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Various touch-based interaction techniques have been developed to make interactions on mobile devices

more e�ective, e�cient, and intuitive. Finger orientation, especially, has attracted a lot of attentions since it

intuitively brings three additional degrees of freedom (DOF) compared with two-dimensional (2D) touching

points. The mapping of �nger orientation can be classi�ed as being either absolute or relative, suitable for

di�erent interaction applications. However, only absolute orientation has been explored in prior works. The

relative angles can be calculated based on two estimated absolute orientations, although, a higher accuracy is

expected by predicting relative rotation from input images directly. Consequently, in this paper, we propose

to estimate complete 3D relative �nger angles based on two �ngerprint images, which incorporate more

information with a higher image resolution than capacitive images. For algorithm training and evaluation,

we constructed a dataset consisting of �ngerprint images and their corresponding ground truth 3D relative

�nger rotation angles. Experimental results on this dataset revealed that our method outperforms previous

approaches with absolute �nger angle models. Further, extensive experiments were conducted to explore

the impact of image resolutions, �nger types, and rotation ranges on performance. A user study was also

conducted to examine the e�ciency and precision using 3D relative �nger orientation in 3D object rotation

task.

CCS Concepts: • Human-centered computing → Interaction techniques; • Computing methodologies

→ Arti�cial intelligence.
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manipulation
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1 INTRODUCTION

Over the past decades, touchscreen has been widely used as the main interaction technology of

smartphones, tablets, and other mobile devices. However, due to the low resolution of capacitive
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Fig. 1. Estimating 3D relative finger orientation based on 2D images and the data acquisition system. (a) A

fingerprint image (500 ppi) and its simulated capacitive image (10 ppi). (b) Definition of 3D relative finger

rotation (from pose 1 to pose 2), represented by three Euler angles: yaw (green), pitch (blue), and roll (red). (c)

The whole data acquisition system, including optical tracking cameras, a fingerprint scanner, and several

reflective markers a�ached on a small stent and the fingerprint scanner respectively.

images captured by measuring capacitive changes caused by �ngers touching on the touchscreens

[32], only two-dimensional (2D) touching point is acquired from the touchscreen driver despite

the �exibility of human �ngers. Recently, researchers have proposed various novel interaction

techniques, including touching area shape [33], size [4], �ngernails [22], part of �nger [15], �nger

identi�cation [25], shear force [14, 17], �nger angles [12, 24, 28, 37, 38, 47], hand part recognition

[15], and hand pose [1, 6, 21], to extend the richness of input vocabulary in various HCI applications.

Among these interaction techniques, �nger angles present notablemanipulation potential because

of the precise and intuitive interaction using �ngers for additional degrees of freedom (DOF)

compared to 2D touching points. For interactions based on shear force, interactions using �nger

orientation present superiority since �nger angle is easier to be controlled across di�erent users.

Compared to size and shape of touching area, �nger orientation provides more DOFs, and one of

the main factors for changes in touching area shape and size is diverse �nger angles. Intuitively,

introducing 3D �nger orientation allows natural mapping for 3D object manipulation [24, 46] and

interactions on small screens, e.g. slider selection on smartwatches [47]. Besides, pencil width

modi�cation, menu selection, and joysticks substitute can also be implemented using �nger angles

[44]. Besides, 3D �nger orientation is also utilized to re�ne 2D touching points [20]. In addition to

accurate �nger orientation estimation, identifying extreme �nger angles, e.g. touching with large

pitch angle, provides valuable information for rejecting unintended touching.

It is still a challenging task to estimate 3D �nger angles accurately based on 2D images. Recently,

capacitive images are utilized to predict 3D �nger angles [28, 47], while presenting limited accuracy

due to quite low resolution and lack of information. Some auxiliary sensors were employed to

alleviate the information gap, e.g. the photosensitive device attached to �ngernails [46], RGB

cameras [7], and depth cameras [24, 29, 31]. Obviously, utilizing these extra devices is inconvenient

for mobile applications. Besides, performing roll rotation is comparatively easy, but roll angle

is rarely explored in prior works probably because it is hard to estimate based on capacitive

images. With the development of under-screen �ngerprint sensing techniques [34, 36, 48], capturing

�ngerprint images of �ngers interacting with screens becomes feasible. Some recent works also

proposed to utilize �ngerprint images to estimate 3D �nger angles for interaction [8, 16]. Figure

1(a) shows an example of comparison between �ngerprint and capacitive image (simulated for an

approximate resolution). Compared to capacitive image, �ngerprint image with a higher resolution

contains more useful information, e.g. ridge patterns and �ne boundaries, making it feasible to

predict all 3D �nger angles.
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Vogelsang et al. [44] classi�ed the mapping from input to object into two types, namely absolute

and relative. Absolute mapping utilizes the angles between �ngers and the display for interac-

tion, resulting in fast and intuitive manipulations such as fast reorientation. However, ergonomic

constraints limit the input space in absolute mapping, e.g. large pitch angles are not feasible to

perform with long �ngernails, thus requiring counterintuitive scaling for complete 3D orientation

control [47]. Consequently, experts advocate for the investigation of relative input interactions

[18, 27] which focuses on the di�erence between initial �nger angles (while touching the display)

and current �nger angles. The de�nition of 3D relative �nger angles while touching on a display

refers to the concepts in �ight control (as shown in Figure 1(b)). Relative �nger orientation-based

interaction is similar to mouse input, whereby manipulation is terminated when lifting �ngers o�

the screen and resumes after moving down [44]. Intuitively, manipulation range is enlarged using

relative mapping (e.g. [−90◦, 90◦] for relative pitch angle and [−180◦, 180◦] for relative yaw angle),

which enables knob, wheel menu picker, and other interactions with large or circular value space

[44].

Various applications using �nger orientation have been proposed and fully explored in previous

research [44], while we believe the unsatisfactory precision is one of the most important factors

preventing its widespread adoption in daily applications. Absolute �nger orientation is explored in

previous studies without exception. Although relative �nger angles can be obtained by calculating

the transformation between two absolute �nger angles, predicting 3D absolute �nger angles itself

may be inaccurate since zero �nger orientation de�nitions are di�cult to determine and not

consistent across �ngers with diverse �nger shapes and sizes, especially for thumbs. In contrast,

estimating relative �nger angles directly advances the estimation accuracy as it focuses on the

di�erence between two inputs and mitigates the problem of de�ning zero �nger orientation.

