
Using Embedded Xinu to Teach Operating Systems on Baremetal
RISC-V

Alexander Gebhard
Marquette University
Milwaukee, Wisconsin

alexander.gebhard@marquette.edu

Jack Forden
Marquette University
Milwaukee, Wisconsin

jack.forden@marquette.edu

Oliver Laufenberg
Marquette University
Milwaukee, Wisconsin

oliver.laufenberg@marquette.edu

Dennis Brylow
Marquette University
Milwaukee, Wisconsin

dennis.brylow@marquette.edu

ABSTRACT
RISC-V is an open computer architecture that has gained increas-
ing popularity in recent years. Companies such as Google, Nvidia,
and Huawei have all announced or developed CPUs based on the
RISC-V architecture. The increasing popularity of RISC-V along
with its simplicity make it an ideal platform for students to learn
low-level operating system concepts. We have ported Embedded
Xinu, a simple, lightweight, and education-focused operating sys-
tem, to a baremetal RISC-V board. Embedded Xinu has been used
to teach thousands of students operating systems over the past
two decades. This new port is the first education-focused operat-
ing system designed to run on baremetal RISC-V. In the following
sections, we describe the challenges in porting Embedded Xinu to
support the RISC-V architecture. We describe how practitioners can
adopt Embedded Xinu to teach low-level CS systems courses such
as operating systems. Finally, we reflect on our experience using
Embedded Xinu on RISC-V to teach operating systems in Spring
2023.
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1 INTRODUCTION
Embedded Xinu is a lightweight research and teaching-focused op-
erating system designed for simplicity. This simplicity has enabled
Xinu to be taught to thousands of students at numerous universi-
ties in both graduate and undergraduate courses. Embedded Xinu
was based on the Xinu operating system developed by Douglas
Comer [9] in the 1980s. In the mid 2000s, work on Embedded Xinu
refocused away from mini computers and x86-based PCs toward
RISC-based embedded consumer devices, such as PowerPC and
RISC-powered appliances. Due to its elegant, architecture-agnostic
design, Embedded Xinu has maintained the advantage of quickly
porting to new platforms and architectures. This has allowed Em-
bedded Xinu to continue to remain relevant in hands-on CS course
work with modern platforms and upcoming architectures. To date,
Embedded Xinu has run on a litany of hardware, but most notably
it has been ported to the Linksys WRT54GL, Linksys WRT160NL,
Raspberry Pi 1 B+, and a multicore implementation on Raspberry
Pi 3 B+ [4, 9, 10]. The venerable Embedded Xinu OS can also sup-
port virtualized platforms such as the QEMU [3] ARM and RISC-V
emulators, where physical hardware is impractical or prohibitively
expensive.

The contributions of this paper include a technical description
of porting a popular education-focused operating system (“OS”) to
the RISC-V architecture. We outline an example set of OS project
assignments for instructors to adopt and follow. Finally, we detail
our experience using this sequence of projects within an OS course
of 47 students in Spring 2023.

2 BACKGROUND
There are many different computer processor architectures such
as Intel x86, ARM, and MIPS. The x86 processor is classified as
a Complex Instruction Set Computer (CISC). With CISC systems,
a single assembly instruction can perform multiple tasks (such
as load from memory, perform arithmetic, set a register, or load
to memory). This further complicates CPU design and requires
developers, educators, and students to understand multiple syntax
patterns for one instruction.

ARM, much like MIPS and RISC-V, is designed using a Reduced
Instruction Set Computer (RISC) philosophy. RISC architectures
have a minimum, highly optimized set of assembly instructions.
This trade-off means that developers usually have to write more in-
structions for a given program than a CISC architecture. Embedded
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Xinu has been ported to run on the ARM/Raspberry Pi platform
in 32-bit mode. However, since ARM has released its version 8
(ARMv8), it has increased in complexity. ARMv8 specifies 1070
different instructions in 53 different formats [26] that take 5778
pages to document [15]. When a previous team attempted to port
Embedded Xinu to the 64-bit mode on the ARMv8 Raspberry Pi 3B+,
they quickly despaired due to the increased complexity students
would need to face for many basic operations. Embedded Xinu-
based courses thrive when based on current, inexpensive platforms
that embrace minimalist design principles but have mainstream
support. RISC-V is a simple, open, and modular architecture that
Embedded Xinu now supports.

