
9

Scalable High-Quality Hypergraph Partitioning

LARS GOTTESBÜREN, TOBIAS HEUER, NIKOLAI MAAS, and PETER SANDERS, Karlsruhe

Institute of Technology, Germany

SEBASTIAN SCHLAG, Independent Researcher, USA

Balanced hypergraph partitioning is an NP-hard problem with many applications, e.g., optimizing commu-
nication in distributed data placement problems. The goal is to place all nodes across k different blocks of
bounded size, such that hyperedges span as few parts as possible. This problem is well-studied in sequential
and distributed settings, but not in shared-memory. We close this gap by devising efficient and scalable
shared-memory algorithms for all components employed in the best sequential solvers without compromises
with regards to solution quality.

This work presents the scalable and high-quality hypergraph partitioning framework Mt-KaHyPar. Its
most important components are parallel improvement algorithms based on the FM algorithm and maximum
flows, as well as a parallel clustering algorithm for coarsening – which are used in a multilevel scheme with
log(n) levels. As additional components, we parallelize the n-level partitioning scheme, devise a deterministic
version of our algorithm, and present optimizations for plain graphs.

We evaluate our solver on more than 800 graphs and hypergraphs, and compare it with 25 different
algorithms from the literature. Our fastest configuration outperforms almost all existing hypergraph
partitioners with regards to both solution quality and running time. Our highest-quality configuration
achieves the same solution quality as the best sequential partitioner KaHyPar, while being an order of
magnitude faster with ten threads. Thus, two of our configurations occupy all fronts of the Pareto curve for
hypergraph partitioning. Furthermore, our solvers exhibit good speedups, e.g., 29.6x in the geometric mean
on 64 cores (deterministic), 22.3x (log(n)-level), and 25.9x (n-level).

CCS Concepts: • Theory of computation→ Shared memory algorithms; Graph algorithms analysis; •
Mathematics of computing→ Hypergraphs;

Additional Key Words and Phrases: Graph and hypergraph partitioning, shared-memory, high-quality, multi-
level algorithm, determinism, concurrent gain computations, clustering, community detection, work-stealing,
FM algorithm, maximum flows

ACM Reference format:

Lars Gottesbüren, Tobias Heuer, Nikolai Maas, Peter Sanders, and Sebastian Schlag. 2024. Scalable High-
Quality Hypergraph Partitioning. ACM Trans. Algor. 20, 1, Article 9 (January 2024), 54 pages.
https://doi.org/10.1145/3626527

The authors thank Michael Hamann, Daniel Seemaier, Christian Schulz and Dorothea Wagner for helpful discussions over
the course of this research. This work was supported in part by DFG grants WA654/19-2 and SA933/11-1. The authors
acknowledge support by the state of Baden-Württemberg through bwHPC.
Authors’ addresses: L. Gottesbüren, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76135 Karlsruhe, Germany;
e-mail: lars.gottesbueren@kit.edu; T. Heuer, N. Maas, and P. Sanders, Karlsruhe Institute of Technology, Germany; e-mails:
{tobias.heuer, nikolai.maas, sanders}@kit.edu; S. Schlag, Independent Researcher, Apple Inc., Cupertino, CA, USA; e-mail:
sebastian_schlag@apple.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1549-6325/2024/01-ART9 $15.00
https://doi.org/10.1145/3626527

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1145/3626527
mailto:permissions@acm.org
https://doi.org/10.1145/3626527
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626527&domain=pdf&date_stamp=2024-01-22

9:2 L. Gottesbüren et al.

1 INTRODUCTION

The balanced hypergraph partitioning problem asks for a partition of the node set of a hypergraph
into a fixed number of disjoint blocks with bounded size such that an objective function defined
on the hyperedges is minimized. The two most prominent objective functions are the edge cut

and connectivity metric. The former counts the number of hyperedges connecting more than one
block, while the latter additionally considers the number of blocks spanned by each hyperedge. The
problem has gained attraction in the field of very-large-scale-integration (VLSI) design already
in the 1960s [37, 55, 98, 108]. Since then, it has been widely adopted in many other areas, such
as minimizing the communication volume in parallel scientific simulations [23, 24, 28], storage
sharding in distributed databases [31, 66, 78, 109, 125, 126], simulations of distributed quantum
circuits [11, 51], and as a branching strategy in satisfiability solvers [5].

Unfortunately, balanced partitioning is NP-hard [41, 86] and hard to approximate [36]. Thus,
heuristic solutions are used in practice – with the multilevel scheme emerging as the most suc-
cessful method to achieve high solution quality in a reasonable amount of time [14, 56]. Figure 1
illustrates this technique, which consists of three phases. First, the hypergraph is coarsened to
obtain a hierarchy of successively smaller and structurally similar approximations of the input
hypergraph by contracting pairs or clusters of highly-connected nodes. Once the hypergraph is
small enough, an initial partition into k blocks is computed. Subsequently, the contractions are
reverted level-by-level, and, on each level, local search heuristics are used to improve the partition
from the previous level.

There is a diverse landscape of algorithms that implement the multilevel framework with
different time-quality trade-offs, as illustrated in Figure 2. The plot shows two major shortcomings
of existing solvers: (i) higher solution quality comes at the cost of higher running times often by
several orders of magnitude, and (ii) parallel algorithms do not achieve the same solution quality
as the best sequential systems because they use comparatively weaker components that are
easier to parallelize (with the exception of our new solver Mt-KaHyPar). Historically, the parallel
partitioning community has focused on algorithms for the distributed-memory model, which
turned out to be not well-suited for the fine-grained parallelism required to effectively parallelize
high-quality techniques. However, as the number of cores and main-memory capacity in modern
machines increases, we believe that the shared-memory model has become a viable alternative
for processing large (hyper)graphs and can be used for closing the quality gap between sequential
and parallel partitioning algorithms.

Main Contributions. Figure 2 highlights the main contribution of this work: A shared-memory
multilevel algorithm (Mt-KaHyPar) that achieves the same solution quality as the best sequential
codes, while being faster than most of the relevant parallel algorithms in its fastest configuration.
In particular, our Mt-KaHyPar solvers occupy all points on the Pareto frontier for hypergraphs
(left) as well as the middle segment for graphs (right).

This is achieved by implementing parallel formulations for the core techniques used in the
best sequential algorithms without compromises in solution quality. Our coarsening algorithm
contracts a clustering of highly-connected nodes on each level and is guided by the community
structure of the hypergraph. The clustering algorithm uses a less restrictive locking protocol
than a previous approach [26] and resolves conflicting clustering decisions on-the-fly. Initial
partitioning is done via parallel recursive bipartitioning and a portfolio solver, leveraging
work-stealing to account for load imbalances. The key feature distinguishing Mt-KaHyPar from
previous parallel systems are the substantially stronger local search algorithms. We present
the first fully-parallel implementation of the FM algorithm and a parallel version of flow-based
refinement. For these algorithms, we propose several novel and easy-to-implement solutions

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:3

Fig. 1. The multilevel paradigm.

Fig. 2. Solution quality and running times of existing algorithms for hypergraph partitioning (left, connectiv-
ity metric) and graph partitioning (right, edge cut metric). For the y-values in the plot (solution quality), we
compute the ratios of the objective values of an algorithm relative to the best value produced by any al-
gorithm for each instance and aggregate them using the harmonic mean (similarly for running times on
the x-axis). Markers on the lower left side are considered better. We run each parallel algorithm using 10
threads. Instances are restricted to more than two million edges/pins to make parallelism worthwhile (see
set MG and MHG in Section 12). Partially transparent markers indicate solvers producing more than 15%
infeasible partitions (either imbalanced or timeout).

to overcome some fundamental parallelization challenges such as, for example, techniques to
(re)compute correct gain values for concurrent node moves.

We also present several extensions of the core multilevel algorithm. We devise the first
parallel formulation of the n-level partitioning scheme – the most extreme instantiation of the
multilevel technique – contracting only a single node on each level. Correspondingly, in each
refinement step, only a single node is uncontracted followed by a highly-localized search for
improvements around the uncontracted node, leading to more fine-grained refinement and
ultimately better solution quality in a single run. Furthermore, we present a deterministic
version of our multilevel algorithm. This offers reproducible results and thus also stable results,
whereas previous algorithms may have large variance from repeated runs. Furthermore, some

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:4 L. Gottesbüren et al.

applications even require deterministic results or value them highly (e.g., VLSI design due to
manual post-processing). Moreover, we present data structure optimizations that speed up our
algorithm by a factor of two when running on plain graphs instead of hypergraphs.

In our extensive experimental evaluation, we compare Mt-KaHyPar to 25 different sequential
and parallel graph and hypergraph partitioners on over 800 graphs and hypergraphs with up to 2
billion edges/pins. As of today and to the best of our knowledge, this is the most comprehensive
comparison of partitioning algorithms in the literature. As a main result, the highest-quality
configuration of Mt-KaHyPar produces partitions that are on par with KaHyPar [104] – the
best sequential hypergraph partitioner – while being almost an order of magnitude faster with
only ten threads. The fastest configuration of Mt-KaHyPar achieves a self-relative speedup of
22.3 with 64 threads and computes partitions that are 23% better than those of Zoltan [34]
(distributed-memory), while being a factor of 2.72 faster on average. Out of all evaluated
algorithms, KaFFPa [101] (sequential) computes slightly better solutions, while KaMinPar [48]
(shared-memory) is faster than Mt-KaHyPar.

The work presents the main results of several conference publications [43, 46, 47, 50] and sum-
marizes the dissertations of Gottesbüren [49] and Heuer [60]. The added value of the paper is the
detailed overview of the overall framework that contains the highest-quality and one of the fastest
algorithms for partitioning (hyper)graphs. This paper puts particular focus on our multilevel parti-
tioning algorithm which provides the best time-quality trade-off. We describe the algorithm with
a greater level of detail compared to the corresponding conference version [50]. Furthermore, the
previously mentioned optimizations for graph partitioning are unpublished. Another key contri-
bution is the large experimental evaluation, going beyond the scope of the individual publications
by including graph partitioning, breaking down the running times of individual components, and
including even more competing baseline algorithms. We included almost all publicly available mul-
tilevel graph and hypergraph partitioning algorithms to provide a comprehensive overview on the
landscape of partitioning tools.

Outline. Section 2 introduces basic notation and definitions used throughout this work. We then
start the algorithm description with a high-level overview of the multilevel partitioning algorithm
in Section 3. The following sections are structured according to the different phases of the mul-
tilevel scheme: Section 4 and 5 describe the coarsening and initial partitioning algorithm, while
we discuss different concurrent gain (re)computation techniques and the implementation of the
parallel FM and flow-based refinement algorithms in Section 6–8. In Section 9, we present the
parallelization of the n-level partitioning scheme, and conclude the algorithmic part with our data
structure optimizations for graph partitioning and the deterministic version of the multilevel al-
gorithm in Section 10 and 11. We then turn to the experimental evaluation in Section 12. Here, we
evaluate the solution quality and scalability of the different configurations of Mt-KaHyPar, and
compare them to existing partitioning algorithms. Section 13 concludes the work and presents
directions for future research.

As this paper covers a wide range of partitioning techniques, we review relevant literature in
the corresponding sections. For a comprehensive overview on (hyper)graph partitioning, we refer
the reader to existing surveys [8, 13, 21, 27, 94] and the literature overviews in the theses of Lars
Gottesbüren [49], Tobias Heuer [60], and Sebastian Schlag [104].

2 PRELIMINARIES

Hypergraphs. A weighted hypergraph H = (V ,E, c,ω) is defined as a set of n nodes V and a set
ofm hyperedges E (also called nets) with node weights c : V → R>0 and net weights ω : E → R>0,
where each net e is a subset of the node set V . The nodes of a net are called its pins. We extend

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:5

c and ω to sets in a natural way, i.e., c(U) :=
∑

u ∈U c(u) and ω(F) :=
∑

e ∈F ω(e). A node u is
incident to a net e if u ∈ e . I (u) := {e | u ∈ e} is the set of all incident nets of u. The set
Γ(u) := {v | ∃e ∈ E : {u,v} ⊆ e} denotes the neighbors of u. Two nodes u and v are adjacent if
v ∈ Γ(u). The degree of a node u is d(u) := |I(u)|. The size |e | of a net e is the number of its pins.
Nets of size one are called single-pin nets. We denote the number of pins of a hypergraph with
p :=

∑
e ∈E |e | =

∑
v ∈V d(v). We call two nets ei and ej identical if ei = ej . Given a subsetV ′ ⊂ V , the

subhypergraphH [V ′] is defined asH [V ′] := (V ′, {e∩V ′ | e ∈ E : e∩V ′ � ∅}, c,ω ′)whereω ′(e∩V ′)
is the weight of hyperedge e in H . The bipartite graph representation Gx := (V ∪ E,Ex) [65, 108] of
an unweighted hypergraph H = (V ,E) contains the nodes and nets of H as node set and for each
pin u ∈ e , we add an undirected edge {u, e} to Ex . More formally, Ex := {{u, e} | ∃e ∈ E : u ∈ e}.

Clusterings and Partitions. A clustering C = {C1, . . . ,Cl } of a hypergraph H = (V ,E, c,ω) is a
partition of the node setV into disjoint subsets. A clusterCi is called a singleton cluster if |Ci | = 1.
A node contained in a singleton cluster is called unclustered. A k-way partition of a hypergraph
H is a clustering into a predefined number of disjoint blocks Π = {V1, . . . ,Vk }. A 2-way partition
is also called a bipartition. We denote the block to which a node u is assigned by Π[u]. For each
net e , Λ(e) := {Vi | Vi ∩ e � ∅} denotes the connectivity set of e . The connectivity λ(e) of a
net e is λ(e) := |Λ(e)|. A net is called a cut net if λ(e) > 1. A node u that is incident to at least
one cut net is called boundary node. The number of pins of a net e in block Vi is denoted by
Φ(e,Vi) := |e ∩ Vi |. We refer to Φ(e,Vi) as the pin count value for a net e and block Vi . The set
E(Vi ,Vj) := {e ∈ E | {Vi ,Vj } ⊆ Λ(e)} represents the cut nets connecting blockVi andVj . Two blocks
Vi and Vj are adjacent if E(Vi ,Vj) � ∅. The quotient graph Q := (Π,EΠ := {(Vi ,Vj) | E(Vi ,Vj) � ∅})
contains an edge between all adjacent blocks.

The Balanced Hypergraph Partitioning Problem. The balanced hypergraph partitioning problem is
to find a k-way partition Π of a hypergraph H that minimizes an objective function defined on the

hyperedges where each blockV ′ ∈ Π satisfies the balance constraint: c(V ′) ≤ Lmax := (1+ε)� c(V)
k
�1

for some imbalance ratio ε ∈ (0, 1). If Π satisfies the balance constraint, we call Π ε-balanced

or just say balanced or feasible when ε is clear from the context. For k = 2, we refer to the
problem as the bipartitioning problem. The two most prominent objective functions are the
cut-net metric fc :=

∑
e ∈ECut(Π)ω(e) (also called edge cut metric for graph partitioning) and

connectivity metric fλ−1(Π) :=
∑

e ∈ECut(Π)(λ(e) − 1) · ω(e) (also called (λ − 1)-metric) where
ECut(Π) denotes the set of all cut nets. The cut-net metric directly generalizes the edge cut metric
from graphs to hypergraphs and minimizes the weight of all cut hyperedges. The connectivity
metric additionally considers the number of blocks connected by a net and thus more accurately
models the communication volume for parallel computations [28] (e.g., for the parallel sparse
matrix-vector multiplication). The hypergraph partitioning problem is NP-hard for both objective
functions [86].

