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ABSTRACT
Not all degree programs are created equal. Indeed, the structure,
prerequisites and overall complexity of some programs create bar-
riers that impede student success. Inspired by the methodology of
previous papers investigating the inverse relationship between cur-
ricular complexity and program quality, in this paper we investigate
the relationship between curricular complexity and the representa-
tion of women earning CS degrees. We created curricular maps of
60 computer science degrees and calculated measures such as pro-
gram complexity, course blocking, delay factor, and total math/CS
credits to understand complexity’s correlation with the representa-
tion of women CS majors. Our results show that degree complexity,
blocking factor, and delay factor are all inversely related to the
representation of women. In addition, we present the courses that
most commonly impede student progress and provide suggestions
to enhance degree programs based on the insights gained.
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1 INTRODUCTION
As computing educators, our goal is to ensure that all undergradu-
ate students can discover, thrive, and persist in the major to on-time
graduation. For the past two decades, educators have focused on
understanding the barriers to this goal, particularly for students
from populations historically marginalized in tech.1 Previous ef-
forts to understand (and mitigate) gaps in representation include
understanding the lack of community [11, 14, 16, 23, 26–28], social
stigma [30, 40], and institutional barriers such as not addressing the
distribution of prior coding experience in the introductory sequence
[6–8, 13, 39, 43]. In this paper, we examine how curricular complex-
ity can act as a structural barrier to students progressing through
the requirements of a computing degree, and we find that degree
complexity is inversely related to the representation of women
computing majors.

Our analysis utilizes metrics developed by the growing field of
curricular analytics, which facilitates the study of degree structure
and how it impacts student success. Using open source tools, re-
searchers can compare degrees across programs [18], and there
is a growing body of research on how degree complexity impacts
retention and student performance. [18–21, 33–37, 42].

We are interested in the role that curricular complexity plays in
the gender gap of computing [40, 44]. To that end, we examined
the Computer Science (CS) major degree plans at 60 universities.
Using a plan-of-study obtained from a university’s public-facing
website, we are able translate a school’s curriculum to a directed
acyclic graph, from which we can then compute quantitative met-
rics for each course and the overall curriculum. To determine the
relationship between gender diversity and degree complexity, we
segmented the schools by their representation of women comput-
ing graduates into three groups: high (above 20%),2 average (be-
tween 20% and 15%), and low (15% or below) and found that schools
with lower curricular complexity have a higher representation of
women graduates. We identified the similarities and differences
among the 60 programs, looking at which courses have the highest
blocking factor, the mean number of CS and math credits, and the

1Historically marginalized populations in computing include women, people with
disabilities, and Black/African American, Hispanic/LatinX, American Indian/Alaska
Native, Native Hawaiian/other Pacific Islander people.
2Women comprised 21.5% of U.S. computer science graduates in 2021 [38].
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minimum/maximum delay to graduation. From the analysis, we
form several concrete actionable recommendations to help schools
reduce unnecessary curricular complexity in their degrees.

In the remainder of this paper, we first review existing research
on curricular complexity in Section 2. In Section 3, we describe the
process of curricular analytics and common measures of curricular
complexity. In Section 4, we describe our experimental method-
ology, how we selected the 60 universities, and our assumptions
in determining their degree plans. Section 5 presents our results
including threats to their validity. In Section 6, we discuss the take-
aways for computing departments and our conclusions in Section 7.

2 RELATEDWORK
While the discipline of curricular analytics is new, a number of
works have explored eliminating unneeded barriers and reducing
time towards graduation. Johnson [22] proposed three policies to re-
duce time-to-degree: limiting credit creep, establishing clear degree
maps with proven course sequences, and guaranteeing the trans-
fer of courses within general education. While all are considered
best practices, they are not universally adopted, which means that
curriculum can still be a limiting factor for student achievement.

Klingbeil and Bourne [25] modified the prerequisite structure to
make calculus an optional requirement for first year engineering.
This had a positive affect on graduation rates and GPAs among
students from historically marginalized populations.