RISC-V started as a research project under Dr. Krste Asanovi,
Yunsup Lee, and AndrewWaterman at the University of California -
Berkeley. Its simplicity and openness have encouraged its use in the
academic community. The RISC-V Instruction Set Architecture (ISA)
is designed to be modular, meaning that CPU manufacturers can
choose to adopt parts of the ISA, without having to implement the
entire ISA. These optional add-ons are called “extensions”. Splitting
the ISA into optional extensions simplifies the CPU design and
does not require the ISA to be intradependent. This also makes it
simpler for students and researchers to understand, as they can
begin by learning the base ISA and explore the extensions only
when needed. In contrast to ARMv8, the RISC-V base ISA has 47
instructions with only 6 different instruction formats. This simple
yet open architecture sets RISC-V apart from alternatives such as
MIPS, ARM, and x86 [12].

3 RELATEDWORK
Historically operating systems courses generally fall into three cat-
egories: theoretical, virtual, and physical hardware (also sometimes
called, “baremetal”). Theoretical courses teach the important aspects
from a very high-level perspective. Theoretical courses can supple-
ment the latter categories while still training students’ innovative
abilities [7]. Usually, theoretical courses stop short of going “under
the hood” and allowing students to experiment with the writing of
kernel code. On the other hand, virtual courses allow students to
experiment using virtualized hardware or emulators. Over time, use
of emulators in these courses has steadily increased in popularity,
even more so as universities grappled with the COVID-19 pandemic.
Virtual operating systems can be an attractive option due to their
low cost of maintenance, ease of access, and safety, as many of
these systems are run in a sandbox environment. While attractive,
virtual machines simplify details students would encounter when
developing on baremetal hardware. Additionally, virtual machines
often differ significantly or completely abstract away their interac-
tions with various hardware components [25]. Baremetal courses
seek to teach operating systems on real hardware in a way that
is accessible to all, without compromising some aspects required
when opting for the virtual approach.

3.1 Virtual Educational Operating Systems
There is an extensive list of emulated learning operating systems;
however, most are no longer supported or lack documentation
should an educator want to adopt them [13]. Survey papers do not
offer much relief, with previous work published in 2005 providing a

poor view of the current landscape and available tools [1]. For exam-
ple, if an educator wanted to use an emulated OS based on the MIPS
architecture, they would only have three realistic options: PintOS
(2009), Nachos (1993) and most recently Pandos (2021) [8, 13, 20].
Although these systems allow adopters to implement them in their
courses, PintOS and Nachos have not had significant maintenance
done in several years. Although Pandos provides a more modern
option, it suffers from the inherent reality of running on the MIPS
architecture. Although beloved for its simplicity in comparison
to x86, MIPS is slowly moving towards being considered a legacy
architecture, with the parent company ceasing production of all
future MIPS cards in lieu of RISC-V [24].

Some attempts have been made to create an ISA-independent
educational OS to mitigate some of these deprecation issues. While
this is a more manageable task when using virtual hardware, due
to the basic nature of virtual machines, it still requires continuous
development from a dedicated community. The most widespread
example of this is xv6 [22], which has been ported to MIPS, x86,
and most recently RISC-V, using QEMU virtual machines. The rel-
atively large community at several universities, such as MIT and
University of Wisconsin–Madison, distinguishes xv6 for both on-
going development and a wealth of adoption resources should an
educator wish to implement it. xv6, however, is a “feature complete"
operating system. Students do not write any core part of the oper-
ating system; rather, they build off the OS features that are already
implemented. For example, when teaching file systems, xv6 does
not have students implement the file system, rather students build
a “file system checker" to ensure the file system is valid. Embed-
ded Xinu takes a very different approach. Embedded Xinu guides
students to implement actual parts of the OS from the ground up.
Students will be building fundamental parts of modern operating
systems, not extensions onto an already working OS.

