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Object detection has achieved a huge breakthrough with deep neural networks and massive annotated data.
However, current detection methods cannot be directly transferred to the scenario where the annotated data
is scarce due to the severe overfitting problem. Although few-shot learning and zero-shot learning have been
extensively explored in the field of image classification, it is indispensable to design new methods for object
detection in the data-scarce scenario since object detection has an additional challenging localization task.
Low-Shot Object Detection (LSOD) is an emerging research topic of detecting objects from a few or even no
annotated samples, consisting of One-Shot Object Localization (OSOL), Few-Shot Object Detection (FSOD),
and Zero-Shot Object Detection (ZSOD). This survey provides a comprehensive review of LSOD methods.
First, we propose a thorough taxonomy of LSOD methods and analyze them systematically, comprising some
extensional topics of LSOD (semi-supervised LSOD, weakly-supervised LSOD, and incremental LSOD). Then,
we indicate the pros and cons of current LSOD methods with a comparison of their performance. Finally, we
discuss the challenges and promising directions of LSOD to provide guidance for future works.
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1 INTRODUCTION
Object detection is a fundamental yet challenging task in computer vision, aiming to locate objects
of certain classes in images. It has been widely applied to many computer vision tasks like object
tracking [113, 116, 138], autonomous driving [31, 139], scene graph generation [106, 107, 133].

The general process of object detection is to predict classes for a set of bounding boxes (imaginary
rectangles for reference in the image). Most traditional methods are slow since they generate the
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bounding boxes using brute force by sliding a window through the whole image. Viola-Jones (VJ)
detector [112] first achieves real-time detection of human faces with three speed-up techniques:
integral image, feature selection, and detection cascades. Later, histogram of oriented gradients
(HOG) [15] is proposed, and many traditional object detectors adopt it for feature description.
Deformable part-based model (DPM) [23] is a representative traditional method. DPM divides an
object detection task into several fine-grained detection tasks, then uses some part-filters to detect
parts of an object and aggregates them for final prediction. Although people have made many
improvements, traditional methods are restricted by their slow speed and low accuracy.
Compared with these traditional methods, deep-learning-based methods have significantly

improved performance. Current deep detectors roughly consist of two-stage detectors and single-
stage detectors. Two-stage detectors first generate region proposals (i.e., image regions which are
more likely to contain objects) and next make predictions on them, following a similar framework
to traditional methods. R-CNN [30] is one of the earliest works of two-stage detectors. It uses
selective search to obtain region proposals then extracts their features with a pre-trained CNN
model for further classification and regression. Fast R-CNN [29] improves R-CNN by using a region
of interest (RoI) pooling layer to generate feature maps for region proposals from the integral
feature map. Faster R-CNN [99] further proposes a region proposal network (RPN) to generate
region proposals from the whole image feature map using anchors (i.e., pre-defined bounding
boxes with specific height and width). However, the generation of region proposals requires high
computation cost and storage costs. To mitigate this problem, single-stage detectors are proposed
to combine these two stages. YOLO-style object detectors [3, 28, 98] are the representative works
of single-stage detectors. Given the feature map extracted from the original image, YOLO-style
detectors directly pre-define anchors with multiple scales over all locations of the image and predict
the class probabilities, regression offsets and object confidence scores of each anchor. Single-stage
detectors achieve higher speed, but they generally underperform two-stage detectors. Moreover,
some methods like focal loss [71] have been proposed to decrease the performance gap between
single-stage and two-stage detectors. Recently, a transformer-based detector named DETR [8] has
been proposed. DETR achieves end-to-end detection and has comparable performance to many
classic detectors. Some extended methods [14, 160] are proposed to mitigate the slow convergence
problem of DETR.

However, these deep detectors tend to overfit when the training data is scarce and thus require
abundant annotated data. In real life, it is hard to collect sufficient annotated data for some object
classes due to the scarcity of these classes or special labeling costs, and current deep detectors are
not competent in this situation. Therefore, the ability to detect objects from a few or even zero
annotated samples is desired for modern detectors. To achieve this goal, Low-Shot Object Detection
(LSOD) is introduced into object detection, including One-Shot Object Localization (OSOL), Few-
Shot Object Detection (FSOD), Zero-Shot Object Detection (ZSOD). These three settings of LSOD
mainly differ in the number of annotated samples for each category. Concretely, OSOL and FSOD
tackle the situation that each object category has one or more annotated image samples, while
ZSOD differentiates different classes according to the semantic information of each category instead
of image samples.
OSOL and FSOD are developed following the mainstream scheme of few-shot learning (FSL).

Few-shot learning divides the object classes into base classes with many annotated samples (denoted
as base dataset) and novel classes with a few annotated samples (denoted as novel dataset). Note
that the annotated samples and the test samples in novel classes are named as support samples and
query samples, respectively. Few-shot learning requires to pre-train the model on the base dataset
then uses the model to predict novel classes on the novel dataset for evaluation. Current few-
shot learning methods are roughly categorized into meta-learning methods and transfer-learning
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Fig. 1. Overview of this survey. This survey gives a general introduction to Low-Shot Object Detection (LSOD),
then categorizes LSOD into three domains: One-Shot Object Localization (OSOL), Few-Shot Object Detection
(FSOD) and Zero-Shot Object Detection (ZSOD). The more fine-grained categorization of these three domains
is also demonstrated in the figure with three colors, which will be discussed detailedly in later sections.
Each category is demonstrated with a part of representative works in the figure. Then the benchmarks
for OSOL, FSOD and ZSOD are summarized, and the performance of different LSOD methods on these
benchmarks is compared and analyzed. Finally, the future directions of LSOD are discussed.
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Table 1. Key Notations Used in This Article

Notation Description Notation Description

𝜙𝑞 Feature map of integral query image 𝑞 Pool( ·) Pool operation
𝜙𝑠 Feature map of integral support image ⊕ Element-wise sum

𝜙fused The aggregated feature map of 𝜙𝑞 and 𝜙𝑐 ⊗ Channel-wise multiplication
𝜙𝑟 The RoI feature map in the query image Conv( ·) Convolutional operation
𝑣𝑟 The RoI feature vector in the query image FC( ·) FC layer
𝑠𝑟 The RoI semantic embedding in the query image Softmax( ·) Softmax operation
𝑣𝑠 The pooled feature vector 𝜎 ( ·) Sigmoid function

𝑣fused The aggregated feature vector of 𝑣𝑖𝑞 and 𝑣𝑐 RELU( ·) RELU function
𝑠𝑐 The semantic embedding of class 𝑐 | | · | | The norm of a vector
𝑝𝑐 The prediction score for class 𝑐 of a RoI [ · ] Concatenation operation
| · | The absolute value of a vector

methods. Meta-learning methods adopt a “learning-to-learn” mechanism, which defines multiple
few-shot tasks on the base dataset to train the model, and enables the model to adapt to the real
few-shot tasks quickly. Moreover, transfer-learning methods learn a good image representation by
directly training the model on the base dataset, which is used for the novel dataset. Although meta-
learning is a more natural approach to tackle the few-shot problem, Tian et al. [109] find that the
baseline transfer-learning methods surpass some classic meta-learning methods, especially in the
cross-domain few-shot learning. Current few-shot learning methods are mainly explored on the task
of image classification. OSOL and FSOD are more challenging than few-shot image classification
because object detection requires an extra task to locate the objects. As the branches of few-shot
learning, OSOL and FSOD also inherit the core methods (meta-learning & transfer-learning) of it.
OSOL is a few-shot learning setting on object detection which locates objects using only one

labeled image of each category in the image. Current OSOL methods all adopt the scheme of
meta-learning following few-shot learning, where a large number of one-shot tasks are defined
on the base dataset to train the model. OSOL has a strong guarantee that the model precisely
knows the object classes contained in each test image. With this strong guarantee, the latest OSOL
methods have achieved relatively high performance.
However, OSOL setting is not realistic enough since the object classes in the test images are

not pre-known in real life. Therefore, another few-shot setting on object detection is adopted by
more papers, which is named Few-Shot Object Detection (FSOD). The major differences between
FSOD and OSOL are as follows: (1) FSOD needs to predict the correct category of potential objects
in the test image. (2) OSOL samples support images independently for each test image, FSOD
samples the support images only once for all test images. (3) In FSOD, the number of labeled
samples per category can be larger than one. Similar to methods on few-shot image classification,
FSOD methods are categorized into two mainstream methods: meta-learning methods and transfer-
learning methods. Early FSODmethods mainly adopt the meta-learning scheme. The core operation
of meta-learning FSOD methods is to extract the features of a few annotated samples (support
features) and aggregate them into the features of query images (query features) for guidance on
the prediction of query images. This aggregation operation promotes the model to learn adequate
information from a few annotated samples. Early meta-learning FSODmethods simply aggregate the
support features with the features of RoIs (RoI features) in the query images. Afterwards, researchers
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find that the aggregation of integral features is essential for performance improvement since the
shallow components in the model also require the information of annotated samples (e.g., the RPN
component in Faster R-CNN needs the support features to filter out unmatched region proposals).
Therefore, this survey categorizes meta-learning FSOD methods into RoI feature aggregation and
mixed feature aggregation methods (“mixed” means using RoI feature aggregation and integral
feature aggregation together). Unlike meta-learning methods, transfer-learning FSOD methods
directly pre-train the detector on the base dataset and fine-tune it on the novel dataset. Early
FSOD methods rarely adopt transfer-learning due to its poor performance. TFA [118] subverts this
cognition, which proposes a two-stage fine-tuning strategy to fine-tune the model and achieves
better performance than contemporary meta-learning methods. In addition to the standard FSOD
discussed above, other extensional settings like semi-supervised FSOD [18, 84], weakly-supervised
FSOD [26, 48] and incremental FSOD [62, 90] are also explored by researchers and investigated in
this survey.

ZSOD assigns abundant labeled samples to base classes, but it assigns no annotated image samples
to novel classes. Instead, mainstream ZSOD allocates semantic attributes to each class (including
base and novel classes), and it classifies object proposals according to their semantic similarities
with different classes. Mainstream ZSOD methods include visual-semantic mapping methods,
semantic relation methods, and data augmentation methods. Most early ZSOD methods belong to
visual-semantic mapping methods. These methods aim to learn a visual-semantic function using
the annotated samples of the base dataset, which projects visual features into semantic embeddings
for comparison with class semantic attributes. Next, semantic relation methods utilize the semantic
relation between different classes to make predictions. Moreover, data augmentation methods
attempt to generate visual samples for novel classes and re-train the model. Besides the mainstream
ZSOD setting described above, this survey discusses some rarely explored settings like transductive
ZSOD and textual-description-based inductive ZSOD. Recently, with the emergence of large-scale
cross-modal models (e.g., CLIP [93]), Open-Vocabulary Object Detection (OVD) attracts more and
more research interest, which first trains a stronger visual-semantic mapping function for multiple
classes and significantly improves the performance of the further ZSOD task.
The overview of this survey is illustrated in Figure 1. The preliminaries for meta-learning

and transfer-learning are given in section 2. The more fine-grained categorization and analysis
of methods for LSOD are described in section 3, section 4, section 5, section 6. The two popular
datasets (MS COCO dataset [72] and PASCAL VOC dataset [20]) and evaluation criteria of LSOD
are described in section 7. The performance of current LSOD methods is summarized in section 8.
The promising directions LSOD are discussed in section 9. Finally, section 10 concludes the contents
of this survey. The key notations used in this survey are summarized in Table 1.

2 PRELIMINARIES
2.1 Meta-Learning
Meta-learning is a “learning-to-learn” [41, 108] paradigm extended from the conventional “learning”
paradigm. Conventional learning paradigm directly trains the model from scratch on the whole
dataset as a single task. Differently, meta-learning learns the training pattern (e.g., parameter
initialization) from multiple tasks, which is capable of generalizing across different tasks and
facilitating the learning of new tasks. Therefore, meta-learning is suitable for quick adaptation
of the model to the new tasks in few-shot learning. The framework of meta-learning is shown
in Figure 2 (a), and a more detailed illustration is in section S1 of the supplementary online-only
material.
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(a) Meta-Learning in LSOD

(b) Transfer-Learning in LSOD
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Fig. 2. Illustration of meta-learning and transfer-learning in LSOD. LSOD divides the object classes into
base classes with many annotated samples (denoted as base dataset) and novel classes with a few annotated
samples (denoted as novel dataset). Meta-learning samples multiple tasks from the base dataset and trains
the model on these tasks (each task requires to make predictions on 𝐷

query
𝑖

according to the annotated

𝐷
support
𝑖

), aiming to acquire the knowledge about “how to learn” and generalize it to the novel dataset. On
the other hand, transfer-learning directly trains the model on the base dataset and transfers a good feature
representation to the novel dataset, enabling the representation of objects from novel classes.

