. 2020. Understanding
the Motivations of Final-year Computing Undergraduates for Considering Ac-
cessibility. ACM Transactions on Computing Education 20, 2 (June 2020), 1–22.
https://doi.org/10.1145/3381911

[28] CPACC [n. d.]. Certified Professional in Accessibility Core Competencies. https:
//www.accessibilityassociation.org/s/certified-professional

[29] Lennard J. Davis. 2010. Disability Studies Reader (third edition ed.). Taylor and
Francis, New York, NY.

[30] Yasmine N. Elglaly. 2020. Teaching Accessibility to Software Engineering
Students. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (SIGCSE ’20). ACM, New York, NY, USA, 121–127. https:
//doi.org/10.1145/3328778.3366914

[31] Rosalinda Garcia, Patricia Morreale, Lara Letaw, Amreeta Chatterjee, Pankati
Patel, Sarah Yang, Isaac Tijerina Escobar, Geraldine Jimena Noa, and Margaret
Burnett. 2023. “Regular” CS × Inclusive Design = Smarter Students and Greater
Diversity. ACM Transactions on Computing Education 23, 3 (Sept. 2023), 1–35.
https://doi.org/10.1145/3603535

[32] Megan Hofmann, Devva Kasnitz, Jennifer Mankoff, and Cynthia L Bennett.
2020. Living Disability Theory: Reflections on Access, Research, and De-
sign. In Proceedings of the 22nd International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’20). ACM, New York, NY, USA, 1–13.
https://doi.org/10.1145/3373625.3416996

[33] W3C Web Accessibility Initiative (WAI). [n. d.]. WCAG 2 Overview. https:
//www.w3.org/WAI/standards-guidelines/wcag/

[34] Lin Jia, Yasmine N. Elglaly, Catherine M. Baker, and Kristen Shinohara. 2021.
Infusing Accessibility into Programming Courses. In Extended Abstracts of
the 2021 CHI Conference on Human Factors in Computing Systems (CHI EA
’21). Association for Computing Machinery, New York, NY, USA, 1–6. https:
//doi.org/10.1145/3411763.3451625

[35] Saba Kawas, Laura Vonessen, and Amy J. Ko. 2019. Teaching Accessibility: A
Design Exploration of Faculty Professional Development at Scale. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education. ACM,
Minneapolis MN USA, 983–989. https://doi.org/10.1145/3287324.3287399

[36] Richard Ladner, Amy Ko Ko, and Kristen Shinohara. 2022. Integrat-
ing Accessibility and Disability into the Computing Curriculum | DO-
IT. https://www.washington.edu/doit/integrating-accessibility-and-disability-
computing-curriculum

[37] Richard E Ladner, Stephanie Ludi, and Robert J Domanski. 2023. Teaching about
Accessibility in Computer Science Education (DRAFT 1). (2023).

[38] Sarah Lewthwaite, Sarah Horton, and Andy Coverdale. 2023. Researching Ped-
agogy in Digital Accessibility Education. ACM SIGACCESS Accessibility and
Computing 134 (2023). Publisher: ACM New York, NY, USA.

[39] Simi Linton. 1998. Claiming Disability: Knowledge and Identity. NYU Press.
Google-Books-ID: IxUVCgAAQBAJ.

[40] Michael Longley and Yasmine N Elglaly. 2021. Accessibility support in web
frameworks. In Proceedings of the 23rd International ACM SIGACCESS Conference
on Computers and Accessibility. 1–4.

[41] Stephanie Ludi. 2007. Introducing Accessibility Requirements through External
Stakeholder Utilization in an Undergraduate Requirements Engineering Course.
In 29th International Conference on Software Engineering (ICSE’07). 736–743. https:
//doi.org/10.1109/ICSE.2007.46 ISSN: 1558-1225.