Recursive Bipartitioning vs Direct k-way Partitioning. A k-way partition of a hypergraph
can be obtained either by recursive bipartitioning or direct k-way partitioning. The former first
computes a bipartition and then calls the bipartitioning routine on both blocks recursively until
the input hypergraph is divided into the desired number of blocks. The latter partitions the
hypergraph directly into k blocks and applies k-way local search algorithms to improve the
solution.

1The �·� in this definition ensures that there is always a feasible solution for inputs with unit node weights. However, this
does not hold for general weighted inputs as even finding any balanced solution (ignoring the objective function) is an
NP-hard problem [40]. There exist several alternative definitions [48, 61], but no commonly accepted way how to deal with
feasibility. In this work, we use the original definition since our benchmark instances are unweighted.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:6 L. Gottesbüren et al.

ALGORITHM 3.1: The Multilevel Partitioning Algorithm

Input: Hypergraph H = (V ,E), number of blocks k
Output: k-way partition Π of H

1 H1 ← H ; H ← 〈H1〉; n ← 1

2 while Vi has too many nodes do

3 C ← ComputeClustering(Hn)
4 Hn+1 ← Hn .Contract(C); H ← H ∪ 〈Hn+1〉; ++n

5 Π ← InitialPartition(Hn ,k)

6 for i = n − 1 down to 1 do

7 Π ← project Π onto Hi

8 LabelPropagationRefinement(Hi ,Π) // finds easy improvements by moving single nodes

9 FMRefinement(Hi ,Π) // finds short and non-trivial move sets

10 FlowBasedRefinement(Hi ,Π) // global optimization finding long and complex move sets

11 return Π

3 A BRIEF OVERVIEW OF THE PARTITIONING ALGORITHM

Algorithm 3.1 shows the high-level structure of our multilevel partitioning algorithm. While the
pseudocode presented does not explicitly exhibit parallelism, it shows the algorithmic components
for which we provide parallel implementations.

The coarsening algorithm proceeds in rounds until the hypergraph is considered as small
enough for initial partitioning. In each round, we find a clustering of highly-connected nodes and
subsequently contract the clustering in parallel. The clustering algorithm iterates over the nodes
in parallel and finds the best target cluster for a node according to a rating function. Afterwards,
the node joins its desired cluster for which we implement a novel locking protocol that detects
and resolves conflicting clustering decisions on-the-fly.

Initial partitioning is done via parallel recursive bipartitioning using a novel work-stealing ap-
proach to account for load imbalances within the parallel bipartitioning calls. To compute an initial
bipartition, we use a portfolio of nine different bipartitioning techniques, which is run several times
in parallel. The best bipartition out of all runs is then used as initial solution.

In the uncoarsening phase, we project the partition onto the next hypergraph in the hierarchy by
assigning the nodes to the block of their corresponding constituent in the coarser representation.
Subsequently, we improve the partition using three different parallel refinement algorithms: label
propagation refinement (used in most of the existing parallel partitioning algorithms), a highly-
localized version of the FM algorithm (improves an existing implementation used in Mt-KaHIP [4]),
and a novel parallelization of flow-based refinement. The rationale behind the use of three different
local search algorithms executed in this order is that it allows for increasingly better solution
quality at the cost of higher running times.

The following sections are structured according to the different phases of the multilevel scheme,
and provide a more detailed explanation of the different algorithmic components of Algorithm 3.1.
In Section 4 and 5, we present our coarsening and initial partitioning algorithm. The description of
the uncoarsening phase is split into three separate sections: Section 6 describes the partition data
structure and several concurrent gain (re)computation techniques, while Section 7 and 8 presents
our parallel FM and flow-based refinement algorithm.

4 THE COARSENING PHASE

The goal of the coarsening phase is to find successively smaller and structurally similiar approxima-
tions of the input hypergraph [117] such that initial partitioning can find a partition of high quality

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:7

Fig. 3. A path (top-left) and cyclic conflict (top-middle), and a combination of both conflicts (top-right) with
their resolutions (bottom).

not significantly worse than the partition that can be found on the input hypergraph [68]. This can
be achieved by grouping highly-connected nodes together and merging each group into a single
node, which can be done by computing either a matching [30, 34, 56, 64, 70–72, 81, 90, 115, 119, 120]
or clustering of the nodes [4, 28, 48, 69, 88, 91, 101, 113]. The latter was shown to be more effective
in reducing the size of (hyper)graphs with highly-skewed node degree distributions [1, 91] (e.g.,
social networks). In the following, we present our parallel clustering-based coarsening algorithm
that works similar to the shared-memory version of PaToH’s coarsening scheme [26]. However,
the algorithm of Çatalyürek et al. [26] excessively locks nodes when evaluating the rating func-
tion and adding nodes to clusters. We therefore propose a less restrictive locking protocol that
completely omits locking nodes when computing the best target cluster for a node. Moreover, it
detects and resolves conflicting clustering decisions on-the-fly, while previous approaches relied
on a postprocessing step [2, 26, 81].

4.1 The Clustering Algorithm

Our coarsening algorithm repeatedly finds a clustering C of the nodes and subsequently contracts
it until the hypergraph is small enough. We represent the clustering C using an array rep of size
n. We then choose one representative v ∈ C for each cluster C ∈ C and store rep[u] = v for each
nodeu ∈ C . Initially, each node is unclustered (i.e., rep[u] = u for each nodeu ∈ V). The clustering
algorithm then iterates over the nodes in parallel and assigns each unclustered node to the best
target cluster according to a rating function, which we introduce in the subsequent paragraph.

Cluster Join Operation. Once a node u chooses its desired target clusterC represented by a node
v , we have to set rep[u] = v . Since several nodes can join clusters simultaneously, there may occur
conflicts that must be resolved. As illustrated in Figure 3, there are two types of conflicts: path and
cyclic conflicts. A path conflict involves several nodes u1, . . . ,ul and occurs when each node ui

tries to join ui+1. In a cyclic conflict, the last node ul additionally tries to join u1. It is also possible
that a combination of both conflicts occurs, as illustrated in Figure 3 (right). We can resolve a
path conflict when each node ui waits until ui+1 has joined its desired cluster. Afterwards, we can
set rep[ui] = rep[ui+1] to resolve the conflict. However, applying this resolution scheme to cyclic
conflicts would result in a deadlock. Therefore, the threads must agree on a cluster join operation
that breaks the cycle and reduces it to a path conflict.

Algorithm 4.1 shows the pseudocode of our cluster join operation, which takes a nodeu as input,
and adds it to a cluster represented by a node v . The algorithm associates each node with one of
the following three states: unclustered, currently joining a cluster, or clustered. Unclustered nodes

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:8 L. Gottesbüren et al.

ALGORITHM 4.1: Cluster Join Operation

Input: A node u that wants to join v’s cluster
1 if compare-and-swap(state[u],Unclustered, Joining) then

2 if state[v] = Clustered or compare-and-swap(state[v],Unclustered, Joining) then

3 rep[u] ← rep[v]
4 else // Another thread tries to add v to a cluster

5 while state[v] = Joining do // busy-waiting loop

6 if cyclic conflict detected and u is node with smallest ID in cycle then

7 rep[u] ← rep[v]; state[u], state[v] ← Clustered; break

8 if state[u] = Joining then rep[u] ← rep[v] // resolves path conflicts

9 state[u], state[v] ← Clustered

(rep[u] = u) can join clusters, while an already clustered node is not considered by the clustering
algorithm anymore and therefore its representative does not change. If a thread sets the state
of a node u from unclustered to joining via an atomic compare-and-swap operation, it acquires
exclusive ownership for modifying rep[u] and setting its state to clustered. Thus, if we succeed in
setting the state of u and v to joining or v is already clustered, we can safely set rep[u] = rep[v]
(see Line 1–3) since this guarantees that no other thread modifies rep[u] and rep[v]. Note that the
representative of v may have changed due to concurrent cluster join operations. In that case, its
representative is stored in rep[v]. We therefore always set rep[u] = rep[v] (instead of rep[u] = v).

If another thread sets the state of v to joining, we know that v also tries to join a cluster. To
resolve the conflict, we spin in a busy-waiting loop until the state of v is updated to clustered
(see Line 5), and then join its new cluster (path conflict). In the busy-waiting loop, we additionally
check if u is part of a cycle of nodes trying to join each other. To detect a cyclic conflict, each node
writes its desired target cluster into a globally shared vector and checks if this induces a cycle. If so,
the node with the smallest ID in the cycle gets to join its desired cluster, thus breaking the cycle.

Rating Function. A node u joins the cluster C maximizing the heavy-edge rating function

r (u,C) =
∑

e ∈I (u)∩I (C)

ω(e)
|e | − 1

.

The rating function is commonly used in the partitioning literature [3, 28, 69] and prefers clusters
connected tou via a large number of heavy nets with small size. We evaluate the rating function by
iterating over the incident nets e ∈ I (u) and aggregating the ratings to the representatives rep[v]
of each pin v ∈ e in a thread-local hash table. Afterwards, we iterate over the aggregated ratings
and determine the representative rep[v] that maximizes r (u, rep[v]). Ties are broken uniformly at
random. Subsequently, we perform the cluster join operation that sets rep[u] = rep[v].

To aggregate ratings, we use fixed-capacity linear probing hash tables with 215 entries and resort
to a larger hash table if the fill ratio exceeds 1/3 of the capacity. This technique can considerably
reduce the number of cache misses since most neighborhoods are small in real-world hypergraphs.
We further note that the representative of a node can change during the evaluation of the rating
function since we do not lock the nodes. However, it has already been shown that such conflicts
rarely happen in practice [26] and therefore have a negligible impact on the partitioning result.

Contraction Limit. We stop coarsening when the number of nodes in the smallest hypergraph
reaches 160k . This contraction limit was chosen based on our prior research on sequential hyper-
graph partitioning [58]. In addition, we terminate the clustering algorithm when the number of

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:9

nodes would drop below c(V)
2.5 after the contraction step. This prevents the coarsening process from

reducing the size of the hypergraph too aggressively [1, 69]. Conversely, we also stop coarsening if
the contraction step does not reduce the number of nodes by more than 1%, even if the 160k node
limit is not reached. This can happen since we enforce an upper weight limit cmax on the weight of

the heaviest cluster (set to c(V)
160k

as in KaHyPar [58]), which prevents highly-skewed node-weight
distributions that would make it difficult for initial partitioning to find a balanced solution [3, 91].
When adding a node to a clusterC ∈ C, we ensure that c(C) ≤ cmax by updating cluster weights via
atomic fetch-and-add instructions. If c(C) > cmax after the update, we reject the corresponding
cluster join operation and revert the cluster weight update. The cluster weight limit can lead to
coarsening passes that do not sufficiently reduce the size of the hypergraph.

4.2 The Contraction Algorithm

The hypergraph data structure stores the incident nets I (u) of each node u ∈ V and the pin-lists of
each net e ∈ E using two adjacency arrays. Each nodeu and net e additionally stores its weight c(u)
and ω(e). Contracting a clustering C = {C1, . . . ,Cl } replaces each cluster Ci with one supernode
ui with weight c(ui) =

∑
v ∈Ci

c(v). For each net e ∈ E, we replace each pin v ∈ e with the node ui

representing the cluster Ci in which v is contained (rep[v] = ui). After the replacement, multiple
occurrences of the same supernode in a net are discarded.

Our contraction algorithm consists of several simple, easily parallelizable operations including
remapping node IDs to a consecutive range, aggregating cluster weights and degrees using atomic
fetch-and-add instructions, eliminating duplicated entries in pin-lists, and using parallel prefix
sum operations to construct the adjacency arrays of the contracted hypergraph. As these steps are
rather low level, we refer the reader to Reference [60, p. 87] for more details.

A challenging aspect is removing duplicates from the set of nets. We identify groups of identical
nets and remove all but one representative per group to which we assign their aggregate weight.
This can reduce the number of pins significantly and therefore accelerates the other algorithmic
components. A simple algorithm is to perform pair-wise comparisons between all nets, which is
however too expensive in practice. To this end, we parallelize the InrSrt algorithm of Aykanat
et al. [12, 33] for identical net detection. It uses fingerprints f (e) :=

∑
v ∈e v

2 to eliminate unneces-
sary pairwise comparisons between nets, by grouping nets with equal fingerprints via sorting. Nets
with different fingerprints or different sizes cannot be identical. We distribute the fingerprints and
their associated nets to the threads using a hash function. Each thread sorts the nets by their finger-
print and size, and then performs pairwise comparisons on the subranges of potentially identical
nets. We aggregate the weights of identical nets at a representative and mark the others as invalid
in a bitset. A parallel prefix sum over the bitset maps the hyperedge IDs to a consecutive range
in the contracted hypergraph. Note that we also remove nets that contain only a single pin since
they do not contribute to the cut.

4.3 Community-Aware Coarsening

A popular approach to improve an existing k-way partition Π is the iterated multilevel cycle

technique [118] (also called V-cycle). In the coarsening phase, the algorithm forbids contractions
between nodes that are not in the same block in Π, thus preserving the already identified cut
structure. While the technique can be effective, using it as a postprocessing step in a multilevel al-
gorithm almost doubles the running time. As a more lightweight alternative, Heuer and Schlag [63]
proposed using a clustering of the nodes computed via a community detection algorithm instead
of an existing k-way partition. Community detection still captures the sparse cut patterns that are
often found in good k-way partitions. The authors showed that this substantially improves the

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:10 L. Gottesbüren et al.

quality of both the initial and the final partition, and only slightly increases the running time of
the overall algorithm.

We also integrate the approach into our partitioning algorithm. We run the algorithm as a pre-
processing step before the coarsening phase and then use the clustering to restrict contractions
to nodes that belong to the same cluster. The algorithm consists of two steps: transforming the
hypergraph into its bipartite graph representation and then running the parallel Louvain method
of Staudt and Meyerhenke [18, 111] for modularity maximization, a widely used objective function
for community detection [20, 92].

5 THE INITIAL PARTITIONING PHASE

Partitioning algorithms based on the direct k-way partitioning scheme often use multilevel re-
cursive bipartitioning to obtain an initial k-way partition [3, 12, 72, 107], as this leads to parti-
tions with significantly better solution quality than using flat (non-multilevel) k-way partition-
ing methods. Many parallel partitioners run sequential initial partitioning algorithms in paral-
lel [4, 34, 64, 70, 113, 114, 120]. However, the sequential calls can become a bottleneck when the
smallest hypergraph is still large. A more scalable approach parallelizes the recursive calls after
each bipartitioning operation [30, 83]. The common approach is to statically split the thread pool
along with the subproblems. Since this can lead to load imbalance when processing hypergraphs
with unequal densities in the recursive partitioning calls, we instead generate tasks that can be
dynamically load balanced using work stealing.

Parallel Recursive Bipartitioning. We compute initial k-way partitions via parallel recursive
bipartitioning using Algorithm 3.1 initialized with k = 2 (without flow-based refinement). For
the bipartitioning case, we replace the initial partitioning call with a portfolio of bipartitioning
techniques.

Once we obtain a bipartition Π = {V1,V2} of the input hypergraph H , we extract the subhyper-
graphs H [V1] and H [V2] and recurse on both in parallel by partitioning H [V1] into �k2 � and H [V2]
into � k

2 � blocks. We ensure that the final k-way partition obtained via recursive bipartitioning is
ε-balanced by adapting the imbalance ratio for each bipartition individually [105]. Let H [V ′] be a
subhypergraph that should be recursively partitioned into k ′ ≤ k blocks. Then,

ε ′ :=

(
(1 + ε)c(V)

k
· k ′

c(V ′)

) 1
�log2 k′�

− 1 (1)

is the imbalance ratio used for the bipartition of HV ′ . If each bipartition is ε ′-balanced, then it is
guaranteed that the final k-way partition is ε-balanced [104, Lemma 4.1 on p. 104].