Therefore, in this paper, we focus on improving the precision and stability of 3D relative �nger

orientation estimation. Di�erent from prior works which estimate absolute �nger angles from a

single capacitive or �ngerprint image, we �rst propose to estimate 3D relative �nger angle based

on two �ngerprint images directly and utilize the relative rotation angles for interaction. To further

improve the generalization ability across di�erent �ngers with various shapes, sizes, identities, and

other characteristics, we decompose the latent feature extracted from �ngerprint into pose-relevant

and pose-irrelevant, then estimate relative 3D �nger angles based on the pose-relevant features

only.

All three relative �nger angles (yaw, pitch, and roll) that fully describe 3D �nger rotation are

predicted simultaneously, thanks to the incorporation of �ngerprint images with higher resolution

and more information than capacitive images. Mean absolute error (MAE) of three relative �nger

angles in experiments are 9.14◦ for yaw, 6.01◦ for pitch, and 8.41◦ for roll, respectively. Given the

accurately estimated 3D relative �nger orientations, rotations of human �ngers in 3D space could

be described more precisely, thus promoting the richness of input vocabulary for touch based

interface.

2 RELATED WORKS

Existing �nger orientation estimation techniques can be classi�ed into three categories based on

sensing techniques, including touch sensor based, auxiliary device based, and �ngerprint sensor

based.

2.1 Touch Sensor

Capacitive images are widely used in various human interaction applications and commercial

devices. Generally, the shape of silhouette and distribution of capacitance around the touching area

vary with di�erent �nger angles. This property is applied in various 3D �nger orientation estimation
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algorithms directly. Wang et al. [45] attempted to estimate yaw using the shape of touching area.

Rogers et al. [37] attempted to use a capacitive sensor matrix to track 2D touching points and �nger

orientation (yaw and pitch) simultaneously. Zaliva et al. [50] made a step forward by extracting

additional features, such as capacitive value and asymmetry of touching area, to estimate 3D �nger

angles for gesture recognition. However, no quantitative experiment was conducted to evaluate

�nger angles estimation accuracy in these studies. Xiao et al. [47] extracted 42 manually de�ned

features from touching area to predict yaw and pitch angles, but the estimation performance is

evaluated on several discrete angles (15◦ increments). Mayer et al. [28] �rst adopted a convolution

neural network (CNN) model for pitch and yaw estimation. Using the ground truth �nger angles

recorded by an optical tracking system, they reported a state-of-the-art (SOTA) performance based

on capacitive images. However, due to the low resolution of capacitive images, the deep network is

very shallow and the estimation errors are not su�ciently small. Meanwhile, estimating roll angle

is rarely explored despite the fact that rolling is easy to perform for most �ngers and the range of

roll is also larger than pitch.

2.2 Auxiliary Device

Some auxiliary devices were also employed for �nger orientation estimation. Watanabe et al. [45]

placed a photosensitive sensor on �ngernails to identify luminance attenuation with di�erent �nger

angles, while the attached sensor constrained the natural range of �nger rotations. Furthermore,

Kratz et al. [24], Mayer et al. [29], andMurugappan et al. [31] utilized depth cameras to capture point

clouds of �ngers while touching, based on which pitch and yaw angles were estimated. However,

application scenarios are restricted due to the di�culties and costs of introducing additional sensors

for sensing a �nger interacting on mobile devices.

2.3 Fingerprint Sensor

Fingerprint based �nger orientation estimation has received little attention in HCI community. In

[13], 2D translation and rotation (namely, relative yaw angle) between two �ngerprint images were

calculated by analyzing optical �ow. Holz and Baudisch [20] proposed to rectify 2D touching points

using 3D �nger orientation estimated from �ngerprint images by :-nearest neighbor searching,

while estimation accuracy for 3D �nger angles was not reported since they focused on 2D touching

position recti�cation. Major weaknesses using this method for �nger angle estimation are: (1) it

requires enrollment of a number of �ngerprints with ground truth angles from the speci�c �nger

and (2) estimation performance con�icts with time consumption in estimation stage, i.e. higher

performance requires more enrolled �ngerprints while consuming more time in searching. Duan

et al. [8] attempted to reduce searching time in enrollment by reconstructing 3D surface from

sequential �ngerprint images, and all three �ngerprint angles were estimated by point matching

and projection parameters estimation, which requires higher image resolution for robust key-points

extraction. He et al. [16] proposed to predict 3D �nger angles from 2D �ngerprint images directly,

and demonstrated the superiority of utilizing �ngerprints for 3D �nger angles estimation compared

with capacitive images. Besides, both absolute and relative �nger angle play an important role in

�ngerprint recognition, in which only yaw angle is considered since �ngerprint is usually viewed

as a 2D image [26]. Registration of two �ngerprints, involving estimation of relative yaw angle, is

a routine step in �ngerprint recognition. For absolute yaw angle estimation, [49] reported very

low error (1.45◦ for yaw angle). However, �ngerprint images adopted in [49] are rolled �ngerprints

captured using forensic techniques, which contains more information and higher quality compared

with �ngerprints used in daily applications. And the range of yaw angle is also limited since these

�ngerprints are collected in controlled environment for identity recognition purpose.
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Yaw: -132.42 Pitch: 34.01 Roll: -2.97 Yaw: -39.57 Pitch: -29.13 Roll: 0.87 Yaw: 96.11 Pitch: 4.12 Roll: 18.64Yaw: 79.40 Pitch: -3.37 Roll: -7.73

Fig. 2. Several collected examples. The 3D relative orientation is described by three Euler angles based on the

definition in Figure 1(b).

In summary, several recent research have been conducted to explore the estimation of absolute

3D �nger angles from 2D capacitive or �ngerprint images. However, despite bene�ts of relative

input interaction, to the best of our knowledge, there has been no research to estimate 3D relative

�nger angles based on 2D �ngerprint images up to date.

3 DATASET

To train and evaluate the proposed algorithm, we constructed a dataset consisting of �ngerprint

pairs and their corresponding 3D relative �nger rotation based on the dataset collected by He

et al. [16]. Note that we cannot directly use the dataset in [16], since such research considers

only absolute �nger angles, while our task aims to estimate 3D relative �nger rotation. For the

completeness of the paper, a brief summary of the data collection method is provided here, and

more details can be found in [16].