[42] Lilu Martin, Catherine Baker, Kristen Shinohara, and Yasmine N. Elglaly. 2022.
The Landscape of Accessibility Skill Set in the Software Industry Positions. In
Proceedings of the 24th International ACM SIGACCESS Conference on Computers
and Accessibility (ASSETS ’22). ACM, New York, NY, USA, 1–4. https://doi.org/
10.1145/3517428.3550389

[43] Microsoft. 2018. Microsoft Design. https://www.microsoft.com/design/inclusive/
[44] Christa Miller. 2023. Accessibility Within Professional Development: Two Promis-

ing Practices. Journal of Postsecondary Education & Disability 36, 1 (2023). ISBN:
2379-7762.

[45] Nidhi Rajendra Palan, Vicki L. Hanson, Matt Huenerfauth, and Stephanie Ludi.
2017. Teaching Inclusive Thinking in Undergraduate Computing. In Proceedings of
the 19th International ACM SIGACCESS Conference on Computers and Accessibility.
ACM, Maryland USA, 399–400. https://doi.org/10.1145/3132525.3134808

[46] Rohan Patel, Pedro Breton, Catherine M. Baker, Yasmine N. Elglaly, and Kristen
Shinohara. 2020. Why Software is Not Accessible: Technology Professionals’
Perspectives and Challenges. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems (CHI EA ’20). ACM, New York, NY, USA,
1–9. https://doi.org/10.1145/3334480.3383103

[47] Cynthia Putnam, Maria Dahman, Emma Rose, Jinghui Cheng, and Glenn Brad-
ford. 2016. Best Practices for Teaching Accessibility in University Classrooms:
Cultivating Awareness, Understanding, and Appreciation for Diverse Users.
ACM Transactions on Accessible Computing 8, 4 (May 2016), 1–26. https:
//doi.org/10.1145/2831424

[48] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2020.
An epidemiology-inspired large-scale analysis of android app accessibility. ACM
Transactions on Accessible Computing (TACCESS) 13, 1 (2020), 1–36.

[49] Sami Schalk. 2022. Black disability politics. Duke University Press.
[50] Kristen Shinohara, Cynthia Bennett, Jacob Wobbrock, and Wanda Pratt. 2017.

Teaching Accessibility in a Technology Design Course. In Proceedings of The 12th
International Conference on Computer Supported Collaborative Learning (CSCL
’17). International Society of the Learning Sciences, Philadelphia, PA, 239–246.
https://cscl17.files.wordpress.com/2017/06/finalvol1cscl2017.pdf

[51] Kristen Shinohara, Saba Kawas, Amy J. Ko, and Richard E. Ladner. 2018. Who
Teaches Accessibility? A Survey of U.S. Computing Faculty. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (SIGCSE ’18).
ACM, New York, NY, USA, 197–202. https://doi.org/10.1145/3159450.3159484

[52] Annalu Waller, Vicki L. Hanson, and David Sloan. 2009. Including accessibility
within and beyond undergraduate computing courses. In Proceedings of the 11th
international ACM SIGACCESS conference on Computers and accessibility. ACM,
Pittsburgh Pennsylvania USA, 155–162. https://doi.org/10.1145/1639642.1639670

[53] Ye Diana Wang. 2012. A holistic and pragmatic approach to teaching web
accessibility in an undergraduate web design course. In Proceedings of the 13th
annual conference on Information technology education. ACM, Calgary Alberta
Canada, 55–60. https://doi.org/10.1145/2380552.2380568

[54] WAS 2022. Web Accessibility Specialist. Retrieved August 18, 2023 from https:
//www.accessibilityassociation.org/s/wascertification

[55] Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Gajos, Susumu Harada, and
Jon Froehlich. 2011. Ability-Based Design: Concept, Principles and Examples.
ACM Transactions on Accessible Computing 3, 3 (April 2011), 9:1–9:27. https:
//doi.org/10.1145/1952383.1952384