2.2 Transfer-Learning
Transfer-learning methods aim to transfer the knowledge (good feature representation) from a
related domain (named source domain) to the current domain (named target domain), in order
to improve the performance of model on the target domain, as shown in Figure 2 (b). Traditional
transfer-learning approaches include instance-based methods, feature-based methods, parameter-
based methods, and relational-based methods [161].

For the transfer-learning methods in few-shot learning, the base dataset is viewed as the source
domain, and the novel dataset is viewed as the target dataset. Tian et al. [109] find that simply
transferring a strong feature extractor from the base dataset to the novel dataset outperforms
many meta-learning methods on few-shot image classification, and many FSL methods follow this
paradigm. Transfer-learning is not suitable for OSOL since the target domain consists of only one
image for each task, yet it is widely adopted in FSOD after the emergence of TFA [118].

3 ONE-SHOT OBJECT LOCALIZATION
Task Settings. One-Shot Object Localization (OSOL) needs to locate objects in a query image
according to only one support image for each novel class existing in this query image. The training
dataset (base dataset 𝐷𝐵) of OSOL comprises abundant annotated instances of base classes 𝐶𝐵 , and
the test dataset (novel dataset 𝐷𝑁 ) comprises instances of novel classes 𝐶𝑁 (𝐶𝐵 and 𝐶𝑁 are not
intersected). Specifically, for each query image in 𝐷𝑁 , OSOL randomly samples a support image
for each novel class existing in the image. Next, OSOL locates the novel objects in the query image
according to the corresponding support image. The main difference from FSOD is that OSOL only
requires a binary classification task to discriminate whether the potential object is foreground or
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Fig. 3. The overall framework of One-Shot Object Localization (based on Faster R-CNN). The model takes a
query image and a support image as inputs, then uses a siamese convolutional feature extractor to extract
the query feature map and the support feature map. Then it applies integral feature aggregation to aggregate
these two feature maps into a fused feature map and forwards it into RPN and RoI layer to generate region
proposals and RoI features, respectively. The aggregation method is implemented differently in different
OSOL methods. Finally, the RoI features are used for the classification task and the regression task. Some
methods additionally apply RoI feature aggregation to aggregate the RoI features with the support features.

background according to the given support image, while FSOD requires a multi-class classification
task because FSOD doesn’t pre-know the classes of the existing objects in the query images.
Framework of Current OSOL Methods. Some previous object tracking methods like SiamFC [9],
SiamRPN [59] are forerunners of OSOL, which are used for comparison with early OSOL methods.
Current OSOL methods adopt the meta-learning scheme, and their framework is based on Faster
R-CNN, as shown in Figure 3. First, they extract the integral features of the query image and
the support image using the same convolutional backbone (named query features and support
features, respectively), then conduct “integral feature aggregation” to generate a fused feature map
by aggregating the query features with the support features. This fused feature map is fed into RPN
and RoI layer to generate category-specific region proposals and the corresponding RoI features,
respectively. Finally, these RoI features are used for the final classification and localization tasks.
Furthermore, some methods additionally conduct “RoI feature aggregation” to further aggregate
the RoI features with the support features.
Current OSOL methods mainly differ in the feature aggregation method, and this survey ac-

cordingly categorizes OSOL methods into concatenation-based methods, attention-based methods,
and transformation-based methods. In the following sections, 𝜙𝑞 ∈ R𝐶×𝐻𝑞×𝐻𝑞 , 𝜙𝑟 ∈ R𝐶×𝐻𝑟 ×𝐻𝑟 and
𝜙𝑠 ∈ R𝐶×𝐻𝑠×𝐻𝑠 denote the query feature map, the RoI feature map and the support feature map,
respectively. Note that 𝐶 , 𝐻𝑞 , 𝐻𝑟 , and 𝐻𝑠 are the channel and sizes of the feature maps.

3.1 Concatenation-Based Methods
Concatenation-based methods simply adopt the concatenation operation to aggregate 𝜙𝑞 and 𝜙𝑠 ,
which are mainly adopted by early OSOL methods (SiamMask [82], OSCD [24], FOC OSOL [132]
and OSOLwT [65]), as shown in Figure 4.
• SiamMask [82]. SiamMask is one of the early deep-learning-based methods for OSOL, which
concatenates𝜙𝑞 with the absolute difference between𝜙𝑞 and the pooled embedding vector 𝑣𝑠 ∈ R𝐶 of
𝜙𝑠 to generate the aggregated feature map𝜙fused ∈ R2𝐶×𝐻𝑞×𝐻𝑞 , as shown in Equation 1. In SiamMask,
𝜙fused is directly used for further components (RPN, RoI layer) in Faster R-CNN without other
modifications. SiamMask does not achieve satisfying performance since it tackles a segmentation
task simultaneously. Nevertheless, as the first method for OSOL, SiamMask proposes a benchmark
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based on MS COCO dataset for performance comparison, pioneering many future works on OSOL
and establishing a baseline for future work.

𝜙fused = [𝜙𝑞, |𝜙𝑞 − Pool(𝜙𝑠 ) |]. (1)
• OSCD [24]. Different from SiamMask, OSCD directly concatenates 𝜙𝑞 ∈ R𝐶×𝐻𝑞×𝐻𝑞 with the
pooled embedding vector 𝑣𝑠 of 𝜙𝑠 ∈ R𝐶×𝐻𝑠×𝐻𝑠 to generate 𝜙fused ∈ R2𝐶×𝐻𝑞×𝐻𝑞 , as shown in
Equation 2. Besides, OSCD further conducts RoI feature aggregation to leverage the information of
𝜙𝑠 to facilitate the prediction of RoIs, which concatenates the RoI feature map 𝜙𝑟 and 𝜙𝑠 in depth.
OSCD proposes another OSOL benchmark based on PASCAL VOC dataset for evaluation, and it
outperforms SiamFC and SiamRPN by a large margin on this benchmark.

𝜙fused = [𝜙𝑞, Pool(𝜙𝑠 )]. (2)
• OSOLwT [65] and FOC OSOL [132]. They add convolutional blocks into the concatenated
features, which capture the relation between different feature units for performance improvement,
as shown in Equation 3.

𝜙fused = Conv( [𝜙𝑞, |𝜙𝑞 − Pool(𝜙𝑠 ) |]). (3)
⋆ Discussion of Concatenation-Based Methods. Concatenation-based methods are mainly
adopted by early OSOL methods. SiamMask and OSCD are the earliest concatenation-based meth-
ods for feature aggregation, while FOC OSOL and OSOLwT extend SiamMask and OSCD with
convolutional blocks and some other elaborated training strategies. However, the limitation of
concatenation-based methods is that they simply aggregate features without fully excavating the
relation between different local parts of two feature maps, thus impairing the matching between
the foreground parts of query feature map with support feature map.

3.2 Attention-Based Methods
Attention-based methods take advantage of the correspondence between different parts of the
support features and the query features, as shown in Figure 5.
• CoAE [43]. CoAE is the first attention-based OSOL method, which proposes two operations
for integral feature aggregation: co-attention (ca) operation and co-excitation (ce) operation. The
co-attention operation is implemented using the non-local operation [117] (an attention operation),
which aggregates two feature maps according to their element-wise attention:

𝜙ca
fused = 𝜙𝑞 ⊕𝜓 (𝜙𝑞, 𝜙𝑠 ), (4)

where 𝜓 denotes the non-local operation and 𝜙fused ∈ R𝐶×𝐻𝑞×𝐻𝑞 . The co-excitation operation
generates 𝜙ce

fused ∈ R𝐶×𝐻𝑞×𝐻𝑞 by aggregating 𝜙𝑞 with the pooled embedding vector 𝑣𝑠 ∈ R𝐶 of 𝜙𝑠
with a channel-wise multiplication:

𝜙ce
fused = 𝜙𝑞 ⊗ Pool(𝜙𝑠 ). (5)

CoAE adopts both these two operations for integral feature aggregation. Besides, CoAE proposes
a proposal ranking loss to supervise RPN based on RoI feature aggregation. CoAE outperforms
SiamMask on the MS COCO benchmark and OSCD on the PASCAL VOC benchmark, demonstrating
the capacity of the attention mechanism on OSOL.
• BHRL [131], ABA OSOL [42], ADA OSOL [147], and AUG OSOL [19]. These later methods
follow the co-attention and co-excitation operations in CoAE with some elaborated modifications.
• AIT [10], CAT [73], SaFT [152]. With the wide usage of transformers [104] in computer vision,
some methods (AIT, CAT, SaFT) adopt multi-head attention into OSOL for feature aggregation.
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Fig. 4. Overview of concatenation-based integral feature aggregation methods in OSOL. OSCD and OSOLwT
concatenate the query feature map with the pooled embedding vector of the support feature map. SiamMask
concatenates the query feature map with the absolute difference between the query feature map and the
pooled embedding vector of the support feature map instead. FOC OSOL additionally applies convolution
blocks on the integral feature map generated in SiamMask.
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Fig. 5. Overview of attention-based integral feature aggregation methods in OSOL. Some methods (CoAE,
BHRL, ABA OSOL, ADA OSOL, AUG OSOL) use a non-local operation for integral feature aggregation, while
some methods (AIT, CAT, SaFT) use transformer to capture attention between query and support images.

These methods flatten the query feature map 𝜙𝑞 and the support feature map 𝜙𝑠 to be feature
sequences 𝜙 ′

𝑞 ∈ R𝐶×𝐻𝑞𝐻𝑞 and 𝜙 ′
𝑠 ∈ R𝐶×𝐻𝑠𝐻𝑠 , then generates 𝜙fused ∈ R𝐶×𝐻𝑞×𝐻𝑞 using multi-head

attention to capture bidirectional correspondence between grids of them.
⋆ Discussion of Attention-Based Methods. Compared to attention-based methods with trans-
former, attention-based methods with co-attention require fewer extra parameters and less com-
putation cost. However, CoAE is an early OSOL method, and the simple non-local operation is
not enough for feature aggregation of current OSOL methods. Actually, recent methods of this
type integrate co-attention with other elaborated operations to improve their performance. On
the other hand, methods based on transformer significantly improve performance, and they can
easily integrate other elaborated variants of transformer structure into this framework for further
performance improvement. However, current transformer-based methods bring too much extra
computation cost into model training. Therefore, the efficient transformer structure is expected to
be adopted for the trade-off between performance and computation cost.
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3.3 Transformation-Based Methods
OS2D [86] proposes a transformation-based method for feature aggregation, which conducts feature
map transformation to match query feature map and support feature map. Given the query feature
map 𝜙𝑞 and the support feature map 𝜙𝑠 , OS2D first computes a 4D correlation matrix of shape
R𝐻𝑞×𝐻𝑞×𝐻𝑠×𝐻𝑠 which represents the correspondence between all pairs of locations from these two
feature maps. Then, it uses a pre-trained TransformNet [100] to generate a transformation matrix
that spatially aligns the support feature map with the query feature map. Finally, the classification
score of each location of the query feature map is obtained from the combination of the correlation
matrix and the transformation matrix.
⋆Discussion of OSOLMethods. To sum up, concatenation-based methods are easy to implement,
and they require smaller computation cost, but they have poorer performance. Attention-based
methods can capture the correspondence between support images and the foreground of query
images, thus outperforming concatenation-based methods. The weakness of attention-based meth-
ods is that it is more complicated to implement them, and they require larger computation cost.
Transformation-based methods make the decision process of OSOL more interpretable, but they
require a large pre-trained model to capture the spatial correspondence between query and support
images.

4 STANDARD FEW-SHOT OBJECT DETECTION
Task Settings. The previous OSOL setting guarantees that every query image contains objects with
the same category as the given support image, i.e., the model knows precisely the object classes
contained in each test image. However, this setting is not realistic in the real world, and a more
challenging LSOD setting, named Few-Shot Object Detection (FSOD), is adopted by more papers.
This section first introduces the standard FSOD, and other FSOD settings (named extensional FSOD)
are based on the standard FSOD, which will be analyzed in the later sections. Specifically, the base
dataset (𝐷𝐵) of standard FSOD consists of abundant annotated instances of base classes𝐶𝐵 , and the
novel dataset (𝐷𝑁 ) consists of scarce annotated instances of novel classes 𝐶𝑁 (𝐶𝐵 and 𝐶𝑁 are not
intersected). During testing, the model is evaluated on the test dataset comprising objects of both
base classes and novel classes. The differences between FSOD and OSOL are as below:
(1) Since OSOL precisely knows the object categories contained in each test image, it only

requires a binary classification task to discriminate whether the potential object is foreground
or background according to the given support image. In contrast, FSOD requires a multi-class
classification task to predict the category of the potential object.