Portfolio-Based Bipartitioning. We implemented the same portfolio of initial bipartitioning tech-
niques as in KaHyPar [58, 105], including seven different variants of (greedy) hypergraph growing
[25, 28, 69, 71, 104, 105, 107], random assignment [25, 69, 104, 105, 115], and label propagation
initial partitioning [104, 105]. We refer the reader to Reference [60, p. 95–96] for more details on
their implementation. We run each algorithm independently in parallel for at least 5 and at most
20 times. After 5 runs, we only run an algorithm again if it is likely to improve the best solution
Π∗ found so far. We estimate this based on the arithmetic mean μ and standard deviation σ of the
connectivity values achieved by that algorithm so far, using the 95% rule. Assuming the connectiv-
ity values follow a normal distribution, roughly 95% of the runs will fall between μ−2σ and μ+2σ .
If μ − 2σ > fλ−1(Π∗), we do not run the algorithm again. Additionally, we refine each bipartition
using sequential 2-way FM refinement [37]. We continue uncoarsening using the bipartition with
the best connectivity value. In case of ties, we prefer the bipartition with the best balance.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:11

Fig. 4. Example of a move conflict when two nodes are moved simultaneously. Both threads assume that
the individual node moves eliminate the edge with weight 5 from the cut. However, the edge is still cut after
moving both nodes and the edges with weight 2 become cut edges.

6 GAIN COMPUTATION TECHNIQUES

Local search algorithms greedily move nodes to different blocks according to a gain value. The gain
value reflects the change in the objective function for a particular node move. For the connectivity
metric, the gain дu (Vt) of moving a node u to a target block Vt can be expressed as follows:

дu (Vt) := ω({e ∈ I (u) | Φ(e,Π[u]) = 1}) − ω({e ∈ I (u) | Φ(e,Vt) = 0}).
Moving node u to block Vt decreases the connectivity of all nets by one for which u is the last
remaining pin in its current block Π[u]. Conversely, the move increases the connectivity of all
nets e ∈ I (u) by one for which no pin v ∈ e is assigned to the target block Vt .

To achieve meaningful speedups, parallel refinement algorithms need to move nodes concur-
rently. The actual gain of a node move can change between the time it is initially calculated and
the time it is applied to the partition, due to concurrent node moves in its neighborhood [70]. As
a consequence, two concurrent node moves can worsen the connectivity metric, even if their indi-
vidual gains suggested an improvement, as illustrated in Figure 4. Thus, correctly calculating gains
is a fundamental challenge for parallel refinement algorithms.

These conflicts occur when two adjacent nodes change their blocks simultaneously. Common
remedies include computing a node coloring and only moving nodes of the same color at a
time [70], scheduling 2-way refinement algorithms on block pairs that form a matching in
the quotient graph in parallel [64, 120], allowing only node moves from a block Vs to Vt if
s < t [34, 81, 113] (and vice versa in a second phase), or following an optimistic strategy assuming
that conflicts happen rarely in practice [4, 48, 88, 91].

The presented approaches still allow all individual node moves, but combining arbitrary moves
into a single move sequence might be not always possible. This is problematic for parallelizing local
search techniques as their sequential counterparts often identify a set of moves that only yield
an improvement if moved together. While ignoring search conflicts appears to be the preferred
approach, their impact on solution quality is unpredictable and deserves further consideration.

We therefore contribute several parallel gain computation techniques to compute accurate
gain values and detect conflicts between moves without restricting possible moves. We present
a technique named attributed gains to double-check the gain of a node move in Section 6.1, a
concurrent gain table to accelerate gain calculations and communicate updates between threads
in Section 6.2, and a novel parallel algorithm for recomputing exact gains of a sequence of node
moves in Section 6.3. These techniques build on our concurrent partition data structure which we
describe in the next section in more detail.

6.1 The Partition Data Structure

Our partition data structure stores and maintains the block assignments Π, the block weights c(Vi),
the pin count values Φ(e,Vi), and connectivity sets Λ(e) for each net e ∈ E and block Vi ∈ Π.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:12 L. Gottesbüren et al.

ALGORITHM 6.1: The Move Node Operation

Input: A node u that should be moved from its source block Vs to a target block Vt

Output: Attributed gain value Δ
1 ct ← fetch-and-add(c(Vt), c(u))
2 if ct + c(u) > Lmax then // Revert block weight update if balance constraint violated

3 c(Vt)
atomic−= c(u); return 0

4 Π[u] ← Vt ; c(Vs)
atomic−= c(u); Δ← 0

5 for e ∈ I (u) do

6 lock(e); Φs ← --Φ(e,Vs); Φt ← ++Φ(e,Vt); unlock(e)
// Update connectivity set Λ(e) and attributed gain value Δ

7 if Φs = 0 then Λ(e) ← Λ(e) \ {Vs }; Δ += ω(e)
8 if Φt = 1 then Λ(e) ← Λ(e) ∪ {Vt }; Δ −= ω(e)
9 UpdateGainTable(e,Φs ,Φt) // see Section 6.2

10 return Δ

The Move Node Operation. Algorithm 6.1 shows the updates to the partition data structure when
moving a node u from its source block Vs to a target block Vt . We only perform a node move if
it does not violate the balance constraint, which we ensure by adding the weight of node u to
the weight of block Vt via an atomic fetch-and-add instruction. If the node move is feasible, we
update the block assignment of nodeu to blockVt and subtract the node weightu from its previous
block Vs . If the move is infeasible, we subtract the weight again and reject the move.

Data Layout. The size of a pin count value is bounded by the size of the largest hyperedge. To
save memory, we use a packed representation with �log(maxe ∈E |e |)� bits per entry for the Φ(e,Vi)
values. Furthermore, we use a bitset of size k to store the connectivity set Λ(e) of each hyperedge
e ∈ E. We iterate over the connectivity set Λ(e) by taking a snapshot of its bitset and then use
count-leading-zeroes instructions. We compute the connectivity λ(e) = |Λ(e)| of a hyperedge e
using pop-count instructions (counts the number of 1-bits in a machine word). To add or remove
a block from the connectivity set, we flip the corresponding bit using an atomic xor operation.
The move node operation can be made lock-free by updating Φ(e,Vi)with atomic fetch-and-add
instructions, but this requires one machine word per value. We therefore use a spin-lock for each
net e due to the packed representation.

Attributed Gains. As the gain value of a node move can change between its initial calculation and
actual execution due to concurrent node moves in its neighborhood, we additionally compute an
attributed gain value for each move based on the atomic updates of the pin count values Φ(e,Vs) and
Φ(e,Vt) in Line 6 of Algorithm 6.1. We attribute a connectivity decrease byω(e) to the move that re-
duces Φ(e,Vs) to zero (see Line 7) and an increase byω(e) for increasing Φ(e,Vt) to one (see Line 8).

Since we do not lock all incident nets e ∈ I (u) before moving a node u, there is no guarantee
on the order in which concurrent moves perform the pin count updates. Hence, this scheme may
distribute the connectivity reductions to different threads, but the sum of the attributed gains of
all node moves equals the overall connectivity reduction [60].

Attributed Gains for Label Propagation Refinement. The most widely used refinement technique
in parallel partitioning algorithms is label propagation [4, 48, 70, 88, 91, 113, 121]. The algorithm
works in rounds. In each round, it iterates over all nodes in parallel, and whenever it visits a node
u, it moves it to the block Vt maximizing its move gain дu (Vt) (respecting the balance constraint).
The algorithm only performs moves with positive gain and therefore cannot escape from local

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:13

optima. However, we use it in our partitioning algorithm to find all simple node moves such that
our more advanced refinement techniques can focus on finding non-trivial improvements (for
more technical details on its implementation, see Reference [60, p. 68–69]).

Since the label propagation algorithm performs only positive gain moves, we immediately revert
a node move if it has negative attributed gain. Note that reverting such a node move does not
guarantee to improve the connectivity metric again as other concurrent node moves may have
changed the pin count values of the corresponding nets in the meantime. However, reverting them
directly after detection decreases the likelihood of such conflicts. Furthermore, we use attributed
gains to track the value of the connectivity metric instead of recomputing it after each round.

6.2 The Gain Table

For our FM algorithm, we use a gain table which stores and maintains the gain values for all
possible moves. This enables repeatedly looking up gains in O(1) time and is a globalized way of
updating the gains of nodes owned by other threads. Gain tables are not a new idea [3, 80] but have
gone “out of fashion” due to their memory requirements [4, 101]. To the best of our knowledge,
our introduction of parallel gain tables is novel.

We use atomic fetch-and-add instructions to update the gains as soon as nodes are moved.
Updates on some nodes become visible while the overall update procedure is still in flight. There-
fore, updates trickle in over time, and some outdated or inconsistent values may be read by other
threads. Still, with concurrent node moves this is the most accurate we can be.

Recall that the gain дu (Vt) of moving a node u to a target block Vt can be expressed as follows:

дu (Vt) := ω({e ∈ I (u) | Φ(e,Π[u]) = 1}) − ω({e ∈ I (u) | Φ(e,Vt) = 0}).

The first term b(u) � ω({e ∈ I (u) | Φ(e,Π[u]) = 1}) is the benefit of moving u out of its block.
Conversely, the term p(u,Vt) � ω({e ∈ I (u) | Φ(e,Vt) = 0}) is the penalty for moving u into Vt .

Update Rules. Instead of storing дu (Vi), we store b(u) and p(u,Vi) separately for each node u, so
that changes to b(u) only require one update, instead of updates to k gain values. This approach
uses (k+1)n memory words in total. For each net e ∈ I (u), we updateb(u) andp(u,Vi) using atomic
fetch-and-add instructions as follows.

If Φ(e,Vs) = 0 then ∀v ∈ e do p(v,Vs)
atomic
+= ω(e) (1)

If Φ(e,Vs) = 1 then ∀v ∈ e ∩Vs do b(v)
atomic
+= ω(e) (2)

If Φ(e,Vt) = 1 then ∀v ∈ e do p(v,Vt)
atomic−= ω(e) (3)

If Φ(e,Vt) = 2 then ∀v ∈ e ∩Vt do b(v) atomic−= ω(e) (4)

The update conditions implement the UpdateGainTable procedure from Line 9 in
Algorithm 6.1.

Benefit Pecularities. There is a race condition on Π[v] in the check Π[v] = Vs (case 2) or Π[v] = Vt

(case 4). When Π[v] changes, we may perform a benefit update on v that was also intended for a
different pin of e in the new Π[v]. The penalty values are not affected since they are independent
of the pin’s current block. Our FM algorithm is organized in rounds in which each node can be
moved at most once. Therefore, once u gets moved, we do not read b(u) for the rest of the round.
Due to the race condition it may still be updated, which is why we recalculate b(u) after the round
is finished instead of recalculating b(u) for the new block immediately after the move. We note
that it is possible to correctly update benefits by using k benefit values per node [49].

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:14 L. Gottesbüren et al.

Correctness and Complexity of Gain Updates. In the following, we prove that once all updates for
a given set of moves are completed and no further moves are performed, the gain values are correct.

Lemma 6.1. After performing all gain updates associated with a set of moves M in parallel, each

unmoved node v ∈ V \M has correct b(v), and each v ∈ V has correct p(v,Vi) terms.

Proof. First, we note that the updates are correct in the sequential setting [100]. Due to the
atomic consistency of pin-count and gain updates, it suffices to prove correctness for arbitrary
linearized (sequential) orders of updates. The remaining difficulty is that different orders may yield
different intermediate values. However, due to commutativity we arrive at the same final Φ(e,Vi)
values. Thus, it suffices to argue that gain updates triggered by Φ(e,Vi) += 1 cancel out those
triggered by Φ(e,Vi) −= 1. This statement holds, as case 1 and 3 are complimentary, as well as case
2 and 4. Therefore, the final p(v,Vi) and b(v) values only depend on the final Φ(e,Vi) values. �

Lemma 6.2 (Sanchis [100]). The work of gain updates for moving all nodes once is O(
∑

e ∈E |e | ·
min(k, |e |)) = O(kp).

The core to the argument is that each of the update cases is only triggered a constant number of
times per hyperedge and block [37, 100], and costs O(|e |)work per update. This hinges on moving
each node at most once. Note that due to the min(k, |e |) term, this bound matches the O(m) bound
on plain graphs. On real-word hypergraphs, we observed work much closer to O(p) since most
nets have small size or few pins per block.

6.3 The Parallel Gain Recalculation Algorithm

We now propose a parallel algorithm to recompute exact gain values of a sequence of node moves
M = 〈m1, . . . ,ml 〉 if they are supposed to be performed in this order. Each move mi ∈ M is of the
formmi = (u,Vs ,Vt), which means that nodeu is moved from blockVs toVt . Again, we assume that
each node is moved at most once. Recall that a move of a node u from blockVs toVt decreases the
connectivity of a hyperedge e , if Φ(e,Vs) decreases to zero. Conversely, it increases the connectivity
if Φ(e,Vt) increases to one. The idea of the following algorithm is to iterate over the hyperedges in
parallel, and identify the node moves inM that increase or decrease the connectivity of a hyperedge
using Algorithm 6.2.

Consider a hyperedge e and a blockVi ∈ Π. The first observation is that if we move a pinv ∈ e to
Vi , then Φ(e,Vi) cannot decrease to zero anymore since each node is moved at most once. In order
to decrease Φ(e,Vi) to zero, we have to move all pins u ∈ e ∩Vi out of blockVi before we move the
first pin v ∈ e \Vi to block Vi . In this case, the last pin u ∈ e moved out of block Vi decreases the
connectivity of e and the first pin v ∈ e moved to block Vi increases its connectivity again. Thus,
we can decide whether or not a move increases or decreases the connectivity of a hyperedge by
simply comparing the indices of the node moves in M , which were last moved out and first moved
to a particular block. Additionally, we need to know if the move sequence M moves all pins out of
block Vi . To do so, we count the number of non-moved pins v ∈ e in each block. If the number of
non-moved pins is zero for a block Vi , then either Φ(e,Vi) was zero before, or the move sequence
M moved all nodes out of block Vi .

Algorithm 6.2 shows the pseudocode that identifies the node moves in M that increase or de-
crease the connectivity of a hyperedge e . The algorithm uses two loops, both iterating over the
pins of hyperedge e . The first loop computes the indices of the node moves that first moved to and
last moved out of each block Vi ∈ Π (see Line 6), in addition to the number of pins in e that were
not moved (see Line 7).

The second loop then decides for each moved pin u ∈ e whether or not it increases or de-
creases the connectivity of hyperedge e by evaluating the conditions shown in Lines 11 and 12.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:15

ALGORITHM 6.2: Parallel Gain Recalculation
Input: Hyperedge e , a sequence of node moves M = 〈m1, . . . ,ml 〉 and a shared gain vector

G = 〈д1, . . . ,дl 〉 representing the recalculated gain values
Output: Updated gain values G = 〈д1, . . . ,дl 〉

1 first_in← [∞, . . . ,∞]; last_out← [−∞, . . . ,−∞] // Arrays of size k

2 non_moved← [0, . . . , 0] // Array of size k

3 for u ∈ e do

4 if u was moved then // moved nodes are marked in a bitset

5 mi := (u,Vs ,Vt) ← find corresponding move in M

6 last_out[Vs] ← max(i, last_out[Vs]); first_in[Vt] ← min(i, first_in[Vt])
7 else ++non_moved[Π[u]]
8 for u ∈ e do

9 if u was moved then

10 mi := (u,Vs ,Vt) ← find corresponding move in M

11 if last_out[Vs] = i ∧ i < first_in[Vs] ∧ non_moved[Vs] = 0 then дi
atomic
+= ω(e)

12 if first_in[Vt] = i ∧ i > last_out[Vt] ∧ non_moved[Vt] = 0 then дi
atomic−= ω(e)

Let mi := (u,Vs ,Vt) be the corresponding node move of pin u ∈ e in M . If M moves all nodes out
of block Vs (non_moved[Vs] = 0) and u is the last pin moved out of block Vs (last_out[Vs] = i),
while the first move that moves a pin into block Vs happens strictly after mi (i < first_in[Vs]),
thenmi reduces the connectivity metric by ω(e). Conversely, if M moves all nodes out of blockVt

(non_moved[Vt] = 0) and u is the first pin moved into block Vt (first_in[Vt] = i), while the last
move that moves a pin out of block Vt happens strictly before mi (i > last_out[Vt]), then mi in-
creases the connectivity metric byω(e). Since we run the algorithm for each hyperedge in parallel,
several threads can modify the gain value дi of a node movemi simultaneously. We therefore use
atomic fetch-and-add instructions (see Line 11 and 12).

