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Figure 1: Our technique automatically transfers retouching edits to new images by learning the desired edits from one example
before-after pair (insets). The transferred edits accurately capture intricate details such as wrinkles, dark spots, strands of hair,
or eyelashes, as shown in the input (top) and retouched (bottom) pairs. Image courtesy of Jenavieve (top-left), Logan ProPro
(top-left, inset), Marissa Oosterlee (top-middle). (CC-BY).

ABSTRACT
Photo retouching is a difficult task for novice users as it requires
expert knowledge and advanced tools. Photographers often spend
a great deal of time generating high-quality retouched photos with
intricate details. In this paper, we introduce a one-shot learning
based technique to automatically retouch details of an input image
based on just a single pair of before and after example images. Our
approach provides accurate and generalizable detail edit transfer
to new images. We achieve these by proposing a new represen-
tation for image to image maps. Specifically, we propose neural
field based transformation blending in the patch space for defin-
ing patch to patch transformations for each frequency band. This
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parametrization of the map with anchor transformations and asso-
ciated weights, and spatio-spectral localized patches, allows us to
capture details well while staying generalizable. We evaluate our
technique both on known ground truth filters and artist retouching
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edits.

CCS CONCEPTS
• Computing methodologies→ Computational photography;
Image processing.

KEYWORDS
detail retouching, image-to-image translation, context-aware image
enhancement, one-shot learning, neural networks

ACM Reference Format:
Fazilet Gokbudak and Cengiz Oztireli. 2023. One-shot Detail Retouching
with Patch Space Neural Transformation Blending. In European Conference
on Visual Media Production (CVMP ’23), November 30–December 01, 2023,
London, United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3626495.3626499

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626495.3626499
https://doi.org/10.1145/3626495.3626499
https://doi.org/10.1145/3626495.3626499
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626495.3626499&domain=pdf&date_stamp=2023-11-30


CVMP ’23, November 30–December 01, 2023, London, United Kingdom Fazilet Gokbudak and Cengiz Oztireli

1 INTRODUCTION
Photo retouching is often desirable as it improves the aesthetic qual-
ity of photographs by eliminating imperfections and highlighting
subjects of interest. Even with significant progress in digital pho-
tography owing to advancements in camera sensors and image
processing algorithms, professional retouches via manual adjust-
ments are still needed to achieve a desired look. These artistic edits
require considerable manual effort as they consist of global adjust-
ments, such as brightening and contrast enhancement, as well as
fine edits applied to local regions. Professionals spend a great deal
of time to generate such edits, which motivates us to automatically
mimic a specific style or type of retouch.

The development of automatic photo retouching tools can be
helpful for both novice users and experts as it offers a basis for a
professional retouching style. However, automating detailed edits
of professionals is challenging as their editing pipelines are spatially
varying, context-aware, and highly nonlinear, containing per-pixel
adjustments. Recent learning-based methods address this complex-
ity in image-to-image translation by proposing local context-aware
methods, such as pixel-adaptive neural network architectures [Li
et al. 2020; Shaham et al. 2021], learning parameters of local filters
[Moran et al. 2020], or multi-stream models to extract global and
local features separately [Gharbi et al. 2017]. However, these data-
driven methods require a large dataset of matching example image
pairs. Even then, the mappings are sensitive to segmentation errors,
unseen semantic regions, and image content [Yan et al. 2016a].

Motivated by the gap between manual and automatic enhance-
ment, we propose a novel photo retouching technique that can
learn global and local adjustments from just a single example image
pair. Our method thus sidesteps the need for large datasets, which
are very difficult to obtain for the detail retouching task. We allow
users to choose one example before-after pair from which our tech-
nique learns the underlying retouching style. Subsequently, we can
apply the retouching edit to a different input image.

We assume that example and input images share similar local
content. The user can thus decide on the semantics of the example
and input photos and the structural changes to be transferred. This
is easy for humans and practical for many scenarios, e.g. face edits
transferred to faces. Our method then handles the difficult part for
humans: capturing how fine details change in an edit and applying
those automatically to a new image. The method can further be
combined with brushes if fully automatic transfers are not desired.