The acquisition system, shown in Figure 1(c), contains a frustrated total internal re�ection (FTIR)

�ngerprint scanner DF5001 and an optical tracking system PST Iris2. A small stent with 4 re�ective

markers was �xed on the back of �ngers, and additional 5 re�ective markers were also attached on

the �ngerprint scanner. Speci�cally, sequential �ngerprint images (frames) are captured by the

�ngerprint scanner, and the corresponding 3D �nger angles are determined by calculating the

transformation between the small stent and �ngerprint scanner.

In total, the dataset was collected from 22 participants, including 12 male and 10 female with

ages from 20 to 48 [16]. Six �ngers including thumbs, index, and middle from both left and right

hands for each subject were captured (132 �ngers in total). Participants were asked to press �ngers

on the �ngerprint scanner with arbitrary angles to ensure a wide range of all three angles in a

comfortable way, during which the �ngerprint images and the corresponding 3D �nger absolute

angles were captured simultaneously (the acquisition sample rate was set as 20 Hz). And then we

excluded those data in which no �ngerprint is captured due to extreme �nger angles.

The dataset was then regrouped into pairs randomly, where each data pair consists of two

�ngerprint images as well as their corresponding 3D relative �nger rotation angles. Note that

only data pairs from the same �nger are considered, since the relative rotation between di�erent

�ngers is meaningless for interaction purpose. Considering the similarity between adjacent frames,

up to 3,000 pairs were selected from each �nger. Finally, a total of 332,418 pairs consisting of

�ngerprint images and their corresponding 3D relative �nger rotation ground truth were collected.

The �ngerprint scanner used in this study o�ers a 1.6” × 1.5” e�ective touch area, and the size of

captured �ngerprint images is 800 × 750 pixels with resolution of 500 ppi originally. We down-

sampled them to 180 ppi and cropped to 256 × 256 pixels for computation e�ciency. Several

examples are shown in Figure 2.

1see details in http://www.dotutech.com/en/pro_d.php?id=3
2see details in https://www.ps-tech.com/products-pst-iris
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Fig. 3. Pose-relevant features are extracted and concatenated to predict 3D relative finger rotation.

4 METHODS

We propose to estimate 3D �nger rotation using a siamese framework that utilizes two neural

networks with the same architecture and shared weights to extract features from a pair of 2D

�ngerprint images. The extracted features are then concatenated to predict 3D relative �nger

rotation. Considering the di�erent characteristics of 3D relative �nger rotation caused by diverse

initial �nger angles and �nger types, we also utilize metric learning to constrain the extracted

features. As mentioned in Section 3, data pairs, consisting of two �ngerprint images and their

corresponding 3D relative rotation ground truth, are used for algorithm training and evaluation.

Figure 3 illustrates the schematic representation of our approach.

4.1 Network Architecture

Siamese network has been widely used in relative camera pose estimation [9]. Inspired by this

idea, we propose a pose-aware siamese network to extract pose-relevant features, which are then

concatenated to estimate 3D relative rotation represented by three Euler angles: roll U , pitch V ,

and yaw W . The proposed network comprises three modules: (a) a feature extraction module to

derive features from input images; (b) a reconstruction module to restore input images based on the

extracted features; and (c) a prediction module to estimate 3D relative �nger angles. The feature

extraction module consists of a convolution block with a kernel size of 7 and a stride of 2, alongside

several residual-pooling blocks. The resultant features maps are �attened using global average

pooling and followed by a concatenation layer. Finally, the 3D relative �nger rotation is predicted

via two fully connected (FC) layers. And the decoder module is introduced to restore the input

images, thus preserving su�cient information in the latent feature space.

4.2 Feature Decomposition

Characteristics of 3D relative �nger orientation between two input images are di�erent with

diverse initial �nger angles, e.g., the di�erence between input images is di�erent when rolling

with initial absolute pitch angle at 10◦ and 70◦. Thus, to extract discriminative features containing

more essential information and exclude pose-irrelevant information like �nger size, identity, and

other irrelevant poses, it is helpful to decompose to latent interpretable features, and recent studies

have demonstrated its e�ectiveness in various tasks [2, 5, 42]. In this paper, an auto-encoder (AE)

network is employed for discriminative feature extraction and latent space disentanglement as

shown in Figure 4. With the reconstruction branch, su�cient information is reserved within latent

feature space and only pose-relevant part is utilized for following 3D relative angles estimation.
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Fig. 4. Feature extraction module (decompose latent features into pose-relevant and pose-irrelevant) and

decoder module.

4.3 Pose Distribution Learning

Inspired by the idea of metric learning [23, 40, 51], which aims to learn a reliable distance function

for measuring image similarities, in this paper, latent feature disentanglement is achieved by con-

straining similarities between the extracted pose-relevant features. Considering that the de�nition

of zero �nger orientation is inconsistent across di�erent �ngers, we propose to approximate the

distance between extracted pose-relevant features� (f8 ,f9 ) to the relative rotation distance between

3D absolute �nger angles � (?8 , ? 9 ). Speci�cally, distance � (f8 ,f9 ) is de�ned as Euclidean distance

between the extracted embeddings f from two input images:

� (f8 ,f9 ) =




f8 − f9






2
, (1)

The 3D �nger orientation distance � (?8 , ? 9 ) is calculated as angular distance � (?8 , ? 9 )

� (?8 , ? 9 ) = arccos(
trace(X 9X

−1
8 ) − 1

2
), (2)

where X8 and X 9 are the rotation matrix of 3D �nger orientation ?8 and ? 9 , respectively, and

trace(·) denotes the trace of matrix. Note that the angular distance � (?8 , ? 9 ) is the rotation angle

in axis-angle representation of 3D relative rotation from pose ?8 to pose ? 9 . Then the distance of

log distance ratios based on triplets [23, 51] can be minimized:

L(f8 ,f9 ,f: ) = (log
� (f8 ,f9 )

� (?8 , ? 9 )
− log

� (f8 ,f: )

� (?8 , ?: )
)2, (3)

which is modi�ed to improve the computation e�ciency and take full advantage of samples within

a mini-batch [51]:

L(H) = 1 (1 − 1)
∑

8≠9∈H

(log
� (f8 ,f9 )

� (?8 , ? 9 )
)2 − (

∑

8≠9∈H

log
� (f8 ,f9 )

� (?8 , ? 9 )
)2, (4)

where H denotes the indices within a mini-batch and 1 is the batch size.