To further reduce the complexity of the algorithm, we only process hyperedges containing
moved nodes. To do so, we iterate over the node moves in M in parallel and run Algorithm 6.2
only for incident edges of moved nodes. We mark already processed hyperedges in a shared bitset
using atomic test-and-set instructions.

7 THE FIDUCCIA-MATTHEYSES ALGORITHM

The Fiduccia-Mattheyses (FM) algorithm [37] is the most widely used local search algorithm in
sequential partitioning algorithms. Most of the existing variants insert all possible moves or only
the highest gain move for each boundary node into a priority queue (PQ) and then perform the
following two steps: (i) repeatedly perform the highest gain move subject to the balance constraint,
followed by (ii) reverting moves back to the prefix with the highest cumulative gain in the sequence
of performed moves. The revert is necessary, since moves with negative gains are allowed, so the
algorithm is able to escape from local minima. Unfortunately, calculating the same move sequence
as FM is P-hard [103], i.e., it is unlikely that a parallel algorithm with poly-log depth exists.

Sanders and Schulz [101] proposed a relaxed version that inserts only the highest gain move for
a single seed node into a PQ and then gradually expands around the node by claiming neighbors of
the moved node (localized FM). The algorithm not only produces better solutions than boundary
FM [52], it is also highly amenable to parallelization as multiple FM searches can run in parallel,
each starting from a different seed node. In the following, we present our parallel implementation
of the localized FM algorithm, and discuss its main differences to an existing parallelization [4].

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:16 L. Gottesbüren et al.

The Parallel k-Way FM Algorithm. Algorithm 7.1 shows the pseudocode of our parallel FM al-
gorithm. The algorithm proceeds in rounds, and each round starts with inserting all boundary
nodes into a globally shared task queue Q . The threads then poll a fixed number of nodes (= 25)
from Q that they use as seed nodes for the localized FM searches, which expand to neighbors of
moved nodes.

The searches are non-overlapping, i.e., threads acquire exclusive ownership of nodes, while
hyperedges can touch multiple searches. Node moves performed by the different searches are not
visible to other threads, as they are performed locally using thread-local hash tables. However,
once a thread finds an improvement, it immediately applies it to the global partition. The local
moves are atomically appended to a global move sequence (using one atomic fetch-and-add for
all local moves). We repeatedly start localized FM searches until the task queue is empty. Note that
we initialize the searches with multiple seed nodes instead of a single node as this substantially
accelerates the algorithm in practice without sacrifices in solution quality.

Once the task queue is empty, we proceed to the second phase, where we recalculate the gains of
the global move sequence (see Section 6.3) and then use a parallel prefix sum and reduce operation
on the recomputed gain values to identify and revert to the best seen solution. We perform multiple
rounds until a maximum number is reached or the connectivity metric is not improved.

Localized k-Way FM Search. The localized FM search uses a single PQ storing the move with the
highest gain for each inserted node. We initialize the PQ with several seed nodes and use the gain
table to compute the initial best move for each node (see Line 10). Then, we repeatedly select the
move with the highest gain and apply it to a thread-local partition ΔΠ. Changes on ΔΠ are not
visible to other threads for now. However, we apply the move sequence to the global partition Π as
soon as we find an improvement (see Line 18), then triggering gain updates in the global gain table.

When we move a node u locally, we collect the nets e ∈ I (u) affected by gain updates. We use
them to update the gain values of nodes in the PQ – combining global gain table and ΔΠ data,
thus gradually infusing updates from other threads into the search – and expand the search to
neighbors of moved nodes. A localized search terminates when the PQ becomes empty or the
adaptive stopping rule of Osipov and Sanders [3, 93] is triggered. The stopping rule assumes that
the observed gain values follow a normal distribution and terminates a search when it becomes
unlikely to find further improvements. We release the ownership of non-moved nodes at the end
such that other searches can acquire them again. We do not release the ownership of moved nodes
to ensure that each node is moved at most once during an FM pass.

We explicitly allow moves with negative gains, which will worsen the solution quality interme-
diately. At the end of each localized search, we thus revert back to the best seen solution. If we
directly applied moves to the global partition, other searches could base their decisions on states
that will later be reverted. Therefore, we apply node moves to a thread-local partition ΔΠ first and
only perform them on the global partition if they lead to an improvement, i.e., will not be reverted
for now.

The thread-local partition ΔΠ stores changes relative to the global partition in a set of hash
tables. For example, we compute the weight of a blockVi by calculating c(Vi)+Δc(Vi) where c(Vi)
is the weight of block Vi stored in the global partition data structure and Δc(Vi) is the weight of
all nodes that locally moved to block Vi minus the weight of nodes that moved out of block Vi .
We maintain the block ID, pin count values, as well as benefit and penalty terms of the gain table
analogously.

Applying a move sequence to the global partition makes it immediately visible to the searches on
other threads. Since ΔΠ stores local changes relative to the global partition, the block weights and
pin count values are still correct. However, some gain values may be incorrect since the gain table

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:17

ALGORITHM 7.1: Parallel k-Way FM Algorithm

1 Function FMRefinement(Hypergraph H , k-way partition Π)
2 while improvement found and maximum number of rounds not reached do

3 Q ← initialize task queue with all boundary nodes

4 while Q not empty do in parallel

5 Vseed ← poll 25 seed nodes from Q

6 LocalizedFMRefinement(H ,Π,Vseed)
7 recompute gains of global move sequence and revert to best prefix // see Section 6.3

8

9 Function LocalizedFMRefinement(H ,Π,Vseed)
10 for u ∈ Vseed do // Initialize PQ with seed nodes

11 (дt ,Vt) ← ComputeMaxGainMove(u); PQ.Insert(u,дt ,Vt)
12 Δ← 0; M ← ∅
13 while PQ not empty and search should continue do

14 (u,дt ,Vt) ← PQ.PopMaxGainMove()
15 move u to Vt in thread-local partition ΔΠ with gain table update

16 Δ← Δ + дt ; M ← M ∪ {(u,Vt)}
17 if Δ > 0 or (Δ = 0 and move improved balance) then

18 apply move sequence M to global partition Π

19 Δ← 0; M ← ∅; ΔΠ ← Π

20 for all nets e ∈ I (u) involved in a gain update do

21 for v ∈ e do

22 if v is not marked then

23 if PQ.Contains(v) then update gain of v in PQ

24 else if try to acquire node v then

25 (дt ,Vt) ← ComputeMaxGainMove(v); PQ.Insert(v,дt ,Vt)
26 mark v

27 unmark all nodes

updates on the global partition do not consider moves performed locally. This is only a small issue
since thread-local deltas are cleared after applying the moves to the global partition. In practice,
the scheme drastically reduces conflicts.2 Another reason for applying moves as soon as possible
is to keep the memory footprint of the hash tables small. The overall peak memory incurred by
thread-local partition data is small, because the memory is proportional to the number of moves,
and long-running searches must find improvements to keep going.

Differences to Mt-KaHIP. The FM implementation in Mt-KaHIP [4] performs node moves only
locally, which are therefore not visible to other threads. At the end of an FM pass, the move se-
quences found by the different searches are concatenated to a global move sequence, for which
gains are recomputed sequentially. We improved the algorithm by making improvements immedi-
ately visible to other threads using the thread-local partition and gain table data structure, leading
to more accurate gain values. Moreover, we removed the last sequential part of the algorithm with
our parallel gain recomputation technique.

2We have found that the recomputed gain values of the global move sequence match the observed gain values during the
localized FM searches in most cases.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:18 L. Gottesbüren et al.

ALGORITHM 8.1: Parallel Flow-Based Refinement
Input: Hypergraph H = (V ,E, c,ω) and k-way partition Π of H

1 Q ← BuildQuotientGraph(H ,Π) // see Section 8.1

2 while ∃ active (Vi ,Vj) ∈ Q do in parallel // see Section 8.1

3 B ← ConstructRegion(H ,Vi ,Vj) // see Section 8.2

4 (H , s, t) ← ConstructFlowNetwork(H ,B) // see Section 8.2

5 (M,Δexp) ← FlowCutterRefinement(H , s, t) // see Section 8.3–8.4

6 if Δexp ≥ 0 then // potential improvement

7 Δ← ApplyMoves(H ,Π,M) // see Section 8.1

8 if Δ > 0 then mark Vi and Vj as active // found improvement

9 else if Δ < 0 then RevertMoves(H ,Π,M) // no improvement

8 FLOW-BASED REFINEMENT

A major shortcoming of move-based local search algorithms is that they greedily move nodes to
other blocks based on a gain value considering only the block assignment of adjacent nodes. Thus,
the decision to apply a move depends only on local information, which may not be sufficient to
find some non-trivial improvements [99]. Maximum flows overcome this limitation by deriving a
minimum cut separating two nodes [38] and therefore have a more global view on the partitioning
problem. Although it seems natural to use them as local search strategy in partitioning algorithms,
maximum flows were long perceived as computationally expensive and it was unclear how to de-
rive balanced partitions [76, 124]. This changed over the last two decades as flow-based refinement
techniques were successfully implemented in the highest-quality sequential graph and hypergraph
partitioning algorithms [44, 59, 62, 101, 106]. Today they are considered to be the most powerful
improvement heuristics for (hyper)graph partitioning. However, since they come at the cost of sub-
stantially higher running times, they can be impractical for partitioning very large hypergraphs.

Algorithm Overview. In this section, we present the first parallel formulation of the sequential
flow-based refinement approach used in KaHyPar [44, 62]. The high-level pseudocode of the
algorithm is outlined in Algorithm 8.1. Flow-based refinement works on bipartitions and can
be scheduled on different block pairs to improve k-way partitions [44, 62, 101]. We therefore
start with a parallel scheduling scheme of adjacent block pairs based on the quotient graph in
Section 8.1 (see Line 1 and 2). In Section 8.2, we describe the flow network construction algorithm
that extracts a subhypergraph induced by a region B ⊆ V around the boundary nodes of two
adjacent blocks, which then yields a flow network (see Line 3 and 4). On each network, we run the
FlowCutter algorithm [53, 124] to derive a balanced minimum cut using incremental maximum
flow computations. FlowCutter and its parallelization are discussed in Sections 8.3 and 8.4. We
then convert the minimum cut into a set of moves M and an expected connectivity reduction Δexp.
If FlowCutter claims an improvement, i.e., if Δexp ≥ 0, we apply the moves to the global partition
and recompute the reduction Δ. Based on Δ we either schedule the blocks for further refinement,
or revert the moves (see Line 8 and 9).

Maximum Flows. A flow networkN = (V,E, c) is a directed graph with a dedicated source node
s ∈ V and sink node t ∈ V in which each edge e ∈ E has capacity c(e) ≥ 0, and each non-edge
(u,v) ∈ (V × V) \ E has capacity c(u,v) = 0. An (s, t)-flow is a function f : V × V → R that
satisfies the capacity constraint ∀u,v ∈ V : f (u,v) ≤ c(u,v), the skew symmetry constraint ∀u,v ∈
V : f (u,v) = −f (v,u) and the flow conservation constraint ∀u ∈ V \ {s, t} :

∑
v ∈V f (u,v) = 0.

The value of a flow | f | :=
∑

v ∈V f (s,v) =
∑

v ∈V f (v, t) is defined as the total amount of flow

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:19

transferred from s to t . An (s, t)-flow f is a maximum (s, t)-flow if there exists no other (s, t)-flow
f ′ with | f | < | f ′ |. The residual capacity is defined as rf (e) = c(e) − f (e). An edge e is saturated

if rf (e) = 0. The residual network Nf = (V,Ef , rf) with Ef := {(u,v) ∈ V × V | rf (u,v) >
0} contains all non-saturated edges. The max-flow min-cut theorem states that the value | f | of
a maximum (s, t)-flow equals the weight of a minimum cut that separates s and t [38]. This is
also called a minimum (s, t)-cut. The minimum (s, t)-cut can be derived by exploring the nodes
reachable from the source or sink via residual edges (rf (e) > 0), which is also called the source-side

or sink-side cut.

8.1 Parallel Active Block Scheduling

Sanders and Schulz [101] propose the active block scheduling strategy to apply their flow-based
refinement algorithm for bipartitions on k-way partitions. Their algorithm proceeds in rounds. In
each round, it schedules all pairs of adjacent blocks where at least one is marked as active. Initially,
all blocks are marked as active. If a search on two blocks finds an improvement, both are marked
as active for the next round.

Parallelization. Our parallel implementation schedules multiple flow computations on adjacent
block pairs in parallel. We do not enforce any constraints on the block pairs processed concurrently,
e.g., there can be multiple threads running on the same block and they can also share some of
their nodes. We use min(t ,τ ·k) threads to process the active block pairs in parallel, where t is the
number of available threads in the system and the parameter τ controls the available parallelism
in the scheduler. With higher values of τ , more block pairs are scheduled in parallel, which can
lead to more interferences between searches that operate on overlapping regions. Threads that are
not involved in scheduling can join parallel flow computations. In a parameter study [60, p. 108],
we found that τ = 1 offers a good trade-off between conflicting searches and scalability.

Initially, we push all pairs of adjacent blocks into a concurrent FIFO queue A. The threads then
poll from A and if a search finds an improvement on a block pair (Vi ,Vj), we mark both as active
using a separate bitset for each round. If either Vi or Vj becomes active, we push all adjacent
blocks into A if they are not contained yet. Thus, active block pairs of different rounds are stored
interleaved in A and the end of a round does not induce a synchronization point as in the original
algorithm [101]. A round ends when all of its block pairs have been processed and all prior rounds
have ended. If the relative improvement at the end of a round is less than 0.1%, we immediately
terminate the algorithm.

Apply Moves. Since concurrently scheduled flow computations can operate on overlapping re-
gions, there are three conflict types that can occur when applying a sequence of node moves M to
the global partition Π: balance constraint violations, Δexp � Δ (i.e., the expected does not match
the actual connectivity reduction), and nodes in M may already be moved by other searches.

In practice, the running time to apply a sequence of node moves is negligible compared to solving
flow problems [60, see Figure 5.21 on p. 119]. Thus, we can afford to use a lock so that only one
thread applies moves at a time to address these conflicts. First, we remove all nodes fromM that are
not in their expected block, i.e., they were moved by a different search in the meantime. Afterwards,
we compute the block weights as if all remaining moves were applied. If the resulting partition is
balanced, we perform the moves, during which we aggregate the attributed gains Δ of each move.
If Δ < 0, we revert all moves.

8.2 Flow Network Construction

To improve the cut of a bipartition Π = {V1,V2}, we grow a size-constrained region B := B1 ∪ B2

with B1 ⊆ V1 and B2 ⊆ V2 around the cut hyperedges of Π via two breadth-first-searches (BFS) [101].