(2) OSOL samples support images independently for each test image, FSOD samples the support
images only once for all test images.

(3) The shot number of support images per category can be larger than one in FSOD.
Method Categorization. Current standard FSOD methods can be categorized into fine-tune-based
methods and fine-tune-free methods. Most methods are fine-tune-based methods, which require to
fine-tune the model on the novel dataset for the significant improvement of performance. Early
fine-tune-based methods adopt the scheme of meta-learning, and they also concentrate on the
methods of feature aggregation as OSOL methods. Furthermore, the increased number of annotated
samples opens up the possibility for standard FSOD methods to adopt the scheme of transfer-
learning, which pre-trains an object detector on the base dataset and fine-tunes this pre-trained
model for novel classes on the novel dataset. Early transfer-learning methods like LSTD [11] are
outperformed by the meta-learning methods in that period until the emergence of TFA [118]. On
the other hand, fine-tune-free methods aim to remove the fine-tuning step because fine-tuning
step is not suitable for FSOD in real life for its nonnegligible computation cost. In this survey, the
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(a) FSRW [47] Meta R-CNN [130]

FC

FC

(b) FsDet [124] AFD-Net [74]

Fig. 6. Overview of RoI feature vector concatenation method for standard FSOD. The symbols ⊙, ⊖ and c○
denotes element-wise multiplication, element-wise subtraction and concatenation operation, respectively.
FSRW and Meta R-CNN aggregates the support feature vector and the query feature vector with a simple
element-wise multiplication. FsDet and AFD-Net concatenate the query feature vector with an element-
wise multiplication, subtraction between the query feature vector and the support feature vector using two
additional FC layers.

meta-learning methods are first analyzed since they are highly correlated to OSOL methods, then
transfer-learning methods and fine-tune-free methods are analyzed later.

4.1 Meta-Learning Methods
Similar to OSOL, the meta-learning methods for standard FSOD first define a large number of few-
shot detection tasks on the base dataset to train the model. The difference is that each few-shot task
contains a query image and multiple support images since FSOD requires support images from all
base classes for the multi-class classification task. Another difference is that meta-learning methods
for standard FSOD have an additional fine-tuning stage that OSOL methods lack, which continues
to meta-train the model by sampling support images from both base classes and novel classes for
each few-shot task. The meta-learning framework of standard FSOD is similar to that of OSOL,
which conducts “integral feature aggregation” and “RoI feature aggregation” to aggregate the query
features with support features to incorporate the information of support images into the query
image for prediction. Early meta-learning methods only conduct RoI feature aggregation, and later
methods conduct both integral and RoI feature aggregation (named “mixed feature aggregation”)
for better performance. Therefore, meta-learning methods for standard FSOD are categorized
into RoI feature aggregation methods and mixed feature aggregation methods for a more explicit
presentation in this survey.

4.1.1 RoI Feature Aggregation Methods. RoI feature aggregation methods aggregate the RoI
features with support features to generate class-specific RoI features for the classification and regres-
sion tasks. Unlike OSOL methods that almost all adopt Faster R-CNN as the detection framework,
early meta-learning methods explore RoI feature aggregation methods on both single-stage and two-
stage detectors. These RoI feature aggregation methods can be categorized into two types according
to the type of aggregated features: RoI feature-vector aggregation methods (FSRW [47], Meta
R-CNN [130], CME [60], TIP [56], VFA [38], FSOD-KT [52], GenDet [75], FsDet [124], DRL [76], and
AFD-Net [74]) andRoI feature-map aggregationmethods (Attention-RPN [21], QA-FewDet [34],
KFSOD [146], PNSD [144], MM-FSOD [37], SQMG-FSOD [143], ICPE [78], DAnA-FasterRCNN [12],
TENET [145], Hierarchy-FasterRCNN [87], IQ-SAM [54], and Meta Faster R-CNN [35]).

The “RoI feature-vector aggregation methods” can be categorized into two types, which are first
proposed by FSRW and FsDet, respectively.
• FSRW [47] is the first meta-learning method for standard FSOD based on the YOLOv2 detection
framework. FSRW simply aggregates each feature vector 𝑣𝑟 ∈ R𝐶 at each pixel of the query feature
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map with the pooled embedding 𝑣𝑠 ∈ R𝐶 of the support feature map, aiming to highlight the
important features corresponding to the support image using a simple element-wise multiplication:

𝑣fused = 𝑣𝑟 ⊗ 𝑣𝑠 . (6)

The fused feature vector 𝑣fused ∈ R𝐶 is used to predict the classification score (for the class that 𝑣𝑠 is
from) and location regression, as shown in 6(a).Meta R-CNN [130], CME [60], TIP [56], VFA [38],
FSOD-KT [52] and GenDet [75] follow this simple element-wise multiplication operation with
other elaborated extensions.
• FsDet [124] upgrades this simple element-wise multiplication operation to a more complex yet
effective version, as shown in 6(b). Specifically, given the RoI feature vector 𝑣𝑟 and the support
feature vector 𝑣𝑠 , the aggregated feature vector 𝑣fused is calculated as the concatenation of their
linearly transformed element-wise multiplication, subtraction and the original 𝑣𝑟 , as shown in
Equation 7 (FC denotes a fully-connected layer that reduces the dimension). With this extended
aggregation method, FsDet outperforms Meta R-CNN on both MS COCO benchmark and PASCAL
VOC benchmark.

𝑣fused = [FC(𝑣𝑟 ⊗ 𝑣𝑠 ), FC(𝑣𝑟 − 𝑣𝑠 ), 𝑣𝑟 ], (7)
• AFD-Net [74] and DRL [76]. These two methods follow FsDet in this RoI feature-vector aggre-
gation method with some other modifications.
Unlike the above RoI feature-vector aggregation methods which concentrate on the aggre-

gation of feature vectors, RoI feature-map aggregation methods focus on the aggregation of
feature maps that preserves spatial information for better excavating the relation between query
and support images. Some methods only adopt simple concatenation operation and element-
wise operation for the feature map aggregation, while newly proposed methods tend to adopt
attention operation for feature map aggregation.
• Concatenation operation & element-wise operation for RoI feature-map aggregation.
SQMG-FSOD [143] simply concatenates the RoI feature map with the support feature map for
the RoI feature-map aggregation. While some methods (Attention-RPN [21], QA-FewDet [34],
KFSOD [146], PNSD [144], FCT [36], and MM-FSOD [37]) utilize a multi-relation head that adopt
both concatenation operation and element-wise operation. Specifically, this multi-relation head
consists of a global-relation head, a patch-relation head, and a local-relation head. The global-relation
head concatenates𝜙𝑟 and𝜙𝑠 in depthwith a pooling operation. The patch-relation head concatenates
𝜙𝑟 and 𝜙𝑠 with several convolutional blocks on it. And the local-relation head aggregates 𝜙𝑟 and 𝜙𝑠
by calculating the pixel-wise and depth-wise similarities between them. These methods conduct
both integral and RoI feature aggregation, which will be specified later.
• Attention operation for RoI feature-map aggregation. Some methods (ICPE [78], DAnA-
FasterRCNN [12], TENET [145], Hierarchy-FasterRCNN [87], IQ-SAM [54], and Meta Faster R-
CNN [35]) adopt the attention operation to conduct RoI feature-map aggregation. Specifically, they
calculate the aggregated feature map according to the similarity score (attention) between each pair
of elements from 𝜙𝑟 and 𝜙𝑠 . In these methods, ICPE conducts only RoI feature aggregation with
some proposed modifications. Specifically, it additionally incorporates the information of query
images into support images before the final feature aggregation, and it adjusts the importance of
different support images instead of treating them as equals. Other methods conduct both integral
and RoI feature aggregation, which will be specified later.
⋆ Discussion of RoI Feature Aggregation Methods. RoI Feature Aggregation Methods are cate-
gorized into RoI feature-vector aggregation methods and RoI feature-map aggregation methods. RoI
feature-vector aggregation methods are early meta-learning methods for FSOD, whose approaches
are simple and limit their performance. On the other hand, RoI feature-map aggregation methods
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preserve spatial information of query and support samples, towards fully extracting the spatial
relations between query and support features. Therefore, RoI feature-map aggregation methods
can better discriminate features of different objects and achieve higher performance.

4.1.2 Mixed Feature Aggregation Methods. The above section discusses only the RoI feature
aggregation, while most newly proposed methods (named “mixed feature aggregation methods”)
additionally conduct integral feature aggregation to incorporate class-specific information into the
shallow components of the detection model. The integral feature aggregation methods are mainly
conducted on the feature-maps (not feature-vectors) and can be categorized into concatenation
& element-wise operations (Attention-RPN [21], QA-FewDet [34], KFSOD [146], PNSD [144],
MM-FSOD [37], Meta Faster R-CNN [35]), convolutional operation (SQMG-FSOD [143]), and
attention operation (DAnA-FasterRCNN [12], TENET [145], Hierarchy-FasterRCNN [87], IQ-
SAM [54], DCNet [44], Meta-DETR [141], FCT [36]).
• Concatenation & element-wise operations for integral feature aggregation. Attention-
RPN [21] conducts integral feature map aggregation by using 𝜙𝑠 ∈ R𝐶×𝐻𝑠×𝐻𝑠 as a kernel and
sliding it across 𝜙𝑞 ∈ R𝐶×𝐻𝑞×𝐻𝑞 to compute similarities at each location. Specifically, the element
at the location (𝑐, ℎ,𝑤) of the aggregated feature map 𝜙fused is calculated in Equation 8 (note that
𝑖, 𝑗 ∈ {1, · · · , 𝐻𝑠 }). Some methods (QA-FewDet [34], KFSOD [146], PNSD [144], MM-FSOD [37],
Meta Faster R-CNN [35]) follow this integral feature aggregation method with other extensions.

𝜙fused (𝑐,ℎ,𝑤 ) =
∑︁
𝑖, 𝑗

𝜙𝑞 (𝑐,ℎ+𝑖−1,𝑤+𝑗−1) · 𝜙𝑠 (𝑐,𝑖, 𝑗 ) . (8)

• Convolutional operation for integral feature aggregation. SQMG-FSOD [143] proposes
another integral feature aggregation method by generating convolutional kernels from support
features and using the generated kernels to enhance query features. Furthermore, SQMG-FSOD
not only learns a distance metric to compare RoI features and support features for filtering out
irrelevant RoIs but also utilizes this metric to assign weights to support samples by comparing them
with query images. Additionally, it proposes a hybrid loss to mitigate the false positive problem (i.e.,
some background RoIs are misclassified into objects).
• Attention operation for integral feature aggregation. Newly proposed methods (DC-
Net [44], DAnA-FasterRCNN [12], TENET [145], Hierarchy-FasterRCNN [87], IQ-SAM [54], Meta-
DETR [141], and FCT [36]) tend to adopt attention operation for integral feature aggregation.
Attention operation aggregates two feature-maps using a similar manner as scaled dot-product
attention [104]. It extracts the key map and the value map from the query image and the support
image, respectively, then calculates the pixel-wise similarities between these two key maps and
uses them to aggregate two value maps.

• Meta-DETR also adopts attention operation for integral feature aggregation with a significant
boost in performance. The major difference is that it adopts Deformable DETR [160] as the
detection framework. DETR is an end-to-end transformer-based detector that eliminates
anchor boxes in former detectors. Besides, Meta-DETR proposes a correlational aggregation
module (CAM) that uses single-head attention to aggregate the query feature-maps with the
support feature-maps. The aggregated features are finally fed into a class-agnostic transformer
to predict object categories and locations.

• Most of these methods aggregate the query and support features that are extracted from the
backbone independently, while FCT surpasses this limit and instead aggregates the features
in each layer of the ViT backbones, which achieves significant performance improvement.
First, it splits query images and support images into image tokens and add position & branch
embeddings into them (i.e., position embedding discriminates the position of the token, and
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branch embedding discriminates whether the token is from support image or query image).
Next, it concatenates all query and support tokens into a sequence and feeds them into a
transformer to generate the aggregated integral features.