Wigdhal et al. [42] proposed using a directed graph to compare
degree programs based on Slim et al.’s [36] curricular network anal-
ysis. The set of authors for both of these papers together examined
total credits, required courses, delay, bottle necks, and pass/fail
rates. Using degree plan and course prerequisite data, Heileman
et al. [20] built degree maps using directed graphs to compare de-
lay factor, blocking factor, centrality, and complexity of programs.
They argue that these four measures can be comparable metrics
to guide program reform and simplification [18]. Slim et al. [34]
compared course sequences and GPA. Students who had more com-
plex semesters often had more delays due to failures and lower
GPAs, whereas students who balanced out their course sequences
had higher GPAs. They found an direct relationship between se-
mester complexity and success and retention. In later work, Slim et
al. [37] applied aMarkov DecisionModel to predict graduation rates
demonstrating that more complex semesters have higher dropout
rates. In follow up work, Slim et al. [33] applied a Bayesian Net-
work model of curricular maps to predict student success, showing
that curricular complexity has a direct impact on GPA. Heileman
et al. [19–21] mapped complexity to program rankings. While ac-
knowledging rankings are problematic [10, 15, 17], their results
show that higher ranked EE and CS programs are less complex.
They concluded that lower-ranked programs are relying on curric-
ular complexity to justify/enforce the preparation of their students.

3 CURRICULAR ANALYTICS
Curricular analytics is the study of academic program design and
layout. Figure 1 shows an example of a degree map generated
by the Curricular Analytics website.3 The degree map is built by
listing the courses required for graduation, and then connecting
3https://www.curricularanalytics.org/

the prerequisites for each course. From the resulting graph, we can
calculate four measures of complexity.

A course’s Blocking factor measures the extent to which the
course blocks a student’s ability to take other courses in the cur-
riculum, and is defined by the number of courses reachable from
the course node in the map. In Figure 1, the blocking factor for Data
Structures (DS) is 11 because there are 11 courses requiring DS.

The Delay factor of a course measures the maximum number of
courses that must be completed in sequential order. We can use
delay to identify the magnitude of the challenge a student might
face if they do not take a class early on in their time at university
or have to retake said class. Because delay factor does not account
for the availability of courses, including terms, enrollment caps,
and other “real world” factors, it should not be thought of as the
number of “semesters to graduate.” For Figure 1, the delay factor
for DS is six because the longest chain that requires DS is CS 0,
CS 1, DS, Software Development, Software Engineering, and a CS
Elective, meaning these six courses must be taken sequentially.

Centrality is the sum of the delay of all the paths containing that
course. If a course has no pre or post-requisites, its centrality is zero.
Courses with high centrality are usually those that departments see
as essential to the major. In Figure 1, DS has a centrality measure
of 39 which is the sum of the delay factors of the eight different
paths in the curricular map (4, 4, 4, 5, 5, 5, 6, 6).

The Structural Complexity of a course is a measure of the overall
complexity rating for a course, which is calculated as an unweighted
linear combination of it’s delay and blocking factors. In Figure 1, the
complexity of DS is 17 (6+11). Thismeasure does not evaluate course
content, but rather how the course’s placement in the program
impacts the overall program complexity.

Overall program complexity is defined as the sum of the indi-
vidual course complexities. For the plan in Figure 1 it is 175.

When comparing programs, it is important to look not only
at overall program complexity, but also at the individual course
measures, each of which provides insight into program design
and how “late” into their post-secondary experience students can
discover computer science and complete their degree within the
standard four years. Imagine a scenario in which a student discovers
computing in their second year. A highly complex degree would
likely discourage them from pursuing computing and, in particular,
a high delay factor could make it impossible for them to graduate
on time. This hypothetical situation is a reality for many students
from populations historically marginalized in CS who are more
likely come to university without prior experience in computing
and therefore discover CS later on in their time at university.

4 EXPERIMENTAL METHODOLOGY
Our methodology follows that of Heileman et al. [21], in which they
randomly sampled 60 schools, partitioned them into three groups
of 20 schools based on their rankings, and ran an ANOVA test to
compare differences among group mean structural complexity. In
our approach, we created groups based on the representation of
women as measured by program graduation rates.
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Figure 1: Example Degree Map generated using Curricular Analytics [1].