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:20 L. Gottesbüren et al.

Fig. 5. A hypergraphH (left) induced by a region B := B1 ∪ B2 and the flow networkN (right) given by the
Lawler expansion ofH .

The first BFS is initialized with all boundary nodes of block V1 and continues to add nodes to B1

as long as c(B1) ≤ (1 + αε)� c(V)2 � − c(V2), where α is an input parameter. The second BFS that
constructs B2 proceeds analogously. We then contract all nodes inV1 \B to the source s andV2 \B
to the sink t [45, 101] and obtain a coarser hypergraphH = (V,E). The flow network N is then
given by the Lawler expansion ofH [84], which is illustrated in Figure 5. For each hyperedge e ∈ E,
we add two nodes ein and eout and a bridging edge (ein, eout) with capacity c(ein, eout) = ω(e) to N .
For each pin u ∈ e , we add two edges (u, ein) and (eout,u) with infinite capacity toN . Note that we
do not construct N explicitly in our actual implementation, since our maximum flow algorithm
runs onH by implicitly exploiting the structure of the Lawler expansion.

The parameter α controls the size of the flow network. For α = 1, each flow computation yields
a balanced bipartition with a possibly smaller cut in the original hypergraph, since only nodes of

B can move to the opposite block (c(B1)+c(V2) ≤ (1+ ε)� c(V)2 � and vice versa for block B2). Larger
values for α lead to larger flow problems with potentially smaller minimum cuts, but also increase
the likelihood of violating the balance constraint. However, this is not a problem since the flow-
based refinement routine guarantees balance through incremental minimum cut computations (see
Section 8.3). In practice, we use α = 16 (also used in KaHyPar [44, 62]). We additionally restrict
the distance of each node v ∈ B to the cut hyperedges to be smaller than or equal to a parameter
δ (= 2). We observed that it is unlikely that a node far way from the cut is moved to the opposite
block by the flow-based refinement.

8.3 The FlowCutter Algorithm

In this section, we discuss the flow-based refinement on a bipartition. We introduce the afore-
mentioned FlowCutter algorithm [53, 124], the parallelization of which is described in the next
section. To speed up convergence and make parallelism worthwhile, we propose an optimization
named bulk piercing.

Algorithm Overview. FlowCutter solves a sequence of incremental maximum flow problems un-
til a balanced bipartition is found. Algorithm 8.2 shows the pseudocode for the approach. In each
iteration, first the previous flow (initially zero) is augmented to a maximum flow regarding the
current source set S and sink set T . Subsequently, the node sets Sr ,Tr ⊂ V of the source- and
sink-side cuts are derived. This is done via residual (parallel) BFS (forward from S for Sr , back-
ward from T for Tr). The node sets induce two bipartitions (Sr ,V \ Sr) and (V \Tr ,Tr). If neither
is balanced, all nodes on the side with smaller weight are transformed to a source (if c(Sr) ≤ c(Tr))
or a sink otherwise. As this would yield the same cut in the next iteration, we add one additional
node, called piercing node, to the terminal set of the smaller side. Thus, the bipartitions contributed

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:21

ALGORITHM 8.2: The FlowCutter Algorithm

Input: Original hypergraph H = (V ,E, c,ω), flow networkH = (V,E) and a source s ∈ V and sink
t ∈ V

Output: Balanced Bipartition ofH
1 S ← {s},T ← {t} // initialize source and sink set

2 initialize flow f : V ×V → R≥0 with ∀(u,v) ∈ V ×V : f (u,v) = 0

3 while no balanced bipartition found do

4 f ← ParallelMaxPreflow(H ,S,T , f) // augment f to a maximum preflow

5 (Sr ,Tr) ← derive source- and sink-side cut Sr ,Tr ⊂ V
6 if (Sr ,V \ Sr) is balanced then return (Sr ,V \ Sr)
7 else if (V \Tr ,Tr) is balanced then return (V \Tr ,Tr)
8 if c(Sr) ≤ c(Tr) then S ← Sr ∪ selectPiercingNode(S ∪ Sr)
9 else T ← Tr ∪ selectPiercingNode(T ∪Tr)

by the currently smaller side will be more balanced with a possibly larger cut in future iterations.
Since the smaller side is grown, this process will converge to a balanced bipartition.

For our purpose, there are two important piercing node selection heuristics: avoid augmenting

paths [53, 124] and distance from cut [44]. Whenever possible, a node that is not reachable from
the source or sink should be picked, i.e.,v ∈ V\(Sr ∪Tr). Such nodes do not increase the weight of
the cut, while improving balance [97]. As a secondary criterion, larger distances from the original
cut are preferred, to reconstruct parts of it.

Bulk Piercing Optimization. On larger instances, piercing only one node per iteration converges
slowly. We therefore increase the amount of work in each iteration by piercing multiple nodes, as
long as we are far from balance.

To achieve a small number of iterations (e.g., poly-log) we set a goal on the weights of the
sides of the bipartition, and pierce more aggressively the further we are from it. Assume we want
to pierce the source side next and have already performed r − 1 piercing iterations on it. In the

r -th iteration we want to add 1
2r · (c(V)2 − c(S)) new weight to the source side, where c(S) is the

weight of the initial source-side terminals (before any piercing) and c(V)
2 is the weight of a perfectly

balanced bipartition. Thus, the overall weight goal for the r -th iteration on the source side is set to

(c(V)2 −c(S))
∑r

i=1
1
2i . This is chosen such that we allow a lot of progress early on and become more

careful as we get closer to a balanced bipartition. We track the average weight added per node in
previous iterations and from this estimate the number of required piercing nodes to reach the goal
for the r -th iteration. To boost measurement accuracy, we pierce only one node for the first few
rounds, and then switch to bulk piercing.

8.4 Parallel Maximum Flow Algorithm

Maximum flow algorithms are notoriously difficult to parallelize efficiently [9, 15, 67, 110]. The syn-
chronous push-relabel approach of Baumstark et al. [15] is a recent algorithm that sticks closely
to sequential FIFO and thus shows good results. We first describe the sequential push-relabel al-
gorithm proposed by Goldberg and Tarjan [42] and then briefly outline its parallelization. We
conclude with implementation details and intricacies of using FlowCutter with preflows.

Push-Relabel Algorithm. The push-relabel algorithm [42] stores a distance label d(u) and an ex-
cess value exc(u) :=

∑
v ∈V f (v,u) for each node. It maintains a preflow [74] which is a flow where

the conservation constraint is replaced by exc(u) ≥ 0. The distance labels represent a lower bound

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:22 L. Gottesbüren et al.

for the distance of each node to the sink. A nodeu ∈ V is active if exc(u) > 0. An edge (u,v) ∈ E is
admissible if rf (u,v) > 0 andd(u) = d(v)+1. A push(u,v) operation sends δ = min(exc(u), rf (u,v))
flow units over (u,v). It is applicable if u is active and (u,v) is admissible. A relabel(u) operation
updates the distance label ofu to min({d(v)+1 | rf (u,v) > 0}), which is applicable ifu is active and
has no admissible edges. The distance labels are initialized to ∀u ∈ V\{s} : d(u) = 0 andd(s) = |V |
and all source edges are saturated. Efficient variants use the discharge routine, which repeatedly
scans the edges of an active node until its excess is zero. All admissible edges are pushed and at the
end of a scan, the node is relabeled. The global relabeling heuristic [29] frequently assigns exact
distance labels by performing a reverse BFS from the sink to reduce relabel work in practice. Note
that a maximum preflow already induces a minimum sink-side cut, so if only a minimum cut is
required, the algorithm can already stop once no active nodes with distance label < n exist.

The parallel push-relabel algorithm of Baumstark et al. [15] proceeds in rounds in which all
active nodes are discharged in parallel. The flow is updated globally, the nodes are relabeled locally
and the excess differences are aggregated in a second array using atomic instructions. After all
nodes have been discharged, the distance labels d are updated to the local labels d ′ and the excess
deltas are applied. The discharging operations thus use the labels and excesses from the previous
round. This is repeated until there are no nodes with exc(v) > 0 and d(v) < n left. To avoid
concurrently pushing flow on residual arcs in both directions (race condition on flow values), a
deterministic winning criterion on the old distance labels is used to determine which direction to
push, if both nodes are active. If an arc cannot be pushed due to this, the discharge terminates after
the current scan, as the node may not be relabeled in this round. The rounds are interleaved with
global relabeling [29], after linear push and relabel work, using parallel reverse BFS in the residual
network. We additionally fixed an undocumented bug in the original algorithm (not source code)
for which we refer the reader to Reference [46].

Intricacies with Preflows and FlowCutter. A maximum preflow only yields a sink-side cut via the
reverse residual BFS, but we also need the source-side cut. We can run flow decomposition [29]
to push excesses back to the source. However, flow decomposition is difficult to parallelize [15].
Instead, we initialize the forward residual BFS with all active non-sink excess nodes. This finds the
reverse paths that carry flow from the source to the excess nodes, which is what we need.

Furthermore, when transforming a node with positive excess to a sink, its excess must be added
to the flow value. This only happens when piercing, as sink-side nodes have no excess.

Finally, we want to reuse the distance labels from the previous round to avoid re-initialization
overheads. However, as the labels are a lower bound on the distance from the sink, piercing on the
sink side invalidates the labels. In this case, we run global relabeling to fix the labels and collect the
existing excess nodes, before starting the main discharge loop. When piercing on the source side
the labels remain valid and new excesses are created. These are added to the active nodes and we
do not run an additional global relabeling. The existing excess nodes are collected during regular
global relabel runs.

Implementation Details. Since (ein, eout) is the only outgoing edge of ein with non-zero capacity
in the Lawler expansion (see Figure 5), the flow on edges (u, ein) is also bounded byω(e) (instead of
∞). Adding these capacities is a trivial optimization, but significantly accelerates the algorithm and
increases the available parallelism. This can be explained by the fact that a hypernode u does not
immediately relieve all of its excess to one of its incident nets e ∈ I (u) during the discharge routine,
which is later pushed back due to theω(e) bound. We set the capacities c(u, ein) to∞ again when de-
riving the source- and sink-side cut, since only bridging edges can be cut in the Lawler expansion.

Moreover, we observed that the number of active nodes follows a power-law distribution. Due
to little work in later rounds, it takes many rounds to trigger the global relabeling step that also

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:23

ALGORITHM 9.1: The n-Level Partitioning Algorithm

Input: Hypergraph H = (V ,E), number of blocks k
Output: k-way partition Π of H

1 while V has too many nodes do

2 for u ∈ V in random order do in parallel

3 v ← arg maxv

∑
e ∈I (u)∩I (v)

ω(e)
|e |−1 // find best contraction partner for u

4 if (v,u) is eligible for contraction then contract v onto u

5 Π ← InitialPartition(H ,k)

6 B = 〈B1, . . . ,Bl 〉 ← ConstructBatches(F)
7 for B ∈ B do // |B | ≈ bmax

8 for v ∈ B do in parallel

9 uncontract v from rep[v]; Π[v] ← Π[rep[v]]
10 LabelPropagationRefinement(H ,Π,B); FMRefinement(H ,Π,B)

terminates the algorithm when a maximum preflow is found. Therefore, we perform additional
relabeling if the flow value has not changed for some rounds (500), and only few active nodes
(< 1500) were available in each.

9 A PARALLELIZATION OF THE n-LEVEL PARTITIONING SCHEME

Our multilevel algorithm contracts a clustering of highly-connected nodes on each level, which
induces a hierarchy with a logarithmic number of levels. In contrast, KaHyPar [3, 104] – the
currently best sequential partitioning algorithm with regards to solution quality – contracts
only a single node on each level. Correspondingly, in each refinement step, only a single node is
uncontracted followed by a highly-localized search for improvements around the uncontracted
node. This technique produces almost n levels and is therefore known as the n-level partitioning

scheme. More levels provide “more opportunities to refine the current solution” [8] at different
granularities but also increase the running time of multilevel algorithms. Therefore, KaHyPar is
the method of choice for computing high-quality partitions but comes at the cost of substantially
higher running times than other systems – prohibitively so for very large hypergraphs. Although
n-level partitioning seems inherently sequential, we present the first shared-memory paralleliza-
tion of the technique which achieves good speedups and comparable solution quality to KaHyPar
in a fraction of its running time.

We start this section with a formal definition of the (un)contraction operation, and provide a
high-level overview of ourn-level partitioning algorithm. We then discuss and present solutions for
the main challenges in this algorithm: finding a parallel schedule of (un)contraction operations and
performing them on a dynamic hypergraph data structure in parallel. We conclude the algorithm
description with a discussion on how the refinement algorithms from the previous section are
integrated into the n-level algorithm.

The Contraction and Uncontraction Operation. Contracting a nodev onto another nodeu replaces
v with u in all nets e ∈ I (v) \ I (u) and removes v from all nets e ∈ I (u) ∩ I (v). The weight of node
u is then c(u) + c(v). We call u the representative of the contraction and v its contraction partner.
Uncontracting a node v reverses the corresponding contraction operation.

Algorithm Overview. Algorithm 9.1 shows the high-level pseudocode of our n-level partitioning
algorithm. In the coarsening phase, we iterate in parallel over all nodes and find the best contrac-
tion partner v for each node u using the heavy-edge rating function [3, 28, 69] (similar as in our

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:24 L. Gottesbüren et al.

multilevel algorithm). We then check whetherv can be contracted right away ontou or if there are
any other pending contractions that must be performed before. In the latter case, we transfer the
responsibility of contracting v onto u to the thread resolving the last dependency that defers the
contraction. Once the hypergraph is small enough, we compute an initial partition into k blocks.

Uncontracting only a single node followed by a localized refinement step is inherently sequen-
tial, which is why we have to relax the n-level idea in the uncoarsening phase. We construct a
sequence of batches B = 〈B1, . . . ,Bl 〉 of contracted nodes, such that |Bi | ≈ bmax where bmax is
an input parameter. Batches are processed one after another, enabling the uncontraction of nodes
in subsequent batches. Nodes in the same batch are uncontracted in parallel. The main challenge
is to identify which nodes can or even must appear in the same batch. After uncontracting each
batch, we apply highly-localized refinement algorithms around the batched nodes.

A Forest-Based Scheduling of Contraction Operations. Let us consider a sequence of contractions
C := 〈(v1, u1), . . . , (vn , un)〉 executed exactly in this order (vi is contracted onto ui). In
this sequence, each node is contracted onto at most one representative, and there are no cyclic
contraction dependencies. Thus, the sequence of contractions form a forest F := (V ,C) if inter-
preted as a graph with directed edges (vi ,ui) ∈ C. We will refer to F as the contraction forest.
Our parallelization uses the observation that there exist several permutations of C leading to the
same contraction forest F . We can contract a node as soon as all of its children in F have been
contracted. To obtain parallelism, different subtrees and siblings can be contracted independently,
i.e., we traverse F in a bottom-up fashion in parallel.

In our actual algorithm, we do not know F in advance. However, we show how to construct
F dynamically and from that we derive a parallel schedule of contraction operations. We call a
contraction (v,u) compatible with existing contractions if it satisfies the following three conditions:
(i) v must be a root of F , (ii) adding (v,u) to F must not induce a cycle, and (iii) the contraction
of u onto its parent in F must not have started yet. We represent F using an array rep of size
n storing for each node its representative (u is a root if rep[u] = u). Additionally, we use a zero-
initialized array pending, where pending[u] stores the number of children of u whose contraction
is not finished. If pending[u] = 0 and rep[u] � u, we assume that the contraction of u onto rep[u]
has started and prevent further contractions onto u. The entries rep[u] and pending[u] are only
modified while holding a node-specific lock for u.