In this way, information from �ngerprint images of various 3D �nger angles and di�erent

�ngers is incorporated, thus improving the features discrimination and generalization ability of the

proposed approach.

4.4 Objective Functions

4.4.1 Angular loss. Three Euler angles (namely yaw, pitch, and roll) are predicted and used to

represent relative 3D �nger rotation. The widely used mean-squared error loss function is utilized

for optimization:

Lang =
1

31

∑

8∈H

(3 (Û8 , U8 )
2 + 3 (V̂8 , V8 )

2 + 3 (Ŵ8 , W8 )
2), (5)
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where Û , V̂ , and Ŵ are predictions, and U , V , and W are the corresponding ground truth value

respectively. Considering the periodicity of orientation angle, which means −180◦ is consistent

with 180◦ while completely di�erent for neural network, we normalize the di�erence between two

angles 3 (\1, \2) by determining the minimum of Δ\ and 360◦ − Δ\ .

4.4.2 Reconstruction Loss. By constraining the distance between original and reconstructed image

in pixels, extracted latent features retain su�cient information for accurate image recovery:

Lrec =
1

1l

∑

8∈H

∑

9∈


| Ô8, 9 − O8, 9 |, (6)

where Ô is the reconstruction of input O , 
 denotes the pixel indices across input image, and l is

the size of 
.

4.4.3 Pose distribution loss. As mentioned in Section 4.3, we utilize the dense loss within a mini-

batch to constrain the distribution of extracted pose-relevant features:

Lpose =
1

1 (1 − 1)

∑

8≠9∈H

�2
log − (

1

1 (1 − 1)

∑

8≠9∈H

�log)
2, (7)

where

�log = log
� (f8 ,f9 )

� (?8 , ? 9 )
= log� (f8 ,f9 ) − log� (?8 , ? 9 ). (8)

4.4.4 Overall loss. The proposed network is optimized by minimizing the following overall objec-

tive function

L = Lang + _recLrec + _poseLpose + _regLreg, (9)

where _rec, _pose, and _reg denotes trade-o� parameter of reconstruction loss, pose distribution

loss, and regularization loss, respectively. In this paper, we utilize !2 norm of trainable network

parameters for regularization. We set _rec = 1.0, _pose = 1.0, and _reg = 0.01 such that these loss

functions have similar decreasing rates during training.

4.5 Implementation Details

We implement the proposed network in PyTorch and train it on a single NVIDIA GeForce 2080Ti.

During training, data is augmented via random image translations up to 20% of the image width

and height, as well as random rotations within the range of [−180◦, 180◦] to increase the diversity

of yaw angles. AdamW optimizer with initial learning rate of 0.00035 is utilized to update network

parameters. The learning rate decays by 0.1 when performance on validation subset does not

increase for 10 epochs, and training procedure stops after learning rate decays for three times. The

entire network is trained from scratch.

5 EXPERIMENTS

In this section, we �rst introduce the dataset used for training and evaluation. Afterwards, the

compared baseline methods and a new performance metric are described. Subsequently, experi-

mental results are reported, and the e�ects of various factors on the estimation performance are

also explored such as input image resolution and �nger type.

5.1 Dataset

Experiments were conducted on the dataset described previously, consisting of a total of 332,418

pairs from 132 �ngers (22 subjects) with �ngerprint images and their corresponding 3D relative

�nger angles ground truth. We randomly split the dataset into three subsets: 235,569 pairs from 92
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Table 1. Distributions of three angles in the test subset. The definition of "AD" is shown in Equation 10. "AD"

of "Absolute" denotes the angular rotation from zero finger orientation to current absolute finger orientation.

"SD" denotes standard deviation.

Absolute Relative

Yaw Pitch Roll AD Yaw Pitch Roll AD

Min -88.0 -87.5 -85.2 13.0 -180.0 -88.9 -101.3 2.0

Max 90.0 -9.1 89.5 153.0 179.9 73.5 102.5 180.0

Mean 2.8 -41.3 -0.2 81.8 -2.0 -13.7 -0.8 100.9

SD 60.5 16.6 37.3 18.9 103.7 29.8 35.1 49.2

�ngers for training, 36,968 pairs from 13 �ngers for validation, and 59,881 pairs from 27 �ngers

for testing. Note that three subsets may contain �ngers from the same participants, but all images

from the same �nger were assigned to single subset. The use of �ngerprint images with an original

resolution of 500 ppi is neither practical nor essential for mobile devices in daily applications due

to their limited volume and computational resources. Therefore, we down-sample the �ngerprint

images to 180 ppi (256 × 256 pixels). Before down-sampling, low-pass �ltering was applied to

provide spatial anti-aliasing. The statistical details of the test subset can be found in Table 1, which

highlights the considerable enlargement of the ranges for all three relative angles compared to

absolute angles, particularly for yaw and pitch angles.

5.2 Baseline Methods

We reimplemented themethod inMayer et al. [28] as a baseline since it �rst introduced deep learning

to estimate �nger angles based on capacitive images. Considering that the network was designed

for capacitive images with low resolution originally, images with higher resolution, e.g., �ngerprint

images, might not be compatible due to the limited network receptive �eld. Consequently, on the

one hand, we simulated capacitive images by down-sampling the original �ngerprint images with

spatial anti-aliasing to match the general resolution of capacitive images (~4 mm pitch, ~10 ppi), as

shown in Figure 1(a). On the other hand, we also developed a deeper multi-task CNN model in [16]

to predict 3D �nger angles based on �ngerprint images. Note that we added an adaptive global

average pooling layer with output size of 3 in the CNN model in Mayer et al. [28] to estimate on

images with arbitrary resolutions. The aforementioned networks predict absolute 3D �nger angles

directly from the single input image, then the relative 3D �nger orientation can be determined

from two separate inputs. Besides, we also proposed a naïve siamese network that uses the same

feature extraction module and FC layers as our proposed model, while removing the latent feature

disentanglement module. This network also predicts the 3D �nger relative orientations directly.

To ensure fairness and comprehensiveness of comparison with baseline methods, the same

dataset is utilized for training and evaluation for all methods, and we also apply the same data

augmentation as mentioned above. All networks are trained from scratch using the same optimizer

and learning rate decay schedule.

