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1 INTRODUCTION

Artificial Intelligence (AI) is at the core of recent scientific and industrial advances, such as
Autonomous Driving (AD) [61, 103, 160] and Unmanned Aerial Vehicles (UAVs) [182, 268].
AI technology is a cross-domain innovation driver for numerous novel application use cases [140]
and embedded intelligence-driven solutions [147, 247]. In some specific high-integrity appli-
cation scenarios, AI is increasingly “used to support safety-critical decisions where errors can
lead to catastrophic and fatal consequences” [51, 137, 208] (e.g., AD [164, 222, 235], railway
interlocking [20, 161, 200, 208], aircraft collision avoidance [153], UAVs [71, 240, 241, 268]).

In this line, it is acknowledged that AI is “one of the only technically and economically viable”
technologies for developing autonomous systems [147]. Driven by AD and UAV engineering chal-
lenges and the associated economic investment, there is a significant research and engineering ef-
fort to define novel technical solutions for developing AI-based autonomous systems [103, 107, 164,
219, 222, 235], neaten with the updating and definition of novel safety standards [15, 133, 137, 275]
to deal with AI-specific traits. These solutions are also of interest for multiple transportation do-
mains such as avionics [19, 109], railway [19, 20, 200, 208] and automotive [233, 256], and industrial
domain applications such as robotics [259] and driverless industrial trucks [134, 141]. In all of these
domains, AI technologies can be used to develop both traditional functional safety systems, as well
as next-generation autonomous safety-critical systems [33, 137, 147, 280].

However, existing AI software technologies have several generic limitations related to
compliance with current safety standards [33, 147]. The most notorious include the “black
box” nature of AI solutions causing limitations regarding their explainability and analyzabil-
ity [3, 51, 104, 235, 268, 282], and compliance limitations concerning software development
lifecycle phases, such as specification correctness and completeness, design, testing, verification,
and validation [107, 164, 190, 194, 200, 207, 219, 268, 278]. Due to these limitations (challenges),
AI techniques have not been recommended for use in safety-critical systems [56, 120, 200]. In fact,
nowadays, there are still no structured development approaches, methods and tools with generic
acceptance for developing AI-based safety-critical systems [33, 215]. The evolving normative
landscape also attests to this with the recent AI [15, 55, 137], Safety Of The Intended Function-

ality (SOTIF) [133] and autonomous systems safety standards [275, 280] that are in development
(drafts) or recently published with limited consolidation of industry best practices [33, 89, 147].

These complexities are compounded by a significant fragmentation of the research contri-
butions targeting the use of AI for developing autonomous systems with [267] and without
specific safety considerations [190], different safety AI challenges [13, 110, 147], multiple use
cases [19, 140], multiple types of AI [87], different lifecycle phases (e.g., design [208, 276],
test [53, 114, 116], verification [5, 77, 117]), generic AI solutions (e.g., reinforcement learning [16])
and safety adaptations (e.g., safe reinforcement learning [94]), with references to multiple
existing [120, 131] and novel domain-specific safety standards [58, 133, 215, 267, 275, 280, 280].
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Fig. 1. Diagram summarizing the structure of this survey.

Trust becomes paramount in paving the way for the industrial development, commercialization
and societal adoption of AI-based safety-critical systems such as AD systems [285] and UAVs [268].
AI trustworthiness spans several dimensions, such as engineering, ethics and legal, and this survey
focuses on the safety engineering dimension. This survey provides an overview and categorization
of the vast and fragmented research contributions that target the development of AI-based safety-
critical systems for industrial and transportation domains, from traditional Functional Safety

(FuSa) to autonomous safety-critical systems. This survey targets researchers and safety engineers
concerned with the diligent development of AI-based safety-critical systems in a context where
the technology novelty leads to a lack of consolidated industry best practices, and available safety
standards have little or no consideration for AI technology [80].

Figure 1 provides a graphical representation of the survey structure in which we categorize and
summarize selected key research contributions toward using AI technology for (i) the develop-
ment of AI-based safety-critical systems (product) in Section 4, (ii) runtime learning/adaptation of
AI-based safety-critical systems (runtime) in Section 5, and (iii) the development process of safety-
critical systems in Section 6. Previous Sections 2 and 3 describe the basic concepts, terminology
and taxonomy used in the remainder of this work. Section 7 discusses trustworthiness as a multi-
dimensional (e.g., engineering, ethics, legal) and multidisciplinary foundation for developing and
adopting AI-based safety-critical systems. Lastly, Section 8 summarizes the overall conclusion and
outlines future research directions.

2 BACKGROUND

We next summarize basic concepts and terms used in the survey like AI (Section 2.1), FuSa
standards (Section 2.2), and ML properties (Section 2.3). This survey uses existing dependable and
secure computing terminology [22], the AI terminology defined in ISO 22989 [138], and the FuSa
terminology defined by safety standards IEC 61508-4 [120] and ISO 26262-1 [131]. This survey
also integrates terminology from various research fields as described in the referenced survey
publications.

2.1 Artificial Intelligence (AI)

As stated in the VDE-AR-E 2842-61 standard, “there is no generally accepted definition of artificial
intelligence” [280]. Furthermore, Feldt et al. [87] claim that “there is not even a consensus around
what AI is” (referring to the scope of types of algorithms and models). Nonetheless, ISO 22989 pro-
vides an “engineering system” oriented definition of AI used in this survey [138]: “set of methods
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or automated entities that together build, optimize and apply a model so that the system can, for
a given set of predefined tasks, compute predictions, recommendations, or decisions”.

The term AI safety [13, 84] is commonly used in the literature to describe techniques and
methods that aim to avoid or mitigate the potential harm that developed AI technology appli-
cations could produce to humanity. However, within this survey, the term AI safety refers to
AI-related techniques, processes, and methods that aim to comply with applicable safety standards
(Section 2.2, Section 3.3). Thus, this is a narrower and more focused definition.

Finally, Machine Learning (ML) is “the art and science of letting computers learn without
being explicitly programmed” [112]. It is a subfield of AI that uses algorithms to learn from
example training data sets that implicitly specify the intended functionalities, features, rules
and constraints. The learning process can be, for instance, supervised (using labeled data),
unsupervised (not using labelled data), semisupervised (using both labeled and unlabeled data)
and reinforcement learning (“a machine learning agent(s) learns through an iterative process by
trial and error”) [16, 94, 138]. When the learned ML solution executes on an embedded system
(electronics/software implementation with model parameters), it performs inferences in which the
ML solution provides online actionable outputs based on the inputs provided. Finally, the generic
statement that most of the contributions labeled as AI are in fact ML contributions [151] is also
extensible to the research contributions analyzed in the scope of the given survey.

2.2 Functional Safety (FuSa) Standards

The development of safety-critical systems follows stringent certification or assessment processes
in accordance with generic and domain-specific safety standards defined by national and inter-
national standardization organizations (e.g., ISO) and associations (e.g., Verband Deutscher

Elektrotechniker (VDE)). FuSa is defined as “part of the overall safety” of a system that assures
the “freedom from unacceptable risk” [120], through safety functions embedded in programmable
electronics systems (electronics/software). IEC 61508 [120] is a reference generic FuSa standard
for industrial (e.g., industrial machinery [125], robotics [124], tractors, machinery for agricul-
ture [130]) and ground transportation domains (automotive [131], railway [56]). Notably, FuSa
standards from the air transportation domain (e.g., avionics [226, 230], space [206]) “do not con-
sider IEC 61508 as a reference safety standard” [209]. Yet, they also focus on risk mitigation due to
failures in safety functions embedded in programmable electronic systems. Further information
concerning FuSa standards and associated certification or assessment processes can be found
elsewhere [188, 191].

Among all FuSa standards, there is significant variability in terms, definitions, and requirements.
For example, IEC 61508 defines the Safety Integrity Level (SIL) with a range of discrete values
from lowest to highest integrity (SIL1 - SIL4). And the equivalent in the automotive industry is
Automotive Safety Integrity Level (ASIL) (ASILA - ASILD) and in avionics Design Assurance

Level (DAL) (DAL E - DAL A). In this survey, we use the generic IEC 61508 as the reference
safety standard and take into technical consideration the ground transportation and industrial
domains listed above. We also use automotive ISO 26262, given that automotive AD challenges
have attracted a significant number of research publications.

For the most critical systems (SIL4, DAL A), “the probability of a dangerous failure is in the
range of 10−9 per hour of operation, that is, approximately one dangerous failure every 114.155
years” [209]. Thus, the associated error rate is multiple orders of magnitude smaller than the er-
ror rate considered excellent for generic AI solutions (e.g., 99% accuracy) [163]. Attaining such an
extremely low probability of dangerous failures requires handling systematic errors (e.g., human
error, tool error) and random errors (e.g., memory bit flip) according to strict safety methods, pro-
cesses, and techniques. FuSa standards are denoted in the survey as traditional because the first
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versions were defined decades ago, and the referenced techniques and methods are based on best
practices consolidated in the industry over the last decades. Nonetheless, FuSa standards are also
updated to accommodate novel and evolving technologies (e.g., ISO 26262-11 for semiconductors
technology).

2.3 ML Properties

Due to the intrinsic stochastic nature of ML training and associated epistemic uncertainties [277,
280], the achievable confidence usually depends on “complex hypotheses” [147] related to the dif-
ferent properties of the training and inference input data (e.g., data drift, distribution, correlation),
their coverage (e.g., edge/corner cases, hidden variable) and metrics [280]. In this vein, the safety
argumentation of systematic errors management is commonly based on high-level AI-related prop-
erties adapted to the context of safety systems [147]. For example, as defined by [147]:

— Auditability: “Extent to which an independent examination of the development and verifica-
tion process of the system can be performed”.

— Data Quality: “Extent to which data are free of defects and possess desired features”.
— Explainability/Interpretability: “Extent to which an ML system can provide an explanation

about a decision in a form understandable by a human” (e.g., see surveys [4, 26, 104]).
— Monitorability: “Extent to which a system provides information that allows to discriminate

a correct behavior from an incorrect behavior”.
— Provability: “Extent to which mathematical guarantees can be provided that some functional

or non-functional properties are satisfied” (e.g., formal verification).
— Robustness: “Ability of the system to perform its intended function in the presence of: (a)

Abnormal inputs (e.g., sensor failure), (b) Unknown inputs (e.g., unspecified conditions)”.