⋆ Discussion of Mixed Feature Aggregation Methods. Compared to RoI feature aggregation
methods, mixed feature aggregation methods additionally conduct integral feature aggregation
to incorporate category-specific information into the shallow components (mainly RPN) of the
detection model, which extracts more positive region proposals for the further classification &
regression tasks and improves the performance. Mixed feature aggregation methods are categorized
into three types: concatenation & element-wise operations, convolutional operation, and
attention operation. Simple concatenation & element-wise operations are mostly adopted by early
FSODmethods, which have poor performance and need to combine other components altogether for
performance improvement. Convolutional operation is still simple, which cannot fully incorporate
the information of support features into query features. Attention operation captures the relation
between local regions in query feature maps and support feature maps, which better discriminates
different local regions, and these methods overall achieve better performance.

4.1.3 Other Meta-Learning Methods. There are some other meta-learning methods that focus
on issues other than the aggregation method of features, which are weight-prediction-based
methods and metric-learning-based methods.
• Weight-Prediction-Based Methods. MetaDet [119] proposes a meta-learning method that
learns to predict the weights of category-specific components of the model. MetaDet predicts
category-specific (e.g., the classification and regression branches) weights for novel classes from
few samples and fine-tunes the model on the novel dataset. Meta-RetinaNet [64] is another method
which adopts RetinaNet as the detection framework and predicts the weights of the whole network.
• Metric-Learning-Based Methods. IR-FSOD [45] directly learns to compare the similarity
between the RoI features with support features from different classes to generate the classification
scores. CAReD [92] also adds another metric learning branch for classification apart from the main
classification branch.

4.2 Transfer-Learning Methods
Transfer-learning methods regard FSOD as a transfer-learning problem in which the source domain
is the base dataset, and the target domain is the novel dataset. Current transfer-learning methods
mainly adopt Faster R-CNN as the detection framework, consisting of two stages: base training
and few-shot fine-tuning, as shown in Figure 7. The base training stage trains an object detector on
the base dataset. After this stage, the object detector will obtain an effective feature extractor and
achieve good performance on base classes. Then, in the few-shot fine-tuning stage, this pre-trained
object detector will be fine-tuned on the novel dataset to detect novel classes. In this way, the
common knowledge for feature extraction and proposal generation can be transferred from base
classes to novel classes.
• LSTD [11] is the first method to adopt the transfer-learning scheme for FSOD. It adopts Faster
R-CNN as the detection framework with two regularization terms in the few-shot fine-tuning stage.
Specifically, the first term suppresses background regions in the feature maps, and the second term
promotes the fine-tuned model to generate similar predictions with the source model. Regrettably,
the performance of LSTD is exceeded by the meta-learning methods during the same period.
• TFA [118] (Two-Stage Fine-tuning Approach) significantly improves the performance of transfer-
learning methods based on the Faster R-CNN detection framework. In the base training stage,
TFA pre-trains the model on the base dataset as previous transfer-learning methods. Then, in the
few-shot fine-tuning stage, it freezes the main components of Faster R-CNN and only fine-tunes the
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Fig. 7. Overview of the two-stage transfer-learning framework for standard FSOD [118]. In the base training
stage, the model is trained on the base dataset with abundant instances of base classes, while in the few-shot
fine-tuning stage, the model is trained on a small dataset containing data for both base classes and novel
classes. Current transfer-learning methods mostly adopt Faster R-CNN as the detection framework, as shown
in the figure. The yellow components in these two figures denote intermediate tensors, the blue components
denote modules in Faster R-CNN, and the lock symbol denotes that the parameters of the corresponding
module are frozen.

last two layers (box classification and regression layers) of Faster R-CNN. The loss function used
in the few-shot fine-tuning stage is the same as the base training stage but with a lower learning
rate. The dataset used in the few-shot fine-tuning stage is a balanced dataset containing a few
training samples of novel classes and a few selected training samples of base classes. This design
retains the model’s detection ability for base classes and mitigates the problem that some objects of
base classes are misclassified into novel classes. With this simple but effective training strategy,
TFA outperforms early meta-learning methods like FSRW, MetaDet, and Meta R-CNN on both MS
COCO benchmark and PASCAL VOC benchmark.
• DeFRCN [91] significantly improves the performance of TFA with two concise modifications:
(1) DeFRCN assigns different importance values to the gradients from RPN module and R-CNN
module, which is motivated by the viewpoint that RPN module and R-CNN module may learn
paradoxically and the learning of these two modules should be decoupled. (2) DeFRCN utilizes
a pre-trained classifier as an auxiliary branch for the classification of region proposals. DeFRCN
further validates the effectiveness of transfer-learning methods for FSOD, and many methods
are proposed following this transfer-learning paradigm. In this survey, transfer-learning methods
are categorized into feature-augmentation-based methods, classification-based methods,
regression-based methods, RPN-based methods, data-augmentation-based methods, and
pre-train-based methods according to the detection stage they focus on.

4.2.1 Feature-Augmentation-Based Methods. Feature-augmentation-based methods focus on
the feature extraction stage of an FSOD model. These methods apply different augmentations to
the features, aiming to better transfer the features learned on the base dataset to the novel dataset.
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Current feature-augmentation-based methods can be categorized into three types: self-attention-
based methods (CT-FSOD [136], AttFDNet [13]), feature-discretization-based methods (SVD-
FSOD [121], KD-FSOD [88]), and feature-inheritance-based methods (FSODup [120], FADI [6]).
• Self-Attention-BasedMethods for Feature-Augmentation. Self-attention-basedmethods (CT-
FSOD [136], AttFDNet [13]) adopt self-attention to augment the extracted features.
• Feature-Discretization-Based Methods for Feature-Augmentation. Feature-discretization-
based methods (SVD-FSOD [121], KD-FSOD [88]) discretize the feature-map by projecting each
pixel of the feature-map into a learned codebook (i.e., replacing each pixel of the feature-map with
its nearest code), thus enhancing the discrimination of features from different categories.
• Feature-Inheritance-Based Methods for Feature-Augmentation. Feature-inheritance-based
methods (FSODup [120], FADI [6]) inherit the features of base classes to the features of novel classes
for augmentation, which mitigates the data scarcity problem of novel classes.
⋆ Discussion of Feature-Augmentation-Based Methods. Self-attention-based methods incor-
porate interpretability into the decision-making of FSOD through the attention heatmaps. However,
self-attention-based methods are early FSOD methods, and the attention operations they adopt are
primitive, restricting their performance.

Feature-discretization-based methods utilize feature discretization to enhance the discrimination
of features from different categories, but they haven’t demonstrated the visual concepts that the
discretized features represent. Besides, KD-FSOD requires an additional step to train an extra
visual-word model and needs knowledge distillation to inherit the knowledge of this visual-word
model into the few-shot detector, bringing a non-negligible burden into model training.
Feature-inheritance-based methods utilize the knowledge from base classes as “free lunch” to

augment the features of novel classes with negligible cost. However, in the scenario that base
classes and novel classes are not in the same domain, it is unclear whether these methods still work
since base classes and novel classes share less common knowledge.

4.2.2 Classification-Based Methods. Classification-based methods aim to improve the classifi-
cation branch of the detection model. Early classification-based methods focus on improving the
main classification branch with some elaborated metric learning methods (RepMet [49], NP-
RepMet [135], PNPDet [140], FSOD-KI [137]). New classification-based methods mostly propose an-
other classification branch to assist the main classification branch, including additional-classifier-
based methods (FSCN [68]), contrastive-learning-based methods (FSCE [105], FSRC [102],
CoCo-RCNN [80]), knowledge-graph-based methods (KR-FSOD [114]), and semantic-infor-
mation-based methods (SRR-FSOD [157]).
• Metric Learning Methods for Classification. These methods (RepMet [49], NP-RepMet [135],
PNPDet [140], FSOD-KI [137]) propose elaborated metric learning methods to directly improve the
main classification branch.
• Additional-Classifier-Based Methods for Classification. FSCN [68] proposes a few-shot
correction network (FSCN) as an additional classification branch of the model, which makes class
predictions for the cropped region proposals with a pre-trained image classifier. These classification
scores are used to refine the classification scores from the main branch. Besides, this paper proposes
a semi-supervised distractor utilization method to select unlabeled distractor proposals for novel
classes and a confidence-guided dataset pruning (CGDP) method for filtering out training images
containing unlabeled objects of novel-classes.
• Contrastive-Learning-Based Methods for Classification. These methods (FSCE [105], CoCo-
RCNN [80], FSRC [102]) adopt contrastive learning to assist the classification of region proposals.

• FSCE introduces a contrastive loss to improve the classification performance of the model.
FSCE proposes a contrastive loss function to maximize the similarity between objects of the
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same category and promote the distinctiveness of region proposals from different categories.
This work is the first attempt to adopt contrastive learning into transfer-learning-based FSOD,
which significantly improves the performance of the baseline TFA.

• Knowledge-Graph-Based Methods for Classification. KR-FSOD [114] proposes an additional
classification branch based on an external knowledge graph with potential objects as nodes. The
model predicts the category of each potential object according to the information of its nearby
objects, which is extracted from this external knowledge graph. KR-FSOD improves the performance
by incorporating the external knowledge graph into the FSOD model.
• Semantic-Information-Based Methods for Classification. SRR-FSOD [157] proposes an
additional classification branch utilizing class semantic information to promote the classification,
which utilizes the external semantic information into the FSOD model for higher performance.
Specifically, SRR-FSOD projects the visual features into the semantic space using a linear projection.
In this semantic space, multiple word embeddings are used as semantic embeddings to represent
all base and novel classes. It generates class probabilities for the projected semantic embeddings by
calculating the similarities between the projected visual features and the class semantic embeddings.
⋆ Discussion of Classification-Based Methods.Metric learning methods are early methods
for FSOD with insufficient performance compared with the latest FSOD methods, indicating that
simple modification on the RoI classifier is not enough for FSOD.

Additional-classifier-based method (FSCN) achieves a large performance improvement. However,
it requires a pre-trained image classifier, resulting in an unfair comparison with other FSOD
methods.

Contrastive-learning-based methods incur minimal additional cost during model training while
yielding a substantial improvement in performance. Besides, they can be seamlessly integrated into
other FSOD methods.

Knowledge-graph-based method (KR-FSOD) is well motivated, but the performance is currently
not promising. Additionally, like FSCN, it cannot be readily applied to novel classes in real-world
FSOD applications due to the unavailability of corresponding knowledge graphs.
Semantic-information-based method (SRR-FSOD) serves as a bridge between FSOD and zero-

shot learning by incorporating class semantic information into the model. This approach has the
potential for enhancing performance with the large-scale cross-modal models. Nevertheless, it may
not be suitable for novel classes that haven’t been learned before.

4.2.3 Regression-BasedMethods. Regression-based methods focus on improving the regression
branch of detection model. SRR-FSD [53] proposes a refinement approach to improve the regression
of region proposals in RPN. Specifically, SRR-FSD expands the regression branch into multiple
successive regression heads. Each regression head receives the region proposals generated from
the preceding regression head and continues to refine these region proposals for generating more
positive samples.
⋆ Discussion of Regression-Based Methods. While the performance of the current regression-
based method (SRR-FSD) is currently not ideal, it’s important to note that such methods are still
rare, and there is ample opportunity for future exploration and improvement.

4.2.4 RPN-Based Methods. CoRPN [149] improves the RPN in Faster R-CNN for standard FSOD.
CoRPN assumes that the RPN pre-trained on base classes will miss some objects of novel classes.
Therefore, it uses multiple foreground-background classifiers in RPN instead of the original single
one to mitigate this problem. During testing, a given proposal box is assigned with the score from
the most certain RPN. During training, only the most certain RPN will get the gradient from the
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corresponding bounding box. CoRPN proposes a diversity loss to encourage the diversity of these
RPNs and a cooperation loss to mitigate firm rejection of foreground proposals.
⋆ Discussion of RPN-Based Methods. RPN-based method (CoRPN) directly devises multiple
RPNs to retrieve those missed novel objects, which addresses the problem that novel objects tend
to be missed by the RPN trained on the base dataset. However, it is limited in R-CNN-based model,
and it is unclear whether it still works when integrated into other FSOD models.