5.3 Performance Metrics

Apart from the widely used Euler angles, we also evaluate the estimation performance in 3D space

directly. Similar with Equation (2), 3D rotation error, named 3D angular distance (AD), is proposed

for a better measurement of distance between two 3D �nger rotations, which can be calculated by:

AD = arccos(
trace(XX̂−1) − 1

2
), (10)
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Table 2. �antitative results for 3D relative finger angles estimation. Default image resolution is 180 ppi.

Errors are reported in degrees.

Algorithm
Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

CNN in Mayer et al. [28]1 36.50 57.37 44.27 15.99 21.84 14.87 19.04 26.97 19.10 44.42 60.67 41.32

CNN in Mayer et al. [28] 22.45 34.39 26.03 11.03 14.44 9.33 15.04 22.24 16.38 28.07 35.47 21.69

Multi-task CNN [16] 13.91 22.45 17.63 8.74 11.65 7.70 11.72 16.89 12.17 19.69 24.96 15.34

Naïve Siamese 10.20 14.91 10.87 7.56 9.39 5.56 10.12 13.92 9.55 14.99 17.16 8.35

Pose-aware Siamese 9.14 14.83 11.67 6.01 7.84 5.04 8.41 12.13 8.75 13.46 16.96 10.31
1 down-sample the input �ngerprint image to 10 ppi for capacitive image simulation.

where X and X̂ are rotation matrixes of ground truth 3D relative �nger orientation and prediction,

respectively. Mean absolute error (MAE), root mean squared error (RMSE) and standard deviation

(SD), are applied to perform quantitative performance comparison between di�erent approaches.

5.4 Comparison with Baselines

In Table 2, we show the experimental results of the proposed method and baseline methods on

the test subset. As shown in the table, the proposed approach performs better than other baseline

methods. The models predicting 3D relative �nger angles, i.e. naïve siamese and pose-aware

siamese networks, perform better than those models based on absolute �nger orientation, which

demonstrates the superiority of estimating 3D relative �nger rotation directly. Note that the metric

SD is decreased when estimating relative �nger angles directly, which means relative estimations

are more stable and robust compared to calculating relative rotation angles between two absolute

�nger angle estimations. Besides, we observe that with a higher resolution of input image, i.e.,

�ngerprint rather than capacitive images, estimation performance of [28] also increases. Figure 5

also shows the error distribution of our method under di�erent ground truth values of three Euler

angles and AD.

Figure 6 shows several results estimated by baseline methods and our proposed relative �nger

orientation estimationmodel. As shown in the �gure, inaccurate and opposite rotations are observed

in those approaches that calculate relative �nger angles based on absolute �nger angle estimations,

which itself is not reliable.

5.4.1 Analysis of image resolution. Additional experiments are conducted to investigate the impact

of input resolution.We down-sampled the original �ngerprint images to several di�erent resolutions,

including 180 ppi (256× 256 pixels), 120 ppi (171× 171 pixels), 60 ppi (85× 85 pixels), 30 ppi (43× 43

pixels originally, padded to 48 × 48 pixels), and 10 ppi (14 × 14 pixels originally, padded to 32 × 32

pixels). Examples with di�erent resolutions are shown in Figure 7, and experimental results are

shown in Table 3. The down-sampled images with resolution of 10 ppi may not be consistent

with real capacitive images (e.g., capacitive sensing detects the proximity rather than contact [41]).

Hence, these simulated 10 ppi images are solely utilized for the shallow CNN model [28] as a

performance reference. As shown in the table, it is observed that estimation performance increases

with higher resolution, since additional features, such as ridge patterns, help to recognize 3D

�nger rotation angles accurately. Superior performance is consistently achieved by predicting 3D

relative �nger angles directly, especially for low image resolution, which further demonstrates the

e�ectiveness of focusing on di�erence between inputs in 3D relative �nger orientation estimation.

Note that this experiment does not intend to verify whether our method can be applied on

capacitive images. We are actually trying to explore the estimation performance given di�erent res-

olutions of input images. Such experiments are valuable and comprehensive since lower resolution

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ISS, Article 431. Publication date: December 2023.



3D Finger Rotation Estimation from Fingerprint Images 431:11

(a) Error distribution for yaw angle. (b) Error distribution for pitch angle.

(c) Error distribution for roll angle. (d) Error distribution for AD.

Fig. 5. Error distribution of the proposed method for 3D relative finger orientation represented by all three

angles and angular distance (AD) in the test subset. 95% confidence interval (CI) is shown as gray area.

Table 3. �antitative results for 3D relative finger orientation estimation with di�erent resolutions. Errors

are reported in degrees.

Algorithm PPI
Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

CNN in Mayer et al. [28]

10 36.50 57.37 44.27 15.99 21.84 14.87 19.04 26.97 19.10 44.42 60.67 41.32

30 31.20 49.82 38.84 13.72 18.89 13.00 17.10 24.25 17.19 38.15 52.58 36.19

180 22.45 34.39 26.03 11.03 14.44 9.33 15.04 22.24 16.38 28.07 35.47 21.69

Multi-task CNN [16]
30 24.91 43.68 35.88 12.59 17.73 12.49 15.71 22.78 16.50 32.36 47.33 34.54

180 13.91 22.45 17.63 8.74 11.65 7.70 11.72 16.89 12.17 19.69 24.96 15.34

Naïve Siamese
30 17.40 28.86 23.03 10.70 14.58 9.90 12.64 17.98 12.78 24.58 33.47 22.72

180 10.20 14.91 10.87 7.56 9.39 5.56 10.12 13.92 9.55 14.99 17.16 8.35

Pose-aware Siamese

30 17.35 33.01 28.08 9.52 13.63 9.76 12.00 17.45 12.71 23.75 36.12 27.21

60 15.22 29.04 24.73 8.65 12.46 8.97 10.68 15.77 11.61 20.78 31.89 24.19

120 10.49 16.07 12.17 7.03 9.40 6.23 9.61 13.55 9.56 15.40 18.74 10.69

180 9.14 14.83 11.67 6.01 7.84 5.04 8.41 12.13 8.75 13.46 16.96 10.31

always means higher operation speed, allowing for a better trade-o� between estimation error and

frame rate in practical HCI scenarios.