If we add a contraction (v,u) toF , we first lockv and check ifv is a root. If rep[v] � v , we discard
the contraction as another thread has already selected a representative for v . Otherwise, we walk
the path towards the root of u’s tree in F to find the lowest ancestorw of u whose contraction has
not started yet (rep[w] = w or pending[w] > 0, in most casesw = u). Ifv is found on this path, the
contraction is discarded, as it would induce a cycle in F . If no cycle is found, we lockw , and check
rep[w] and pending[w] again. If they changed, we find a new suitable ancestor and perform the
cycle check again. Otherwise, we set rep[u] = w and increment pending[w] by one, and unlock v
and w . We immediately contract v onto w if pending[v] = 0 and subsequently reduce pending[w]
by one. If this reduces pending[w] to zero, we recursively apply this process to the contraction
(w, rep[w]) if rep[w] � w .

Batch Uncontractions. For the uncoarsening phase, we construct a sequence of batches B =
〈B1, . . . ,Bl 〉 where each batch Bi contains roughly bmax contracted nodes that can be uncontracted
independently in parallel. The batch size bmax is an input parameter (set to bmax = 1000 in our
implementation) that interpolates between scalability (high values) and the inherently sequential
n-level scheme (bmax = 1). Uncontracting a batch Bi resolves the last dependencies required to
uncontract the next batchBi+1. After each batch uncontraction, we apply a highly-localized version

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:25

Fig. 6. Uncontracting w increases the cut by one since we do not uncontract v and w in reverse order.

of the label propagation and FM algorithm searching for improvements in a small region around
the uncontracted nodes.

We construct the batches via a top-down traversal of the contraction forest F . There are two
constraints that we need to consider when constructing the batches: (i) a node must appear in a
batch strictly after the batch containing its representative, and (ii) siblings in F must be uncon-
tracted in reverse order of contraction. The second condition prevents uncontractions increasing
the cut size as illustrated in Figure 6, which would violate a fundamental property of the multilevel
scheme. Since contractions can be performed at the same time, it is often not possible to define a
strict order in which we have to revert the contractions. We therefore associate each contraction
(v,u) with a time interval [sv , ev] by atomically incrementing a counter before starting (sv) and
after finishing (ev) a contraction operation. If the time interval of two nodes overlap, we assume
they were contracted at the same time, otherwise one is strictly earlier than the other. Among sib-
lings, we compute the transitive closure of nodes with overlapping time intervals and order them
decreasingly if one is strictly earlier than the other. We then use this as the reverse order of con-
tractions, while we add siblings with overlapping time intervals to the same batch. As this is only
a high-level description of the batch construction algorithm, we refer the reader to Reference [60,
p.129–131] for more details.

The Dynamic Hypergraph Data Structure. Figure 7 illustrates the dynamic hypergraph data struc-
ture that stores the pin-list of each net e and the incident nets I (u) of each nodeu using two separate
adjacency arrays. When we contract a node v onto another node u, we iterate over the incident
nets of v and search for u and v in the pin-list of each net e ∈ I (v). If we do not find u in e , we
replacev withu (e ∈ I (v) \ I (u)). Otherwise, we swapv to the end of e’s pin-list and decrement the
size of e by one (e ∈ I (u)∩ I (v)), dividing its pin-list into an active and inactive part. We use a separ-
ate lock for each net to synchronize edits to the pin-lists. We further mark the nets e ∈ I (u) ∩ I (v)
in a bitset X , which we then use to update the incident nets of u.

The key idea for updating the incident nets is to remove I (u) ∩ I (v) from I (v) and concatenate
u and v in a doubly-linked list Lu . All nodes contracted onto u are then stored in Lu . We can
then iterate over the incident nets of u by iterating over all entries w ∈ Lu and the modified I (w)
arrays. We associate each I (w) array with a counter tw and each entry e ∈ I (w) with a marker tw,e

(initially set to zero). Entries with markers ≥ tw are active, i.e., were not removed yet. For removing
I (u)∩I (v) from I (v) (marked in bitsetX), we iterate over all nodesw ∈ Lv and increment tw by one.
We then iterate over the previously active entries of I (w) (now marked with tw − 1) and if an entry
is not in X , we set its marker to tw . Otherwise, we swap the entry to the end of the active part but
keeping its marker at tw − 1. A simpler approach would be to represent the incident nets of each
node as an adjacency list and add I (v) \ I (u) to I (u), as it is done in KaHyPar [104, 105]. However,
this could lead to quadratic memory usage, and is therefore not practical for large hypergraphs.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:26 L. Gottesbüren et al.

Fig. 7. Contraction operation applied on the dynamic hypergraph data structure.

When uncontracting a node v from its representative u, we first restore Lv from Lu . To do this,
we additionally store the last node in Lv at the time v is contracted onto u. We then iterate over
all nodes w ∈ Lv and decrement their counters tw by one. This reactivates all nets e ∈ I (w) that
became inactive due to contracting v , i.e., were part of I (u) ∩ I (v) before the contraction. In these
nets, we swap v to the active part of their pin-lists again. All previously active nets e ∈ I (w) (now
marked with tw,e > tw) were part of I (v) \ I (u) before the contraction in which we then replace u
withv again. Note that we sort all pins in the inactive part of a pin-list by the batches in which they
are uncontracted. Then, all pins of a net e part of the current batch can be restored simultaneously
by appropriately incrementing the size of e . Only one thread that triggers the restore case on a net
performs the restore operation, which we ensure with an atomic test-and-set instruction.

Removing Single-Pin and Identical Nets. We remove single-pin nets and aggregate the weight of
all identical nets at one representative after a pass over all nodes in the coarsening phase using the
same algorithm as already described in Section 4. This adds several synchronization points (≈ logn)
at which we have to restore them in the uncoarsening phase. KaHyPar [104, 105] removes these
nets directly after each contraction operation. However, doing this in the parallel setting would
introduce additional dependencies for batches, which is why we decided against it.

Refinement. After uncontracting a batch, we run a highly-localized version of label propagation
and FM refinement initialized with the boundary nodes of the current batch. The searches then
expand to a small region around the uncontracted nodes. We complement the localized refinement
with a refinement pass on the entire hypergraph after restoring single-pin and identical nets. Here,
we run FM (initialized with all boundary nodes) and flow-based refinement. Additionally, we im-
plemented a concurrent gain table update procedure for batch uncontractions for which we refer
the reader to Reference [60, p.132–133] for more details.

10 UNIFYING HYPERGRAPH AND GRAPH PARTITIONING

Hypergraph partitioning (HGP) is considered “inherently more complicated” [75] and therefore
more complex “in terms of implementation and running time” [21] than graph partitioning

(GP). However, the high-level description of partitioning algorithms often does not reveal any
difference between the two. For example, label propagation refinement iterates over all nodes,
and moves each node to the block with the highest gain value. While the algorithm is widely used
in GP and HGP, the main difference in its implementation lies in the representation of the graph
data structure and the computation of gain values. GP tools build on data structures using one

adjacency array to represent the neighbors of nodes, while HGP requires two adjacency arrays
storing the pin-lists of hyperedges and the incident nets of nodes. This results in a better cache
utilization and faster access times for graph algorithms. Moreover, the gain value of a node move
for the edge cut metric depends on the block assignments of neighbors for GP, while HGP tools
have to maintain or compute the pin count values of hyperedges to decide whether or not it can be
removed from the cut. In the following, we present an optimized graph and partition data structure

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:27

for GP implementing the interface of our hypergraph data structure such that we can use them
as a drop-in replacement in our partitioning algorithm. We focus on the multilevel algorithm and
refer the reader to Reference [60, p.150–153] for a description of the n-level graph data structure.

Terminology. An undirected and weighted graph G = (V ,E, c,ω) can be considered as a hyper-
graph where each net contains only two pins (also called an edge). Therefore, the definitions and
notations for hypergraphs also apply to undirected graphs. We define the weight of an edge e =
{u,v} ∈ E as ω(u,v) := ω(e). If {u,v} � E, then ω(u,v) = 0. An edge {u,u} ∈ E is called a selfloop.
For a subset V ′ ⊆ V , ω(u,V ′) :=

∑
v ∈V ′ ω(u,v) is the weight of all edges connecting node u to V ′.

10.1 Graph Data Structure

We use one adjacency array to represent an undirected graph. As the algorithms are implemented
for hypergraphs, we have to support iteration over the pin-list of an edge. For an edge e = (u,v),
the slot for e in the range of edges incident to u thus stores both the source node u and the target
node v . This data structure requires twice as much memory as traditional adjacency arrays which
only need to store the target node.

Contraction. Our multilevel partitioning algorithm contracts a clustering of the nodes on each
level. The coarsening algorithm stores the clustering in an array rep where rep[u] = v stores the
representative of u’s cluster. For each representative v , we maintain the invariant that rep[v] = v .

The contraction algorithm first remaps cluster IDs to a consecutive range by computing a paral-
lel prefix sum on an array of size n that has a one at position v if v is a representative of a cluster
and zero otherwise. Then, we accumulate the weights and degrees of nodes in each cluster using
atomic fetch-and-add instructions. Afterwards, we copy the incident edges of each cluster to a
consecutive range in a temporary adjacency array by computing a parallel prefix sum over the
cluster degrees. We then iterate over the adjacency lists of each cluster in parallel, sort them, and
remove selfloops and identical edges except for one representative at which we aggregate their
weights. Finally, we construct the adjacency array of the coarse graph by computing a parallel
prefix sum over the remaining cluster degrees.

10.2 The Partition Data Structure

For hypergraphs, our partition data structure stores the block assignments Π, the block weights
c(Vi), the pin count values Φ(e,Vi), and connectivity sets Λ(e) for each net e ∈ E and blockVi ∈ Π.
Since a graph edge connects only two nodes, we can remove the pin count values and connectivity
sets as we can calculate them on-the-fly. However, we used the synchronized writes to the pin
count values to update the gain table and compute the attributed gain values. We therefore present
alternative approaches for both techniques that exploit the properties of graphs.

The Gain Table. The connectivity metric reverts to the edge cut metric for plain graphs (since
λ(e) ≤ |e | = 2). The gain value of moving a node u to another block Vt is then defined as
дu (Vt) := ω(u,Vt) − ω(u,Π[u]) (external minus internal edges). Thus, the gain table for graph
partitioning stores and maintains the ω(u,Vi) values for each node u ∈ V and block Vi ∈ Π (n · k
entries). If we move a node u from block Vs to Vt , we update the gain table by adding ω(u,v)
to ω(v,Vt) and −ω(u,v) to ω(v,Vs) for each neighbor v ∈ Γ(u) using atomic fetch-and-add
instructions. Hence, the complexity of the gain table updates when each node is moved at most
once is

∑
u ∈V 2d(u) = O(m).

Attributed Gains. For a node u moved from block Vs to Vt , we attribute a connectivity reduc-
tion or increase by ω(e) to each net e ∈ I (u) based on the synchronized writes to Φ(e,Vs) and
Φ(e,Vt). Since we do not longer maintain the pin count values, we need another synchronization

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:28 L. Gottesbüren et al.

mechanism to decide if a node move removes an edge from the cut or makes it a cut edge, and
based on that attribute a reduction or an increase by the weight of the edge to the move.

We therefore use an array B of size m (initialized with ⊥) to synchronize the node moves for
each edge. To compute the attributed gain of a node move u from block Vs to Vt , we iterate over
all incident edges e = {u,v} ∈ I (u) and write the target block Vt of u to B[e] using an atomic
compare-and-swap operation. If the operation succeeds, no other thread has moved its neighbor
v yet. In this case, e becomes an internal edge if Vt = Π[v] (reduces the edge cut by ω(e)) and a
cut edge otherwise (increases the edge cut by ω(e)). If we do not succeed in setting B[e] from ⊥ to
Vt , another thread has already moved or is currently moving v to another block. In both cases, its
target block is B[e] and we can compute the attributed gain value for edge e as before by comparing
Vt and B[e]. After calculating the attributed gain value for each net e ∈ I (u), we set the block ID of
u to Vt . Note that the algorithm only works when each node is moved at most once, as it is done
in our refinement algorithms (B[e] values are reset to ⊥ after each refinement round).

11 DETERMINISTIC PARTITIONING

A program is externally deterministic [17] if, given the same input, it produces the same output, each
time it is run. Sequential programs are usually deterministic by default, whereas parallel programs
are non-deterministic by default due to randomness in scheduling. Yet, researchers have advocated
the benefits of deterministic parallel programs for several decades [19, 85, 112]. It is easier to debug
the program, to reason about performance and it yields reproducible results: in experiments and
applications. Unfortunately, with the exception of BiPart [88], all published parallel partitioning
algorithms so far are non-deterministic. This stems from concurrently performed moves affecting
other ongoing move decisions.

In this section, we present deterministic versions for a subset of the components in our multilevel
framework: label propagation refinement, heavy-edge clustering for coarsening, and the Louvain
community detection method [18] (optimizing the popular modularity metric), which we used to
guide coarsening decisions. These clustering algorithms all follow the local moving scheme. Nodes
are visited asynchronously in parallel and are moved to the best cluster in their neighborhood.

To achieve determinism, we use the synchronous local moving approach which is popular in
distributed Louvain implementations for community detection [54]. Moves are calculated but not
applied until the end of a local moving round and thus do not influence one another. The difficult
part and difference to prior work is that not all calculated moves can be applied, for example due
to the balance constraint. We must select a subset that is as profitable as possible. We also break
down each round into further sub-rounds, to trade off more frequent synchronization for more
accurate gains.

Except for the use of non-internally deterministic sub-routines such as sorting, group-by, and
emitting elements to a collection in parallel, our algorithms are internally deterministic, i.e., addi-
tionally pass through the same internal states on each run [17].

Deterministic Label Propagation Refinement. In synchronous label propagation, we first calcu-
late the highest gain move for each node in the current sub-round. In a second step, we perform
balance-preserving swaps between block pairs, prioritized by the gains of the calculated moves.
This generalizes a previous approach in SocialHash [66] to weighted hypergraphs, and thus al-
lows the use in a multilevel framework.

For each block pair (Vs ,Vt), we sort the two move sequences Mst fromVs toVt and Mts fromVt

toVs by gain and then select a prefix Mst [0 : i] and Mts [0 : j], from each sequence to apply. We use
the node ID as tie-breaker for determinism. Let x(i, j) �

∑i−1
a=0 c(Mst [a]) −

∑j−1
a=0 c(Mts [a]) be the

weight added to blockVt and removed from blockVs after swapping the nodes in the corresponding

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:29

prefixes. We call i, j feasible if −(Lmax − c(Vs)) ≤ x(i, j) ≤ Lmax − c(Vt), i.e., after the swaps the
partition is still balanced. To maximize gain, we look for the longest feasible prefixes. This can be
computed similar to merging two sorted arrays. Keep two pointers i, j to the current prefixes of
Mst [0 : i],Mts [0 : j]. In each step advance the pointer of the sequence whose source block receives
more weight, i.e., advance j if x(i, j) < 0 or i if x(i, j) > 0. If x(i, j) = 0 advance either, if the end of
the corresponding sequence is not yet reached.

The parallelization follows a common idea for parallel merging. We first compute the cumu-
lative gains of the sequences via parallel prefix sum operations. Then the following algorithm is
applied recursively to perform the selection. We do binary search to find the smallest index q
in the shorter sequence whose cumulative weight is not less than the cumulative weight of the
middle of the longer sequence. The two sub-sequence pairs to the left and right of the middle
and q can be searched independently in parallel. Let l denote the length of the longer sequence,
then the algorithm does O(l) work and has O(log2(l)) depth. There are parallel merge algorithms
with O(log(l)) depth, but these are more complicated and unlikely to yield faster running time in
practice.