4.2.5 Data-Augmentation-Based Methods. Data-augmentation-methods aim to generate more
samples for each novel class, thus directly tackling the data-scarce problem of few-shot setting.
Current data augmentation methods can be divided into two categories: sample generation in
the input-pixel space and sample generation in the feature space. The former type directly
generates samples in the input-pixel space that are understandable and perceivable by humans,
which can be further divided into multi-scale augmentation methods and novel-instance-
mining methods. The latter type synthesizes more deep features for the novel classes, which can
be further divided into distribution inheritance methods and generator-based methods.
• Sample Generation In the Input-Pixel Space → Multi-Scale Augmentation Methods.
MPSR [122] and FSSP [127] both apply data augmentation to enrich the scales of positive samples.

• MPSR claims that although feature pyramid network (FPN) [70] may mitigate the scale
variation issue, it cannot address the sparsity of scale distribution in FSOD. Therefore, MPSR
proposes a strategy to directly augment the scales of objects in the input pixel space, which ex-
tracts each positive object independently and resizes them to multiple scales. The augmented
multi-scale samples are fed into the RPN module and detection heads for training.

• Sample Generation In the Input-Pixel Space→Novel-Instance-MiningMethods.MINI [7],
PSEUDO [50], Decoupling [25], and N-PME [77] excavate the unlabeled novel objects in the dataset
for data augmentation.
• Sample Generation In the Feature Space → Distribution Inheritance Methods. FSOD-
KD [153], PDC [57], and FSOD-DIS [123] generate more novel features by transferring the feature
distribution from the base dataset for data augmentation, which stem from the same few-shot
learning method [134]. Specifically, these methods assume that the feature distribution of a class can
be approximated as a Gaussian distribution and similar classes have similar feature distributions.
Therefore, they calculate the feature distribution of base classes using their abundant samples and
estimate the feature distribution of each novel class according to their nearest base classes. Finally,
these methods sample more novel features from the estimated feature distribution and use them
for training.
• Sample Generation In the Feature Space → Generator-Based Methods. Halluc [148] aims
to synthesize additional RoI features for novel classes. It proposes a simple hallucinator to generate
hallucinated RoI features, implemented as a simple two-layer MLP. In the base-training stage,
Halluc first trains a Faster R-CNN on the base dataset as regular object detection. Then, it freezes
the parameters of the detector and pre-trains the hallucinator with a classification loss for the
synthesized samples. Next, in the few-shot fine-tuning stage, Halluc unfreezes the parameters of
detection heads (classification head & regression head) and adopts an EM-like algorithm to train
the hallucinator and detection heads alternately. It is noted that this method shows impressive
performance when the number of training samples is extremely small. However, its superiority over
baseline methods such as TFA cannot be guaranteed as the number of training samples increases.
⋆ Discussion of Data-Augmentation-Based Methods.Methods for sample generation in the
input-pixel space are categorized into multi-scale augmentation methods and novel instance
mining methods. Multi-scale augmentation methods are effective data-augmentation methods
for FSOD, and they are easy to implement. However, conducting data-augmentation only on the
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aspect of scale does not tackle the core of data-scarcity problem of FSOD, and they are early FSOD
methods with insufficient performance. For the novel instance mining methods, it is true that on
current FSOD benchmarks, many objects from novel classes indeed exist in the images without
annotation. Capturing these objects effectively mitigates the data-scarcity problem in FSOD and
significantly improves the performance. These methods have great potential to be integrated into
other FSOD methods. However, this setting is not realistic. In real-life FSOD, it is not guaranteed
that the images of the base dataset contain objects from novel classes.
Methods for sample generation in the feature space are categorized into two categories: dis-

tribution inheritance methods and generator-based methods. The former type effectively
generates more samples for novel classes using the data distribution from the data-abundant base
classes. It introduces no extra parameters and can be considered as a “free lunch” from the base
dataset. However, it is not applicable in the real-world scenario that there is a significant difference
between the data distribution of the base classes and novel classes. The latter type is more suitable
for the scenario that base classes and novel classes differ a lot, but it introduces an extra generator
which may increase the burden for model training.

4.2.6 Pre-Train-Based Methods. Almost all transfer-learning methods adopt a backbone pre-
trained on ImageNet before the base training stage. Some methods (DETReg [2], imTED [150])
focus on improving this pre-training stage.

• DETReg pre-trains a DETR model in an unsupervised manner. On the one hand, it uses Selec-
tive Search [111] to excavate object proposals and uses them to train the object localization
branch of the model. On the other hand, it uses another pre-trained self-supervised model to
generate object encodings and enforces the DETR model to mimic these object encodings.

• imTED integrally migrates a pre-trained MAE model [40] to be a detection model. Concretely,
imTED adds a region proposal network and a detection head into the MAE model following
the design of Faster R-CNN. Besides, it proposes a multi-scale feature modulator to fuse
multi-scale features extracted from a FPN [70].

⋆ Discussion of Pre-Train-Based Methods. These methods explore the current FSOD problem
in a new perspective that pursues a stronger backbone before the few-shot training stage, while
current FSOD methods most simply adopt a backbone pre-trained with a classification task on
ImageNet. Besides, the performance of these methods is significantly superior to other methods.
However, these methods require a stronger pre-trained backbone (DETReg requires SwAV, and
imTED requires MAE). Besides, these methods never clarify whether these stronger backbones
cover the knowledge of novel classes in the FSOD setting, which will bring an unfair comparison
with other FSOD methods.

4.3 Fine-Tune-Free Methods
Fine-tune-free methods focus on directly transferring the trained model from the base dataset to the
novel dataset without fine-tuning. Existing fine-tune-free methods (AirDet [58], FS-DETR [5]) adopt
the scheme of meta-learning, and they also focus on the method of feature aggregation. Specifically,
AirDet conducts integral feature aggregation with element-wise multiplication and concatenation
operations, and it proposes to learn the weights of different support samples instead of treating
them as equals. Besides, AirDet aggregates RoI features with support features for the regression
branch. FS-DETR concatenates query features with support features into a common sequence and
feeds it into the DETR model. FS-DETR proposes the learnable pseudo-class embeddings with the
same shape as support features and adds them into support features to facilitate the model training.
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⋆ Discussion of Fine-Tune-Free Methods. Fine-tune-free method requires less computation
cost and are more suitable for real life. However, the performance of these methods is currently not
ideal compared to the fine-tune-based methods.

5 ZERO-SHOT OBJECT DETECTION
Zero-Shot Object Detection (ZSOD) is an extreme scenario of LSOD that novel classes do not
contain any image sample. Concretely, the training dataset (base dataset 𝐷𝐵) of ZSOD consists of
abundant annotated instances of base classes 𝐶𝐵 , and the test dataset (novel dataset 𝐷𝑁 ) does not
consist of annotated instances of novel classes 𝐶𝑁 (𝐶𝐵 and 𝐶𝑁 are not intersected). As a substitute,
ZSOD utilizes semantic information to assist in detecting objects of novel classes.
According to whether utilizing unlabeled test images for model training, this survey catego-

rizes ZSOD into two domains: “transductive ZSOD” and “inductive ZSOD”. Inductive ZSOD is the
mainstream of ZSOD, which does not require accessing the test images in advance. Differently,
transductive ZSOD is rarely explored, which utilizes unlabeled test images to assist model training.
Furthermore, inductive ZSOD is categorized according to the type of semantic information: seman-
tic attributes and textual description. The former type utilizes the semantic attributes (word
vector) as the auxiliary semantic information to represent each class. In contrast, the latter type
utilizes the textual description (e.g., a description sentence for an image or a class) as the auxiliary
semantic information. This section gives a comprehensive introduction to semantic-attributes-based
inductive ZSOD (standard ZSOD).Textual-description-based inductive ZSOD and transductive
ZSOD will be discussed in the later sections.

Current semantic-attributes-based inductive ZSOD methods adopt Faster R-CNN or YOLO-style
model as the detection framework, as shown in Figure 8. Ankan Bansal et al. [1] propose one of the
earliest methods for semantic-attributes-based inductive ZSOD based on Faster R-CNN. This work
first establishes a simple baseline built on Faster R-CNN, which uses a simple linear projection to
project RoI features 𝑣𝑟 into semantic space and calculates the class probabilities of 𝑣𝑟 as the cosine
similarities between the projected semantic embeddings 𝑠𝑟 and the semantic attributes of each class.
As one of the earliest methods for ZSOD, this work sets up a benchmark adopted by many future
works.
• ZS-YOLO [159] is another early work for semantic-attributes-based inductive ZSOD based on
YOLOv2. It projects each cell in the feature map into semantic embeddings for class prediction.
Compared to the contemporaneous work [1], ZS-YOLO adopts a different detection framework, and
it does not require external training data and semantic embeddings of background class. However,
these two methods are evaluated using different dataset settings, making it difficult to directly
compare their performance.
As the forerunners of two mainstream detection frameworks for semantic-attributes-based

inductive ZSOD, the above two methods [1, 159] are followed by many future works. The later
methods mainly follow their framework with some extensions on different components of the
framework. According to the modified components they focus on, this survey categorizes semantic-
attributes-based inductive ZSOD methods into semantic relation methods, data augmentation
methods, and visual-semantic mapping methods.

5.1 Semantic Relation Methods
Semantic relation methods utilize the semantic relation between classes to detect objects of novel
classes, which are further categorized into base-novel class relation and super-class relation.
Methods based on base-novel class relation utilize semantic similarities between base classes and
novel classes to transfer knowledge from base classes to novel classes. Methods based on super-class
relation assume that there is a hierarchical relationship among categories, i.e., some similar classes
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Fig. 8. Overview of two detection frameworks for ZSOD methods: Faster R-CNN and YOLO-style model.
Most of the current methods apply a visual-semantic mapping operation to project visual features into
semantic space and compare these projected semantic embeddings with class semantic embeddings for
classification.

M
odel

... ...
...
...

...
...
...

......
...

...

Base Class Novel Class Super Class

Prediction

Image

... ...

M
odel

Prediction

Image
(a1) Linear-Transform-Based Methods (a2) Graph-Based Methods

(a) Base-Novel Class Relation
(b) Super-Class Relation

M
odelImage

...

...

...

...

Hierarchical Prediction

similarities
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can be grouped into a super-class (e.g., bed, sofa, and chair can be grouped into furniture), and they
utilize this hierarchical relationship to assist prediction.

5.1.1 Base-Novel Class Relation. Methods based on base-novel class relation can be catego-
rized into two types: linear-transform-based methods (TOPM-ZSOD [103], LSA-ZSOD [115],
DPIF [66]), and graph-basedmethods (SPGP [129], VSRG [85], CRF-ZSOD [79]). Linear-transform-
based methods utilize the base-novel semantic relation to assist prediction through linear transforms
of these semantic relations, and graph-based methods construct graphs with each node as a category,
towards fully excavating the relation between base classes and novel classes through graph neural
networks or conditional random fields.
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• Base-Novel Class Relation → Linear-Transform-Based Methods. TOPM-ZSOD [103], LSA-
ZSOD [115], and DPIF [66] are all linear-transform-based methods to utilize base-novel class
relation for ZSOD.
• Base-Novel Class Relation → Graph-Based Methods. SPGP [129], VSRG [85], and CRF-
ZSOD [79] are graph-based methods to better excavate the relation between base and novel classes
into the classification branch for higher performance.
⋆ Discussion of Methods Based on Base-Novel Class Relation. Linear-transform-based meth-
ods are simple approaches to directly utilize the base-novel semantic relation to assist prediction.
However, linear transform does not fully excavate the base-novel relation for prediction, and it
does not connect RoI features with the class semantic attributes together. Graph-based methods
deeply excavate the relation between base classes and novel classes for prediction through graph
neural networks or conditional random fields. Although they improve the performance through
the graph structure modeling the relation between categories, they haven’t provided a quantitative
analysis of whether the trained graph matches human intuition.

5.1.2 Super-Class Relation. Methods based on super-class relation (CG-ZSOD [67], JRLNC-
ZSOD [97], ACS-ZSOD [81]) define some coarse-grained classes (super-classes) to cluster all classes
into several groups, which separate the original classification problem into two sub-problems (coarse-
grained classification and fine-grained classification).
⋆ Discussion of Methods Based on Super-Class Relation. These methods provide “free lunch”
for the performance improvement of ZSOD, but they are unsuitable for situation where there is no
hierarchical relationship between categories.