5.4.2 Analysis of finger type. As mentioned above, zero orientation de�nitions are not consistent

across di�erent �ngers, which decreases performance of absolute �nger orientation estimation

in prior works. Therefore, estimation accuracy of our proposed method on di�erent �ngers were
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Examples of 3D finger rotation estimation. From le� to right, they are (a) the first frame, (b) the second

frame, (c) zero initial pose, (d) 3D rotation ground truth from the first one to the second, (e) results of CNN in

Mayer et al. [28], (f) results of multi-task CNN [16], (g) results of naïve siamese, and (h) results of pose-aware

siamese network.

180 ppi 120 ppi 60 ppi 30 ppi500 ppi 10 ppi

Fig. 7. Examples of fingerprint images with di�erent resolutions.

evaluated. Speci�cally, performance on three �nger types is shown in Table 4. We found that the

estimation accuracy on thumb is lower than the other two �ngers when calculating 3D relative

�nger angles based on absolute �nger angles. The main reason maybe that the shape and size of

thumbs are more diverse compared to other �ngers, making the de�nition of zero �nger orientation

across di�erent �ngers less reliable. While for our proposed method, di�erence between input

images is focused and impacts like �nger shape, size, and identities are also alleviated by latent

feature disentanglement, thus achieving better and more robust performance.

Besides, we also conduct more experiments to explore the e�ects of various factors on the

estimation performance, and more details can be seen in supplementary materials.

6 USER STUDY

Finger orientation has been demonstrated to be intuitive in a number of HCI applications [44],

and 3D manipulation task is very suitable for evaluating input technology rigorously since it

requires more DOFs, accurate as well as stable control, and quick response [3]. Therefore, apart

from quantitative evaluation experiments, a user study is also conducted to investigate relative

�nger orientation based 3D interaction in a realistic scenario, i.e. a representative 3D manipulation

task in which a virtual object (teapot) is rotated to the target orientation.
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Table 4. �antitative results of 3D relative finger orientation estimation models on di�erent fingers. Errors

are reported in degrees.

Algorithm
Yaw Pitch Roll AD

MAE RMSE SD MAE RMSE SD MAE RMSE SD MAE RMSE SD

Thumb
Multi-task CNN [16] 19.56 33.09 26.69 9.94 13.70 9.42 14.55 22.89 17.67 24.99 34.33 23.54

Pose-aware Siamese 10.34 17.47 14.08 5.97 7.86 5.11 9.95 15.45 11.86 14.32 18.35 11.47

Index
Multi-task CNN [16] 9.94 14.62 10.72 7.59 9.40 5.54 9.36 13.16 9.26 15.19 16.87 7.34

Pose-aware Siamese 7.33 14.02 11.95 5.68 7.25 4.50 7.11 10.34 7.50 11.56 15.77 10.73

Middle
Multi-task CNN [16] 13.24 18.81 13.36 8.83 11.78 7.80 12.01 16.54 11.36 19.49 22.90 12.03

Pose-aware Siamese 10.06 15.00 11.12 6.26 8.21 5.30 8.68 12.27 8.67 14.25 16.99 9.24

6.1 Device

Due to the restriction of acquiring images in real time from �ngerprint sensors embedded in mobile

devices, we implemented using a �ngerprint scanner with a 1.6” × 1.5” touch area (the same device

shown in Fig. 1(c)). The �ngerprint scanner was connected to a PC with GeForce 1080 GPU, and

the same operation described in Section 3 was adopted, i.e., down-sampling the original �ngerprint

images to 180 ppi and cropped to 256 × 256 pixels.

6.2 Tasks

Each trial is started when users begin to manipulate the virtual object (the �rst time �ngers touch

the scanner), and two types of termination are explored in our study: (1) task is terminated on

a key press by participants when the teapot is believed to reach the target orientation; (2) task

is terminated after keeping absolute errors of all three angles less than 3◦ for 1 second. Then

task completion time (type 1&2 task) and rotation error (type 1 task) are utilized to evaluate the

e�ciency and precision of 3D interaction techniques using di�erent relative �nger orientation

estimation models, including (1) multi-task CNN [16] which calculates relative �nger angles based

on two absolute �nger orientations, and (2) the proposed relative �nger orientation estimation

approach. We mapped the estimated relative �nger angles to control 3D rotation of virtual object.

Inspired by the PRISM (precise and rapid interaction through scaled manipulation) techniques

proposed by Frees et al. [10, 11], which scales down input movements to improve accuracy of direct

manipulation, we implemented a naïve scaling method in which �nger rotation angle around each

axis is scaled down when users move their �ngers slower than a pre-de�ned threshold around the

corresponding axis (less than 3◦ between adjacent frames in this study).

6.3 Participants

Ten unpaid participants (all male with a university degree) took part in our comparative study,

and none of participants were involved in the training dataset. They were intentionally given the

minimal guidance on using the device to complete the manipulation task and asked to balance

accuracy and speed in type 1 task. A video demo is also provided in supplementary materials.

Per relative �nger orientation estimation model, we asked our participants to carry out 10

repetitions. The initial object orientation was randomly selected from remaining orientations

within a pool, and we used the same pool for all methods (as shown in Figure 8). Besides, the order

of employing models was also counter-balanced to reduce the bias caused by learning e�ects.

6.4 �antitative Results

A total of 400 trials were collected from 10 participants (200 trials for each type of task). Quantitative

results are shown in Figure 9 and Table 5. The CNN model in Mayer et al. [28] was also evaluated
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Fig. 8. Rotate teapot from initial orientation (red) to the target orientation (green).

0 5 10 15 20 25 30

Pose-aware Siamese

Multi-task CNN

Task completion time (s)

(a) Type 1 task

0 5 10 15 20 25 30

Pose-aware Siamese

Multi-task CNN

Task completion time (s)

(b) Type 2 task

Fig. 9. Task completion times (in seconds) of (a) type 1 task and (b) type 2 task respectively, where error bars

denote 95% CI.

Table 5. Average rotation errors with 95% CI in 3D manipulation task (type 1). Errors are reported in degrees.

Algorithm Yaw Pitch Roll AD

Multi-task CNN [16] 4.27±0.84 2.30±0.37 3.28±0.59 6.63±0.88

Pose-aware Siamese 2.98±0.44 1.36±0.18 2.61±0.39 4.82±0.41

based on the simulated capacitive images (10 ppi). However, the tasks were rarely completed (each

task is limited to maximum of 100 seconds) in most cases since the object orientation is hard to

control and wobbles around the target orientation which is caused by inaccurate, unstable, or even

contrary estimation of 3D �nger angles.