Additionally, we propose two optimizations that are helpful in practice but do not affect the
theoretical running time. If the right parts contain feasible prefixes we return them as we prefer
longer prefixes, otherwise we return the result from the left parts. If the prefixes at the splitting
points are feasible, we can omit the left call. Further, we can omit the right call if the cumulative
weight at the middle of the longer sequence exceeds that at the end of the shorter sequence.

Deterministic Louvain Method. There is no weight constraint on clusters in the Louvain al-
gorithm. Therefore, we can apply all of the calculated moves. However, there is an intricacy with
floating point weights, which we need due to the edge weight model employed [63]. In modularity
optimization with the Louvain method, the cluster volume (weighted degree sum of the cluster) is
part of the move decisions. Usually, the volumes are updated in parallel after a node move [111].
Unfortunately, floating point arithmetic is not associative: different schedules will lead to slightly
different rounded values, which actually resulted in non-deterministic outcomes. One option is to
recompute the volumes after each local moving subround. However, this is substantially slower
than only considering updates from moved nodes, particularly at later stages when fewer nodes
are moved. Therefore, we have to establish an order in which the volume updates of each cluster
are aggregated. First we group the updates by cluster, then sort by node ID. Subsequently, we
perform a reduction on each group with static load balancing, which is needed for determinism.

Deterministic Clustering for Coarsening. During coarsening, we bound the weight of the heaviest
cluster by an upper weight limit cmax, to ensure that initial partitioning can find a feasible solution.
The difference to refinement is that we have significantly more clusters, and only unclustered
nodes (singletons) can move. Therefore, the approach from refinement is not applicable here, which
is why we use a simpler scheme.

Each unclustered node in a sub-round first determines its desired target cluster according to the
heavy-edge rating function. Then, we group the moves by the target cluster, and sort them in order
of ascending node weight and use the node ID as tie-breaker for determinism. For each group, we
compute a prefix sum on the node weights, and apply the longest prefix that does not exceed the
weight constraint, rejecting the remaining moves.

As an optimization to reduce the amount of work in the group-by stage (second largest bottle-
neck), we already sum up cluster weights during the target-cluster calculation step (main bottle-
neck). If all moves into a cluster combined do not exceed the weight constraint, we simply approve
them all and exclude the target cluster from the group-by stage.

For further details such as implementation details and group-by mechanisms used, as well as
initial partitioning and contraction algorithms, we refer to [43, 49].

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:30 L. Gottesbüren et al.

Fig. 8. Summary of different properties for our benchmark sets. It shows for each (hyper)graph (points), the

number of nodes |V |, nets |E | and pins |P |, as well as the median and maximum net size (|̃e | and Δe) and

node degree (d̃(v) and Δv).

12 EXPERIMENTS

All presented algorithms have been made available in the Multi-Threaded Karlsruhe Hypergraph

Partitioning framework Mt-KaHyPar.3 It implements a parallel multilevel and n-level partitioning
algorithm, as well as a deterministic version of the multilevel algorithm and optimized data struc-
tures for graph partitioning. Mt-KaHyPar optimizes the connectivity metric for hypergraph parti-
tioning and the edge cut metric for graph partitioning.

The following experimental evaluation is structured as follows: We first decribe the four differ-
ent benchmark sets composed of over 800 graphs and hypergraphs, and discuss the experimental
setup and methodology used in our experiments. We then evaluate the time-quality trade-offs
and speedups of Mt-KaHyPar’s different partitioning configurations, and analyze the running
time of its algorithmic components in Section 12.1. We conclude the evaluation by comparing
Mt-KaHyPar to 25 different sequential and parallel graph and hypergraph partitioning algorithms
in Section 12.2.

Instances. We assembled four different benchmark sets. Two of the sets consist of graphs (G),
while the other two consists of hypergraphs (HG). The sets are further subdivided into medium-
sized (M) and large instances (L). We abbreviate the name of a benchmark set, e.g., with LHG. The
baseline denotes the size of the instances, while the subscript indicates whether it contains graphs
or hypergraphs. We summarize the properties of the instances contained in the benchmark sets
in Figure 8.4 Note that all graphs and hypergraphs have unit node and (hyper)edge weights.

The hypergraph instances are derived from four sources encompassing three application
domains: the ISPD98 VLSI Circuit Benchmark Suite [6] (Ispd98), the DAC 2012 Routability-Driven
Placement Contest [116] (Dac2012), the SuiteSparse Matrix Collection [32] (Spm), and the Interna-
tional SAT Competition 2014 [16] (Sat14). We interpret the rows and columns of a sparse matrix
as nets and nodes, and a non-zero entry in a cell (i, j) indicates whether or not node j is a pin of
net i [28]. We translate satisfiability formulas into three different hypergraph representations [89].
The Primal resp. Literal representation interpretes the variables resp. literals as nodes, while

3Mt-KaHyPar is publicly available from https://github.com/kahypar/mt-kahypar
4We made all benchmark sets and detailed statistics of their properties publicly available from https://algo2.iti.kit.edu/
heuer/talg/

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://github.com/kahypar/mt-kahypar
https://algo2.iti.kit.edu/heuer/talg/

Scalable High-Quality Hypergraph Partitioning 9:31

the clauses form the hyperedges spanning the corresponding nodes. The Dual representation
models the clauses as nodes and variables as hyperedges.

Set MHG contains all 488 hypergraphs from the well-established benchmark set of Heuer and
Schlag [63] (18 Ispd98, 10 Dac2012, 184 Spm, 276 Primal, Literal, and Dual instances). The
benchmark set LHG is composed of 94 large hypergraphs that we selected in order to have more
inputs where parallelization is important and useful. It contains the 8 largest Sat14 instances
from set MHG that we enhanced with 6 even larger satisfiability formulas from the International
SAT Competition 2014 [16] (3 · 14 = 42 different hypergraph representations). We also included
42 sparse matrices with at least 15 million non-zeros, randomly sampled from the SuiteSparse
Matrix Collection [32]. Additionally, we added all Dac2012 instances from set MHG. The largest
hypergraph of set LHG has roughly two billion pins.

Our graph benchmark sets are composed of instances from the 10th DIMACS Implementation
Challenge [13] (Dimacs), the Stanford Large Network Dataset Collection [87] and the Laborat-
ory for Web Algorithms [79] (Social Networks), the DAC 2012 Routability-Driven Placement
Contest [116] (Dac2012), the SuiteSparse Matrix Collection [32, 123] (Spm), and several randomly
generated graphs [39, 77] (Random Graphs).

Set MG was initially assembled by Gottesbüren et al. [48] (195 graphs) from which we excluded
the 39 largest graphs and additionally added 16 social networks from the Stanford Large Network
Dataset Collection [87] (114 Dimacs, 30 Social Networks, 15 Random Graphs, 3 Spm, and 10
Dac2012 instances). The benchmark set LG contains 38 out of 42 instances from a graph collection
assembled by Ahkremtsev [2] (four instances were considered as too large as they were used to
evaluate external memory algorithms). Additionally, we enhanced set LG with 15 graphs that we
excluded from set MG and were not contained in set LG yet (16 Dimacs, 16 Social Networks, 15
Random Graphs, and 6 Spm instances). The largest graph of set LG has roughly two billion edges.

Experimental Setup. Experiments on medium-sized instances (set MG and MHG) run on a cluster
of Intel Xeon Gold 6230 processors (2 sockets with 20 cores each) running at 2.1 GHz with 96GB
RAM. In these experiments, we partition each (hyper)graph ten times using different random seeds
into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks with an allowed imbalance of ε = 3% and a time limit of
eight hours. Experiments on large instances (set LG and LHG) are done on an AMD EPYC 7702
processor (1 socket with 64 cores) running at 2.0–3.5 GHz with 1024GB RAM. Here, we partition
each (hyper)graph three times using different random seeds intok ∈ {2, 8, 16, 64} blocks with an al-
lowed imbalance of ε = 3% and a time limit of two hours. Note that we restrict the parameter space
for experiments on large instances due to limited computational resources. For graph partitioning,
we configure the algorithms to optimize the edge cut metric, while we focus on the connectivity
metric for hypergraphs. We will also refer to both metrics as the solution quality of a partition.

Aggregating Performance Numbers. We call a (hyper)graph partitioned into k blocks an instance.
For each instance, we aggregate running times and the solution quality using the arithmetic mean
over all seeds. To further aggregate over multiple instances, we use the geometric mean for abso-
lute running times and self-relative speedups. If all runs of an algorithm produced an imbalanced
partition or ran into the time limit on an instance, we consider the solution as infeasible. In plots,
we mark imbalanced solutions with ✗ and similarly instances that timed out with �. Runs with
imbalanced partitions are not excluded from aggregated running times. For runs that exceeded the
time limit, we use the time limit itself in the aggregates. When comparing running times, we say
that an algorithmA is faster than B by a factor of x on average if x := tB/tA > 1 where tA and tB
are geometric mean running times of A and B.

Performance Profiles. Performance profiles can be used to compare the solution quality of dif-
ferent algorithms [35]. Let X be the set of all algorithms, I the set of instances, and qA(I) the

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:32 L. Gottesbüren et al.

quality of algorithm A ∈ X on instance I ∈ I (qA(I) is the arithmetic mean over all seeds).
For each algorithm A, performance profiles show the fraction of instances (y-axis) for which
qA(I) ≤ τ · Best(I), where τ is on the x-axis and Best(I) := minA′∈X qA′(I) is the best solution
produced by an algorithm A′ ∈ X for an instance I ∈ I. For τ = 1, the y-value indicates the
percentage of instances for which an algorithmA ∈ X performs best. Achieving higher fractions
at smaller τ values is considered better. The ✗- and �-tick indicates the fraction of instances for
which all runs of that algorithm produced an imbalanced solution or timed out. Note that these
plots relate the quality of an algorithm to the best solution and thus do not permit a full ranking
of three or more algorithms.

Effectiveness Tests. Ahkremtsev et al. [4] introduce effectiveness tests to compare solution quality
when two algorithms are given a similar running time by performing additional repetitions with
the faster algorithm. Following this approach, we generate virtual instances that we compare using
performance profiles. Consider two algorithms A and B, and an instance I . We first sample one
run of both algorithms for instance I . Let t1

A , t
1
B be their running times and assume that t1

A ≤ t1
B .

We then sample additional runs without replacement for A until their accumulated time exceeds
t1
B or all runs have been sampled. Let t2

A , . . . , t
l
A denote their running times. We accept the last

run with probability (t1
B −

∑l−1
i=1 t

i
A)/t

l
A so that the expected time for the sampled runs ofA equals

t1
B . The solution quality is the minimum out of the sampled runs. For each instance, we generate

10 virtual instances.

Statistical Significance Tests. We use the Wilcoxon signed-rank test [122] to determine whether
the difference of the solutions produced by two algorithms is statistically significant. At a 1% sig-
nificance level (p ≤ 0.01), a Z-score with |Z | > 2.576 is deemed significant [22, p. 180].

12.1 Evaluation of Framework Configurations

In this section, we present a detailed evaluation of our shared-memory partitioning algorithm
Mt-KaHyPar. We first describe its different configurations and compare them regarding solution
quality and running time. We then discuss the running times of the different algorithmic compon-
ents, present speedups, and evaluate the impact of our optimizations for plain graphs.

Framework Configurations. The Mt-KaHyPar framework provides a multilevel (Mt-KaHyPar-D,
Default) and n-level partitioning algorithm (Mt-KaHyPar-Q, Quality), as well as configurations
extending them with flow-based refinement (Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F, Flows). It
also implements a deterministic version of the multilevel algorithm (Mt-KaHyPar-SDet, Speed-
Deterministic), which does not use the FM algorithm. The code is written in C++17, parallel-
ized using the TBB parallelization library [96], and compiled using g++9.2 with the flags -O3
-mtune=native -march=native. All of these algorithms have a large number of configuration op-
tions and were carefully tuned to provide the best trade-off between solution quality and running
time. However, a detailed parameter tuning study is beyond the scope of this paper. We already
mentioned specific choices for relevant parameters in the text and refer the reader to our confer-
ence publications [43, 46, 47, 50] and the dissertation of Heuer [60, see Table 5.1 on p. 98–99] for
a detailed overview.5

Time-Quality Trade-Off. Figure 9 compares the solution quality of the partitions produced by the
different configurations of Mt-KaHyPar and their running times relative to Mt-KaHyPar-D on set

5Parameter tuning was done on a subset MP of set MHG that consists of 100 instances not contained in set LHG. We compared
the quality produced by different partitioning algorithms on set MHG and MHG\MP using performance profiles and found
that they do not differ [60, see Figure 8.1 on p. 160]. Thus, we decided to include the parameter tuning instances in the final
evaluation to increase the evidence of the following experimental results.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:33

Fig. 9. Performance profiles and running times comparing the different configurations of Mt-KaHyPar ex-
ecuted with 10 threads on set MHG.

MHG. The configurations can be ranked from lowest to highest quality as follows: Mt-KaHyPar-
SDet (geometric mean running time 1.25s), Mt-KaHyPar-D (0.88s), Mt-KaHyPar-Q (2.99s), Mt-
KaHyPar-D-F (2.73s), and Mt-KaHyPar-Q-F (5.08s). The ranking looks similar for running times
except for Mt-KaHyPar-D which is faster than Mt-KaHyPar-SDet. However, this changes when
we compare their running times on the larger instances of set LHG. Here, our deterministic config-
uration is faster than Mt-KaHyPar-D (Mt-KaHyPar-SDet: 3.14s vs Mt-KaHyPar-D: 4.65s with 64
threads). For smaller instances, initial partitioning is the most time-consuming component since
we stop coarsening when we reach 160k nodes which can be close to the original number of nodes
for some instances (e.g., 10240 nodes for k = 64). To reduce the running time of initial partitioning,
Mt-KaHyPar-D adaptively adjusts the number of repetitions of the different algorithms in the bi-
partitioning portfolio based on their success so far. For larger instances, the smallest hypergraph
is often significantly smaller than the input, and therefore the running time of initial partitioning
becomes negligible compared to the other phases.

The median improvement in solution quality of Mt-KaHyPar-D over Mt-KaHyPar-SDet is 6%,
while flow-based refinement (Mt-KaHyPar-D-F) improves Mt-KaHyPar-D by 4.2% in the median
at the cost of a 3 times slower running time on average. When we compare the multilevel (Mt-
KaHyPar-D) and n-level partitioning algorithm (Mt-KaHyPar-Q), we see that n-level partitioning
produces partitions that are 1.9% better than those produced by our multilevel algorithm in the
median, but its running time is 3.4 times slower on average. The differences in solution quality
and running time are less pronounced when both configurations use flow-based refinement (me-
dian improvement of Mt-KaHyPar-Q-F over Mt-KaHyPar-D-F is 0.6%). Note that multilevel parti-
tioning with flow-based refinement produces better partitions than our n-level configuration (2%),
while it is also slightly faster.

We have seen that using stronger refinement algorithms leads to substantially better solution
quality at the cost of higher running times. Moreover, traditional multilevel algorithms can produce
better partitions than n-level algorithms when flow-based refinement is used.

Effectiveness Tests. Our n-level algorithm computes better partitions than our multilevel al-
gorithm without flow-based refinement, but is 3 times slower on average. When both configur-
ations use flow-based refinement, the difference in solution quality becomes less pronounced. We
therefore use effectiveness tests to compare Mt-KaHyPar-D(-F) and Mt-KaHyPar-Q(-F) when both
are given the same amount of time by performing additional repetitions with the faster algorithm
until the accumulated running time equals the running time of the slower algorithm.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:34 L. Gottesbüren et al.

Fig. 10. Effectiveness tests comparing Mt-KaHyPar-D and Mt-KaHyPar-Q (left), and both configurations
that extend them with flow-based refinement (right) on set MHG.