5.2 Visual-Semantic Mapping Methods
Visual-semantic mapping methods aim to find a proper mapping function to align visual features
with the class semantic attributes. Visual-semantic mapping methods can be categorized into
linear-projection-based methods (e.g., LSA-ZSOD [115], DPIF [66], ZSDTR [154]), weighted-
combination-based methods (HRE-ZSOD [16]), inverse-mapping methods (MS-ZSOD [33],
CCFA-ZSOD [61], SMFL-ZSOD [63]), auxiliary-loss-based methods (ContrastZSOD [128], VSA-
ZSOD [95]), external-resource-based methods (CLIP-ZSOD [125], BLC [155]).
• Linear-Projection-Based Methods. The earliest ZSOD method [1] adopts this simplest visual-
semantic mapping method that projects visual features into semantic space through a linear projec-
tion, which is followed by many ZSOD methods (e.g., LSA-ZSOD [115], DPIF [66], ZSDTR [154]).
These methods are mostly based on CNN backbones, and only ZSDTR adopts DETR [8] (a vision-
transformer-based detector) which projects the proposal encodings into semantic space.
•Weighted-Combination-Based Methods. HRE-ZSOD [16] calculates the semantic embeddings
𝑠𝑟 of the RoI feature 𝑣𝑟 as the weighted combination of different semantic attributes from all base
classes𝐶𝐵 according to their classification scores, as shown in Equation 9 (𝑝𝑐 denotes the probability
that this RoI is predicted to be the base class 𝑐).

𝑠𝑟 =
1∑

𝑐∈𝐶𝐵

𝑝𝑐

∑︁
𝑐∈𝐶𝐵

𝑝𝑐𝑠𝑐 , (9)

• Inverse-Mapping Methods. Inverse-mapping methods (MS-ZSOD [33], CCFA-ZSOD [61],
SMFL-ZSOD [63]) conversely project class semantic attributes into visual space to align the class
semantic attributes with the visual features.
• Auxiliary-Loss-Based methods. Auxiliary-loss-based methods (ContrastZSOD [128], VSA-
ZSOD [95]) propose some auxiliary losses to facilitate the visual-semantic mapping.
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•External-Resource-BasedMethods.Thesemethods utilize external resources (CLIP-ZSOD [125],
BLC [155]) to better project visual features into semantic space. Specifically, CLIP-ZSOD utilizes a
strong pre-trained CLIP model [93] for visual-semantic mapping, and BLC adopts external vocabu-
lary for visual-semantic mapping.

5.3 Data Augmentation Methods
Data augmentation methods aim to generate multiple visual features for novel classes to mitigate
the data-scarcity problem. The generated features are used to re-train the classifier of the detection
model. Early data augmentation methods (DELO [158]) train a conditional generator with some
auxiliary losses for data generalization, and later methods (GTNet [151], SYN-ZSOD [39], RSC-
ZSOD [101], RRFS-ZSOD [46]) all adopt GAN (generative adversarial network).
• DELO [158] adopts a conditional generator to synthesize visual features for novel classes. Specif-
ically, the generator consists of an encoder to extract the latent features of the corresponding
semantic embeddings, and a decoder to synthesize the visual features from the latent features.
DELO adopts the conditional VAE loss to train this generator, including a KL divergence loss and
a reconstruction loss. Besides, it proposes three additional losses to encourage the consistency
between the reconstructed visual features and the original visual features.
• GTNet [151], SYN-ZSOD [39], RSC-ZSOD [101], and RRFS-ZSOD [46]. These methods all
adopt GAN (generative adversarial network) to generate visual features for novel classes. The GAN
consists of a generator to synthesize visual features and a discriminator to determine whether the
visual features are synthesized or not. These methods propose some elaborated extensions on this
framework respectively.
⋆ Discussion of Data Augmentation Methods. Data augmentation methods directly tackle the
data-scarcity problem in ZSOD in an intuitive way. Actually, data augmentation methods can be
seen as the inverse of visual-semantic mapping methods (i.e., mapping the class semantic attributes
back into visual features). An important difference is that data augmentation methods incorporate
intra-class variance into this mapping process, i.e., these methods generate different image features
from different random noises for the same class. However, these methods can only synthesize
visual features instead of visual samples (in the input pixel space), making it hard to interpret or
visualize the synthesized samples. Besides, it is possible to substitute these methods by inverting
the visual-semantic mapping functions.

6 EXTENSIONAL ZERO-SHOT OBJECT DETECTION
6.1 Open-Vocabulary Object Detection
Conventional ZSOD only learns to align visual features with semantic information for detection
from a small set of base classes (𝐶𝐵) and generalizes to the novel classes (𝐶𝑁 ), while Open-Vocabulary
Object Detection (OVD) first accesses a much larger dataset (consisting of massive image-text
pairs from multiple classes 𝐶𝑂 ) to train a stronger visual-semantic mapping function for multiple
classes (intersecting with the base and novel classes for the later ZSOD task). We provide a detailed
analysis of OVD in section S3 of the supplementary online-only material.

6.2 Textual-Description-Based Inductive ZSOD
Previous ZSOD methods use semantic attributes as semantic information to represent each class. In-
stead, textual-description-based methods use textual description as semantic information. Currently,
only a few methods uncover textual-description-based inductive ZSOD, and they use different
types of textual-description: class textual description (description text for each class) and image
textual description (description text for each image).
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•Methods Based on Class Textual Description. ZSOD-TD [69] adopts textual description to
represent each class instead of semantic attributes (e.g., “stripe, equid" is used to describe zebra).
ZSOD-TD projects the RoI features into semantic embeddings and makes predictions by comparing
them with the features extracted from textual description.
•Methods Based on Image Textual Description. In addition to the class textual description,
ZSOD-CNN [142] adopts textual description to represent each image (e.g., “A bathroom with a
sink and three towels."), which also adopts Faster R-CNN as the detection framework. It uses a text
CNN to extract text features, and concatenates the RoI features with the text features for further
predictions. Besides, this method utilizes the OHEM technique to select hard samples for model
training. During testing, it predicts the classification scores of novel classes according to those of
base classes according to the semantic similarities between base and novel classes.

6.3 Transductive ZSOD
• Transductive ZSOD [94]. Transductive ZSOD is an extended setting of inductive ZSOD, which
incorporates unlabeled test images into model training. Rahman et al. [94] propose the first work to
uncover transductive ZSOD, which conducts transductive learning on a pre-trained ZSOD model.
For transductive learning, it applies a pseudo-labeling paradigm on the unlabeled data, including a
fixed pseudo-labeling step to generate fixed pseudo-labels for base classes using the pre-trained
model, and a dynamic pseudo-labeling step to generate pseudo-labels for both base classes and
novel classes iteratively. This work is the first to explore transductive learning on ZSOD, which
shows promising potential for significant performance improvement, as other transductive methods
in few-shot image classification.

7 POPULAR BENCHMARKS FOR LOW-SHOT OBJECT DETECTION
7.1 Dataset Overview
In three settings (i.e., OSOL, FSOD, and ZSOD) of LSOD, the classes of the dataset are all split into
two types: base classes with large labeled samples and novel classes with few or no labeled samples.
The mainstream benchmarks for Low-Shot Object Detection are modified from widely-used object
detection datasets like the PASCAL VOC dataset, MS COCO dataset. This survey summarizes the
basic information of mainstream benchmarks for LSOD in Table 2 but omits some rarely-used
benchmarks since they are not representative. In this table, the number of base classes, the number
of novel classes, and the number of labeled samples per category for each benchmark are recorded.
Moreover, split number denotes the number of category split schemes for each benchmark.

7.2 Evaluation Criteria
OSOL. OSOL has a guarantee that the model knows precisely the object classes contained in each
test image. For each test image in the test stage, OSOL randomly samples one support image for
each category existing in this image to locate the objects of this category and average their accuracy
scores as the final results.
FSOD. Different from OSOL, FSOD methods randomly sample a small set of support samples for
the whole test set instead of only one image. For the K-shot setting, some methods like LSTD [11]
sample K support images for each novel category. This sampling strategy is not ideal since the
number of objects in the images may differ. Current methods mostly sample K bounding boxes
for each novel category instead, and this survey records the performance of FSOD methods under
this setting. Early FSOD methods mostly adopt the support samples released by FSRW [47] for
fair performance comparison, which are sampled only once. TFA [118] samples support samples
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Table 2. Summation Of Mainstream Benchmarks for Low-Shot Object Detection

LSOD Type Dataset Base Classes Novel Classes Shots Per Category Split Number

OSOL PASCAL VOC Dataset 16 4 1 1
MS COCO Dataset 60 20 1 4

FSOD PASCAL VOC Dataset 15 5 1, 2, 3, 5, 10 3
MS COCO Dataset 60 20 10, 30 1

ZSOD
PASCAL VOC Dataset 16 4 0 1
MS COCO Dataset 48 17 0 1
MS COCO Dataset 65 15 0 1

multiple times to obtain the average performance of the model. Currently, newly proposed FSOD
methods mostly adopt this multiple sampling strategy to obtain more accurate performance.
ZSOD. ZSOD methods adopt two evaluation criteria for model performance comparison. The
first criterion evaluates the model on a subset of test data that contains only objects of novel
classes (ZSOD). The second setting, generalized ZSOD (GZSOD), evaluates the model on the
complete test data, requiring the model to detect objects of both base classes and novel classes.
Generalized ZSOD separately computes the mean average precision and recall of base classes and
novel classes and uses a harmonic average to generate the average performance.

It is noted that the class semantic attributes for ZSOD are mainly borrowed from pre-trained word
vectors or manually designed attributes: GloVe (300-dim) [89], BERT (768-dim) [17], word2vec (300-
dim) [83], fastText [4] and aPaY (64-dim) [22]. Among them, aPaY contains manually designed
attributes, and others contain pre-trained word vectors.

7.3 Evaluation Metrics
• Preliminaries for the calculation of evaluation metrics:
Intersection over Union (IoU). Intersection over Union (IoU) is a value that measures the

degree of overlap between two bounding boxes. Specifically, let bbox1 ∩ bbox2 and bbox1 ∪ bbox2
respectively denote the area of overlap and union of two bounding boxes bbox1 and bbox2, the IoU
between them IoU(bbox1, bbox2) is calculated as IoU(bbox1, bbox2) = bbox1 ∩ bbox2

bbox1 ∪ bbox2 . Two bounding
boxes are considered to be matched if their IoU is larger than a pre-determined threshold 𝜇.
• The evaluation metrics for LSOD:

Precision. Precision is the fraction of correctly retrieved bounding boxes out of total retrieved
bounding boxes.

Recall@K. In converse to Precision, Recall is the fraction of correctly retrieved bounding boxes
out of total ground-truth bounding boxes (K denotes the number of total retrieved bounding boxes).

mAP50. AP50 (average precision with 𝜇 = 0.5) is the precision averaged over different levels of
recall. Let Prec (recall_value) denote the precision when “recall_value” is achieved, and AP50 is
calculated averaged over some specific values R of recall (R = {0, 0.1, 0.2, ..., 1.0} is usually selected),
as shown in Equation 10. AP50 is calculated for each category and their results are averaged as the
final mAP50 (mean average precision with 𝜇 = 0.5). Note that mAP50 is commonly adopted on the
PASCAL VOC benchmark.

AP50 =
1
|R |

∑︁
recall_value∈R

Prec (recall_value). (10)

mAP.mAP is the extension of mAP50 that is averaged over ten IoU thresholds: {0.5, 0.55, 0.60, ... ,
0.95}, which is commonly adopted on the MS COCO benchmark.
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Table 3. Performance (mAP50) of OSOL methods on novel classes. On each benchmark, the red font denotes
the best performance, and the gray font denotes the second-best performance. Note that PASCAL VOC has
only one class split, while the results on MS COCO are averaged over four different class splits. R-50 & R-101
denotes ResNet-50 & ResNet-101.

Type Method Detector (Backbone) PASCAL VOC MS COCO

Object Tracking Methods
SiamFC (2018) [9] SNet & ENet (VGG-16) 13.3 N/A

SiamRPN (2018) [59] Faster R-CNN (AlexNet) 14.2 N/A

Concatenation-Based Methods

SiamMask (2019) [82] Faster R-CNN (R-50) N/A 16.8
OSCD (2020) [24] Faster R-CNN (AlexNet) 52.1 N/A

OSOLwT (2020) [65] Faster R-CNN (R-50) 69.1 N/A
FOC OSOL (2021) [132] Faster R-CNN (R-50) 71.0 N/A

Attention-Based Methods

CoAE (2019) [43] Faster R-CNN (R-50) 68.2 22.0
ADA OSOL (2022) [147] Faster R-CNN (R-50) 72.3 23.6
AUG OSOL (2022) [19] Faster R-CNN (R-50) 73.2 23.9

AIT (2021) [10] Faster R-CNN (R-50) 73.1 24.3
BHRL (2022) [131] Faster R-CNN (R-50) 73.8 25.6
SaFT (2022) [152] FCOS [110] (R-101) 74.5 24.9
CAT (2021) [73] Faster R-CNN (R-50) 75.5 24.4

ABA OSOL (2023) [42] Faster R-CNN (R-50) 74.6 23.6

8 PERFORMANCE
This section demonstrates and analyzes the performance of different Low-Shot Object Detection
methods on the most widely-used benchmarks.