We achieve these by defining the retouching problem as a map
that is given by a spatio-spectral patch-space neural field based trans-
formation blending. This representation is primarily inspired by
professional detail retouching pipelines as we elaborate on in Sec-
tion 3. Our map representation is composed of learned patch maps
at multiple scales, i.e. frequency bands. Each of these maps is rep-
resented by a number of transformation matrices blended with
patch-adaptive weights that are represented as neural fields. We
jointly optimize the transformation matrices and corresponding
weights for each band. This representation captures edits to details
better than any previous techniques while staying generalizable
to new images. It is also simple enough to be extended in many
different ways in future works.

In summary, there are two main contributions of this work:

• A novel patch-space image map representation as a
blending of transformation matrices with neural fields.

• A one-shot detail retouching algorithm that allows trans-
fer of edits to details to new images based on a single before-
after image pair.

2 RELATEDWORK
Photo retouching has been explored in image processing and com-
puter vision communities under different domains, such as photo
enhancement and image-to-image translation. Below, we first dis-
cuss recent methods on photo enhancement and then image to
image map definitions with the main focus on learning-based meth-
ods.

2.1 Digital Photo Enhancement
Global image enhancement. Color and tone transfer has been

considered a very effective technique to improve the perceptual
quality of photos with pre-defined rules or examples [Faridul et al.
2014; Mustafa et al. 2022]. Earlier methods typically apply global
changes and adjust image statistics [Bae et al. 2006; Bychkovsky
et al. 2011; He et al. 2020; Park et al. 2018; Pitie et al. 2005; Pitié
et al. 2007; Reinhard et al. 2001; Sunkavalli et al. 2010], e.g., mean
and standard deviation, without considering image content and
local variations [Cohen-Or et al. 2006]. These methods generally
transfer color changes, ignoring edits in fine details. On the other
hand, our method learns a mapping per frequency band, capturing
transfers even in high frequencies. Bychkovsky et al. [Bychkovsky
et al. 2011] collected the MIT-Adobe FiveK dataset of 5,000 pho-
tographs and their retouched versions by five artists. The authors
propose a regression model to learn artists’ retouching styles from
before-retouched pairs. Chen et al. [Chen et al. 2017] introduce a
fully-convolutional neural network model to learn global image pro-
cessing operators, such as photographic style, nonlocal dehazing,
and pencil drawing. In [Hu et al. 2018], a photo retouching pipeline
for various post-processing operations is presented, where global
adjustment curves are approximated. The authors suggest a deep
reinforcement learning approach to model users’ edit preferences
from a given photo collection.

Nevertheless, global transfers cannot capture local and regional
variations in a photo [Cohen-Or et al. 2006].They may result in
artifacts when the local target regions of the example and input
images do not match. We adapt our mappings to each image patch
separately, thus accurately capturing local edits in intricate details.

Local context-aware image enhancement. To capture local vari-
ations, different methods have been proposed, such as learning
local representative color transform [Kim et al. 2021], estimating
an image-to-illumination mapping with a local feature extractor
[Wang et al. 2019], local histogram matching [Shapira et al. 2013],
segmentation [Laffont et al. 2014; Tai et al. 2007], combining and
learning pre-defined filters [Berthouzoz et al. 2011; Chen et al. 2018a;
Huang et al. 2014; Omiya et al. 2018; Saeedi et al. 2018] or with
further user guidance [An and Pellacini 2010; Pouli and Reinhard
2011; Tai et al. 2005], detection or learning of image semantics and
context [Gharbi et al. 2017; Hwang et al. 2012; Kaufman et al. 2012;
Nam and Kim 2017; Yan et al. 2014; Zhu and Yu 2018], matching
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[HaCohen et al. 2011], or precise alignment [Kagarlitsky et al. 2009;
Shih et al. 2013].