Nonetheless, several research initiatives aim to mitigate this stochastic nature and simplify the
safety argument by enforcing deterministic training processes [198]. Furthermore, the ML model
implementation can be either deterministic (e.g., a Neural Network (NN) produces the same out-
puts given the same inputs [280]) or stochastic [66] if the implementation includes techniques that
rely on internal random variables.

3 TAXONOMY

This section summarizes the taxonomy used in the survey to classify Types of AI (TAIs)

(Section 3.1), levels of automation (Section 3.2), heteronomous and autonomous safety standards
(Section 3.3), point of application of AI technology (Section 3.4), and AI safety engineering
(Section 3.5). This taxonomy aims to provide neutral classification criteria and definitions of
terms, reconciling the high variability of terms and concepts from research contributions and
safety standards. For instance, the proposed taxonomy can potentially map to domain-specific
terms and concepts such as VDE-AR-E2842-61 standard terms [280], e.g., AI-based system (“system
level”), AI item (“AI element”), AI safety engineering (’AI-blueprint’).

3.1 Type of AI (TAI)

There is a lack of consensus about TAIs in the research community [87, 151]. Some works propose
as a starting point the “five tribes of AI” [73], on which this section builds on and adds optimization
algorithms to classify the TAIs used in referenced research publications within the survey scope.

(1) Connectionists are design learning algorithms based on optimization techniques such as gra-
dient descent, where models are represented as Neural Networks (NNs) and specialized
Deep Learning (DL) models [103, 212] such as Deep Neural Networks (DNNs) [181],
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Table 1. Types of AI (TAIs) Per Point of Application Analyzed in the Survey

Type of AI (TAI) Point of Application (PA)
Product Runtime Process

Analogizers - -
[69]

Bayesians - -
[5, 86, 92, 93, 118, 148, 149,

158, 159, 252, 281]
Connectionits

[3, 7, 8, 28, 44, 45, 61, 65, 77,
95, 103, 106, 108, 112, 116,
143, 145, 153, 154, 157–160,
160, 171, 177, 180, 181, 204,
205, 212–214, 218, 229, 243,
244, 254, 257, 261, 262, 290,
291]

[150, 173, 201, 262]
[28, 54, 54, 69, 146, 167]

Optimization
[161, 264]

[272]
[79, 79, 98, 208, 273]

Symbolists
[156, 269]

[172, 173]
[24, 69, 99, 143, 144, 168, 172,

178, 203, 236, 283]

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and
autoencoders.

(2) Bayesians are probabilistic outcome-based graphical model representations for probabilistic
inference such as Bayesian and Markov networks.

(3) Symbolists are logic-focused algorithms such as rule-based programming (e.g., “always stop
in front of a stop sign”), Constraint Programming (CP), decision trees (e.g., random deci-
sion forest [269]), fuzzy logic [172] and rational agents [156].

(4) Analogizers are similarity-based classification algorithms (e.g., Support Vector Machine

(SVM)).
(5) Optimization algorithms aim to discover optimum or satisfactory solutions performing iter-

ative updates and comparison procedures (e.g., Genetic Algorithm (GA)).

And as summarized in Table 1 and the white paper on auditable AI systems [33], connectionist is
the most common TAI embedded in safety-critical systems (product, runtime), and it is commonly
used in the development process (e.g., DL-driven test scenario generation for DL-based products).

3.2 Autonomous, Heteronomous, Automation, Automatic, and Collaborative Systems

There is a high diversity of taxonomies to classify autonomous systems and levels of automation,
from generic taxonomies [91, 138, 169, 250] to domain-specific taxonomies such as automotive
AD [231], avionics [63, 76], railway [119, 121] and robotics [27, 105, 253]. Hence, as for the AI
term definition, there is a lack of cross-domain definition consensus for these terms. However, ISO
22989 [138] provides basic generic definitions adaptable to the scope of the survey:

— Autonomous systems operate in an “open environment” (e.g., AD systems operate in an “open
parameter space in which an infinite number of different traffic situations can occur” [222])
without human-in-the-loop control and supervision (e.g., AD SAE level 5 [231], avionics
3B [76], generic levels 7-10 [250]). As defined by ISO 22989, autonomy constitutes the highest
level of automation in which “the system is capable of modifying its operating domain or its
goals without external intervention, control or oversight” [138].

— The term heteronomous system [138] encompasses different levels of automation that must
operate in a “(semi-)open environment” with varying degrees of human collaboration,
control and supervision, and integrates the generic term “semi-autonomous”. For example,
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Table 2. Summary of Selected FuSa, AI Heteronomous, and Autonomous Safety-critical Systems
Standards

Domains Safety Standards AI standards for Reviews /
FuSa Heteronomous Autonomous safety systems Surveys

T
ra

n
sp

. Space ECSS-Q-ST-30C/40C - -
[188, 191]

Railway EN 5012x IEC 62290, IEC 62267 -
[188, 191, 267]

Avionics ARP4754, DO-178C ASTM F3269-21 (ARP6983)
[188, 191][268]

Automotive ISO 26262 ISO/PAS 21448 ISO 4804, ISO 5083, (UL 4600) (ISO/AWI PAS 8800)
[162, 188, 191]

In
du

st
ri

al Robotics ISO 10218-1 - -
[224]

Mining & earth
moving machinery

EN ISO 19014 ISO 17757, ISO 16001, ISO 18758-2 - -

Ind. Machinery ISO 13849-1 (ISO/TR 22100-5), (ISO 3691-4) -
[14]

Agriculture ISO 25119 ISO 10975, ISO 18497 - -
Generic IEC 61508 VDE-AR-E2842-61 (ISO 5469)

[188, 191]

AD SAE levels 1–4 [186, 231], avionics levels 1A-1B-2-3A [76], railway systems Grade of

automation (GoA) 1–4 [119, 121], and generic levels 2-6 [250]. Automation/automated is
defined as “pertaining to a process or system that, under specified conditions, functions
without human intervention” [138].

— Automatic systems operate in a “closed environment” with well-defined safety rules and
constraints known at design time [105]. Thus, the system is neither autonomous nor het-

eronomous. It simply executes an automation of safety functions without human intervention
(e.g., railway interlocking system [161]) in compliance with applicable FuSa standards.

— Collaborative robot refers to diverse robot-human collaborative working models ranging
from automatic (e.g., safety-rated monitored stop) to heteronomous and autonomous working
models [126, 224], and combinations of the previous.

3.3 Heteronomous and Autonomous Safety Standards

Table 2 classifies the most relevant FuSa, heteronomous, and autonomous safety standards (draft
standards are represented in parentheses and standards that explicitly consider AI technology
are underlined), and identifies among the dozens of AI standardization initiatives [55] those that
target the development of AI-based safety-critical systems. The recommended “reading map” for AI
practitioners/professionals not specialized in safety-critical systems is the reading of generic and
automotive domain FuSa (IEC 61508; ISO 26262), heteronomous/autonomous (VDE-AR-E2842-61;
ISO/PAS 21448, UL 4600), and AI standards for safety systems (ISO 5469; ISO/AWI PAS 8800).

3.3.1 Heteronomous Safety Standards. The development of novel types of safety-related sys-
tems, such as Advanced Driver-Assistance Systems (ADAS) [190], led to a novel scenario where
safety-critical systems could fail even in the absence of an electronic/software failure. For example,
the intended safety function fails due to unexpected operating conditions not considered in the
perception ML algorithm training [162]. Thus, there was a need for a novel type of safety standards,
complementary with FuSa standards, such as the automotive domain SOTIF [133]. For example,
the development of an ML algorithm-based safety perception function integrated into a safety
ADAS, requires compliance with the associated SOTIF (e.g., ISO/PAS 21448), applicable AI stan-
dards (e.g., ISO 5469, ISO/AWI PAS 8800), and the embedded implementation should comply with
the associated FuSa standard (e.g., ISO 26262). Some transportation and industrial domains have
already defined domain-specific safety standard drafts [224, 240, 267] (e.g., automotive SAE levels
3-4 [135, 136]; mining and earth moving machinery [127, 129], autoguidance systems for tractors
and machinery for agriculture [123], highly automated agricultural machines [128], collaborative
robots [126], aircraft systems with complex functions [18]). And some of these standards do not
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mention or consider AI, as they could potentially be implemented with different technologies.
For example, the machinery domain ISO 22100 technical report [141] describes risk reduction ap-
proaches for driverless industrial trucks implemented with or without AI technology. But, within
the scope of the survey, we only consider the scenarios where the system is developed with AI
technology.

3.3.2 Autonomous Safety Standards. The development of autonomous safety systems leads to
a novel scenario in which the safety system makes autonomous decisions without human con-
trol/supervision in an open environment. For these novel types of safety systems, which can not
be developed and certified with previously described standards (only), the automotive industry
has defined several specific standards, such as UL 4600 [275]. Regarding industrial domains, some
authors provide an overview and review of industrial safety standards [267], such as autonomous
machine systems [132] and driverless industrial trucks [134].

Finally, the VDE-AR-E2842-61 [280] (“development of trustworthiness of autonomous/cognitive
systems”) is a generic standard (draft) for developing Autonomous/Cognitive (AC) systems.
This standard combines SOTIF, heteronomous, and autonomous system considerations with AI
technology.

3.4 Point of Application, Usage Level (UL), and Class

This Section briefly reconciles research [87] and ISO 5469 standard taxonomies [137] concerning
the AI technology usage type, class, and characteristics. The point of application taxonomy pro-
posed by Feldt et al. [87] defines both “when” and “on what” an AI technology is applied using
three categories that can be adapted to the survey scope as follows.

(1) Product: A safety-critical system (the product) relies on offline embedded AI technology to
perform one or more safety functions. As summarized in Figure 3, the AI-based safety-critical
system is composed of one or more AI-based systems that integrate one or more AI items. The
AI item embeds the AI technology in an electronic/software component [76] with required
model parameters, and it is deployed and executed on a given execution platform (e.g., GPU).

(2) Runtime: The AI-based safety-critical system integrates AI technology with runtime field
learning capability (online). A runtime can also be considered a product variant that inte-
grates dynamic reconfiguration (IEC 61508-7 C.3.10) and becomes a “one of a kind” system.

(3) Process: AI technology can support and facilitate the offline development of a safety function
(safety engineering) in compliance with the techniques, methods and processes required by
applicable safety standards. This is applied during the system development process, but the
used AI technology itself is not embedded into the system (unlike a product/runtime).