8.1 One-Shot Object Localization
Table 3 lists the performance of current OSOL methods on the PASCAL VOC benchmark and the
MS COCO benchmark (the results on the MS COCO benchmark are averaged over 4 splits). SiamFC
and SiamRPN are two methods initially proposed for video object tracking, which are the baselines
for OSOL, and their performance is reasonably poor than authentic OSOL methods. SiamMask,
OSCD, OSOLwT, and FOC OSOL use simple concatenation-based methods for feature aggregation
with different modifications. These methods significantly outperform SiamFC & SiamRPN, but
they have performance inferior to the attention-based methods, and FOC OSOL achieves the best
performance among these methods on the PASCAL VOC benchmark. Differently, recently proposed
methods (CoAE, ADA OSOL, AUG OSOL, AIT, CAT, BHRL, SaFT, ABA OSOL) most adopt the
attention mechanism for feature aggregation, and CAT is the best method among them. Moreover,
CAT (a transformer-based method) achieves 4.5 points better than FOC OSOL on the PASCAL VOC
benchmark, which indicates that attention-based methods are more promising for future One-Shot
Object Localization.

8.2 Few-Shot Object Detection
This subsection demonstrates the performance of standard Few-Shot Object Detection methods on
two most commonly used benchmarks: PASCAL VOC benchmark and MS COCO benchmark. For a
fair comparison, this survey only lists the performance of FSOD methods with released codes.

Table 4, Table 5 and Table 6 present the performance on novel classes of PASCAL VOC benchmark
and MS COCO benchmark, respectively. Some conclusions can be summarized from these two
tables: (1) The best-performing transfer-learning method have superior performance to the best
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Table 4. Performance (mAP50) of FSOD methods on the PASCAL VOC benchmark (only the methods with
released codes are listed). These FSOD methods are evaluated on the three splits of PASCAL VOC dataset
under the 1, 2, 3, 5, 10-shot condition. For each shot, the red font denotes the best performance, and the gray
font denotes the second-best performance. ★ denotes that the results are averaged over multiple runs, and
R-101 denotes ResNet-101.

Method Detector (Backbone)
Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

M
eta-Learning

FSRW (2018) YOLOv2 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
Meta-RCNN (2019) Faster R-CNN (R-101) 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

FsDet (2020)★ Faster R-CNN (R-101) 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
DRL (2021)★ Faster R-CNN (R-101) 30.3 40.8 49.1 48.0 58.6 22.4 36.1 36.9 35.4 51.8 24.8 29.3 37.9 43.6 50.4
DCNet (2021)★ Faster R-CNN (R-101) 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
CME (2021) YOLOv2 17.8 26.1 31.5 44.8 47.5 12.7 17.4 27.1 33.7 40.0 15.7 27.4 30.7 44.9 48.8

Meta-DETR (2022)★ Def. DETR (R-101) 35.1 49.0 53.2 57.4 62.0 27.9 32.3 38.4 43.2 51.8 34.9 41.8 47.1 54.1 58.2
QA-FewDet (2021) Faster R-CNN (R-101) 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5

FCT (2022)★ Faster R-CNN (PVTv2-B2-Li) 38.5 49.6 53.5 59.8 64.3 25.9 34.2 40.1 44.9 47.4 34.7 43.9 49.3 53.1 56.3
VFA (2023) Faster R-CNN (R-101) 57.7 64.6 64.7 67.2 67.4 41.4 46.2 51.1 51.8 51.6 48.9 54.8 56.6 59.0 58.9

T
ransfer-Learning

TFA w/cos (2020) Faster R-CNN (R-101) 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Halluc (2021) Faster R-CNN (R-101) 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6
MPSR (2020) Faster R-CNN (R-101) 41.7 N/A 51.4 55.2 61.8 24.4 N/A 39.2 39.9 47.8 35.6 N/A 42.3 48.0 49.7
FSODup (2021) Faster R-CNN (R-101) 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5
FSCE (2021)★ Faster R-CNN (R-101) 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 46.0 48.5 22.6 33.4 39.5 47.3 54.0

DeFRCN (2021)★ Faster R-CNN (R-101) 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
FSOD-KI (2022) Faster R-CNN (R-101) 57.0 62.3 63.3 66.2 67.6 42.8 44.9 50.5 52.3 52.2 50.8 56.9 58.5 62.1 63.1
FSOD-KD (2022) Faster R-CNN (R-101) 46.7 53.1 53.8 61.0 62.1 30.1 34.2 41.6 41.9 44.8 41.0 46.0 47.2 55.4 55.6
FADI (2022) Faster R-CNN (R-101) 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6

PSEUDO (2022) Faster R-CNN (R-101) 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6
FSOD-DIS (2022) Faster R-CNN (R-101) 63.4 66.3 67.7 69.4 68.1 42.1 46.5 53.4 55.3 53.8 56.1 58.3 59.0 62.2 63.7

performing meta-learning methods on the most commonly used backbone (ResNet-101). Specifi-
cally, FSOD-DIS (the best-performing transfer-learning method on ResNet-101) exceeds VFA (the
best-performing meta-learning method on ResNet-101) on the MS COCO benchmark. (2) For
meta-learning methods, mixed feature aggregation methods outperform RoI feature aggregation
methods on two benchmarks overall. The reasons for this phenomenon is that mixed feature
aggregation methods incorporate category-specific information into the shallow components (RPN,
mainly) of the detection model, which directly guides the prediction of these components using the
support information. (3) For transfer-learning methods, data augmentation methods (e.g., Halluc,
PSEUDO, FSOD-DIS) show strong performance in an extremely few-shot condition (shot = 1, 2, 3),
demonstrating that data augmentation methods effectively tackle the data-scarcity problem in
the extremely few-shot condition. (4) Methods on advanced backbones (FCT on PVTv2-B2-Li,
Meta-DETR & DETReg on Def. DETR, PSEUDO on Swin-S, imTED on ViT-B) show significantly
higher performance than methods on the regular backbone (ResNet-50 & ResNet-101), which point
out a promising direction for the development of FSOD. (5) The performance ranking of a method
can differ across these two benchmarks.

8.3 Zero-Shot Object Detection
Table 7 and Table 8 demonstrate the performance of standard ZSOD methods under two evaluation
protocols (ZSOD, GZSOD) on the most commonly used benchmark: MS COCO benchmark. Some
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Table 5. Performance (mAP50) of FSOD methods on the PASCAL VOC benchmark (only the methods with
released codes are listed). These FSOD methods are evaluated on the PASCAL VOC dataset under the
1, 2, 3, 5, 10-shot condition. The results are averaged over three splits of base & novel classes. For each shot,
the red font denotes the best performance, and the gray font denotes the second-best performance. ★ denotes
that the results are averaged over multiple runs, and R-101 denotes ResNet-101.

Method Detector (Backbone)
3 Novel Sets (Averaged)
1 2 3 5 10

M
eta-Learning

FSRW (2018) YOLOv2 17.3 18.8 25.9 35.6 44.5
Meta-RCNN (2019) Faster R-CNN (R-101) 14.9 21.0 30.7 40.6 48.3

FsDet (2020)★ Faster R-CNN (R-101) 22.3 30.0 37.1 43.3 50.9
DRL (2021)★ Faster R-CNN (R-101) 25.8 35.4 41.3 42.3 53.6
DCNet (2021)★ Faster R-CNN (R-101) 29.8 32.4 38.0 43.5 52.3
CME (2021) YOLOv2 15.4 23.6 29.8 41.1 45.4

Meta-DETR (2022)★ Def. DETR (R-101) 32.6 41.0 46.2 51.6 57.3
QA-FewDet (2021) Faster R-CNN (R-101) 34.5 44.2 50.0 55.4 56.0

FCT (2022)★ Faster R-CNN (PVTv2-B2-Li) 33.0 42.6 47.6 52.6 56.0
VFA (2023) Faster R-CNN (R-101) 49.3 55.2 57.5 59.3 59.3

T
ransfer-Learning

TFA w/cos (2020) Faster R-CNN (R-101) 31.4 32.6 40.5 46.8 48.3
Halluc (2021) Faster R-CNN (R-101) 37.9 39.6 42.4 47.8 48.5
MPSR (2020) Faster R-CNN (R-101) 33.9 N/A 44.3 47.7 53.1
FSODup (2021) Faster R-CNN (R-101) 36.8 39.3 45.1 49.4 54.5
FSCE (2021)★ Faster R-CNN (R-101) 26.4 36.0 41.6 48.7 54.1

DeFRCN (2021)★ Faster R-CNN (R-101) 34.9 43.9 51.5 56.5 60.0
FSOD-KI (2022) Faster R-CNN (R-101) 50.2 54.7 57.4 60.2 61.0
FSOD-KD (2022) Faster R-CNN (R-101) 39.3 44.4 47.5 52.8 54.2
FADI (2022) Faster R-CNN (R-101) 42.2 46.5 47.9 52.4 56.9

PSEUDO (2022) Faster R-CNN (R-101) 45.2 45.0 54.8 57.5 58.6
FSOD-DIS (2022) Faster R-CNN (R-101) 53.9 57.0 60.0 62.3 61.9

trends can be found in this table. (1) Early ZSODmethods are not consistent in the choice of semantic
attributes, and only a few of them are evaluated under the GZSOD protocol. Nevertheless, the newly
proposed ZSOD methods mostly adopt word2vec as their semantic attributes and use both ZSOD
protocol and GZSOD protocol to evaluate the model, which is more convenient for performance
comparison. (2) The model performance of 48/17 base-novel split is generally inferior to that of
65/15 base-novel split, which is attributed to the fewer classes and samples in the base dataset. (3)
Current data augmentation methods for ZSOD cannot achieve satisfying performance compared to
the newly proposed ZSOD methods. However, data augmentation methods can outperform other
methods when the shot number is small in FSOD, which is still promising in ZSOD. (4) The newly
proposed ZSOD methods, such as CLIP-ZSOD, incorporate pre-trained cross-modal models like
CLIP in their training process and achieve remarkable performance compared to state-of-the-art
methods. This demonstrates the potential to transfer external foundation models in future ZSOD
research, leading to even higher performance.

9 PROMISING DIRECTIONS
9.1 Promising Directions for FSOD
Since FSOD extends OSOL by withdrawing the prior information of test images, this survey
discusses the promising directions of FSOD to provide guidance for both FSOD and OSOL.
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Table 6. Performance (mAP) of FSOD methods on the MS COCO benchmark (only the methods with released
codes are listed). These FSOD methods are evaluated under the 1, 2, 3, 5, 10, 30-shot conditions. For each shot,
the red font denotes the best performance, and the gray font denotes the second-best performance. ★ denotes
that the results are averaged over multiple runs, and R-50 & R-101 denote ResNet-50 & ResNet-101.