Furthermore, recent work has focused on learning global and
local adjustments via spatially-varying filters [Chen et al. 2018b;
Gharbi et al. 2017; Li et al. 2020; Moran et al. 2020; Shaham et al.
2021]. Chen et al. [Chen et al. 2018b] introduce a global feature ex-
traction layer along with per-pixel adjustments to enhance photos.
Bilateral guided joint upsampling [Chen et al. 2016] also allows
for local and global image processing with an encoder-decoder
approach. HDRNet [Gharbi et al. 2017] learn content-aware, global,
and local adjustments via a two-stream convolutional architecture,
which extracts local and global features separately to fit local affine
transformations and encode the high-level description of images,
respectively. Also, Moran et al. [Moran et al. 2020] propose to learn
the parameters of three different spatially local filters to automati-
cally enhance photos.

Local color and tone adjustments might still be insufficient to
capture intricate details [Bae et al. 2006]. Transfer of such details,
in general, requires a dense matching [HaCohen et al. 2011] or
alignment between example and input images [Shih et al. 2014].
To achieve either dense matching or alignment, methods constrain
their datasets to contain very similar example and input images,
for example, faces with similar characteristics and views [Shih et al.
2014]. On the other hand, our method does not require dense cor-
respondences between input and example images but still transfers
intricate details. It accurately represents such complex mappings
with an operator summing the effects of various transformations
multiplied with corresponding patch-adaptive weights, applied at
multiple frequency bands.

Differentiable image processing pipelines. To have more flexibility
and control over the rendering process, methods based on image
signal processors (ISP)s have been proposed to enhance photos.
In both [Tseng et al. 2019; Yu et al. 2021], hyperparameters of an
ISP are optimized. Different from [Tseng et al. 2019], which only
applies to a fixed pipeline, Yu et al. [Yu et al. 2021] can explore
different ISP architectures. Furthermore, Tseng et al. [Tseng et al.
2022] model a commercial raw processing pipeline with a series
of neural networks to render sRGB images from raw inputs. As
we assume example and input images to be processed RGB images
rather than raw data, we refrain from comparing our method with
such ISP-based methods.

2.2 Defining Maps between Images
Unsupervised methods. Some learning-based techniques only re-

quire one or more examples of retouched photos without their
before examples to learn the transfer. Such unsupervised methods
capture a certain style by decomposing images into a reflection
map and an illumination map [Ma et al. 2021], extracting and re-
composing band representations of training images [Yang et al.
2020], regularizing unpaired training using information extracted
from the input [Jiang et al. 2021], segmenting the image into se-
mantic regions [Liu et al. 2016], adaptive image regions [Frigo et al.
2016], learning semantic and global features [Chen et al. 2018a],
progressively translating image from coarse to fine via pyramids of
generative models [Lin et al. 2020], or utilizing artistic principles
and pre-defined filters [Hu et al. 2018; Zhang et al. 2013]. These

methods transfer pre-defined elements of the desired style, or global
color and tone. Defining the desired style and the content of the
input image that is to remain is challenging. Hence, these methods
typically assume prior knowledge of the type of desired adjust-
ments. Even then, capturing the retouching edits in details remains
out of scope since these methods are typically designed for domain
transfer, working on high level features of images.

As a weakly supervised method, Liao et al. [Liao et al. 2017]
propose a technique based on image analogy [Hertzmann et al.
2001] to transfer the visual attributes, such as color, tone, texture,
and style, across images that look very different but share similar
semantic structures. Similar to our method, they also work with
one example pair (A and B’) to transfer the attributes. However,
they rather focus on high-level features, disregarding the edits in
intricate details.

Supervised methods. For a conceivable representation, many su-
pervised transfer methods require a large dataset of well-aligned
example image pairs whose contents are very similar [Kim et al.
2021; Wang et al. 2019]. However, finding or generating such a
dataset is difficult as the content of images can change dramatically.
Even with such a dataset, segmentation errors, unseen semantic
regions, or image content can still change the results significantly
[Yan et al. 2016b]. In contrast, our method allows users to choose
the example pairs from which the desired style is learned, hence
sidestepping the challenging semantics problem. Similar content
and structures between example and input images lead to more
natural transfers.