The ISO 5469 Usage Level (UL) taxonomy [137, 242] classifies the use of AI technology using
four basic levels (A–D) that can be related to the previously described point of application taxonomy.
In a product/runtime, a safety function can be implemented using AI technology (A), or a non-
safety-related function that could interfere with safety function(s) (C) or be interference-free (D).
Furthermore, AI technology can also be used in the safety-critical development process (B). UL A

and B are further classified based on whether the AI performs automated decisions (A1, B1) or not
(A2, B2). Based on this, AI-based diagnostic functions can be classified as A2 or C. And, as a rule
of thumb, the UL of AI-items performing autonomous safety functions is A1, while AI-items for
automatic, heteronomous, and collaborative safety-critical systems may be A1 or A2.

Finally, the ISO 5469 class I-II-III taxonomy [137, 242] defines whether a given AI technology
can be used for the development of a given safety-critical system (product/runtime/process) in
compliance with previously described safety standards (see Section 2.2, Section 3.3). Class I

solutions can be developed and reviewed in compliance with safety standards (e.g., use of formal
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Fig. 2. Simplified lifecyle for traditional safety engineering (V-model) and AI safety engineering for ML

verification [208]). Class II solutions cannot be developed and reviewed in compliance with safety
standards, but the proposed compensation measures are sufficient for that purpose. For example,
the safety bag/diverse monitor (C.3.4 IEC 61508-7) technique (a.k.a., run-time checker), safely
monitors that the results provided by an AI item are safe [120, 264]. So, the safety bag becomes the
safety function that prevents unsafe states, and the AI item does not require safety standard com-
pliance. Finally, Class III solutions cannot be developed and reviewed in compliance with safety
standards, and compensation measures are insufficient. For example, AI-based ADAS using class
III AI technology are not considered safety-critical systems, and the driver itself is responsible for
driving the vehicle, monitoring the ADAS operation and taking vehicle control in a short time if
the ADAS detects and notifies that can no longer provide the intended functionality [66, 163, 285].
And if sufficient compensation measures are defined (e.g., human expert verification, safety bag)
a Class III solution becomes a Class II solution.

3.5 Traditional Safety Engineering and AI Safety Engineering

The traditional safety engineering of a safety-critical system follows a V-model development life-
cycle as mandated by safety standards (e.g., “realization” phase IEC 61508 [120], “product develop-
ment” ISO 26262 [131]) with the following generic phases (see Figure 2(a)): specification, design,
implementation, Verification, Validation and Testing (VVT). The verification activity must con-
firm that the result of all the development phases ( i.e., specification, design, test, and validation)
meets the assigned objectives and safety development requirements (IEC 61508-4 Section 3.8.1).
And the validation activity must confirm by examination of the evidence (e.g., test results) that the
specification has been met (IEC 61508-4 Section 3.8.2) [120].

VDE-AR-E2842-61-1 [280] states that AI technology should be considered a third type of tech-
nology (in addition to electronics and software) due to its unique characteristics (e.g., uncertainty-
related failures). Thus, AI safety engineering refers to the engineering lifecycle, processes, activities
and techniques required to develop AI-based (sub)systems and AI items [215]. The ISO 5469 [137]
standard defines a high-level lifecycle that combines the V-model and ML lifecycle activities. Fur-
thermore, the VDE-AR-E2842-61-5 [280] standard states that different TAIs might require different
processes and lifecycles (still to be defined). For example, while some optimization-based solutions
can be developed using a V-model approach [161, 208], most of the analyzed research contributions
use a ML workflow [17, 217] or hybrids [174]. Also, Rabe et al. provide an automotive domain spe-
cific survey of ML development methodologies [217]. In any case, a relevant difference between
traditional safety engineering and ML workflows is that the former is specification-driven and the
latter data-driven [217].

Figure 2(b) shows the simplified ML lifecycle based on Ashmore et al. [17] used in the
survey that, starting from a system specification phase [31], follows a ML workflow with data
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Fig. 3. Product composition diagram (UML)

Table 3. Selected product Safety Techniques (Class I, II) and Example Case-studies

Type UL Domain Description Class TAI Technique
Automatic A Automotive Brake pedal state estimation - Connectionist Not specified [8]

Avionics Collision avoidance II Connectionist Simulation [153, 154]
Industrial Diverse applications II Connectionist Not specified [180]
Railway Interlocking system (SIL4) II Optimization Safety bag [161, 264]

A2, C Industrial Sensor diagnostics - Connectionist Diagnostics [145]
Heteronomous A Automotive Collision avoidance (ASIL-D) II Connectionist Safety monitor [7]
and Autonomous Autonomous vehicles platoon

Vehicle collision detection
I Symbolists Formal

verification [156,
269]

AD vehicle overtaking I Not specified Formal
verification [223]

Avionics Generic safety pattern for
complex functions (e.g.,
navigation and control)

II Not specified Safety
monitor [18, 240]

UAVs and Unmanned
Aircraft Systems (UASs)

II Not specified Safety
monitor [71, 241]

Connectionist Safety monitor [64]
Industrial Perception-based solutions for

robots
II Connectionist Run-time

monitor [218]
Autonomous robots (survey) I Not specified Formal

verification [183]
Space On-board autonomous

spacecraft
II Generic Safety bag [40]

A2, C Automotive Vehicle self diagnostics - Connectionist Diagnostics [290]

management, model learning, and model verification phases. The resulting verified model is then
deployed to an execution platform. And the model execution can feed the data management phase
with operational data for future model releases.

4 PRODUCT - AI-BASED SAFETY-CRITICAL SYSTEM

This section describes the challenges, techniques, and methods used to develop AI-based safety-
critical systems (the product) from traditional FuSa to autonomous systems. The description struc-
ture follows the product layers presented in Section 3.4 and summarized in Figure 3: AI system

(Section 4.1), AI item (Section 4.2), and inference execution platform (Section 4.3). We also provide
a brief summary of tools and training platforms (Section 4.4).

Table 3 summarizes selected AI safety techniques for the development of AI-based safety-critical
products. AI technology (Class I-II ) has already been used for the development of specific FuSa
compliant automatic safety-critical systems (e.g., SIL4 railway interlocking [161]). Basically, there
are two basic approaches for the development of AI-based FuSa systems: the safety verification of
all possible input and output combinations either offline using formal verification (class I ) [278]
or online using a safety bag (class II ) [113, 120, 161, 264]. Regarding AI-based heteronomous and
autonomous systems, the generic application of offline formal verification seems questionable
due to limitations such as the uncertainty and difficulty of explicitly formalizing all safety
specifications, rules and constraints required for the safety verification, and the potential high
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Table 4. Product - Summary of Techniques for Systematic and Random Errors Management

Error control and AI-based AI-item (Section 4.2)
mitigation techniques System

(Section 4.1)
Connectionist NN Connectionist DL Symbolists Optimization

S
y

st
e
m

a
ti

c
E

rr
o

rs

A
I

D
e
v

e
lo

p
m

e
n

t Design
Model Training

Safety assur-
ance case [1, 11,
17, 33, 38, 39, 41,
50, 131, 147, 162,
193, 211, 211,
228, 245, 265]
VVT [105, 155,
156, 164, 166,
219, 222]
Lifecycle [17,
235]
Uncertainty
mgmt. [11, 49,
166, 193, 234,
245, 248, 265,
278]

Design and lifecycle [17, 106] Safety bag, adhoc
development [147]

Safety bag [161, 264],
adhoc development

VVT
Model Ver.

Generic [142, 214, 244, 261, 262, 292]
Safety specific [44, 116, 235, 245, 291]
Formal methods [117, 294]
Metrics [96, 108, 204]

Implementation
(software, elec.)

FuSa safety standards compliance (see Section 2.2), e.g., software: IEC 61508-3 7.4.5, 7.4.6

M
L

P
ro

p
e
rt

ie
s

Data Quality
Dataset properties [17, 217]
Engineering requirements [174]

Auditability Generic review [33], Verification [117, 170]
Explainability Generic surveys [4, 26, 104] Explicit

rules [147, 156]

Monitorability
Safety bag, Safety envelope
[18, 105, 113, 183, 223, 235, 240, 263][18, 64, 71,
240, 241, 268]

Safety bag Safety bag [161, 264]

Provability
Formal verification
[65, 77, 106, 147, 157, 213, 228, 255, 278]

Formal ver. [269]

Robustness Test and adversarial attacks [6, 29, 174]

Error avoidance, control AI-based Tools and training Execution platform (inference) (Section 4.3)
and mitigation techniques System

(Section 4.1)
platform
(Section 4.4)

Hardware Fwk. Software
Framework

AI Framework

S
y

st
.
&

R
a

n
d

o
m

E
rr

o
rs Syst. & Random Errors Safety

assurance
case [50, 147,
265]

Generic (not
qualified) tools and
training platforms

- Generic dev.:
Multicore [196, 202,
210], FPGA [34, 101]
GPU [209, 238, 239]
- Specialized
dev. [62, 68, 152, 243]:
e.g., TPU, NPU, NPU,
neuromorphic
computing
- Custom-designed
dev.: e.g., Tesla
FSD [258]
- Specialized accel.:
e.g., DNN [177]

- Generic AD fwk.:
e.g., Apollo [10, 256]
- Generic:
Hypervisor [48, 175,
210]; OS (e.g.,
Linux [12, 47]);
Middlewares [257]
(e.g.,
ROS [183, 187, 256],
CyberRT [25, 256],
AUTOSAR [21])

- Adapted / Analyzed
/ Improved: DL [37,
45, 88, 95, 177, 229],
basic MxM
libraries [88]
- Generic Low level
libraries: e.g.,
TensorRT,
OpenBLAS, cuBLAS,
ATLAS, cuDNN
- Safety GPU APIs:
OpenGL SC, Vulkan
SC [209]

Safety standard compliance FuSa, heteronomous, autonomous and AI & safety standards (see Section 2.2,3.3)

dimensional design space that limits the application of formal verification and brute-force testing
approaches [33, 183, 268, 278]. A similar limitation applies to online approaches such as the safety
bag technique, but in this case, formally specified operational rules can be used to specify safety en-
velopes (a.k.a., safety monitor, runtime monitor, runtime verification, supervisor, guardian agent,
safety layer, safety net) [18, 64, 71, 105, 183, 223, 235, 240, 241, 263]. For example, model checking
has already been applied in some specific applications (e.g., AD vehicle overtaking [223]) for the
development of formally defined safety envelope software (runtime monitor/verification) [183, 223].