4.1 School Selection
We collected data from the National Center for Education Statistics’
Integrated Postsecondary Education Data System (IPEDS) [38]. We
identified all Title 4 degree-granting schools in the United States
that have student bodies of 1000 or more students and graduated
at least 75 students in computer science CIP-codes (11.0701 and
11.0101) in 2021, resulting in a list of 200 schools. This list was
then sorted by percent of women computer science graduates in
2021.4 However, percent women can be a misleading number when
comparing programs, because some programs have more women
relative to the university overall population of women. For example,
consider two universities in which women represent 19% of CIP 11
graduates in a certain year. If the first has a representation of women
across all majors of 25% and the second 70%, then we consider the
problem of a lack of representation of women in CS in the second
university to be greater. Given this, we normalized the representa-
tion of CIP 11 women graduates relative to the overall population
at the university by scaling the numbers to the theoretical 50/50
split using the following formula:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑊𝑜𝑚𝑒𝑛 𝐶𝐼𝑃 11 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠
𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑊𝑜𝑚𝑒𝑛 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑠 𝑂𝑣𝑒𝑟𝑎𝑙𝑙

=
𝑥

50%

Using the examples above, the first university would have a nor-
malized representation of women of 38% and the second of 14%.

Using the normalized version, we randomly sampled 20 universi-
ties from each of three groups: schools with 20% of more women in
CS (Group 1); schools with 15-20% women (Group 2); and schools
with less than 15% women (Group 3).

4IPEDS only provides a binary representation, and the authors note the inherent bias.

4.2 Creating Degree Maps
To create the degree maps, we used publicly available plans of
study accessed from each university’s website, and information for
each class on its pre- and/or co-requisites. Typically, a university’s
website presents one sample plan of study along with a list of
requirements for the major. On average, building a degree map
took two hours, but could take much longer due to poor website
layouts. If the online material could not be accessed, we omitted
that university from our study; this resulted in three universities
being omitted from the original sample. Additionally, we removed
two universities because they did not require general education
credits, making it hard to compare their curriculum to other schools
in the sample. These five universities were replaced with randomly
selected programs from the original lists to ensure equal sample
sizes among the three groups.

For each university, the degree map we created is an “optimized”
four-year plan. The degree map includes all required courses for
the CS major and general graduation requirements (distribution
("gen-ed") requirements and overall credit requirements). For each
required upper-division CS elective, we selected a particular course
with a bias toward classes without additional pre-requisites (e.g., we
rarely chose computer graphics as often there are additional math
prerequisites). Because the complexity of a degree varies based on
which CS electives are selected, and our focus was to analyze the
lowest complexity CS degree plan for that university, we chose the
CS electives that led to the “quickest path to graduation.” Most plans
of study assume that a student is calculus ready, and thus we made
this assumption for all universities to create fair comparisons. We
further assumed that the student did not have any AP credits. We
discuss possible threats to our results by making these assumptions
in Section 5.4.
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Table 1: Curricular complexity for three groupings of uni-
versities based on their representation of women graduating
with a CS degree.

% women Mean
Complexity

Median
Complexity

Median Longest
Delay Factor

ABET
Accredited

Group 1 n >20% 162.7 ± 12.8 150 5 9
Group 2 20% >= n >15% 218.9 ± 13.1 214 6 11
Group 3 15% >= n 219.6 ± 14.4 214 6 13

4.3 Analysis
For each university we computed: the structural complexity, the
blocking of four core classes, the longest delay to graduation, the to-
tal number of CS credits required, and the number of math, CS, and
total credits required. We observed no consensus in how schools
listed their credit-to-hour ratio (most universities counted one
course as three to four credits but some schools used a one-to-
one or one-to-eight ratio). As such, we normalized total credits
for all CS and math courses in a plan to 120 credits. Normalizing
allowed the total number of credits to have meaning when com-
paring programs, such that three credits is roughly three weekly
lecture hours. We then performed an ANOVA test to check for
significance differences among the groups in structural complexity,
and normalized CS credits and math credits.