Convolutional neural networks (CNNs) are the de-facto model
for image processing with supervised learning methods. While
CNNs present state-of-the-art results in computer vision tasks, they
are not required [Tolstikhin et al. 2021]. MLP-based architectures
have recently gained popularity in image classification and image-
to-image translation. Cazenavette and De Guevara [Cazenavette
and De Guevara 2021] propose the MLP-Mixer architecture that
only uses simpleMLP blocks to learn image classification. Cazenavette
and De Guevara [Cazenavette and De Guevara 2021] also show an
application of an MLP-based architecture for image synthesis. They
adapt the MLP-Mixer architecture [Tolstikhin et al. 2021] to per-
form unpaired image-to-image translation. Our observation that
MLP-based architectures attain competitive results in challenging
vision tasks motivated us to explore the use of an MLP block as an
alternative to CNNs in the context of photo retouching.

3 OVERVIEW AND MOTIVATIONS
Given a pair of example images 𝑋 and 𝑌 , we aim to learn a map
𝑀 such that 𝑌 = 𝑀 (𝑋 ). The learned map can then be applied to a
new input image 𝐼 to obtain the retouched output 𝑂 = 𝑀 (𝐼 ).

To define this map, we first decompose the example images into
multiple feature maps 𝑋𝑙 , 𝑌𝑙 capturing details at different scales,
such as coefficients at different bands of a Laplacian pyramid. We
then define a separate mapping𝑀𝑙 for each 𝑋𝑙 , 𝑌𝑙 pair in the patch
space as a blending of transformation matrices with neural field
based weights, all learned jointly. We illustrate the overall map
representation in Figure 2.

For transfer of edits, the 𝑀𝑙 are computed and applied to each
patch of the decomposition 𝐼𝑙 of an input image 𝐼 to obtain the
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Figure 2: Our technique learns a separate mapping per frequency band by decomposing images into five different bands with a
Laplacian pyramid. At each Laplacian band 𝑙 , we define a mapping between flattened patches x𝑖 , y𝑖 extracted from before-after
bands 𝑋𝑙 , 𝑌𝑙 . Our field based method (MLP block) adapts transformations to input patches, providing local context-aware
adjustments. The transformation matrices and MLP parameters are learned jointly from scratch for each Laplacian band of the
before-after pair.

corresponding output patch of𝑂𝑙 . The patches are finally placed at
their spatial locations and averaged to reconstruct each image 𝑂𝑙 ,
which are summed to get the output image 𝑂 .

Our motivation behind designing such a map representation
with frequency decomposition and transformation blending comes
from studying the nature of retouching edits. First, artists often
decompose images into different frequency bands to have better
control over structural and textural edits to details. Second, image
patches of similar content, e.g. skin or hair, are retouched similarly.
This means similar patches in the patch space translate into similar
edits. Our representation leads to a different transformation for
patches of differing content. Third, these edits are typically applied
via brushes for smooth transitions. Our neural field based blend-
ing allows for such smooth interpolation, mimicking such brush
strokes.

Although we are inspired by professional artist pipelines, we
illustrate in the next sections that this new image to image mapping
representation can replicate the effect of and transfer edits for many
filters.

4 ONE-SHOT RETOUCHING
4.1 Frequency Decomposition
We first decompose example and input images into different fre-
quency bands by constructing a Laplacian pyramid to capture de-
tails at multiple scales. In principle, it is possible to utilize any
multiscale image decomposition method. However, we observed
that a basic Laplacian pyramid helped us capture more accurate
and generalizable results compared to a guided or bilateral pyramid.
Therefore, we decompose images by

𝑋𝑙 = 𝐿𝑙 (𝑋 ) =
{

𝑋 −𝐺 (2) ∗ 𝑋 𝑙 = 0

𝐺 (2𝑙 ) ∗ 𝑋 −𝐺 (2𝑙+1) ∗ 𝑋 𝑙 > 0,
(1)

where 𝐺 (𝜎) is the normalized Gaussian kernel, and ∗ denotes con-
volution. We also store the low-pass filtered image 𝑆 (𝑋 ) such that
𝑋 = 𝑆 (𝑋 ) +∑𝑛𝐿

𝑙=0 𝐿𝑙 (𝑋 ). We then downsample each 𝐿𝑙 (𝑋 ) and 𝑆 (𝑋 )
according to the maximum frequency present at that band. This
allows us to use small 3×3 patches at each band. In our experiments,
we used 𝑛𝐿 = 5 bands for the Laplacian pyramid.