3.2 Baremetal Educational Operating Systems
There are very few baremetal educational operating systems due
to the complexity of dealing with real hardware. Similar issues of
maintaining code bases for virtual systems are only amplified when
dealing with real hardware systems. Stanford University developed
PintOS [21] which can be run natively on x86 hardware; however,
in practice, this is most often used in an emulator. Other similar
x86 systems are GeekOS and Nanvix; both have the ability to run
on both hardware and virtual environments, but differ in their
methodology. GeekOS’s projects build on each other, while Nanvix
allows for a more free-form adaption, allowing instructors to hit
individual learning goals [14, 19].

The landscape is barren when trying to adopt RISC-V based
systems. While xv6 and Egos [27] have been adapted to run on
Field Programmable Gate Arrays (FPGA), these are custom chips
that have a high bar, preventing adoption by educators. To our
knowledge, Embedded Xinu is the only current educational OS
that runs on commercial RISC-V boards that can be purchased
easily from retailers. This reinforces Embedded Xinu’s continued
legacy of being highly portable to new platforms, as it was also the
first educational OS to run on commercially available multicore
hardware like the Raspberry Pi 3B+ [17].
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Figure 1: The Sipeed Nezha boot process

4 PORTING EMBEDDED XINU TO RISC-V
When evaluating candidate platforms for the RISC-V port of Em-
bedded Xinu, we sought commercial boards that were both inexpen-
sive and publicly documented. The Sipeed Nezha fits both criteria.
The Sipeed Nezha uses an AllWinner D1 single-core SoC with
512MiB/1GiB/2GiB of RAM (depending on the board). These boards
can be found for $125 online. The publicly accessible Technical
Reference Manual (TRM) makes it less painful to implement hard-
ware features into Embedded Xinu. Previous researchers adopting
Embedded Xinu have struggled to find hardware documentation for
boards such as the Raspberry Pi 3B+, leading to significant delays
in implementing new features. This section describes the changes
made to Embedded Xinu to support the RISC-V architecture.

4.1 Boot Sequence
The Sipeed Nezha consists of a multi-stage boot process as seen in
Figure 1. The first stage U-Boot Secondary Program Loader (SPL)
executes in the most privileged RISC-V mode, machine mode (or
M-Mode). U-Boot SPL initializes the hardware (such as RAM) and
finds the next stage, OpenSBI. OpenSBI provides a basic, cross
platform API to handle hardware such as starting other harts (or
hardware threads), managing the timer, and writing to the Universal
Asynchronous Receiver and Transmitter (UART). Once OpenSBI
is initialized, it jumps to U-Boot “proper" running in supervisor
mode (S–Mode), the middle privileged mode in RISC-V. We have
modified the OpenSBI code to keep U-Boot running in M-Mode so
that we can access M-Mode level registers for student assignments.
U-Boot “proper" is responsible for finding the OS, loading the OS
intomemory, and jumping to it. In our lab, we used the latest version
of U-Boot flashed onto an SD card. The Sipeed Nezha’s do come
with U-Boot on the NAND chip, however, this version of U-Boot is
older and does not support network booting via TFTP (which our
lab uses to load the student’s operating system onto the Nezhas).
Once the student’s kernel is loaded into memory, execution begins
in the start.S assembly file. Although students are not expected
to alter the boot sequence, they are responsible for understanding
how the boot sequence works. Teaching students what happens
from the moment power is turned on, to the execution of start.S,
helps students gain a deeper understanding of the material and is
an important aspect in understanding the reality of how hardware
and software work together [18]. The Embedded Xinu mantra is,
“there is no magic in the box.”

4.2 Trap Handling
Trap handling in RISC-V Embedded Xinu is a crucial mechanism
that enables the operating system to respond quickly and efficiently
to hardware interrupts or exceptions. When a hardware device (e.g.
a timer or an I/O device) generates an interrupt, the CPU halts the

Figure 2: Splitting a virtual address into page table indexes

currently executing task and transfers control to an interrupt han-
dler (dispatcher) that decodes the interrupt source and passes con-
trol to the appropriate function. Once the interrupt no longer needs
attention, the processor will return to its previous state, and allow
whatever prior process to continue executing. Interrupt handling is
simpler on RISC-V compared to other architectures Embedded Xinu
has supported. On RISC-V, the address of the interrupt/exception
handler is loaded into the stvec or mtvec register depending on
which privilege mode should handle the interrupt. Once an inter-
rupt or exception occurs, the cause of the interrupt or exception
is stored in the scause or mcause register. Furthermore, the All-
Winner D1 stores the interrupt number at a fixed memory address.
The interrupt numbers are publicly documented in the TRM for the
AllWinner D1. Students write a part of the interrupt handler for two
assignments during the semester. Embracing real-world examples
within the Embedded Xinu environment, students see first-hand
the practical implications of interrupt handling, which provides
students a foundation to study operating system concepts [23].