Safety bag and safety envelope type techniques provide a potentially generic safe approach
for the adoption of cutting-edge and state-of-the-art AI technology solutions (as a compensatory
measure to adapt Class III AI technology to Class II ). However, its use must consider the safety of
the system as a whole because, for example, excessive false alarms could lead to new system-level
hazards (e.g., cascade errors in systems with multiple safety functions) and should also consider
human cognitive limitations (e.g., cognitive overload, oversight and reaction time limitations) [210,
263]. The avionics domain ASTM F3269 [18] standard describes a reference run-time assurance
architecture to safely bound the behavior of “complex functions” integrated in aircraft systems
such as UAVs and UASs. This architecture implements a safety bag type technique where a safety

monitor monitors the safe operation of a “complex function” (e.g., AI-based function) and activates
the safe state or switches to a recovery control function [18, 64, 71, 240, 241, 268] if operating
outside established safe operation constraints and rules.

In addition, Table 4 summarizes the systematic and random errors management techniques
described in this Section. At all levels, the overall AI-based safety-critical must comply with
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the required FuSa, heteronomous, autonomous and AI standards. At the highest AI system level,
developers define safety assurance cases with the arguments and required evidence needed to
justify that the system is safe for its purpose; developers identify and manage uncertainty sources
and successfully verify, test and validate the system. AI item developers control and mitigate
systematic errors using at least the appropriate development lifecycle and techniques, appropriate
tools and training platforms, and the obtained ML properties provide sufficient evidence to justify
the previous assurance case argumentation. Finally, the underlying platform must avoid, control
and mitigate systematic and random errors providing sufficient evidence to the previously defined
assurance case argumentation.

4.1 AI-based System

Safety assurance cases are commonly used in the development and certification/assessment of tra-
ditional FuSa systems to justify that a given safety-critical system is acceptably safe for its purpose,
using a structured and evidence-supported safety argumentation [33, 38, 131, 265]. For example,
the safety case provides a structured argumentation of systematic and random errors management,
from high-level architectural and lifecycle systematic aspects down to the underlying execution
platform (see Table 4).

Safety cases are also commonly used for the development and certification/assessment of het-
eronomous, autonomous, and AI-based safety-critical systems [33, 41, 147, 162, 193, 211, 228, 265].
However, for the latter, the safety assurance case should also support the management of
uncertainty-related failures (see VDE-AR-E 2842-61 [280]) inherent to heteronomous, autonomous
and (non-trivial) AI-based systems. This AI uncertainty management includes, among others, un-
certainty sources identification and uncertainty reduction argumentation [248, 265]. For example,
the safety assurance case arguments of an AI-item (Section 4.2) can be built on claims of high-level
properties [17, 147, 228], such as the ML properties defined in Section 2.3 (e.g., explainability, mon-

itorability, auditability, provavility), arguments based on specific methods used for uncertainty
mitigation during the development phases (e.g., data representativeness of requirements, input
space coverage validation) [11, 245] and adapt generic argument patterns [211]. However, care
must be taken to avoid oversimplifying the safety development challenge to achieving high-level
properties with numerical targets and mathematical formulations, without addressing the safety
of the system as a whole with associated system hazard elimination [72, 97, 277].

The uncertainty management required to reduce uncertainty-related failures becomes a key tech-
nical aspect to be managed in all AI-related lifecycle phases from the specification to the veri-
fication, validation, and testing phases. For example, in the specification phase of an AI-based
heteronomous/autonomous system, the safety functions (and previous safety goals) can only be
specified as “intended functionality” with a set of high-level goals and objectives [39], or iterative
partial specifications [234], because it is not generally feasible to fully specify the safety functions
(w.r.t. all possible scenarios) with a set of safety requirements, rules, constraints (e.g., [32]). This
creates a “semantic gap” [49, 193] between the intended functionality and the specified functional-
ity, which sometimes is based on examples where anomalous and edge/corner case examples are a
minority. In this context, ensuring that the provided specification provides a correct, accurate and
complete representation of the “intended functionality” is a challenge for the data management

and model training [49]. This challenge can be mitigated by means such as formal verification of
safety properties with some degree of uncertainty [278] and safety runtime checkers that during
runtime monitor a set of required constraints are always met (safety operational envelope) [166].

On the other hand, the testing and validation of AI-based autonomous systems is still an un-
solved key area [67, 111, 166, 268, 284], that limits the practical deployment and commercialization
of AI-based safety autonomous systems [67, 155, 164, 166] for which current testing techniques
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designed for “manned systems” are not directly applicable and sufficient [266], and field testing
only based evidences are generally considered not feasible [155, 222]. Therefore, as described by
different authors [155, 156, 164, 166] the validation should consider the definition of a strategy
with a framework that combines multiple testing techniques and approaches, with the adaptation
of existing techniques and the definition of novel techniques specific for AI-based autonomous
systems. In fact, the most relevant challenge in heteronomous and autonomous systems test and
validation, is the test and validation of the implemented AI solution itself. So, the most common
approach for AI-based AD [155, 166, 219, 222] and collaborative robots [105] testing and validation
relies on simulation frameworks where other AI technology solutions facilitate and automatize the
process of generating and classifying test scenarios and test cases (see Section 6.2.3).

Finally, the safety case is not static or defined once, as it requires maintenance updates during
the system operational life. And this maintenance update requirement is even more crucial for
autonomous systems as they operate in complex and continuously evolving environments [33, 50].

4.2 AI Item

This section describes safety technical challenges, techniques, and methods associated with the
development of AI-based items using different TAIs abstracted from the application-specific
requirements and challenges: connectionist NN (Section 4.2.1) and DL (Section 4.2.2), symbolists

(Section 4.2.3), and optimization (Section 4.2.4). For all considered TAIs, AI items are implemented
as electronics, software, model configuration and combinations of the previous using traditional
FuSa standard technical requirements (e.g., IEC 61508-3 software development guidelines) and
deployed on execution platforms (see Section 4.3).

4.2.1 Connectionist - Neural Network (NN). At the turn of the millennium, there was grow-
ing interest in using NNs in safety-critical applications. In particular, the usage of NNs in aerospace
applications and compliance with the stringent aerospace safety standards was an active research
area. In this section, we report key aspects to consider when NNs trained using supervised learning
enter the picture of safety assurance. Note that the content largely applies also to the subsection
on Deep Learning (Section 4.2.2), i.e., NNs for which hidden layers are stacked in attempts to reach
human-like performance for perception tasks (e.g., object detection).

Beyond flight controllers, a 2001 review by Lisboa identified a diverse set of industrial use of
NNs in safety-related areas [180]. Examples include power generation and transmission, process
industries, and transport industries. A common theme among many applications is that NNs were
used for automatic control. While Deep Learning (DL) has dominated among connectionists in
the last decade, (non-deep) NNs remain a valid and useful approach in many applications. Recent
examples of NNs within the scope of this article are diagnostics (e.g., sensor error detection [145],
vehicle self-diagnostics [290]) and collision avoidance systems in avionics [154].

Companies seeking to integrate NNs in safety-critical systems must evolve several practices
throughout the development lifecycle [17, 171, 244]. Supervised learning relies on data (for model

training and model verification) being treated as first-class citizens during software and systems
engineering. As a result, data management needs a rigorous process encompassing collection, aug-
mentation, preprocessing, analysis, and maintenance. Configuration management needs to expand
to cover the data and feature engineering of the iterative work of NN development. And software
architecture specifications must also encompass fundamental NN design elements and specifics
such as activation functions and hyperparameters controlling the learning process. Furthermore,
specifications and the associated test specifications must be augmented to capture the learning be-
havior of NNs. Lastly, processes must be adapted to align the highly iterative development of NNs

with the traditional safety engineering of AI-based systems (V-model).
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Concerning model verification, Taylor et al. analyzed early research in progress on the VVT of
NNs, with a focus on studies relevant for NASA applications [262]. There was substantial research
funding assigned to the topic in the early 2000s, and the research matured into several books on
the topic, e.g., by Taylor [261], Jacklin et al. [142], Pullum et al. [214], and Schumann and Liu [244].
Menzies and Pecheur provided another early VVT survey in 2005 [194]. While the research was
conducted around 20 years ago, the main findings remain relevant today. Discussed challenges
of NN VVT include state-space explosion, robustness, explainability, co-engineering of NNs and
conventional software, and challenges in specifications of ML concepts. Early VVT solution pro-
posals included “formal methods, control theory, probabilistic methods” [44], and general process
frameworks. Again, several ideas from the early era remain relevant, although some do not scale
to the DL approaches that will be discussed in Section 4.2.2.

More recently, Zhang and Li provided a systematic literature review [291] of testing and verifi-
cation techniques for NN software-based safety-critical control systems. This review complements
the earlier work through its selection of 83 publications between 2011 and 2018. However, as this
time interval coincides with the breakthrough of DL, which Zhang and Li explicitly include, we
highlight that the findings partly fit the next subsection of this article – the boundary between NN
and DL is not sharp. Based on this analysis, the authors identified five high-order themes, i.e., ro-
bustness testing, testing toward failure resilience, measuring test completeness, testing for safety
assurance, and testing for explainability. Example solution proposals for NN VVT from the last
years include: formal methods [117, 268, 294] and novel dependability metrics [96, 204].

4.2.2 Connectionist - Deep Learning (DL) models. The research community acknowledges
the potential benefits of using DL in safety-critical applications. In general, developing safety-
critical systems that rely on DL shares the same challenges as NNs – as can be seen in Dey and Lee’s
recently proposed three-layered conceptual framework [70]. However, the fact that contemporary
deep NNs can be composed of billions of neurons, organized into complex architectures, further
amplifies all challenges. Several VTT practices mandated by FuSa become less effective, e.g., code
reviews matter less if the logic resides in the training data [235] and the value of adequacy testing
metrics is questionable [108].

Still, the representation learning offered by DL has enabled several breakthroughs during the
2010s and trained DL models have outperformed human performance in a range of restricted tasks.
From the perspective of this review, the use of DL has disrupted computer vision and enabled
perception systems able to generalize to diverse operational contexts. Advances in the automotive
industry have been particularly prominent, with DL being a key enabler for AD, and in various
ADAS such as automatic emergency braking and lane keeping assistance [28, 61, 160]. Examples
of DL use in the aerospace sector include collision avoidance systems [153].