6.4.1 Task Completion Time. It is observed that less completion time is achieved for rotating

objects to the desired orientation using the proposed model, since keeping an object close to the

target orientation requires a more accurate and stable response to the changes of �nger orientation.

Besides, paired t-test revealed that statistically signi�cant di�erences for interaction based on the

proposed model and the multi-task CNN [16] model with ? = 0.0003 for type 1 task and ? = 0.0003

for type 2 task. Note that log-normalizing was utilized as it is standard in such cases [3, 39]. And

before that a Shapiro-Wilk test was applied to ensure that data normality assumption was met

(, = 0.987, ? = 0.470 for type 1 task and, = 0.985, ? = 0.331 for type 2 task).

6.4.2 Rotation Error. For type 1 task, higher rotation precision is achieved based on the proposed

model. Di�erent from task completion time, we found that paired t-test is not appropriate since the

data is not normally distributed according to Shapiro-Wilk test. Therefore, paired Wilcoxon test

(also known as Wilcoxon signed-rank test) was utilized and we also found statistically signi�cant
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Fig. 10. Participants’ preference for each model regarding di�erent criteria, i.e., the number of times of each

model was ranked as 1st/2nd/3rd.

di�erences regarding rotation error after completing type 1 task:, = 1684, / = −2.892, ? = 0.0038

for yaw,, = 1815, / = −2.441, ? = 0.0147 for pitch,, = 1131, / = −4.793, ? < 0.0001 for roll, and

, = 954, / = −5.402, ? < 0.0001 for AD.

6.4.3 Experience. Three of the participants ranked themselves as skilled at 3D object manipulation

task since they use 3D software or 3D video-games frequently. For these participants with relevant

experience, the average task completion time using the proposed method is reduced to 13.67s

and 14.58s for type 1&2 task respectively, which indicates a better control can be achieved with

experience.

This 3D object rotation study shows the importance of �nger angle estimation accuracy in human

computer interaction applications. Note that this manipulation speed and accuracy are better than

or at least comparable to the four input techniques for 3D object rotation reported in [19], although

this is not a fair comparison due to di�erent experimental settings.

6.5 �alitative Results

Based on our observations during manipulation and subjective feedbacks from participants in this

user study, several qualitative insights and discussions can be obtained.

6.5.1 Perferences. Subjective preferences were collected after participants �nished the required 3D

manipulation tasks. We asked the participants how they felt about the tested models and ranked

them, including sensitivity (sensitivity of response to �nger rotation angles), stability (consistency

of response to �nger rotation angles), and overall preference. Results are depicted in Figure 10. We

found that most participants prefer the proposed 3D relative �nger orientation estimation model,

and followed by the absolute �nger angle based model, multi-task CNN [16]. Stability seems to

play an important role when participants rank all tested models. Due to the limited information

provided by a single input, the absolute multi-task CNN [16] model presents lower reliability for

manipulation. While our method does not su�er from this since more e�ective information can

be reserved from two input images. For the CNN model inspired by Mayer et al. [28], which was

designed for estimating pitch and yaw based on capacitive images originally, all participants agree

that it is not easy to use, with the main problem being the large estimation error or the deviation

from the actual rotation direction, since the lower image resolution makes it di�cult to predict all

three �nger angles. And that is also the reason only pitch and yaw angle are concerned in prior

works based on capacitive images.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ISS, Article 431. Publication date: December 2023.



431:16 Duan et al.

6.5.2 Control Strategy. We did not impose a constraint on which �nger the participants used

during manipulation. An interesting �nding was that people prefer to use their index �ngers for

manipulation, especially for those absolute �nger angle estimation models. This can be backed

by the observation that estimation performance on index �ngers is higher than other �ngers (see

Table 4). Besides, some users tended not to change pitch angle drastically, but to control it using

roll angle by �rst rotating 90◦ around yaw axis. The main reason is the limited range of pitch angle

according to the feedbacks, which also �ts the picture of roll angle being valuable in �nger based

3D manipulation tasks.

6.5.3 Subjective Feedbacks. Some participants pointed out that if the �ngerprint scanner can be

made as small as a smartphone, it would not have to be placed on a table and could be easily held by

one hand and operated by the other hand, making it more convenient for manipulation. Some users

believe that if the refresh rate were higher, the manipulation experience would be better. There

are also several people claimed that the reason they prefer a certain method is that the estimated

�nger angles are more consistent with their self-perception, even though we did not record the

ground truth of 3D �nger angles in user study.

7 DISCUSSION

Finger orientation based interactions have been explored in prior works, but have not yet been

widely adopted in real applications. We believe that one of the main obstacles for real applications is

the relatively lower estimation precision. Except for the low resolution of touch sensors, predicting

absolute �nger angles but utilizing relative �nger rotation in real applications also limits the

improvement of estimation performance. In this paper, we �rst proposed to predict 3D relative

�nger rotation angles based on two input �ngerprint images directly. Experimental results show

the superiority of the proposed 3D relative model compared to previous absolute models. And the

user study also demonstrates the e�ectiveness and e�ciency of the proposed approach.

Higher input image resolution matters for �nger angle estimation. Compared to capacitive

images which were widely used in previous research, �ngerprints contain more useful information

related to �nger orientation, thus helping to promote the estimation accuracy and robustness. The

resolution di�erence between �ngerprint and capacitive images is so large (180 ppi versus 10 ppi

in our study), and it is unlikely to reconstruct the original ridge pattern in �ngerprint images by

up-sampling capacitive images (such as [35]), which is necessary for estimating complete 3D �nger

angles. Intuitively, computational cost will increase with higher image resolution, resulting in

longer latency, which is concerned in interactions. Compared to predict �nger angles based on

single input, more information is considered in the proposed relative approach, thus achieving a

better performance under the same sensor conditions.

Estimating absolute �nger angles presents di�erent performance on di�erent �ngers. Zero �nger

orientation is di�cult to de�ne (especially for pitch) and not consistent across di�erent �ngers

with diverse �nger shapes, sizes, and habits of movements. Therefore, for those absolute �nger

angle models, estimation performance is di�erent among di�erent �ngers due to the uncertainty of

absolute �nger angle ground truth, especially for thumbs whose shapes and sizes present large

variance. While the proposed relative �nger angle model concerns about the di�erence between two

inputs (from the same �nger) and does not su�er from the problem of zero orientation de�nition

seriously.