4.3 Memory Protection and Paging
Embedded Xinu on RISC-V is the first platform for which the OS
implements memory protection, bringing it closer to many pro-
duction OSes. The RISC-V specification defines multiple different
paging schemes, however, the AllWinner D1 only supports Sv39
paging with a 3 level hierarchical page table. In Sv39 paging, virtual
addresses are 39 bits long. Bits 30-38 are used to index the second
level page table, bits 21-29 are used to index the first level page table,
and bits 12-20 are used to index the zeroth level page table. The
final 12 bits are used as an offset once the address at the third-level
page table is found. Figure 2 gives an example of walking the page
table using the virtual address 0xADEADBEEF. The base address of
the first-level page table is stored in the satp register.

This is the first port of Embedded Xinu that has natively sup-
ported paging and memory protection. Previous architectures such
as MIPS and ARM have more complicated paging mechanisms,
which discouraged student-facing implementations. With just a
few structure definitions and initializations, students can be tasked
with building out the page table code for initializing new processes
or for allocating new physical pages for a given virtual address.

4.4 Kernel Organization
The transition to a RISC-V implementation allowed Embedded Xinu
to completely overhaul the kernel organization. Unlike previous ver-
sions that followed a monolithic structure, the new Embedded Xinu
was designed as a microkernel, embracing a minimalist approach.
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This design would have been challenging in the ARM architecture;
however, the memory protection in RISC-Vmakes this possible. The
kernel’s only responsibility is to manage system resources between
user processes. As a result, the updated OS aligns with the latest
best practices and industry trends, providing instructors with a
valuable teaching tool.

s y s c a l l send ( in t pid , in t msg )
{

r e g i s t e r pcb ∗ p r o c p t r ;
i rqmask im ;

im = d i s a b l e ( ) ; / / D i s a b l e i n t e r r u p t s
/ / Check t o e n s u r e t h e p r o c ID i s v a l i d
i f ( i s b a d p i d ( p id ) )
{

r e s t o r e ( im ) ;
return SYSERR ;

}
p r o c p t r = &p ro c t a b [ p id ] ;
i f ( ( PRFREE == procp t r −> s t a t e )

| | p rocp t r −>hasmsg )
{

r e s t o r e ( im ) ;
return SYSERR ;

}
/ / S e t t h e mes sage f i e l d on t h e p r o c e s s
procp t r −>msg = msg ;
p rocp t r −>hasmsg = TRUE ;

/ ∗ i f r e c e i v e r p r o c wa i t s , s t a r t i t ∗ /
i f ( PRRECV == procp t r −> s t a t e )
{

ready ( pid , RESCHED_NO ) ;
}
r e s t o r e ( im ) ; / / R e e n a b l e i n t e r r u p t s
return OK;

}
Listing 1: send() function in Embedded Xinu

#define SYSCALL_SEND 28

#define SYSCALL (num) in t s t a t u s ; \
asm ( " l i a7 , %0 " : : " i " ( SYSCALL_##num ) ) ;
asm ( " e c a l l " ) ; \
asm ( "mv %0 , a0 " : " = r " ( s t a t u s ) ) ; \
return s t a t u s ;

s y s c a l l u s e r_ send ( p i d_ typ pid , message msg )
{

SYSCALL ( SEND ) ;
}

Listing 2: User function for the send() system call

4.5 Inter-Process Communication
RISC-V Embeddded Xinu has two methods of interprocess com-
munication, direct messages received by processes via a field in
the process control block, and mailboxes represented by a separate
structure that includes a message queue. Both of these variations
were present in prior platforms for Embedded Xinu, and are imple-
mented on RISC-V in very similar ways. For direct messaging, the
send and receive functions, respectively, write or read a message
field contained within each process control block, allowing only
one message to be stored at a time (see Listing 1).