Since each band is processed independently, we explain the steps
of our technique below for two generic images 𝑋 and 𝑌 .

4.2 Transformation Blending
The mapping is defined between patches x ∈ R𝑑𝑋 to y ∈ R𝑑𝑌
extracted from 𝑋 and 𝑌 , respectively, where we denote the patches
with vectors stacking the pixel values and define the patch spaces
as R𝑑𝑋 and R𝑑𝑌 . For all results in this work, we work with 3 × 3
patches and thus 𝑑𝑋 = 𝑑𝑌 = 9.

Our mapping takes the form of a weighted average of learned
transformation matrices A, where each transformation matrix A𝑘
is first multiplied with its corresponding blending weight:

y(x) =
𝐾∑︁
𝑘=1

f𝑘 (x)A𝑘x, (2)

Here, 𝐾 is the number of transformation matrices, and 𝑓𝑘 are the
blending weights, learned by an MLP block of output size 𝐾 . The
A𝑘 ’s and 𝑓𝑘 ’s are jointly learned by minimizing the following loss
on patches extracted from the before and after images.

𝐿𝑙𝑜𝑠𝑠 = E𝑋,𝑌 | |y𝑖 − y(x𝑖 ) | | (3)

Each A𝑘 corresponds to a different type of transformation and
the 𝑓𝑘 (x)’s, represented with the MLP, allow for a smooth transition
between different transformations. The form of 𝑓𝑘 ’s is relatively
simple with three fully-connected layers and nonlinear activation
functions applied after each layer. This blending forms a simple but
expressive transformation as we illustrate in the Section 5.

4.3 Retouching an Input Image
We process the input image 𝐼 the same way as the before-after pair.
First, we decompose the input into its Laplacian layers and then
extract its patches per layer. After applying the learned mappings
𝑀𝑙 to the patches of the corresponding layers 𝐿𝑙 (𝐼 ) independently,
we then reconstruct the Laplacian bands of the output image 𝑂𝑙
by placing the patches at their spatial locations and averaging over
the overlapping regions. Later, we obtain the final output image 𝑂
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by summing the outputs 𝑂𝑙 and the residual of the input image:

𝑂 = 𝑆 (𝐼 ) +
𝑛𝐿∑︁
𝑙=0

𝑀𝑙 (𝐿𝑙 (𝐼 )) . (4)

4.4 Implementation
Patch size and stride. In order to capture each frequency band

at the right level of detail, we do not upsample the images 𝐿𝑙 (𝑋 )
and use a small 3 × 3 patch size (with stride 1). We experimented
with larger patch sizes. However, this turned out to be counterpro-
ductive for the detail level we target, as details are blurred in larger
patches. They also lead to overfitting and are harder to optimize
for in general. We used a stride of 1, and hence patches overlap
on the image plane. The overlapping patches are averaged while
reconstructing the image.

Detail and color modifications. We aim to capture intricate de-
tails present in highly detailed retouches and a wide range of image
processing operators. Based on the observation that various oper-
ators can edit materials in the image space using the luminance
component [Boyadzhiev et al. 2015], we focus on learning changes
in luminance while preserving the input chrominance channels.

Evaluation metrics. To quantitatively compare our method with
state-of-the-art methods, we used PSNR and SSIM metrics. This is
only possible if the before-after image pair was processed with a
known, reproducible operator (see Section 5.3 for details).

Training details. We train differentmappingswith the same struc-
ture, defined in Equation 2, for each frequency band of the Laplacian
pyramid. Each mapping consists of one MLP block and 𝐾 number
of transformation matrices, which are learned jointly per frequency
band from scratch for each before-after pair. The MLP block em-
ployed in our experiments consists of three fully-connected layers
and non-linearities applied after each layer. The output size of the
last layer is the same as the number of transformation matrices.