5 RESULTS
Our primary inquiry is whether there is a relationship between the
structural complexity of CS curricula and representation of women
(as measured by the percentage of women 2021 CIP 11 graduates
per IPEDS). We measured whether or not curricular complexity and
total number of required CS credits were significantly correlated
with the representation of women in the program. We also explored
the blocking factor for the most common courses.

5.1 Curricular Complexity
We observed that schools with higher representation of women
have lower structural complexity. To determine if the difference is
statistically significant we ran an ANOVA to compare groups [12].
The result was statistically significant (F-Statistic of 6.3203 and 𝑝
value of 0.003); higher curricular complexity is correlated with lower
representation of women. Figure 2 shows the degree complexity of
the three groups as box plots, where the box shows the central 50%
of the data, with the bottom of the box being the lower quartile (the
lower 25% of the central 50%), the top being the upper quartile (the
upper 25% of the central 50%) and the line in the “middle" being the

Figure 2: Degree complexity among groups.

Figure 3: Required CS credits by group.

median. The whiskers show the range of the data with the highest
whisker being the upper quartile plus the interquartile range (the
upper quartile minus the lower quartile) and the lowest whisker
being the lower quartile minus the interquartile range. Anything
else outside of that range is labeled as an outlier and displayed on
the graph with a dot outside the box. The dot inside each box shows
the mean value, which is also reported in Column 3 of Table 1.

Table 1 shows the mean and median structural complexity and
the median longest delay, which is the median length of the longest
prerequisite chain for each group. The maximum delay was eight,
which we observed in five of the 60 schools. Regardless of whether
a school is on a semester or quarter schedule, a shorter delay is
beneficial to on-time graduation, allowing students to discover CS
later in college and still graduate on time.

5.2 Total CS Credits and Total Math Credits
Figures 3 and 4 show box plots for total number of required CS
credits and math credits. For CS, the mean number of credits is 50,
53 and 57 for Groups 1, 2 and 3 respectively – these do not include
the math requirements. The difference between groups was not
statistically significant (F-Statistic of 2.225 and 𝑝 value of 0.117).
The mean required number of CS credits across all schools is 53.5 ±
10.22 credits, with a median of 53. CS programs with higher gender
diversity (Group 1) had greater variability in CS credits including
multiple options and pathways, which we discuss in Section 6.

The difference in the total required math credits was not statisti-
cally significant across groups, however, there was large variability
within each group. The median required number of math credits
across all schools was 14 and the mean was 13.31 ± 3.9. Most pro-
grams required the same set of core courses: {Calc 1, CS 1, CS 2,
Discrete Math/Structures, Software Engineering, Algorithms, Data
Structures}. Programs varied widely on whether or not Statistics
and/or Linear Algebra were included, but 54 of the 60 required at

Figure 4: Required math credits by group.
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Table 2: Blocking factor for introductory courses.

Course Group Mean Median
1 12.6 ± 3.0 13

CS 1 2 14.7 ± 3.4 14
3 16.1 ± 3.2 15
1 9.4 ± 3.9 10

CS 2 2 12.4 ± 3.6 12
3 12.4 ± 3.6 12
1 10.2 ± 8.3 9

Calc 1 2 14.2 ± 6.4 15
3 13.7 ± 9.0 13
1 7.6 ± 4.7 7

Discrete 2 8.3 ± 4.1 8
3 7.9 ± 4.6 8

least one of the two. Every school included Calc 1 in their curricu-
lum and 50 of the 60 schools required Calc 2. Shown in Table 1
there was not a significant difference between ABET and non-ABET
schools. Thus we cannot conclude from this experiement that ABET
requirements impact complexity.