Engineering a trustworthy DL-based system is largely about managing a dynamic ML workflow

with iterative updates. First, the development of a DL system is an experimental and highly
iterative process where the “Changing Anything Changes Everything” principle reigns [246],
i.e., all data science activities are intertwined and implications of minor changes are hard to
foresee. Second, DL-based systems are typically deployed in dynamic operational environments
in which conventional software systems would be insufficient. Third, the AI systems themselves
can be dynamic post-release if retraining of internal models is enabled (see Section 5). Thus,
integrating automated quality assurance throughout the product lifecycle is essential. Key
automation steps, sometimes explained in the context of ML operations (MLOps) tools [43, 102],
include data version control and experiment tracking to support the iterative DL development
and solutions for runtime monitoring [218], e.g., to support detection and management of data
drifts.
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Model verification explicitly targeting DL-based systems is currently a highly active research
topic. Borg et al. provides an automotive domain-specific review of the verification and validation
of DL-based solutions [44]. A similar study was reported by Schwalbe and Schels [245]. Zhang
et al. found that most academic studies focused on testing the correctness and robustness, while
qualities such as interpretability, efficiency, and privacy are much less studied [292]. Riccio et al.
concluded in their systematic analysis that test input and test oracle automated generation for DL
systems was the most active research topic for DL model verification [221]. Huang et al. provided
a DNN specific survey [116] covering verification, testing, adversarial attack and defense, and
interpretability aspects.

Regarding ML properties for the construction of safety assurance cases, there is a rich variety
of research contributions applicable to both NNs and DL models:

— Data Quality: The training data implicitly specify the intended functionality, rules and con-
straints. So data quality is of paramount importance as described by Ashmore et. al [17],
and the data management phase must produce datasets that exhibit at least properties such
as: relevance, completeness, balance, and accuracy [17, 217]. Training data is split for model

training and model verification. In generic applications, the split (e.g., 80%–20%) can be per-
formed randomly, but for safety-critical systems the split shall consider aspects such as: the
training data shall completely specify the intended functionality, sufficient representation
of edge/corner cases in both training and test data, and the deviation between training/test
and operational data shall be minimized [174].

— Explainability: Several surveys and reviews summarize the high research activity that ad-
dresses the NN and DL models explainability challenge [4, 26, 104, 268]. One can argue that
a model is explainable if it is interpretable, and Rudin [227] elaborates on why an inter-
pretable model lowers complexity and thus are to be preferred compared to a model that
can not explain the behavior of a NN or DL solution.

— Provability: Multiple research contributions address provability of NNs and DL models by
means of formal verification [65, 77, 106, 147, 157, 213, 228, 255, 278]. However, formal veri-
fication is (nowadays) limited to moderate size NNs and certain architectures [147, 157, 268].
For example, the Reluplex method has been used to formally verify ReLu (Rectified Linear
Unit) activation properties of a NN with 300 nodes [147, 157].

— Robustness: Robustness and resiliency can not be evaluated in the model verification with
(only) test data [174]. Nonetheless, this is an active research area [29, 174] under the topic
of adversarial attacks (security) [6]. The final objective is to analyze and develop solutions
that are robust/resilient with respect to (adversarial) perturbations.

— Auditability: Huang et al. propose a framework for the automated safety verification
of DNNs made classification decisions [117]. Verification is also put forward by Kuper
et al. [170] as a viable solution to confirming that NNs behave as intended. In addition, they
further suggest to create and use design principles for NNs that produce DNNs that are more
amenable to verification [170]. The European Union (EU) has proposed an AI act [83] that
aims to propose a set of harmonized rules on AI. Hence, the work by Kuper et al. [170], as
well as contributions by other scholars presented in this survey, may become building blocks
to conform with the proposed AI act.

4.2.3 Symbolists. Decision trees can provide explanations and understandability of decisions
made by black-box type AI-based items [104] so that the user is aware of the rationale for decisions
and takes control of the safety system if necessary [147] (A2). For example, decision trees can
provide runtime explanations of decisions made by an ML-based co-pilot to an aircraft pilot, who
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must understand them and react safely in case of wrong decisions [147]. An equivalent approach
can be used offline, during the product development.

Random forests can also learn safe operation rules from training data to implement safety func-
tions such as vehicle collision detection (A2) [269]. Furthermore, whenever feasible, safe operation
rules can also be explicitly expressed using formal symbolist languages in rationale agents (A1) for
diverse applications such as autonomous vehicle platooning [156]. Both approaches provide sup-
port for explainability (white-box), auditability, and provability (formal verification) requirements.
Finally, Törnblon et al. analyze and propose a method and tool for the formal verification of ran-
dom forests [269].

4.2.4 Optimization. FuSa-compliant optimization algorithm-based safety-critical systems can
be developed with the safety bag compensation measure [120] (Class II ). The optimization function
executes a safety related function that is not subject to a complete safety certification process
and development, because a run-time safety bag is developed and certified, which ensures that
provided results are safe for its purpose and performs associated safety actions if not (e.g., safe state
activation). This approach can be used whenever the optimization function cannot be formally
verified at design time, or whenever the safety development of optimization software and tools in
compliance with FuSa standards requirements is considered not feasible. For example, this safety
technique was already used in the 80s to develop a SIL4 railway signaling system that provides
optimized and safe results [161, 264].

4.3 Execution Platform (Inference)

The implementation of AI items as embedded software/electronic components with associated
model configurations must follow traditional FuSa standard requirements (e.g., software: IEC
61508-3 7.4.5, 7.4.6). Nonetheless, a common approach is to make use of existing execution plat-
forms rather than developing complete ad-hoc implementations. Execution platforms are com-
monly composed of a hardware platform with High Performance Computing (HPC) capabil-
ity (e.g., Graphics Processing Unit (GPU)), a software framework (e.g., hypervisor, AUTOSAR,
Robot Operating System (ROS)) and an AI software framework (e.g., YOLO, Tensor Flow). And
this execution platform is the safety computing channel, or one of the safety computing channels
of the safety-critical system architecture (e.g., [289]), developed in compliance with applicable
FuSa standard requirements. Additionally, in some specific applications, such as AD [258] and
UAV systems (e.g., drone) [71, 182], execution platforms must meet Size, Weight, and Power

(SWaP) constraints while providing the required computing performance and FuSa compliance
support [209, 210].

As summarized in the survey by Perez-Cerrolaza et al. [209], the mitigation of random errors
by means of evaluation and deployment of diagnostics and fault tolerance mechanisms, is an ac-
tive research field for DL software frameworks and high-performance computing devices such as
GPUs [238, 239], FPGAs [34, 101], multi-core devices [196, 202, 210] and specialized accelerators
(e.g., DNN [177]). Or even the definition of specialized software architectures for the development
of DL technology-based safety-critical systems [37] and built-in integration of diagnostics mea-
sures in software frameworks [88]. The analysis and error mitigation in the DL algorithms and
software implementation is also an active research field [45, 95, 177, 229]. Unlike non-DL software,
for which fully deterministic and accurate results are expected, DL items often deliver approxi-
mate and stochastic results. Hence, error detection is a key challenge for DL items due to multiple
challenges: (i) determining whether a result is fault-free is convoluted for a stochastic item that
may use also some random numbers as input and whose intrinsic error rate is non-negligible (e.g.,
object misclassification rates); and (ii) if the DL item inherits a high-integrity level that cannot be
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diminished with item decomposition (e.g., using a non-DL item that inherits safety requirements
and relieves the DL item), then diverse redundancy may lead to different fault-free results owing
to the source of diversity (e.g., different random numbers, different training data, different order
of computation causing different rounding of results).

4.3.1 Hardware Platform. As the computing power required to execute AI algorithms such as
DL models continues to increase, their deployment is commonly based on generic HPC devices
(e.g., GPUs, FPGAs, multi-core devices) [186], specialized accelerators (e.g., Tensor Processing

Units (TPUs), Network Processing Units (NPUs), neuromorphic computing) [62, 68, 152, 243]
and custom-designed devices (e.g., Tesla FSD [258]) often including specialized accelerators (e.g.,
DNN accelerator). With respect to FuSa-compliance, the deployment of safety AI items in generic
HPC devices is a feasible approach that needs to take into consideration several technical chal-
lenges (e.g., random errors, systematic errors, common cause failures) required by associated FuSa
standards (e.g., ISO 26262-11, IEC 61508-3 Annex F), as summarized in the specialized surveys for
multi-core devices [210], GPUs [209], and FPGAs [34].

4.3.2 Software Framework. Available research and open-source AD specific software frame-
works (e.g., Apollo [10]), have some limitations with respect to FuSa compliance that limit their
applicability, owing to their use of middlewares and operating systems easing decoupling by means
of interfaces to subscribe services to events at the expense of an abuse of pointers, unobvious con-
trol flow, and deep if-conditional nesting [256].

These specialized autonomous AD software frameworks, along with traditional FuSa and au-
tonomous safety-critical systems, can be built using generic software frameworks such as domain-
specific middlewares, hypervisors, and Operating Systems (OSs) [48, 191, 209, 210]. For example:

— Middlewares and domain-specific standard frameworks, including ROS [183, 187], Apollo’s
CyberRT [25], and AUTOSAR [21], enable the development of AD frameworks and the use
of HPC platforms. On the one hand, some frameworks such as ROS and CyberRT, used along
with different versions of Apollo, ease the implementation of AD frameworks, but are not
yet integrated with appropriate hypervisors, use interfaces challenging certification (e.g.,
abundant use of pointers, including function pointers) [256], and do not provide native time
predictability [10]. On the other hand, platforms such as AUTOSAR Adaptive are intended
to enable the deployment of automotive systems on HPC platforms, but, to our knowledge,
they have not been used yet as part of AD frameworks.

— Virtualization technology (e.g., hypervisors) supported by modern multi-core and GPU de-
vices enable the safety compliant integration of software partitions with even different safety
criticality levels [48, 210]. However, to our knowledge, AD frameworks do not yet build on
hypervisors, partly because those frameworks require HPC devices that may miss the sup-
port needed by hypervisors to effectively implement partitioning. Hypervisor technology is,
however, planned to be used in some forthcoming hardware platforms and use cases [175].