The send function in RISC-V Embedded Xinu has been con-
verted to a system call. The user space version of send() calls a
SYSCALL macro that places the system call ID (in this case, the
constant SYSCALL_SEND) in the register a7. All arguments needed
for the system call are kept in a0 - a6 argument registers. Once
the ecall opcode is executed, the processor switches kernel privi-
leged mode and jumps to the interrupt/exception handler in stvec
- which in Embedded Xinu is the syscall_dispatch function. The
syscall_dispatch function uses an internal table to determine
which system call occurred (using the ID in the a7 register), runs
the corresponding function, and returns the result in a0.

For mailboxes, each must be allocated before it can be used and
the desired size must be specified. Afterwards, the send and receive
functions must specify a mailbox ID, and the messages enter a
queue where receiving only gives the single oldest message in the
mailbox. There is no limit on the number of processes that can
communicate with a mailbox, as long as each process has access
to the mailbox’s ID, so this method is useful for a wider variety of
scenarios than direct message passing, at the cost of memory usage.

For both mailbox and direct message passing, a method of en-
suring mutual exclusion is necessary to prevent multiple senders
from writing to a mailbox at the same time. Mutual exclusion is
achieved by disabling interrupts entirely on our single-core im-
plementations. However, the RISC-V implementation required one
significant change to the support structures and interface: system
calls. On earlier platforms, Embedded Xinu had no memory protec-
tion, and so each process was free to modify other process’ fields or
to disable interrupts for mutual exclusion without any issues. Now,
RISC-V Embedded Xinu includes memory protection measures, so,
much like with semaphores, all of the functions for messaging must
be implemented as system calls, with a set of separate wrapper
functions to allow user processes to request the operating system
to act on their behalf.

5 TEACHING OPERATING SYSTEMS WITH
EMBEDDED XINU

The RISC-V port of Embedded Xinu was used to teach operating
systems in Spring 2023. To the best of our knowledge, this marks
the first usage of off-the-shelf RISC-V baremetal platforms in an
undergraduate OS course. The course used the free, online textbook
Operating Systems: Three Easy Pieces by Remzi H. Arpaci-Dusseau
and Andrea C. Arpaci-Dusseau [2]. Weekly assignments were de-
signed to follow this textbook. We provide assignment descriptions,
necessary starting files, Embedded Xinu source code, and sample
testcases on our website [16]. Our lab follows the same setup as
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Table 1: Assignments by Week

Topics Assignments

Introduction and Overview Project 1: UNIX and C
C Representation, Operators Project 2: UNIX and C
Serial; Device Drivers Project 3: Serial Driver
Processes; Context Project 4: Context Switch
Trap Handlers Project 5: Trap Handlers
Interrupts; Scheduling Project 6: Process Scheduling
Address Translation; Paging Project 7: Memory Protection
Memory Management Project 8: Heap Management
Threads; Locks; Concurrency Project 9: Threads

previous researchers [5]. Instructions with solutions are available
to verified higher education instructors.

Our 3000-level OS course for undergraduates is required for
majors in computer science, as well as computer engineering and
biomedical/biocomputing. Course prerequisites include CS1 and
CS2 or Data Structures, as well as a course in hardware systems or
computer organization. Students are typically familiar with at least
two programming languages at this point: Java and either Python
or Matlab, depending on their major track. They have been exposed
to an assembly language, but have no prior experience in C.

Before students start an assignment, any additional files needed
for the assignment are distributed. These files are often ANSI C
language header and skeleton files that offer detailed explanations
of key structures and methods that students are expected to under-
stand. Creating an OS, even one made for education, is a complex
task. Typically, a day of labwas devoted towalking students through
the important takeaways and helping them identify a good starting
point. This focusing of student attention is aided by Embedded
Xinu’s design, which by nature, allows students to focus on the
core concept of each week’s assignment, rather than spending the
majority of their time grappling with complex ideas such as system
organization and design. An overview of weekly assignments is
described in Table 1. A more detailed description of each is below.