5.3 Blocking Courses
Blocking courses are those that prevent progression in the degree.
For every degree studied, the top blocking courses include a subset
of {CS 1, CS 2, Calc 1, Discrete Structures}. There was a statistically
significant difference among Groups 1, 2 and 3 in their blocking
factor with 𝑝 < 0.05 at 𝑝 = 0.0004 and 𝑝 = 0.02 for CS 1 and CS
2, respectively. Table 2 shares the mean, standard deviation, and
median for each course calculated for each of the three groups. The
blocking factor of CS 1 will necessarily be larger than CS 2, because
CS 1 is required for CS 2. Figure 5 shows a box plot of the blocking
factor for each group for CS1.

Figure 6 looks at the distribution of the blocking factor over
all 60 schools for each of the four courses. We can see that for all
groups CS 1 has the highest blocking factor of all courses (which
is to be expected) and that Calc 1’s blocking factor has the highest
variability across schools. Calc 1 has a high blocking factor but a
much larger standard deviation as some schools have it as a pre-
or co-requistite to CS 1, and the majority have it as a pre- or co-
requisite to discrete math: 28 schools had Calc 1 as a prerequisite
for one of the two, and 14 had Calc 1 as a prerequisite for both.

5.4 Possible Threats to Validity
We address three potential concerns to the validity of our results.
First, we note that higher-ranked schools have a greater percent-
age of women graduating; nine of the 20 schools in Group 1 are

Figure 5: Blocking factor for CS 1 by group.

Figure 6: Blocking for intro courses across all 60 schools.

top twenty schools as measured by US News CS Rankings [31].
However, the remaining schools in Group 1 have a mean rank of
83.6± 48.7, and a median rank of 72. A correlation test across all 60
programs between school rank and percentage of women produced
a -0.36 correlation coefficient indicating little correlation. While it
is likely that schools with higher prestige attract and admit more
women to their CS programs, the variation in rankings shows that
it is possible for all schools to increase the representation of women
if they reduce institutional barriers, such as curricular complexity.

Second, we constructed each degree plan with four assumptions:
1) students come to university in their first year; 2) they are calculus
ready, 3) they chose electives with the fewest prerequisites and 4)
they comewith zero AP credits. The first three assumptions lead to a
best case scenario with respect to time to graduation and complexity.
The fourth is a non-best case scenario, which we chose because
there is no consistency as to how universities treat AP credits and
many US public high schools do not have the resources to offer AP
classes. In the real world, the complexity of a degree will clearly
vary from student to student. However, making these assumptions
across all 60 schools allows us to compare across schools.

Third, when we grouped schools without normalization and ran
an ANOVA on curricular complexity, we found the same inverse
relationship between curricular complexity and representation of
women (𝑝 = 0.005). However, this did not explicitly account for the
differences among schools in the overall representation of women
(some have 65+%). Context matters and yet the CS education re-
search is not consistent in how to account for a population’s rep-
resentation in computing degrees relative to their representation
in the university. The forthcoming paper by Barr et al attempts to
create this standard [5].

6 RECOMMENDATIONS
Comparing the different degree maps, commonalities emerged that
point to how programs can evaluate and make changes to their
degree. We provide five recommendations to consider.

Minimize delay factor for transfer students. Recent studies
have found that close to 50% of the student population at state
universities are internal or external transfer students [32]. Very
few end up graduating in 2+2 years. Indeed, students’ number one
concern when transferring is delay to graduation [24]. Examining
the delay factor can help reduce course sequences acting as barriers,
ensuring there are suitable opportunities for transfer students.
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Eliminate choke points that prevent student progress. Cur-
ricular graphs make it possible to quickly identify “choke points”
in a degree plan. A course with high delay, blocking, and central-
ity would end up preventing students from progressing through
a program with a single failure. We recommend reducing choke
points by offering pathways, such as those demonstrated by some
programs who had algorithms, software engineering, and systems
pathways throughout their degree. This means a student struggling
in one pathway can continue to progress in another pathway, rather
than feeling like their only option is to leave the major entirely.