— There is an increasing interest in Linux for critical systems (e.g., Automotive Grade Linux)
and multiple research and industrial project initiatives aim to enable Linux for the devel-
opment of safety-critical software [12]. For example, Linux is assessed for space systems
including HPC SoCs equipped with ML accelerators [47].

4.3.3 AI Framework. A number of AI frameworks, Keras, Pytorch, TensorFlow, MXNet, Theano
and Caffe, are highly popular for generic AI applications. Often, DL models are mapped onto those
generic frameworks, which are often selected based on characteristics such as user friendliness
(often related to the existence of a high-level API), modularity, efficiency, and the like [257].
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Table 5. Selected runtime Safety Techniques and Example Case-studies

Type UL Domain Description Class TAI Technique

Automatic, C Avionics Intelligent Flight Control System II Connectionist Safety bag [201, 262]
Heteronomous or
Autonomous

A Avionics Gas turbine aero engine control
Generic adaptative control system

II, II Connectionist,
Symbolist
Generic, Connectionist

Safe adaptation [172, 173]
Safe adaptation [142]

A Aerospace Adaptative guidance I, II Connectionist Limited adaptation [150]
A, C Industrial ILC-based hydraulic machinery I, II Optimization Limited actuation [272]

AI frameworks may already use primitives for mathematical operations used for DL models,
such as Generalized Matrix-Matrix multiplication (MxM), among others. Those primitives are
then instantiated for the specific target platform using platform-specific and/or low-level libraries
such as TensorRT, OpenBLAS, cuBLAS, ATLAS, and cuDNN, to name a few.

Whether AI frameworks implementation complies with domain-specific standards relates to the
specific implementation of the primitives used. Generally, those implementations do not provide
any specific safety support, but some APIs and other works provide alternative implementations
with safety requirements in mind for CPUs [88] (e.g., embedded diagnostics) and GPUs [209] (e.g.,
with specific APIs such as OpenGL SC and Vulkan SC).

4.4 Tools and Training Platform

There is a rich and dynamic variety of generic frameworks (e.g., TensorFlow), infrastructure
(e.g., GPU servers, cloud infrastructure) and tools for the development of generic AI solutions
(e.g., model training) [43, 102, 199]. Nonetheless, these generic solutions were not designed with
safety standards compliance requirements such as tool qualification. So, this is a potential source
of systematic errors (e.g., tool and process errors) and hardware random errors (e.g., training
data corruption, GPU random error during model training) not generally addressed in research
contributions [102, 274].

5 RUNTIME - AI ONLINE LEARNING/ADAPTATION

This section describes selected techniques and methods for the AI online learning/adaptation of
AI-based safety-critical systems (runtime). By default, runtime adaptation leads to a “one of a kind”
safety-critical system instantiation that, if unconstrained, is beyond the scope of current and novel
safety standards [142, 165]. For example, in this scenario, an AD system might adapt and learn
new behaviors [225] that were not considered, verified, and validated in the offline development
and safety certification/assessment process [165]. And this adaptation could even be implemented
as continuous [11] and lifelong learning [205]. Thus, the “one of a kind” safety-critical system
instantiation may differ from the originally certified/assessed system.

However, as summarized in Table 5, it is feasible to consider constrained AI runtime
learning/adaptation approaches (Section 5.1), for which correctness and completeness of all
possible variants is considered in the safety-critical system development process and safety
certification/assessment.

5.1 Runtime Learning/Adaptation

Table 5 summarizes the most relevant techniques and methods selected from research contribu-
tions that focus on AI runtime learning/adaptation approaches for developing dependable or safety-
critical systems: safety bag (Section 5.1.1), safe adaptation (Section 5.1.2), limited adaptation (Sec-
tion 5.1.3), limited force (Section 5.1.4) and “library based offline” (Section 5.1.5). Some selected
research contributions describe techniques for developing dependable systems and not explicitly
safety-critical systems. However, these techniques are adaptable to safety standard requirements;
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thus, this section describes and adapts them. Finally, it is assumed that the implementation of de-
scribed techniques meets basic safety assumptions [11]: e.g., it is an authorized adaptation, the
adaptation has a well-defined process (e.g., trigger command, update time) and implements basic
error detection/control measures.

5.1.1 Safety Bag. The previously explained Class II safety bag technique (a.k.a., safety monitor),
can also ensure that the outputs provided by the AI-item subject to runtime learning/adaptation are
safe. As previously explained, the safety bag becomes the safety function and the AI-item becomes
a non-safety function (C). For example, the avionics Intelligent Flight Control System (IFCS)

aims to safely optimize aircraft flight performance with two NNs, one trained offline and the second
one while the aircraft is in operation (Online Learning Neural Network (OLNN)) [260]. And
the system runs two safety monitors, one for each NN, where the OLNN safety monitor checks
the safeness of the provided outputs. Another example is AI-generated online trajectory monitor
of (slow-dynamic) autonomous systems using techniques such as Nonlinear Model Predictive

Control (NMPC) [201].

5.1.2 Safe Adaptation. The safe adaptation technique requires both the AI-item and the
runtime learning/adaptation algorithm to be safety-compliant. This is because both must per-
form safety functions, safe inference, and safe runtime learning/adaptation. For example, Kurd
et al. [172, 173] describe a safety-critical “gas turbine aero engine control” based on a hybrid
TAI (connectionist, fuzzy) that performs runtime adaptation to provide safe control while safely
adapting to the engine degradation and environmental change. Additionally, Jacklin et al. [142]
describe challenges and example techniques for the development of safe adaptive control solutions
using learning algorithms such as NNs (e.g., learning convergence, speed of learning convergence,
learning algorithm stability).

5.1.3 Limited Adaptation. The limited adaptation technique safely constraints the internal
runtime learning/adaptation, either through a safety compliant adaptation (Class I ) or a safety
bag that checks the adaptation outcome (Class II, see Section 5.1.1). For example, Johnson
et al. [150] describe using NNs to perform adaptive control of an autonomous launch vehicle
guidance system. The system uses an adaptive NN-based error cancellation algorithm to cancel
the control error due to differences between the actual vehicle dynamics and the design-time
vehicle model, with a “bounded weight update law” that safely constrains the runtime learning/
adaptation.

5.1.4 Limited Actuation. The limited actuation technique ensures that the AI-item subject to
runtime learning/adaptation cannot exceed given dangerous output actuation values (e.g., exces-
sive force, energy, voltage). This could be implemented in different ways, such as design-time
constraints (e.g., limited input energy leads by design to limited output energy), AI-based safety
function that guarantees a limited actuation (A1, Class I ) or a safety bag that monitors and ensures
that output actuation values are within safe limits (C, Class II, see Section 5.1.1).

In particular, the Iterative Learning Control (ILC) approach is used in dependable industrial
control systems such as robots and machinery. ILC [46] aims to optimize the execution of repet-
itive tasks by learning from previous executions. For example, Trojaola et al. [272] propose an
ILC algorithm for hydraulic machinery systems that can be used online to adapt and learn the
compensating force required to reduce overshoot and settling time even with unknown knowl-
edge of the valve dynamics. In this scenario, a runtime monitor can be used to monitor and ensure
that the learning/adaptation actuation results are safely limited (e.g., compensatory force, dynamic
behavior, settling time [272]).
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Table 6. Summary of AI-based Development Assistance Solutions for Safety-critical Systems (class I and II)

Lifecycle
(Phase)

Usage Purpose Type of AI (TAI)

Spec. Hazard
identification

Connectionist (NLP), symbolic
(ontologies) and analogizer
(CBR) [69]

SIL evaluation Symbolic (Fuzzy [203, 236])
Bayesian (DBN [252])

Design Design
optimization

Optimization (ACO, EDA,
ILS [98, 208])

Test
Validation

Test definition
automation for
MC/DC coverage

Connectionist (NN [54])
Optimization (GA [79])
Symbolic [99]

(a) Traditional safety engineering (V-model)

Lifecycle
(Phase)

Usage Purpose Type of AI (TAI)

Data Mgmt. See model verification: test definition automation
Model
training

Design
optimization
(AutoML)

Reinforcement learning [118, 283]
Bayesian [118]

Model
Verification

Test definition
automation

Connectionist (RNN [146],
GAN [167], autoencoder [167])
Bayesian [2, 5, 93, 148, 281]
Optimization [9, 30, 75, 197, 273]
Symbolists [24, 178]

Test
classification
automation

Connectionist (CNN [28], RNN [28])
Symbolic (random forest [168])

Fault injection Bayesian [149]
Rule extraction Symbolist (fuzzy [172],

tree [143, 144])
Quantify
uncertainty

Bayesian [86, 92, 158, 159]

(b) AI safety engineering (for ML)

5.1.5 Library-Based Offline. The library-based offline technique defined for nonlinear control
systems [201] can be translated in the safety-critical domain as a library of possible configurations
defined and assessed offline, to which the system can transition during runtime (Class I ). This
is the adaptation of a common approach used in the development of traditional safety-critical
systems, where all possible configuration and operational modes are defined and assessed offline
(e.g., normal and degraded modes of operation).

6 PROCESS - AI-BASED DEVELOPMENT ASSISTANCE

This Section describes AI-based offline techniques and methods that support and facilitate
the traditional safety engineering of safety-critical systems (Section 6.1) and the AI safety engi-

neering of AI items (Section 6.2). For the latter, developers use AI-based solution(s) to develop
AI item(s) (e.g., DL-based perception item tested using test scenarios defined with Bayesian
optimization).

There is a considerable amount of research contributions proposing AI-based techniques to
support and assist non-safety-related software developers [87, 192] (e.g., software test automa-
tion [114, 179, 220, 237]). However, these generic contributions (Class III ) cannot be directly used
to develop safety-critical systems because they do not comply with the strict method, process
and tool qualification requirements imposed by safety standards. Nevertheless, these contribu-
tions could complement traditional methods and techniques that already meet the requirements
of safety standards. But, the intended use of these contributions would not yet be safety-related
and are considered outside the scope of this survey.

On the other hand, as summarized in Table 6, there are multiple research contributions propos-
ing AI-based solutions to support and assist developers of safety-critical systems. It is worth noting
that the amount of research contributions focusing on AI safety engineering is higher than those
focusing on traditional safety engineering, due to the novelty of the challenge posed by the former
and the diversity and rich variety of “problems” (challenges) to solve (e.g., model verification). Fur-
thermore, this diversity and rich variety of challenges require the use of a diverse and rich variety
of AI-based solutions that cover all TAIs summarized in Section 3.1.