330

https://www.who.int/health-topics/disability
https://www.who.int/health-topics/disability
https://www.google.com/accessibility/
https://abilitynet.org.uk/factsheets/keyboard-and-mouse-alternatives-and-adaptations
https://abilitynet.org.uk/factsheets/keyboard-and-mouse-alternatives-and-adaptations
https://inclusive.microsoft.design/
https://www.nvaccess.org/
https://www.sigaccess.org/
https://www.sigaccess.org/
https://teachaccess.github.io/accessibility-skills-hiring-toolkit/
https://teachaccess.github.io/accessibility-skills-hiring-toolkit/
https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/accessibility/docs/jaccess-1.3/doc/core-api.html
https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/accessibility/docs/jaccess-1.3/doc/core-api.html
https://wave.webaim.org/
https://accessibilityeducation.github.io/
https://accessibilityeducation.github.io/
https://teachaccess.org/accessibility-skills-gap/
https://teachaccess.org/accessibility-skills-gap/
https://github.com/dequelabs/axe-core
https://github.com/dequelabs/axe-core
https://csed.acm.org/cs2023-beta/
https://csed.acm.org/cs2023-beta/
https://www.ada.gov/notices/2023/07/20/web-nprm/
https://www.ada.gov/notices/2023/07/20/web-nprm/
https://www.lflegal.com/global-law-and-policy/
https://www.lflegal.com/global-law-and-policy/
https://teachaccess.org/
https://webaim.org/projects/million/
https://doi.org/10.1145/3449222
https://doi.org/10.1145/3517428.3550404
https://doi.org/10.1145/3517428.3550404
https://doi.org/10.1145/3328778.3366843
https://doi.org/10.1145/3381911
https://www.accessibilityassociation.org/s/certified-professional
https://www.accessibilityassociation.org/s/certified-professional
https://doi.org/10.1145/3328778.3366914
https://doi.org/10.1145/3328778.3366914
https://doi.org/10.1145/3603535
https://doi.org/10.1145/3373625.3416996
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://doi.org/10.1145/3411763.3451625
https://doi.org/10.1145/3411763.3451625
https://doi.org/10.1145/3287324.3287399
https://www.washington.edu/doit/integrating-accessibility-and-disability-computing-curriculum
https://www.washington.edu/doit/integrating-accessibility-and-disability-computing-curriculum
https://doi.org/10.1109/ICSE.2007.46
https://doi.org/10.1109/ICSE.2007.46
https://doi.org/10.1145/3517428.3550389
https://doi.org/10.1145/3517428.3550389
https://www.microsoft.com/design/inclusive/
https://doi.org/10.1145/3132525.3134808
https://doi.org/10.1145/3334480.3383103
https://doi.org/10.1145/2831424
https://doi.org/10.1145/2831424
https://cscl17.files.wordpress.com/2017/06/finalvol1cscl2017.pdf
https://doi.org/10.1145/3159450.3159484
https://doi.org/10.1145/1639642.1639670
https://doi.org/10.1145/2380552.2380568
https://www.accessibilityassociation.org/s/wascertification
https://www.accessibilityassociation.org/s/wascertification
https://doi.org/10.1145/1952383.1952384
https://doi.org/10.1145/1952383.1952384

	Abstract
	1 Introduction
	2 Accessibility Education in the CS Curriculum
	2.1 The Future of Tech is Accessible
	2.2 Curricular Guidelines do not Comprehensively Cover Accessibility

	3 Accessibility Knowledge Area
	3.1 Knowledge Unit 1 - Disability Awareness
	3.2 Knowledge Unit 2 - Accessibility Design
	3.3 Knowledge Unit 3 - Accessibility Implementation
	3.4 Knowledge Unit 4 - Accessibility Evaluation
	3.5 Knowledge Unit 5 - Accessibility Profession and Continuous Learning

	4 Discussion
	4.1 Evolution of Accessibility Learning
	4.2 Achieving the Accessibility Learning Objectives

	5 Conclusion
	6 Acknowledgment
	References