Higher estimation consistency on di�erent rotation ranges is achieved using the proposed relative

�nger angle model since relative information is involved. While for prior absolute �nger angle

models, estimation performance decreased when the actual rotation range is large. Due to the large
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estimation error on large rotation range, users tend to perform rotation in a small range for a more

precise estimation, thus requiring more times of lifting �ngers.

Roll angle is valuable in �nger orientation based 3D manipulation tasks. Roll angle was rarely

explored in previous works since it is di�cult to infer in capacitive images. However, compared to

pitch angle, roll angle presents larger controllable range and is easy to control. Duringmanipulations

in user study, we also found that some participants preferred to convert pitch rotation to roll rotation

by �rst performing 90◦ yaw rotation.

Although the proposed method estimates 3D relative �nger rotation based on �ngerprint data,

which is widely used in biometric recognition and contains su�cient identity information, privacy

concerns may not be a major issue. Firstly, as demonstrated in Section 5.4, the proposed method can

still perform well on �ngerprint images with slightly lower resolution, from which the minutiae are

di�cult to be observed and extracted. Additionally, it is also possible to, like existing �ngerprint-

based identity recognition systems, prevent external access to �ngerprint data and only allow

access to the estimated 3D �nger angles. This can help to avoid privacy issues caused by leakage of

�ngerprint data

8 LIMITATIONS

Although promising performance is achieved using �ngerprint images for 3D relative �nger

orientation estimation, there are several limitations to be tackled.

Di�erent from capacitive images, which are collected based on electrical capacitance changes

when �ngers touch on the display, �ngerprint images are hard to capture for extreme �nger angles,

e.g. large pitch angle whose absolute value is over 80◦. Therefore, estimating 3D extreme �nger

angles is less accurate, which limits the controllable range during interaction. This can be alleviated

by relative �nger orientation proposed in this paper. A fusion of �ngerprint and capacitive images

is likely to improve estimation accuracy for extreme �nger angles further. Meanwhile, such fusion

scheme can provide additional valuable information, e.g. capacitance changes while �ngerprint not

captured, for rejecting unintended touching, where interactions with extreme �nger angles are

performed in most cases.

As shown in Figure 5, the estimation performance is still unsatisfactory when the relative rotation

angle is large, especially for roll angle which is inherently more di�cult. This can be alleviated by

selecting keyframes during interaction to split the 3D rotation procedure into several small discrete

rotations, and combining them to obtain the �nal 3D �nger rotation. Collecting more samples with

large relative �nger angles and designing more robust and e�cient data augmentation strategies

may also help.

Although simulated images with various resolutions were utilized as input in our experiments,

we did not verify whether the proposed method can be applied to capacitive images. And we

think that it is not feasible to estimate all three 3D �nger angles simultaneously due to the limited

resolution of capacitive images. Besides, �ngerprint images in our study were captured using

FTIR-based �ngerprint scanner, instead of under-screen �ngerprint sensors in mobile devices. Due

to the limitation of the Trusted Execution Environment (TEE)3 in smartphones, fetching �ngerprint

images from mobile devices directly is not feasible without special support of �ngerprint sensor

and smartphone manufacturers. Therefore, considering the promising development of �ngerprint

based interaction techniques, these pioneer manufacturers are expected to make a step forward to

facilitate the related research. Although the performance may drop on under-screen images due to

lower quality, the reduction should not be more severe than the reduction observed in reducing

3https://source.android.com/security/trusty
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image resolution, which means privacy concern may not be an issue since satisfactory precision

can be achieved based on low resolution images erasing identity information already (Table 3).

Various simulated image resolutions are explored in our experiments, nevertheless, other factors

are not explored systematically yet, such as wetness, dryness, and complicated skin distortion of

�ngers. And only males participated in our user study. We also noticed that our participants have

various skin quality and the proposed model seems to be robust to skin quality.

Besides, the refresh rate of our method relies on the frame rate of capturing �ngerprint images

and processing time of network inference. The inference time of the proposed approach is about

0.0011 seconds per image pair on a PC with GeForce 1080 GPU. So the current bottleneck is the

frame rate of �ngerprint sensor (30 Hz), which was designed for person identi�cation rather

than interaction. For applications requiring very small latency, �ngerprint sensors with higher

frame rate but lower spatial resolution should be utilized. However, currently, such sensors are not

available in the market. In addition, considering that the computing resources on mobile devices

are relatively limited, apart from reducing the resolution of image acquisition, methods such as

model quantization can also be employed to reduce the computational demand during inference on

actual mobile devices.

Similar with capacitive images, both relative translation and rotation can be obtained based on

�ngerprint images. However, in this study, only �nger angles were utilized in 3D object manipulation

tasks since we focus on 3D relative �nger rotation estimation in this paper. Six DOFs interactions

based on �ngerprint images can be further investigated in the future research. In addition, DOF

separation and more advanced mapping strategies are not fully investigated in our user study, which

have been demonstrated to be e�ective in previous studies [3, 10, 11, 30, 43]. Besides, similar with

[3], elaborately comparing with previous 3D manipulation techniques, such as mouse+keyboard,

tactile, and tangible inputs, to analyze strengths or weaknesses and explore suitable potential

applications of di�erent input techniques is also a promising research topic in the future.

9 CONCLUSION

Compared with absolute �nger orientation, relative �nger angles present superiority in several HCI

applications. In this paper, we propose a 3D �nger rotation estimation framework via 2D �ngerprint

images. Relative �nger orientation, represented by three Euler angles, is directly estimated based

on two input images, rather than calculating the relative transformation between two estimated

absolute �nger angles. Considering the characteristic of relative pose transformation varies with

di�erent initial �nger angles and di�erent �ngers, metric learning is further utilized to constrain

the distribution of extracted features to incorporate pose-relevant information. To explore the

performance of the proposed approach, we collected a dataset consisting of �ngerprint images

with their corresponding ground truth 3D �nger angles. The experimental results demonstrate the

e�ectiveness and e�ciency of our approach, and the proposed method is robust to di�erent initial

�nger angles, �nger types, and ranges of 3D rotation. Furthermore, a user study also revealed the

superiority using the proposed 3D relative �nger orientation in 3D object rotating task. We have

also discussed the limitations of the current study. With accurate 3D �nger rotation estimation,

more innovative �nger orientation based HCI interaction techniques would be possible in the

future.
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