Finally, we should also mention that AI solutions are also commonly integrated into hardware
ASIC design tools, FPGA synthesis tools and software compilers [115, 176, 286]. And manu-
facturers for safety-critical systems already address systematic errors through mass-produced
electronic integrated circuits requirements (e.g., IEC 61508-2 Section 7.4.6.1) and tool qualification
requirements (e.g., IEC 61508-4 Section 3.2.11, ISO 26262-8 Section 11.4.5/6).
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6.1 Traditional Safety Engineering

Research contributions that focus explicitly on traditional safety engineering of safety-critical sys-
tems are fragmented and scarce (see Table 7a). This Section describes some selected example re-
search contributions following the V-model structure (see Figure 2(a)).

6.1.1 Specification, Design, and Implementation. A single systematic error in the requirements,
design or implementation phase could directly lead to a fatal consequence. So, safety standard
requirements (e.g., tool qualification) are stricter and research contributions that explicitly target
safety-related systems are fragmented and scarce (both class I and class II ). For example:

— Specification: Natural Language Processing (NLP) solutions can be used for safety assess-
ment and analysis of textual requirements (e.g., hazard identification [69]) with human safety
expert verification of the proposed results as a compensation measure to become Class II.

— Design and implementation: Optimization algorithms and formal verification techniques
can be combined to facilitate the design of FuSa-compliant safety functions [208]. The
optimization algorithm proposes an optimized design for a given criterion, and the formal
verification verifies compliance with all applicable safety rules and constraints. To do this,
the safety requirements that define the safety rules and constraints are expressed both
formally for the formal verification and semi-formally for the optimization process. And, as
the result is formally verified (Class I ), state-of-the-art non-safety related AI software tools,
engineers and methods can be used for the design optimization proposal activity.

6.1.2 Verification, Validation and Testing (VVT). Software test automation is an active re-
search area for non-safety related systems [114, 179, 220, 237]. Concerning safety-critical systems,
the most relevant challenge addressed is the generation of automated test data and test cases to
achieve the level of safety software test coverage requested by safety standards [120], such as the
Modified Condition/Decision Coverage (MC/DC) percentage levels. AI algorithms can facili-
tate achieving the recommended 100% MC/DC criteria for software unit test activity (IEC 61508
Table B.2), reducing the safety engineering effort required to perform a detailed analysis of all soft-
ware code paths and test data combinations that could lead to testing all software code statements
and execution branches. To that end, symbolic [99], NN [54], and GA [79] solutions have been
proposed for test data generation and the achieved MC/DC value can be potentially verified with
Commercial Off-The-Shelf (COTS) qualified tools [99] (class I ).

6.2 AI Safety Engineering

Concerning the AI safety engineering of AI-based (sub)systems and items, most research contri-
butions describe ML-based solutions for connectionist-based products. So this Section follows the
ML workflow described in Section 3.5 and Figure 2(b). As summarized in Table 7b, research con-
tributions that target the data management and model learning phases are scarce, and solutions
that target the model verification phase are more abundant specially for the VVT activities of
heteronomous/autonomous systems.

6.2.1 Data Management. As stated in the generic survey of software engineering for the devel-
opment of AI-based systems, “data-related issues are the most recurrent type of challenge” with
limited mitigation techniques described in the surveyed articles [192]. This generic statement can
also be extended to the safety-critical and AI-based process niche, which primarily focus on the au-
tomated generation of test data and scenarios as described for model verification (see Section 6.2.3).

6.2.2 Model Learning. Automated ML (AutoML) refers to the methods, techniques, and
processes that aim to automate the development of ML models [17, 33, 118]. For example, selecting
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optimal DL hyperparameters for developing ML models for autonomous driving tasks is time-
consuming for engineers. And autoML has been (functionally) evaluated as a successful approach
for the design automation of perception tasks ML models, with results that outperformed the ones
obtained by trial-error approaches by experienced engineers (higher accuracy, less latency) [283].
For that purpose, the autoML can use a variety of technical approaches such as random search, re-
inforcement learning approaches and Bayesian optimization to explore the design space [118, 283].
However, AutoML-based design space exploration requires higher computational resources than
human-guided designs and training infrastructure scalability becomes a technical concern [118].
Also, there is still a lack of both safety standard requirements to guide the autoML systematic
error reduction and research contributions proposing methods or techniques in this line.

6.2.3 Model Verification. AI technology also plays a crucial role in the scalability, efficiency
and automation of AI-based items/systems’ testing and validation processes (see Section 4.1). The
(pseudo) manual definition of test scenarios and test cases is considered not feasible or scalable for
heteronomous/autonomous systems [93, 281]. Ma et al. [185] provide an up-to-date review of AI
in the VVT of AD systems, dividing the works into scenario-based testing, formal verification, and
fault injection testing. This is an active area of research [217, 221], with a rich variety of TAIs that
can be used for the automation of these VVT tasks, and associated model verification activities:

— Connectionist solutions: DL technologies can “discover intricate structures well in high-
dimensional data and learn the idea of correct representation of data” [8, 254]. Therefore,
they are commonly used for the unsupervised modeling and generation of test scenar-
ios/cases, such as vehicle maneuver modeling using autoencoder and Generative Adver-

sarial Network (GAN) solutions [167]. One advantage of this approach is that in both cases,
the learned model has been trained to generate trajectories that even the discriminator (for
GAN) is not able to distinguish between real life or synthetic trajectories [167]. Another com-
mon approach is the generation of test scenarios using RNNs (e.g., accident scenarios [146])
or scenario classification using RNNs and CNNs [28]. Furthermore, the number of scenarios
explored can be increased dramatically through the use of deep Q-learning [9].

— Bayesian solutions [2, 93, 148, 293] are also commonly used for the unsupervised generation
of test data, test cases and test scenarios using the learned probability distribution for the
given problem to generate variants. For example, generation of intersection scenes [148] and
traffic scenarios [281]. And for a given test scenario, Bayesian optimization can be used to
learn from observed system outputs and define test cases that could violate predefined safe
operation boundaries [93]. Furthermore, Bayesian techniques can also be used for classifi-
cation (e.g., a nonparametric Bayesian approach has been used to cluster adversarial poli-
cies [60]). Finally, Bayesian solutions have also been proposed for fault injection (e.g., a
Bayesian fault injection framework uses “causal and counterfactual reasoning about the be-
havior under a fault” to find faults/errors) [149].

— Symbolic solutions: Ontology-based combination “is an essential approach to generate test-
ing scenarios, which combines scenario entities based on ontology theory for the primary
goal of coverage” [24, 178]. And random forests are commonly used for unsupervised test
scenario clustering and classification [168].

— Optimization solutions: Search techniques have been widely applied for testing [232], for
example multiobjective search [30], Monte Carlo Tree Search (MCTS) [75], adaptive
search [197], and requirements-driven test generation automation with simulated anneal-
ing [273]. Finally, Fan et al. [86] and Fisac et al. [90] describe Bayesian model learning solu-
tions via Bayesian NNs or statistical Gaussian processes, which support the optimization and
safe control design of adaptable safety-critical systems with control stability and safe limits.
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As the available offline computing power continues to increase, the use of statistical testing
approaches supported by automated test scenarios/cases generation that obtain sufficient statis-
tical representativeness could be a new approach to explore for AI-systems [147], in analogy to
probabilistic WCET [52] and probabilistic testing approaches for Linux-based safety systems [12].
AI technology (process) can also be used for the verification of AI-items. For example, symbolist

trees can be used for rule extraction of RNN-based items for both understandability and verifi-
cation purposes [143], and Bayesian methods are proposed for the uncertainty quantification of
DL-based safety applications [86, 92, 158, 159].

7 TRUSTWORTHINESS

As stated in the standard VDE-AR-E2842-61 [215, 280], trustworthiness “has not generally
accepted definition” at least in the context of AI-based safety-critical systems. Nonetheless, if
we analyze in detail the standard VDE-AR-E2842-61 [215, 280], technical reviews in the field
of safety and AI [49, 72, 116] and generic AI guidelines (e.g., “Ethics guidelines for trustworthy
AI” [82]), we can identify at least three dimensions applicable to AI-based safety-critical systems:
engineering (Section 7.1), ethics (Section 7.2) and legal dimensions (Section 7.3). Thus there is
a multidisciplinary collaboration requirement to address all trustworthiness dimensions (e.g.,
engineering, philosophy, ethics, social sciences, law), along with a multi-agent collaboration
requirement among all relevant actors such as companies, governments, legislators, regulators,
standardization organizations, certification bodies, academia and society in general.

Indeed, the increasing importance of trustworthiness in the development of AI-based safety-
critical systems is emphasized in the VDE-AR-E2842-61 standard with the Trustworthiness Per-

formance Level (TPL) (TPL 0-4) definition that requires trustworthiness attributes traceability
through the AI-based system development activities, design patterns supporting the verification
of AI properties, and compliance with specific techniques/measures pending definition details in
the current draft [280].

7.1 Engineering Dimension

The engineering dimension must cover at least non-functional properties such as robustness, de-
pendability (reliability, availability, maintainability, safety) [22], and cybersecurity [274, 280]. Pre-
vious sections (Sections 4, 5, and 6) have already addressed the safety engineering dimension of
AI-based safety-critical systems. And implicitly, to some extent, robustness and dependability as-
pects relevant to the scope of the given survey. Also note that, the engineering trustworthiness
relies on previously described safety assurance cases (see Section 4.1) that provide a structured
safety engineering argumentation with associated evidences and risk assessment [41].

Concerning cybersecurity, the life cycle of AI is complex by nature, and it involves several phases
such as planning, data management, model training, model evaluation and operation. This repre-
sents a vast attack surface that can take place in each phase, posing a threat to both security and
safety (“no safety without security”). In the planning stage, developers are a candidate to suffer
social attacks that can negatively influence the whole process. The data management and model
training processes are the pillars for building models, and poison attacks [78, 216] can impact mod-
els in different and relevant aspects, such as accuracy in operation [36]. In order to address these
threats it is necessary to plan a defense strategy at two levels: data and people. Concerning informa-
tion, the defense aims to prevent information stealing and adversarial attacks [35] using strategies
such as differential privacy [74], data encryption, adversarial training, standardization and verifi-
cation of data quality, supply chain, and training process [189, 195, 288], among others [59]. On the
other hand, regarding people, awareness and training programs for detecting social manipulations
are recommended. Finally, in evaluation and operation, several attacks can take place in different
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aspects, such as hardware level attacks [271], adversarial attacks [249], inference attacks [251] and
stealing of models [270]. In order to address these threats, system developers can use different pre-
vention techniques, such as feature squeezing, compression, randomness, and multiple parallel AI
systems [249, 251, 270, 271, 287].