To normalize the weights, we chose the last activation function
to be Softmax, while for the first two layers, we apply Leaky ReLU.
Each transformation matrix is randomly initialized with uniform
distribution in the range [0, 1]. All experiments use the Adam op-
timizer with a learning rate of 10−2, which exponentially decays
with a decay rate of 0.96. We use 𝑙1 loss function in all our experi-
ments. Through backpropagation, both the MLP parameters and
the entries of the transformation matrices are learned at the same
time.

5 RESULTS
5.1 Ablation Study
The success of our learned mappings relies on two key components:
patch-adaptive retouching and transformation blending. We thus
conduct experiments to illustrate the significance of these.

Transformation Matrices. We compared transformation matrices
of size 9× 9 with scalar values. The method still remained spatially-
varying, since we left the MLP the same, and used 𝐾 = 256 scalar
weights. We tested both methods on 100 images and computed
average PSNR values.We observed that our technique withmatrices
performed better than scalar values even in simple algorithmic

filters, such as Gaussian and Unsharping Masking (around 2 dB and
3 dB higher PSNRs, respectively).

As the complexity of a retouching style depends on multiple
factors, such as artists’ design choices, user preferences, or the
artist toolbox, it is challenging to analyze such effects on retouch-
ing examples quantitatively. For simple algorithmic filters, such
as a Gaussian filter or unsharp masking, 𝐾 = 1 can sufficiently
reproduce the filter. In contrast, more complex algorithms, such as
a bilateral filter, require more matrices to capture the algorithmic
edits accurately (Figure 3). Since retouching edits combine the ef-
fect of multiple operators and are highly non-linear, we empirically
chose 𝐾 = 256 for our retouching examples.

Figure 3: The higher the complexity of the learned algorithm,
the more transformation matrices our technique requires to
capture the effects on local regions accurately. While 𝐾 = 1
can be sufficient for our model to capture unsharp masking,
it requires more matrices to represent bilateral filtering pre-
cisely.

Patch-adaptive Transformation Blending. We also compared our
patch-adaptive mapping to an MLP regressor on the extracted
patches. This directly learns the mapping from the decomposi-
tion of example before-after images instead of utilizing blended
transformations. The MLP regressor follows a similar architecture
as our MLP block (Figure 2), with the only difference being the
last activation function. We used Leaky ReLU here, since the Soft-
max function outputs pseudo-probabilities and is unsuitable for
regression. Not explicitly handling the spatially-varying structure
of the mapping and directly regressing limits the expressiveness
of the model. This results in blurry results as shown in Figure 4
because such a model cannot capture edits in intricate details, such
as highlights around eyes and hair or brightening of the skin. We
also tried increasing the capacity of the MLP regressor but did not
observe much improvement in performance.

5.2 Qualitative Results
We tested our technique on a diverse range of before-after pairs,
including face images from the FFHQ dataset [Karras et al. 2021].
We focus on human portraits and face retouching in our experi-
ments as they are arguably the most common and prioritized types
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Before AfterAfter

Before After After

Input Ours MLP regressor

Figure 4: An MLP regressor cannot capture local edits, result-
ing in inaccurate retouching edits, such as blurring on the
skin or around the eyes.

of photos for retouching. We also illustrate that our technique pro-
vides visually pleasing results in different types of images, such
as materials or rooms, and accurately captures image processing
filters.

Before After

Input Retouched

Figure 5: The reproduced retouching style from the exam-
ple pair (inset) improves skin texture without affecting fine
details, such as eyes and hair, for a visually improved por-
trait. Moreover, our technique generalizes well to faces with
different lighting conditions and accurately reproduces the
example retouching style.

Human faces pose a particular challenge for our technique. How-
ever, our model can still capture highly nonlinear retouching edits
and generalizes well to different types of faces, view directions, and
lighting conditions, as illustrated in Figures 1, 5, and 7.