In the first two weeks of the course, students are given intro-
ductory C assignments, as most students have never programmed
in C. A typical Week 1 assignment could be a currency converter
that takes in dollars, yen, rupies, pounds, and euros and converts
to dollars. Week 1 is designed to get students familiar with func-
tions, control statements, and loops in C. Week 2 builds off of Week
1’s assignment by asking students to add dynamic data structures,
such as outputting the converted currency list in reverse order.
Week 2 assignments usually emphasize C structures and pointers,
a common source of confusion for beginners.

Week 3 is the first week students are asked to begin developing
on Embedded Xinu. Students are given some basic files which allow
the OS to boot, however, they will not see any text appear on
the screen. Week 3’s assignment asks students to write the code
for a synchronous UART (polling, non-interrupt-driven Universal
Asynchronous Receiver/Transmitter) driver. Once the students have
correctly read the TRM and implemented the UART driver, they
will be able to take input and print output. Week 3’s assignment

teaches students how to write parts of a device driver, read technical
documentation, and debug without use of a higher-level debugger.

InWeek 4, students are taskedwith implementing context switch-
ing. Context switching allows the concept of processes within the
operating system. Students complete the code to save the context
(or state) of the current running process before loading in the con-
text of the next process. Many designs are possible, but attention
to detail is crucial. Students require only four RISC-V assembly
opcodes to complete this assignment, but must mirror their design
in the corresponding C code for building the initial process context
structure. This assignment is important as it teaches students about
low-level calling convention, registers, and the interface between
assembly instructions and higher-level programming.

Week 5’s assignment asks students to implement trap handlers.
A trap handler is a function that handles a call into the kernel
when a user process wants to perform a privileged action. The trap
handler is important later in the semester when students implement
memory protection. Students are given an incomplete C function
and are asked to determine which kernel function was requested.
From there, they are asked to call the corresponding kernel function
and return the result to the user process. This assignment is the
first step in implementing “user” processes.

In Week 6, students are asked to implement a process scheduling
algorithm. Until this week, the operating system uses a FIFO queue
to select which process runs next. This assignment asks students
to implement one of several common scheduling algorithms, such
as simple priority, priority queue, or lottery-based scheduling. Ad-
ditionally, students must complete the implementation of process
preemption. Preemption will automatically switch processes if the
current running process does not yield the processor after a given
time period. This assignment demonstrates how operating systems
perform preemptive multitasking of processes.

Week 7’s assignment was first run in Spring 2023. The simplicity
of the RISC-V specification made this assignment possible. Students
are given an incomplete code to support paging with the memory
management unit (MMU). Students are asked to write a function
that, given a virtual address, walks the page table and returns the
final page table entry. Once this function is implemented correctly,
memory protection will work on their operating system. Memory
protection is the final feature that is needed to implement user
processes. From this assignment forward, all user processes cannot
touch memory belonging to other user processes or the kernel.

In Week 8, students are asked to build the standard malloc and
free system calls. The malloc call requires students to visualize
how memory is laid out in the operating system. This assignment
also requires the students to use their knowledge in Week 7 to
understand how to navigate a linked list.

Week 9’s assignment students are tasked with implementing
POSIX threads [11] and concurrency into the operating system.
Before this assignment is released, the instructor demonstrates a
race condition in class with 4 threads updating the same global
variable. The goal at the end of this assignment is for the students
to be able to run the same program they saw in their operating
system. Additionally, they must implement spinlocks to prevent the
race condition. They are given most of the thread implementation
but must create system calls for pthread_create, pthread_join,
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Table 2: Final Exam Scores

Question Topic Fall 2020 (Control) Spring 2023 (Experiment) Percent Difference (with +16% baseline)
Page Replacement 68.6% 58.5% +5.8%

Deadlock 70.0% 53.0% -1.0%
File Systems 42.2% 34.7% +8.5%
Concurrency 49.1% 42.1% +9.0%

Memory Management 41.6% 45.3% +19.7%

pthread_mutex_lock, and pthread_mutex_unlock. Once imple-
mented correctly, they should be able to run the same program
as shown in class without any race conditions. This assignment
teaches the importance of concurrency and race conditions.

6 RESULTS AND DISCUSSION
To assess the impact of the RISC-V port, student feedback and exam
data were collected. Anecdotally, the students found it “cool” that
they were completing important components of an OS designed
to run on a real hardware platform (instead of a virtual machine).
In addition, they recognized the novelty of working on a course
with more hands-on learning than equivalent courses at most other
universities. On the other hand, the students expressed that the
cognitive complexity of the course was high compared to other
computer science courses.