7.2 Ethical Dimension

Several institutions and committees are currently developing AI ethical guidelines [57, 82] and stan-
dards [139], in addition to generic ethical standards for system designs such as IEEE 7000 [122, 285].
Regarding AI-based safety-critical systems, at least two distinct ethical issues must be addressed:
engineering ethics and machine ethics [274].

Engineering ethics is linked to the organization’s safety culture and associated responsibility
and accountability towards the development of such systems [49, 72, 274]. Engineering ethics is
also linked to the industry, societal, policymaker and regulatory consensus required to adapt the
As Low As Reasonably Practicable (ALARP) principle to these new types of AI-based safety-
critical systems that can potentially provide significant societal benefits ( e.g., potential car acci-
dents and fatalities reduction with AD systems [155, 222]) with new risks, e.g., which is the accept-
able residual risk? [49]. Moreover, as analyzed by Widen et al. [285] and Koopman et al. [163] for
the automotive AD domain, the safety culture associated to the engineering ethics should also en-
compass the overall business ethics considering aspects such as cooperation with governments for
the definition of safe technology regulations, high safety requirements for road testing and deploy-
ment, safe management of tradeoff dilemmas between financial risks and safety risks, marketing-
engineering-regulation coherency for delivered autonomy levels (e.g., L2+ [66, 163]) and trans-
parency.

On the other hand, machine ethics is associated with the moral and ethical decisions that an
AI-based product/runtime must make during operation. A rich body of research contributions ad-
dresses this challenge in the form of dilemma analysis and experiments [23, 42, 49, 100]. In these
dilemmas, the autonomous systems are faced with a catastrophic situation where one or several
people are in deadly danger in all possible scenarios, and the autonomous system must make a deci-
sion that leads to one of these catastrophic scenarios. The key final question is which catastrophic
scenario is considered ethically and morally acceptable. For example, in the “moral machine exper-
iment” [23], millions of people from different countries provided 40 million decision answers to an
autonomous vehicle driving morale dilemma in which people of different ages, genders and pro-
fessions are in deadly danger. The result of these experiments confirmed that cultural variation
and other variation sources (e.g., economic) lead to different moral and ethical decision prefer-
ences, concluding that there is no single universal preference for machine ethics. However, the
German ethical guidelines strictly prohibits decisions made on human classifications (e.g., gender,
age) [163, 184]. In any case, we should request AI-based safety-critical systems to anticipate and
mitigate dangerous situations to avoid such moral dilemmas (e.g., defensive driving strategies in
AD system) [163, 184].

7.3 Legal Dimension

The European Commission (EU) artificial intelligence act aims to propose a “regulation lay-
ing down the set of harmonized rules on artificial intelligence” [83]. This act establishes that
AI-based safety critical systems shall be cataloged as “high risk” systems subject to specific re-
quirements, such as the conformity assessment process involving notified bodies [83, 274]. That
means AI-based safety-critical systems shall be certified/assessed according to applicable domain-
specific standards. This is a standardization challenge because for that purpose the industry and
standardization committees must first define, update and approve applicable safety standards (see
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Section 2.2, Section 3.3). This also implies detailed technical challenges such as meeting the au-

ditability property to support the certification/assessment. Moreover, additional regulations will
impose additional specific technical challenges, such as providing explainability [193] to support
“the right to obtain an explanation of the decision” made by AI-algorithms (“meaningful informa-
tion about the logic involved” [81]) on behalf of an individual, as established by the General Data

Protection Regulation (GDPR) [81].
In addition to this, the legal dimension has also attracted multiple research contributions

to address current legal challenges, such as the liability for damages caused by an AI-based
product/runtime [49, 85, 279]. Although the operation of AI-based products/runtime is not yet
regulated by specific legislation, legal norms require that the offender causing damage must
indemnify (liability), or a “person who is responsible for the actions of the offender” [279]. But,
for example, if a level 5 autonomous driving system crashes due to decisions made autonomously
by the embedded AI technology, in a situation that the manufacturer could not reasonably have
foreseen and with no possibility for the passengers to avoid it, who is liable for the accident?
Furthermore, “could artificial intelligence become a legal person” with associated offender
liability? [279]. The current recommendation of the European Commission [85] is that AI not be
granted the status of a legal person, as existing parties could instead be held liable in tort for the
actions of an AI. However, these and many other related issues remain open multidisciplinary
challenges [49, 279].

Finally, there is also a multidisciplinary collaboration requirement between the legal and engi-
neering dimension. For example, in AD there is a need to translate traffic rules written in human
natural language into safety engineering rules for the development and runtime verification of
AI-systems [223]. This is required for both “holding autonomous vehicles legally accountable” and
provide formal safety requirements to reduce the probability of systematic errors [223].

8 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This section describes the overall conclusion (Section 8.1) and future research directions
(Section 8.2).

8.1 Conclusion

This survey summarizes and categorizes a vast and fragmented literature addressing the usage of
AI technology for developing safety-critical systems for the industrial and transportation domains,
from traditional functional safety to next-generation autonomous systems. Specific AI technology
instantiations that perform automated decision-making (A1) have already been used with compen-
satory measures (e.g., safety bag) for the development and certification of automatic safety-critical
systems (e.g., railway interlocking [161]). And the use of AI technology for developing specific
heteronomous safety functions that require human supervision (A2) is also common in the latest
ADAS systems. However, there is still a significant pending research effort and challenge to de-
fine generic AI methods, techniques and processes for developing AI-based safety-critical systems
that cannot offload safety management onto humans or non-AI systems. Moreover, there is still
a considerable standardization, industrial and research effort remaining to formalize applicable
AI-related safety standards, settle best industry practices and define novel technical approaches.
There may be a perception that the generic development and certification/assessment of AI-based
autonomous safety-critical systems (A1) will be reached soon. However, we could be at the be-
ginning of the Pareto principle, where 20% of the technological development effort has led to
80% technical results, and AI-based autonomy might seem reasonably achievable soon. However,
achieving the following required 20% technical advance might require a considerable additional
effort (+80%) due to the difficulty of achieving the required extremely low probability of failure,
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the necessary systematic capability and providing the supporting evidence as required by present
and future safety standards. All in all, we must pave the way toward the development and certifi-
cation/assessment of AI-based safety-critical systems due to their potential advantages for society
and overall industrial interest. So, we expect that the multidisciplinary combination of AI, trust-
worthiness and safety-critical systems research fields will be an active and vibrant research area
for the years to come.

8.2 Future Research Directions

The applicability of AI-technology for developing safety-critical systems leads to multiple, diverse,
and multidisciplinary challenges. In this Section, we just summarize a set of relevant future re-
search directions aligned with the scope of the survey.

All in all, it is necessary to define an AI safety engineering approach with a comprehensive
set of generic techniques, life cycles, methods, and processes [151, 200, 215] that could pave the
way toward the compliance of AI technology for developing traditional FuSa, heteronomous and
autonomous safety-critical systems (product, runtime, process). This is an engineering and academia
research challenge with two basic types of contributions: “how things can be done” and “how
things should be done” [209, 210]. The former refers to the safety adaptation of generic cutting-
edge and state-of-the-art AI technology (adapting Class III to Class I-II ). In contrast, the latter
refers to a bottom-up development of AI technology natively defined for developing safety-critical
systems (Class I ). And both of them should take into consideration the iterative and dynamic life
cycle of AI-based systems (e.g., collect operational data to update the ML model) in the context of
industrial and transportation domain systems with long product lifetimes (e.g., >= 30 years [209]).

As the ML workflow is data-driven, the data management must ensure the appropriate data

quality (e.g., edge/corner cases, data distributional drift) for the safe model training and verifica-

tion. Data must provide a complete, correct and representative specification of the intended safety
functionalities, rules and constraints. Data management has recurrent challenges and limited re-
search contributions. The systematic error management of model training (e.g., AutoML) is also
vital for developing safe models, but limited research addresses this challenge. So, both are future
research areas with potentially high impact and interest. Not only from a pure AI safety perspec-
tive but also from a safety system perspective (e.g., model human driving vs. autonomous driving
to better identify representative edge cases and simulation scenarios).

Model verification is an active research area where AI technology is commonly used for the
verification process of AI-based safety-critical systems (product, runtime). There are multiple chal-
lenges (e.g., test scenarios/case/generation, test classification) and problems to be solved in order
to provide technically compliant and economically efficient solutions for the VVT of AI-based
safety-critical systems.

System-level safety assurance cases use ML properties to justify that the system is safe for its
purpose (e.g., explainability, provability, robustness, auditability). So, research contributions that
develop AI technology that natively provides these properties, or contributions that extract, mea-
sure and verify these properties become crucial. All properties are important, but explainability is
critical. From a safety engineering perspective, explainability is a pivotal attribute in supporting
an AI item’s understandability, verifiability, and auditability. And from a trustworthiness perspec-
tive, it is foundational to support the “right to obtain an explanation” and support legal liability
analyses providing explainability information for different actors (e.g., engineer, lawyer).

The training tools and platforms on which data is stored, and ML models are trained and verified,
are typically based on state-of-the-art solutions with limited or no support for safety systems
development (e.g., cloud computing) and non-qualified tools. While academia can provide research
contributions, this challenge will likely require an industrial engineering solution.
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Additionally, inference execution platforms are an active research area for HPC devices, AI
frameworks, and middlewares. The avoidance, control and mitigation of random hardware fail-
ures and systematic failures, along with the spatial and temporal independence of execution, are
common challenges that such execution platforms must address (e.g., diagnostics, temporal pre-
dictability). While generic computing devices [209, 210] are already addressing these challenges,
specialized devices (e.g., TPU) and AI frameworks still have limited support. Furthermore, there
are multiple specialized future research challenges, such as portability and distribution of models
among redundant and diverse computing platforms (e.g., FPGA and GPU) [210].

Finally, trustworthiness leads us to multiple, multidimensional and multidisciplinary future
research directions combining engineering, law and ethics disciplines, among others. For example,
engineering and machine ethics, liability considerations, explainability for different actors,
analysis of human vs. autonomous system behaviors.
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