AfterBefore

Input Retouched

Figure 6: Material editing results on photos (left), and ren-
dered images (right), based on the before-after pair (inset).
The details, such as scratches or lines are emphasized, and
materials became shinier. Image courtesy of royalmix (top
and bottom-inset), tsmdunn (bottom). (PixelSquid).

The example pairs in Figures 1, 5 and 7 were generated by brush-
ing onto the skin with artist created brushes, eye sharpening (sharp-
ening example in Figure 1), and further brightness/contrast adjust-
ments. These brushes first decompose the skin into a detail and base
layer, typically with frequency decomposition, alter the detail layer
and blend it with the base layer. They differ in how (1) they decom-
pose the skin into the layers, i.e., what frequencies are in each layer,
and (2) they edit and blend each layer with different opacity values.
This variation creates retouching nuances, as shown in Figure 7.
Our method can still accurately capture such slight differences in
styles.

In all our experiments, intricate details of the desired retouching,
such as small-scale texture, eye, facial hair or material details, and
global features, such as overall lighting and tone, are accurately
reproduced. It is interesting to observe that the glamour implied
by, e.g., the example retouching in Figure 5 is transferred from the
example pair very accurately without causing an artificial look.
Zooming into the skin reveals that pores and wrinkles are mini-
mized, and the blemishes and discoloring of the skin are eliminated.
At the same time, depending on the retouching edit, details, such
as eyes or material texture, are more highlighted or preserved, and
delicate features such as hair are preserved well (Figures 5, 6 and 7).

In summary, our technique efficiently edits such intricate details,
due to the significantly distinct local statistics of the texture at
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Before After After

Input Retouched Retouched

Figure 7: Our patch-adaptive technique can accurately cap-
ture the nuances between different retouching styles as given
by the examples (top row).

multiple scales, without affecting overlaying structures thanks to
its spatially-varying nature and frequency decomposition.

5.3 Comparison with the state-of-the-art
Although there are various works related to automatic photo en-
hancement, to the best of our knowledge, none of them works with
a single example pair for detail retouching. We thus compare our
results with closely related automatic image-to-image translation
methods, namely U-Net [Ronneberger et al. 2015], ASAPNet gen-
erator [Shaham et al. 2021], and Deep edge-aware filters [Xu et al.
2015].

We trained each network from scratch with one before-after
pair. To train the U-Net architecture, we changed the activation
function of its last layer to ReLU and used 𝑙1 loss function with
Adam optimizer (same as ours). Similar to our method, ASAPNet is
also a spatially-adaptive network. However, it is instead designed
to hallucinate new details. Therefore, we similarly trained their
generator model to ours with 𝑙1 loss, removing the discriminator.
We observed that bilinear downsampling in their model causes
checkerboard artifacts. Hence, we also removed this operator and
learned an MLP per pixel, which caused the model to be highly
complex with too many parameters.

For a fair comparison with contemporary methods, we trained
each network with the same example pair processed by four al-
gorithmic filters: Gaussian, unsharp masking, Bilateral, and local
Laplacian filters (LLF). As LLFs can perform a wide range of edge-
aware operations, we apply two different versions of the filter,
one for smoothing (𝛼 = 2, 𝜎 = 0.2) and one for enhancing details
(𝛼 = 0.5, 𝜎 = 0.1). Each network is trained from scratch with the
same example pair resized to 256 × 256 for the corresponding filter.

To prove the generalizability of our technique, we tested the mod-
els on different types of images, namely face images (100 images
that are randomly sampled from MIT-Adobe FiveK [Bychkovsky
et al. 2011]), material images (22 images), room images (30), and
landscape images (30). Each type was trained separately with its
corresponding example pair. For instance, we trained an example
pair of landscape images to test our model on landscape images.
We evaluated the models using average PSNR and SSIM values. To
generate the ground truths of the input images, we applied the
same filter as applied to the before example image to obtain the
after image. We trained each model in Y-channel after converting
RGB images to their YCbCr versions and evaluated the results for
Y-channel images. We duplicated the Y-channel in case the model
requires three-channel images.