Method Backbone 1 2 3 5 10 30

M
eta-Learning

FSRW (2018) YOLOv2 N/A N/A N/A N/A 5.6 9.1
Meta-RCNN (2019) Faster R-CNN (R-101) N/A N/A N/A N/A 8.7 12.4

FsDet (2020)★ Faster R-CNN (R-101) 4.5 6.6 7.2 10.7 12.5 14.7
Attention-RPN (2020) Faster R-CNN (R-50) 4.2 5.6 6.6 8.0 11.1 13.5

DRL (2021)★ Faster R-CNN (R-101) N/A N/A N/A N/A 11.9 14.6
DCNet (2021)★ Faster R-CNN (R-101) N/A N/A N/A N/A 12.8 18.6
CME (2021) YOLOv2 N/A N/A N/A N/A 15.1 16.9

Meta-DETR (2022)★ Def. DETR (R-101) 7.5 N/A 13.5 15.4 19.0 22.2
QA-FewDet (2021) Faster R-CNN (R-101) 4.9 7.6 8.4 9.7 11.6 16.5

DAnA-FasterRCNN (2021) Faster R-CNN (R-50) N/A N/A N/A N/A 18.6 21.6
Meta Faster R-CNN (2022) Faster R-CNN (R-101) 5.1 7.6 9.8 10.8 12.7 16.6

FCT (2022)★ Faster R-CNN (PVTv2-B2-Li) 5.1 7.2 9.8 12.0 15.3 20.2
VFA (2023) Faster R-CNN (R-101) N/A N/A N/A N/A 16.2 18.9

T
ransfer-Learning

TFA w/cos (2020) Faster R-CNN (R-101) 3.4 4.6 6.6 8.3 10.0 13.7
Halluc (2021) Faster R-CNN (R-101) 4.4 5.6 7.2 N/A N/A N/A
MPSR (2020) Faster R-CNN (R-101) 2.3 3.5 5.2 6.7 9.8 14.1

FSODup (2021) Faster R-CNN (R-101) N/A N/A N/A N/A 11.0 15.6
FSCE (2021)★ Faster R-CNN (R-101) N/A N/A N/A N/A 11.9 16.4

DeFRCN (2021)★ Faster R-CNN (R-101) 4.8 8.5 10.7 13.6 16.8 21.2
N-PME (2022) Faster R-CNN (R-101) N/A N/A N/A N/A 10.6 14.1
FSOD-KI (2022) Faster R-CNN (R-101) N/A N/A N/A N/A 13.0 16.8
FSOD-KD (2022) Faster R-CNN (R-101) N/A N/A N/A N/A 12.5 17.1
FADI (2022) Faster R-CNN (R-101) N/A N/A N/A N/A 12.2 16.1

PSEUDO (2022) Faster R-CNN (Swin-S) N/A N/A N/A N/A 19.0 26.8
FSOD-DIS (2022) Faster R-CNN (R-101) 10.8 13.9 15.0 16.4 19.4 22.7
imTED (2022) Faster R-CNN (ViT-B) N/A N/A N/A N/A 22.5 30.2
DETReg (2022) Def. DETR (R-50) N/A N/A N/A N/A 25.0 30.0

9.1.1 Efficient FSOD. FSOD models are generally modified from representative object detectors
like Faster R-CNN, YOLO-style detectors. Current FSOD methods need to first pre-train these
models on the data-abundant base dataset, then fine-tune them on the data-scarce novel dataset.
The pre-training on the base dataset requires a large device cost and time cost similar to general
object detection. Besides, current methods spend much time during the few-shot fine-tuning stage
for the model to converge (usually more than 10 epochs). The high computing cost of the model
and long convergence time prevent FSOD from the real-life application. Therefore, lightweight and
quickly-converged methods are required for future FSOD.

9.1.2 Cross-Domain FSOD. Almost all of the current FSOD methods are evaluated in the single-
domain condition. Cross-domain few-shot learning is a more realistic setting that the data for base
classes and novel classes are drawn from two domains. Some studies [32] on cross-domain few-shot
image classification indicate that the few-shot method does not have consistent performance in the
single-domain condition and cross-domain condition. For example, this paper demonstrates that
although some meta-learning methods achieve better performance than fine-tuning methods in the
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Table 7. Performance (mAP50) of ZSOD methods on the MS COCO Benchmark (Seen classes/Unseen
classes = 48/17). ZSOD denotes the performance under ZSOD protocol. Seen, Unseen and HM denote the
performance of base classes, novel classes and their harmonic average under GZSOD protocol, respectively.
For each column, the red font denotes the best performance, and the gray font denotes the second-best
performance. R-50 & R-101 denote ResNet-50 & ResNet-101.

Method Semantic Detector (Backbone)
ZSOD Seen Unseen HM

mAP Recall mAP Recall mAP Recall mAP Recall

SB (2018) [1] GloVe Faster R-CNN (Inception) 0.70 24.39 N/A N/A N/A N/A N/A N/A
DSES (2018) [1] GloVe Faster R-CNN (Inception) 0.54 27.19 N/A 15.02 N/A 15.32 N/A 15.17

TOPM (2019) [103] GloVe YOLOv3 (DarkNet-53) 15.43 39.20 N/A N/A N/A N/A N/A N/A
CG-ZSOD (2020) [67] BERT YOLOv3 (DarkNet-53) 7.20 N/A N/A N/A N/A N/A N/A N/A
GTNet (2020) [151] fastText Faster R-CNN (R-101) N/A 44.6 N/A N/A N/A N/A N/A N/A

JRLNC-ZSOD (2020) [97] word2vec Faster R-CNN (R-50) 5.05 12.27 13.93 20.42 2.55 12.42 4.31 15.45
SPGP (2020) [129] word2vec Faster R-CNN (R-101) N/A 35.40 N/A N/A N/A N/A N/A N/A

VSA-ZSOD (2020) [95] word2vec RetinaNet (R-50) 10.01 43.56 35.92 38.24 4.12 26.32 7.39 31.18
MS-Zero++ (2020) [33] word2vec Faster R-CNN (R-101) N/A N/A 35.00 N/A 13.80 35.00 19.80 N/A

BLC (2020) [155] word2vec Faster R-CNN (R-50) 10.60 48.87 42.10 57.56 4.50 46.39 8.20 51.37
ZSI (2021) [156] word2vec Faster R-CNN (R-101) 11.40 53.90 46.51 70.76 4.83 53.85 8.75 61.16

ZSDTR (2021) [154] word2vec Def. DETR (R-50) 10.40 48.50 48.53 74.31 5.62 48.44 9.45 60.53
VSRG (2022) [85] word2vec Faster R-CNN (R-50) 11.40 55.03 43.90 66.70 4.70 54.54 8.50 60.01

ContrastZSOD (2022) [128] word2vec Faster R-CNN (R-101) 12.50 52.40 45.10 65.70 6.30 52.40 11.10 58.30
RRFS-ZSOD (2022) [46]) fastText Faster R-CNN (R-101) 13.40 53.50 42.30 59.70 13.40 58.80 20.40 59.20
CLIP-ZSOD (2022) [125] word2vec YOLOv5 (CSPDarkNet-53) 13.40 55.80 31.70 63.30 13.60 45.20 19.00 52.70

single-domain condition, they significantly underperform even some simple fine-tuning methods
in the cross-domain condition. Cross-domain few-shot object detection is a more complicated task
than cross-domain few-shot image classification. Recently a few methods [27, 55, 126] propose
some benchmarks on cross-domain FSOD and set up some baselines for this area. Nevertheless,
cross-domain FSOD deserves more exploration in the future for its practicality.

9.1.3 New Detection Framework for FSOD. Most of the current FSOD methods adopt Faster
R-CNN as the detection framework. Some other powerful frameworks are worth exploring in the
future. For example, vision transformer focuses more on holistic information of the image than
local information, which can capture features missed by traditional CNN models. Currently, it
has been widely applied in many other computer vision areas. In FSOD, the recently proposed
Meta-DETR has improved the performance of FSOD to the SOTA on the MS COCO benchmark,
which exceeds previous Faster R-CNN based detectors by several points. Therefore, the potential of
vision transformer on FSOD still requires exploration.

9.2 Promising Directions for ZSOD
9.2.1 Combining Auxiliary Information for ZSOD. Combining information from an external
source to assist ZSOD is a potential direction for performance improvement. Some ZSOD methods
attempt to exploit the information of external classes (not intersecting with base classes and novel
classes) to augment semantic attributes of base classes and novel classes. Moreover, some other
ZSOD methods utilize an external word vocabulary to enhance the visual-semantic mapping.
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Table 8. Performance (mAP50) of ZSOD methods on the MS COCO Benchmark (Seen classes/Unseen
classes = 65/15). ZSOD denotes the performance under ZSOD protocol. Seen, Unseen and HM denote the
performance of base classes, novel classes and their harmonic average under GZSOD protocol, respectively.
For each column, red font denotes the best performance, and gray font denotes the second-best performance.

Method Semantic Detector (Backbone)
ZSOD Seen Unseen HM

mAP Recall mAP Recall mAP Recall mAP Recall

Transductive (2019) [94] word2vec RetinaNet (R-50) 14.57 48.15 28.78 54.14 14.05 37.16 18.89 44.07
CG-ZSOD (2020) [67] BERT YOLOv3 (DarkNet-53) 10.90 N/A N/A N/A N/A N/A N/A N/A
LSA-ZSOD (2020) [115] aPaY RetinaNet (R-50) 13.55 37.78 34.18 40.32 13.42 38.73 19.27 39.51
ACS-ZSOD (2020) [81] aPaY RetinaNet (R-50) 15.34 47.83 N/A N/A N/A N/A N/A N/A
SYN-ZSOD (2020) [39] fastText Faster R-CNN (R-101) 19.00 54.00 36.90 57.70 19.00 53.90 25.08 55.74
VSA-ZSOD (2020) [95] word2vec RetinaNet (R-50) 12.40 37.72 34.07 36.38 12.40 37.16 18.18 36.76

BLC (2020) [155] word2vec Faster R-CNN (R-50) 14.70 54.68 36.00 56.39 13.10 51.65 19.20 53.92
ZSI (2021) [156] word2vec Faster R-CNN (R-101) 13.60 58.90 38.68 67.11 13.60 58.93 20.13 62.76

ZSDTR (2021) [154] word2vec Def. DETR (R-50) 13.20 60.30 40.55 69.12 13.22 59.45 20.16 61.12
DPIF (2021) [66] word2vec Faster R-CNN (R-50) 19.82 55.73 29.82 56.68 19.46 38.70 23.55 46.00
VSRG (2022) [85] word2vec Faster R-CNN (R-50) 14.90 62.70 38.10 65.31 13.90 60.52 20.40 62.82

RSC-ZSOD (2022) [101] word2vec Faster R-CNN (R-101) 20.10 65.10 37.40 58.60 20.10 64.00 26.15 61.18
ContrastZSOD (2022) [128] word2vec Faster R-CNN (R-101) 18.60 59.50 40.20 62.90 16.50 58.60 23.40 60.70
RRFS-ZSOD (2022) [46]) fastText Faster R-CNN (R-101) 19.80 62.30 37.40 58.60 19.80 61.80 26.00 60.20
CLIP-ZSOD (2022) [125] word2vec YOLOv5 (CSPDarkNet-53) 18.30 69.50 31.70 61.00 17.90 65.20 22.90 63.00
CCFA-ZSOD (2022) [61] word2vec RetinaNet (R-50) 24.62 55.32 33.35 38.64 24.62 54.72 28.31 45.29

However, no ZSOD method delves into the utilization of external auxiliary information as a whole,
which requires more attention in the future.

9.2.2 Large Cross-Modal FoundationModel for ZSOD. Recently some large pre-trained cross-
modal model show incredibly strong performance in aligning the context semantic between images
and their text descriptions. CLIP [93] is the representative work of these large cross-modal models.
Specifically, CLIP pre-trains the model on a large-scale dataset comprising abundant image-text
pairs. CLIP encodes the images and texts with two parallel transformer-based models and adopts a
contrastive learning strategy for training. CLIP has the strong capacity of projecting images and
texts into a common feature space, thus it can be directly transferred to the zero-shot scenario.
Recently, CLIP has been widely adopted for open-vocabulary object detection.

9.2.3 ZSOD combined with FSOD. A more generic scenario may appear in real-life where only
some novel classes have annotated samples, yet other novel classes have semantic attributes, which
requires the combination of ZSOD and FSOD. Some methods have been proposed to tackle this
scenario. For example, ASD [96] and UniT [51] introduce an LSOD setting that the model makes
predictions utilizing both semantic information and image samples. Moreover, UniT significantly
improves the performance of FSODwith auxiliary semantic information. Therefore, this generalized
setting has more practical significance for the application of LSOD in the future.

10 CONCLUSION
Enhancing the deep object detectors to quickly learn from very few or even zero samples is of
great significance to future object detection. This paper conducts a comprehensive survey on
Low-Shot Object Detection (LSOD), consisting of One-Shot Object Localization (OSOL), Few-Shot
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Object Detection (FSOD) and Zero-Shot Object Detection (ZSOD). In this survey, the emergence
background and evolution history of LSOD are first reviewed. Then, current LSOD methods are
analyzed systematically based on an explicit and complete taxonomy of these methods, including
some extensional topics of LSOD. Moreover, the pros and cons of LSOD methods are indicated with
a comparison of their performance. Finally, the challenges and promising directions of LSOD are
discussed. Hopefully, this survey can promote future research on LSOD.
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