As instructors, the high cognitive complexity of the assignments
is not surprising. Developing an operating system on baremetal
is challenging. There is no debugger that can stop execution and
allow students to view/manipulate variables or control flow. Stu-
dents need to have a strong understanding of the concepts before
trying to apply them in practice. Of particular challenge to the
students was Project 7: Paging & Memory Protection. Students were
especially confused with the structure of the 3 level hierarchical
page table. We plan to address decreasing the cognitive complex-
ity of the assignments by developing more instructional aids for
students and teaching assistants. As the assignments were new,
the TAs felt that they did not have enough time to learn the as-
signments. This lead to conflicting guidance among the teaching
assistants. We plan to create more in-depth instructional aids for
teaching assistants. Despite these challenges, exam data shows that
students performed relatively better with the RISC-V Embedded
Xinu assignments compared to Fall 2020.

To measure the effect of the new curriculum on students, we
compared the operating systems class in Spring 2023 (n=47 stu-
dents) to the operating systems class in Fall 2020 (n=14 students).
The Fall 2020 course used an older version of Embedded Xinu which
ran on the Raspberry Pi 3B+. Fall 2023 used similar assignments as
Spring 2023 (with new assignments described in the last section).
Both semesters used the same textbook. However, there are differ-
ences to take into account between the two semesters. Fall 2020
has fewer students due to a change in the class schedule. The Fall
2020 semester was also the first semester without COVID-19 lock-
downs. Therefore, before any intervention occurred, we measured
a baseline between the Fall 2020 semester and the Spring 2023 se-
mester. The start of the course, before introducing Embedded Xinu,
is very similar across both semesters. Students received slightly
modified introduction assignments and first exam questions (to

prevent cheating). Students in the Spring 2023 semester scored an
average 16% lower on the first exam (53% in Fall 2020 vs 37% in
Spring 2023). Thus, any change between the two semesters should
account for the 16% difference before the intervention occurred.

To gauge student learning, we reused four final exam questions
from the Fall 2020 semester in the Spring 2023 final exam. The
average student scores are shown in Table 2. Of the five questions,
students in the experiment semester scored better on four final exam
questions compared to students in the control semester (taking
into account the 16% difference before the intervention). As new
assignments focused on memory organization were introduced this
semester, it is unsurprising that student understanding in memory
management and page replacement increased in the experiment
semester. The decrease in exam scores for the Deadlock question is
also unsurprising. In the Fall 2020, emphasis was placed on teaching
multicore concepts. As the Sipeed Nezha is a single core machine,
there was less emphasis on multicore concepts in Spring 2023.
Overall, the students’ understanding increased with the RISC-V port
of Embedded Xinu compared to the previous Fall 2020 semester.

7 FUTUREWORK
The RISC-V architecture provides a sufficient foundation for multi-
core systems, and extending Embedded Xinu to efficiently utilize
multiple cores could boost its performance. The difficulties posed
by this involve both the alteration of code to accommodate multiple
cores and the redesigning kernel subsystems to prevent deadlock.

We also plan on extending the RISC-V port of Embedded Xinu to
support the TCP/IP stack. Previous researchers have implemented
the TCP/IP stack in Embedded Xinu to teach networking courses [6],
however, the hardware of those ports has fallen out of date. By
moving the TCP/IP stack to the RISC-V port, it allows instructors
to teach additional courses using modern hardware.

8 SUMMARY AND CONCLUSIONS
Embedded Xinu has existed for many decades, providing an attrac-
tive option for educators interested in adopting a baremetal OS
course. Teaching on baremetal is often out of reach due to its chal-
lenging nature and high costs. However, Embedded Xinu mitigates
both of these challenges by running on consumer RISC-V boards.
Furthermore, the readily available supporting content for educators
allows instructors without prior experience to adapt the course
to their requirements and objectives. Embedded Xinu’s relatively
small code base and documentation enable instructors and students
to feel confident in the weekly assignments. Moreover, the port
to RISC-V abstracts even more of the confusing aspects associated
with ARM or x86, increasing student understanding and allowing
instructors to focus more of their efforts on the core concepts.
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