To obtain the UNet results for each type of images, we ran an
additional experiment in which we changed the number of trainable
parameters by removing some layers and trained the network from
scratch for unsharp masking and bilateral filtering. The number of
parameters we chose were 0.1M (with a few convolutional layers),
1.8M, 10M and 30M. For material images, we observed that 10M
performed the best in terms of PSNR and SSIM values, while for
other types of images 30M performed best. We tested the trained
models on the images of the corresponding types and computed
average PSNR values. Later, we chose the model with the best-
performing parameters for each type of image for the quantitative
comparison (Table 1).

Overall, our method can outperform all architectures for each
considered filter in terms of PSNR values. UNet shows the closest
performance to our method, but their network capacity is signifi-
cantly higher than ours (0.16M). As the filter becomesmore complex,
the performance gap increases. For instance, other methods per-
form fairly well in simple algorithmic filters, such as Gaussian or
unsharp masking. However, in spatially-varying filters, namely Bi-
lateral filter or LLFs, our method proves more generalizable thanks
to its path-adaptive structure. Figure 8 further demonstrates that
compared to the state-of-the-art methods, our algorithm can pre-
serve and edit intricate details, such as text, texture, or leaves, more
effectively without causing much distortion.

5.4 Limitations and Future Work
A primary limitation of our work is its dependence on local patches
at different scales, disregarding their spatial location. Hence, our
method is most useful when details are retouched based on local
and repeated characteristics of an image. Non-repeating spatially-
dependent strong effects, e.g., tattoos or portrait stylizations with
spatially varying lighting [Shih et al. 2014], cannot be handled by
the current technique (see Figure 9). We leave this as future work.

Since we rely on a single example image pair, transferring filters
applied to arbitrary images [Yan et al. 2014] is out of the scope of
our current work. We require example and input images to have
similar semantics for predictable transfer. Extending the technique
to more than one pair of example images will require us to have
consistently retouched details on all those example images. Finally,
we require the example before and after images to be perfectly
aligned. This requirement can be alleviated by incorporating an
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Table 1: Quantitative performance comparison for the reproduction of various image processing filters. Average PSNR and
SSIM values are computed over 182 images of different types of images including faces, landscapes, materials, and rooms.
Qualitative results can be found in the supplementary material.

Comparison results (PSNR in dB / SSIM)
Filter Type ASAPNet Generator Deep Edge-aware UNet Ours

Gaussian 39.36 / 0.983 36.52 / 0.979 40.52 / 0.979 40.67 / 0.983
Unsharp Mask 29.77 / 0.889 32.62 / 0.959 32.05 / 0.919 33.88 / 0.931
Bilateral Filter 33.65 / 0.936 33.56 / 0.958 34.00 / 0.939 38.16 / 0.965

Local Laplacian (𝛼 = 2, 𝜎 = 0.2) 30.85 / 0.913 30.69 / 0.943 31.53 / 0.925 33.50 / 0.950
Local Laplacian (𝛼 = 0.5, 𝜎 = 0.1) 31.98 / 0.909 31.62 / 0.931 33.08 / 0.929 35.72 / 0.940

ICP [Besl and McKay 1992]-like approach into the optimization in
Section 4.

Although our main focus in this paper is on artist-driven sub-
jective retouching edits, the proposed technique is general. It can
be applied to summarize and transfer arbitrary image transforma-
tions, significantly where details are modified. We are thus planning
to investigate our technique further as a general transfer method
for image-to-image translation. The patch-adaptive nature of our
mappings makes them amenable to analysis.

6 CONCLUSIONS
We presented a neural field based technique for example-based au-
tomatic retouching of images. By formulating the transfer problem
in the patch space, we showed that blending multiple transforma-
tion matrices with patch-adaptive weights can be utilized to learn
an accurate and generalizable map. This allowed us to use images
of different scenes, people, views, and environmental conditions as
the example pair and input. We illustrated the technique’s utility
on various retouching examples. We believe that our image map
representation can be helpful in many other image processing tasks.
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