Offer flexibility for when calculus must be completed. Calcu-
lus I has the greatest range of variability of blocking; depending on
the school it could either have the largest blocking factor or block
nothing at all. In other words, there is marked lack of consensus
among universities with regard to the placement of calculus within
the CS curriculum. However, if a degree places Calculus 1 before
CS 1 in an effort to ensure students have “mathematical maturity”,
Calculus 1 then becomes a barrier to the entire CS curriculum. In
their previous reports, the ACM curriculum committee does not
recommend Calculus 1 as a prerequisite for CS 1 or for Discrete
Structures [2–4, 41]. In the draft of the 2023 report,5 the ACM rec-
ommendations emphasise the growing dependence on mathematics
with topics like machine learning gaining more prominence, but
does not recommend Calculus 1 as a prerequisite for CS 1 or Dis-
crete Structures. Instead, they recommend that Pre-Calculus be the
prerequisite for Discrete Structures and that there be no math pre-
requisite for CS 1 [29]. Our data supports the stance that Calculus 1
need not be a prerequisite for lower-level CS courses.

Require a small set of core requirements to increase flexibil-
ity.We observe that programs that made their entire set of lower di-
vision courses the prerequisite for any single upper division course
have extremely high complexity and often low representation of
women. In contrast, programs with higher representation of women
had significantly greater flexibility. For Group 1, core CS courses6
made up 26% of the total credits required whereas, for Group 3,
they make up 33% of total credits. Group 1 also had more instances
of permitting flexibility within the core by allowing one of multiple
courses to fill a requirement. Group 1 is characterized with more
CS upper division electives with minimal prerequisites (often only
Data Structures). In these programs, if an additional requirement
for a particular course was needed (e.g., Linear Algebra), that is
where it appears in the prerequisite chain.

How course requirements and plans of study are commu-
nicated matters. When trained computer science advisors (e.g.,
one of the authors) struggle to build a degree plan from online
resources, students will most likely give up before they have a
sensible plan. Most plans of study are based on the assumptions
that all students are calculus ready, and that students know where
to find information relating to their field of study. In reality, this
information is often in multiple locations and presents conflicting
statements. Poor website design creates burdens for advisors and
students, and having only one sample plan of study can imply that
only students who fit that one path should be in the major. A best

5As reported on August 14, 2023.
6Any CS class that is explicitly required was counted as core.

practice is to have multiple, easy-to-find degree plans, each with
a different starting point. A program will be more welcoming if it
shows that students can start with different backgrounds and still
be successful in completing the degree.

7 CONCLUSIONS AND FUTUREWORK
In this paper we explored the relationship of representation of
women and curricular complexity for 60 CS degree programs. We
found that there is a relationship between the two, with less com-
plex programs having higher representation of women graduates.
Additionally, programs with higher representation of women have
lower blocking factors and delays. We found that the number of
math credits was similar among programs, but how those math
credits impacted blocking and delay differed.

In this paper, we did not address curricular complexity against
intersectional identity. How to accurately sample and compare
schools when diverse populations are influenced by regional de-
mographics, resource distribution, and cultural nuances requires
greater research. Promising avenues for future exploration include
the development of robust school sampling methodologies address-
ing the intricacies of often limited intersectional representation.

There are a handful of universities that offer interdisciplinary
computing degrees (often referred to as CS+X). For example, North-
eastern University offers 43 interdisciplinary computing majors and
University of Illinois Urbana-Champaign (UIUC) offers 14 interdis-
ciplinary computing degrees [9]. Because we used the graduation
rates for IPEDS CIP-codes 11.01 and 11.07, our results are limited to
within-discipline CS majors. At both Northeastern and UIUC, some
interdisciplinary computing majors have greater representation of
women than within-discipline majors and future research would
need to analyze the curricular complexity of such degrees and the
respective representation levels of women.

Ameasure missing from the curricular analytics tool is a measure
of flexibility and options. Using a single degree map, it is difficult to
measure student options. A promising area of future research could
be to expand these tools to give an idea of the strength of flexibility
and options in degree programs, and how attractive options are for
students from different backgrounds and intersectional identities.

Overall, the results and recommendations presented here are
meant to go in conjunction with previous work focusing on best
practices for increasing diversity. Curricular analytics is an impor-
tant method to help departments reduce unneeded barriers for all
students. Just as the discipline of computer science is evolving, so
too should the field’s analysis of curricular design.
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