Figure 10 shows the results of these experiments. As we can see, the performance lines of
Mt-KaHyPar-D(-F) and Mt-KaHyPar-Q(-F) are almost identical in the performance profiles. This
means that Mt-KaHyPar-D(-F) computes partitions of comparable quality to itsn-level counterpart
when we give more time for additional repetitions.

In contrast to the prevalent perception in the literature that more levels lead to better partition-
ing results [7, 99, 104], we showed that already a logarithmic numbers of levels suffices to compute
solutions of high quality. However, we still see a large potential in the n-level scheme as it provides
a greater design space for future improvements.

Running Time of Algorithmic Components. We now analyze the running times of the different
algorithmic components of Mt-KaHyPar on set LHG.6 Figure 11 shows the fraction of instances (x-
axis) for which the share of a component on the total execution time is ≥ y% for each configuration
of Mt-KaHyPar. The intersection of x = 0.5 with the line of a component is the median share of
the component on the overall partitioning time.

The most time-consuming components of Mt-KaHyPar-D are preprocessing (consisting of the
community detection algorithm presented in Section 4.3), coarsening, and the FM algorithm. These
components have similar shares on the total partitioning time, which is between 21% and 23% in
the median. However, there are some long-running outliers for the FM algorithm on instances with
many large hyperedges. Here, the FM searches tend to move more nodes due to many zero-gain
moves. The median share of initial partitioning on the total execution time is 8.3%. Longer running
times can be observed for instances where we do not reach the contraction limit as, e.g., social
networks with highly-skewed node degree distributions. The running time of label propagation is
negligible on most of the instances.

In the deterministic version of Mt-KaHyPar, preprocessing (median share on the total execution
time is 42.7%) and coarsening (28.1%) takes the most time, while flow-based refinement (77.8%)
dominates the running time of Mt-KaHyPar-D-F (the same is holds for Mt-KaHyPar-Q-F, which
is why it is omitted in the plot). In our n-level partitioning algorithm, the most time-consuming
components are coarsening (16%), batch uncontractions (17.3%), and the localized version of the
FM algorithm (22.1%).

6Since initial partitioning uses most of the other components within multilevel recursive bipartitioning, we evaluate run-
ning times on the larger instances of set LHG such that initial partitioning becomes less time-consuming as explained
earlier. We evaluated the solution quality of Mt-KaHyPar’s different configurations on set MHG due to the effectiveness
tests, which require a large number of repetitions per instance (10 repetitions on set MHG vs 3 repetitions on set LHG).

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:35

Fig. 11. Running time shares of the algorithmic components on the total execution time of the different
configurations of Mt-KaHyPar. For Mt-KaHyPar-Q, label propagation and FM corresponds to their localized
versions that run after each batch uncontraction, while Global FM refers to the FM version that runs on the
entire hypergraph after restoring identical nets.

Scalability. In Figure 12 and 13, and Table 1, we summarize self-relative speedups of Mt-
KaHyPar for each configuration and the different phases of the multilevel scheme with an
increasing number of threads t ∈ {1, 4, 16, 64}. The scalability experiments run on set LHG. How-
ever, we used a subset for Mt-KaHyPar-Q (77 out of 94 hypergraphs) and Mt-KaHyPar-D-F (76 out
of 94 hypergraphs) to ensure reasonable running times. This set consists of instances where Mt-
KaHyPar-Q/-D-F was able to finish in under 600 seconds with 64 threads for all tested values of k .
The experiment still took 6 weeks to complete for each configuration. Note that we only rerun the
experiments for Mt-KaHyPar-SDet/-D for this work, while the speedups of Mt-KaHyPar-Q/-D-F
are based on the data from the corresponding conference publications [46, 47] due to the high
time requirements. In the plot, we represent the speedup (y-axis) of each instance as a point and
the centered rolling geometric mean over the points with a window size of 25 as a line. The x-axis
shows the single-threaded running time of the corresponding configuration resp. component.7

7In contrast to many other publications in the parallel partitioning community, we do not correlate speedups to any of the
common hypergraph metrics (such as the number of pins). We found that the running time often depends on a variety of
different factors. Fitting suitable parameters for a combination of the metrics seems much more complicated than plotting
against sequential running time, which is often nicely correlated with speedups.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:36 L. Gottesbüren et al.

Fig. 12. Speedups of Mt-KaHyPar-SDet (left), Mt-KaHyPar-D (middle), and Mt-KaHyPar-Q (right).

The overall geometric mean speedup of Mt-KaHyPar-D is 3.5 for t = 4, 10.6 for t = 16, and
20.5 for t = 64. If we only consider instances with a single-threaded running time ≥ 100s, the
geometric mean speedup increases to 22.3 for t = 64. For t = 4, the speedup is at least 3 on 89.1%
of the instances. The community detection algorithm (referred to as preprocessing) and coarsening
share many similarities in their implementation and both show reliable speedups for an increasing
number of threads. For initial partitioning and the uncoarsening phase, we observe that longer
single-threaded execution times leads to substantially better speedups. The most time-consuming

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:37

Fig. 13. Speedups of Mt-KaHyPar-D-F and flow-based refinement for different values of k .

Table 1. Geometric mean speedups of the total execution time, preprocessing (P), coarsening (C), initial
partitioning (IP), and uncoarsening (UC) of the different configurations of Mt-KaHyPar over all

instances and instances with a single-threaded time ≥ 100s

Mt-KaHyPar-SDet Mt-KaHyPar-D Mt-KaHyPar-Q Mt-KaHyPar-D-F
Num. Threads All ≥ 100s All ≥ 100s All ≥ 100s All ≥ 100s

Total
4 3.9 3.8 3.5 3.3 3.7 3.7 3.1 3.1

16 12.8 12.5 10.6 10.4 11.9 12.5 7.4 8.4
64 28.8 29.6 20.5 22.3 23.7 25.9 10.6 14.5

P
4 4.1 3.9 3.1 2.8 3.4 2.8 3.3 3

16 12.6 12.5 9.1 9.4 10 10.3 9.6 10.1
64 25.7 27 17.4 23.1 19.7 28.6 15.2 22.3

C
4 3.9 3.7 3.6 3.3 3.3 3.4 3.7 3.3

16 12.4 12.4 10.9 11.1 11.2 13 11.4 12
64 27.4 29.8 22.9 27 25.4 36.4 22.4 32.1

IP
4 3.8 3.4 3.7 3.2 3.7 3.8 3.8 3.5

16 13.5 12.4 11.5 10.8 10.1 11.2 11.2 12
64 34.4 33.8 17.9 18.8 11.6 18.2 13.6 19.7

UC
4 4 3.9 3.4 3.5 3.9 3.9 2.9 3.1

16 13 13.8 9.8 11.6 12 12.7 5.9 8.1
64 28.9 32.2 17.3 25.6 24.3 26.5 7.8 13.9

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:38 L. Gottesbüren et al.

Fig. 14. Performance profiles comparing the solution quality of Mt-KaHyPar with an increasing number of
threads on set LHG.

component of the uncoarsening phase is the FM algorithm. The geometric mean speedup of
the FM algorithm is 21.1 for t = 64, which increases to 27.4 for instances with sequential
time ≥ 100s.

If we compare the speedups of Mt-KaHyPar-SDet to its non-deterministic counterpart Mt-
KaHyPar-D, we see that it achieves much more reliable speedups. Especially, the speedups of initial
partitioning increase substantially with a geometric mean speedup of 34.4 for t = 64. Since Mt-
KaHyPar-SDet does not adaptively adjust the number of repetitions in the bipartitioning portfolio,
it performs more work in the initial partitioning phase and is not affected by non-deterministic de-
cisions, which increases its scalability (geometric mean running time of initial partitioning is 9.36s
in Mt-KaHyPar-SDet vs 4.23s in Mt-KaHyPar-D for t = 1). The overall geometric mean speedup
of Mt-KaHyPar-SDet is 3.9 for t = 4, 12.8 for t = 16, and 28.8 for t = 64.

The coarsening and batch uncontraction algorithm are the components that differentiate our
n-level partitioning algorithm Mt-KaHyPar-Q from the other multilevel algorithms. Both com-
ponents exhibit good speedups, while coarsening (geometric mean speedup is 25.4 for t = 64)
scales slightly better than the batch uncontractions (23.2 for t = 64). Moreover, the speedups of
the localized version of FM algorithm that runs after each batch uncontraction operation are less
pronounced than the speedups of the FM algorithm in Mt-KaHyPar-D (geometric mean speedup
19 vs 21.1 for t = 64). Note that we also observe super-linear speedups, which are caused by
non-deterministic coarsening decisions. The geometric mean speedup of Mt-KaHyPar-Q is 3.7
for t = 4, 11.9 for t = 16, and 23.7 for t = 64.

Mt-KaHyPar-D-F extends Mt-KaHyPar-D with flow-based refinement. We therefore only show
speedups for this component in Figure 13. Unfortunately, the speedups are less promising as for
the other configurations. The geometric mean speedup of Mt-KaHyPar-D-F is 3.1 for t = 4, 7.4
for t = 16, and 10.6 for t = 64. However, we achieve better speedups for larger values of k where
all parallelism is leveraged in the scheduling algorithm, and none in the FlowCutter algorithm.
For k = 2, the scalability depends on our parallel maximum flow algorithm for which we observe
similar speedups as reported in Reference [15] – the work on which our parallel implementation
is based on. Thus, increasing the scalability of maximum flow algorithms is an important avenue
for future research.

In Figure 14, we compare the solution quality of the different configurations when increasing the
number of threads. We can see that using more threads adversely affects the solution quality of the
partitions produced by Mt-KaHyPar-Q, but only by a small margin (solutions are 0.4% better with
one compared to 64 threads). Mt-KaHyPar-D and Mt-KaHyPar-D-F produce comparable solutions
when increasing the number of threads.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:39

Fig. 15. Performance profile (left) and speedups (right) of coarsening (C), initial partitioning (IP), label
propagation (LP), and FM refinement comparing Mt-KaHyPar-D with and without our optimized graph
data structure on set LG.

Effects of Graph Optimizations. In Section 10, we presented optimized data structures for graph
partitioning used as a drop-in replacement in our partitioning algorithm. Figure 15 shows their
impact on the solution quality and speedups for different algorithmic components of Mt-KaHyPar-
D on set LG. As it can be seen, replacing our hypergraph with the graph data structures does
not adversely affect the solution quality of Mt-KaHyPar-D as both performance lines are almost
identical and converge quickly towards y = 1.

The coarsening algorithm benefits most from our optimized graph data structure (geometric
mean speedup 2.48). The hypergraph version computes a clustering of the nodes by iterating over
the pin-lists of nets to aggregate ratings, and subsequently contract that clustering by collapsing
two adjacency arrays (one for the pin-lists and one for the incident nets). The cache-friendly
memory layout for graphs (only one adjacency array for neighbors) leads to faster access times
to enumerate neighbors and to a simpler contraction algorithm. The FM algorithm has the least
promising speedups (1.29). One of the most time-consuming parts of the algorithm is retrieving
and updating entries from the gain table, which has the same asymptotic worst-case complexity
in both implementations. The initial partitioning phase (1.8) has better speedups than both refine-
ment algorithms but slightly worse speedups than coarsening. This can be explained by the fact
that initial partitioning uses all algorithms within multilevel recursive bipartitioning.

The overall speedup of the graph version of Mt-KaHyPar-D over its hypergraph counterpart is
1.75 on average (geometric mean running time 10.8s vs 18.94s). In the dissertation of Heuer [60,
p. 150–153], we also present an optimized graph data structure for n-level partitioning, which
accelerates Mt-KaHyPar-Q by a factor of 1.91 on average (97.45s vs 186.32s).

12.2 Comparison to Other Systems

We now compare Mt-KaHyPar to existing partitioning algorithms to see if it can improve the state-
of-the-art. We did an extensive research on publicly available partitioning tools and were able to
include 25 different sequential and parallel graph and hypergraph partitioners that we compare
on over 800 graphs and hypergraphs. Thus, to the best of our knowledge, this study represents
the most comprehensive comparison of partitioning algorithms to date. We primarily focus on
multilevel algorithms as it has been shown that they provide an excellent trade-off between solu-
tion quality and running time [55, 56]. While there are even faster partitioning methods that omit
the multilevel scheme, it has been shown that they are inferior to multilevel algorithms in terms
of solution quality [55, 104]. Moreover, algorithms that achieve even higher solution quality than

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:40 L. Gottesbüren et al.

Table 2. Listing of graph and hypergraph partitioning algorithms (GP and HGP) included in the
experimental evaluation. For algorithms publicly available on GitHub, we report the first seven

characters of the corresponding commit hash indicating the used version

Sequential Parallel

Algorithm Version Algorithm Version Machine Model

G
P

Metis [71, 72] 5.1.0 KaMinPar [48] 29101f6 Shared-Memory
Metis-R and Metis-K Mt-Metis [81–83] 0.6.0 Shared-Memory
KaFFPa [101, 107] f239f7a ParMetis [70] 4.0.3 Distributed-Memory
KaFFPa-Fast(S)/-Eco(S)/-Strong(S) Mt-KaHIP [2, 4] 30de737 Shared-Memory
Scotch [95] 6.1.3 ParHIP [91] f239f7a Distributed-Memory

ParHIP-Fast and ParHIP-Eco

H
G

P

PaToH [28] 3.3 Zoltan [34] 3.83 Distributed-Memory
PaToH-D and PaToH-Q BiPart [88] 49a59a6 Shared-Memory
hMetis [69, 73] 2.0pre1
hMetis-R and hMetis-K

KaHyPar [104] 876b776
KaHyPar-CA, r KaHyPar, and kKaHyPar

Mondriaan [115] 4.2.1

multilevel algorithms such as evolutionary algorithms [10, 102] and approaches based on integer
linear programming [57] would not run in a reasonable time frame on our benchmark sets.

We first provide a description of the partitioning algorithms included in our study and explain
how we configured them. We then identify a subset of Pareto-optimal algorithms to which we then
compare Mt-KaHyPar.8

Included Algorithms. Table 2 lists all partitioning algorithms included in the following experi-
mental evaluation. Many of these algorithms provide multiple partitioning configurations offer-
ing different trade-offs in running time and solution quality (e.g., KaFFPa-Fast/-Eco/-Strong, or
the default (-D) and quality preset (-Q) of PaToH), or are based on either recursive bipartition-
ing (e.g., hMetis-R) or direct k-way partitioning (e.g., hMetis-K). The graph partitioner KaFFPa
also provides different settings for partitioning social networks (KaFFPa-FastS/-EcoS/-StrongS).
Thus, we include all three social configurations as well as their non-social counterparts (KaFFPa-
Fast/-Eco/-Strong). For the n-level algorithm KaHyPar, we include the recursive bipartitioning
(rKaHyPar) and direct k-way version (kKaHyPar, which uses similar algorithmic components as
Mt-KaHyPar-Q-F), as well as a configuration without flow-based refinement (KaHyPar-CA, which
uses similar algorithmic components as Mt-KaHyPar-Q).

Unfortunately, we were not able to include the publicly available versions of Parkway [113]
(distributed-memory), PT-Scotch [30] (distributed-memory), and Chaco [56] (sequential). These
algorithms failed with segmentation faults on most instances of our benchmark sets.

Algorithm Configuration. We configure all graph partitioning algorithms to optimize the edge
cut metric, while we optimize the connectivity metric for hypergraph partitioning. We run Mt-
KaHyPar using ten threads for comparisons to sequential algorithms as this is a typical number
of available cores in a modern commodity workstation. We add a suffix to the name of parallel
algorithms indicating the number of threads used, e.g., Mt-KaHyPar 64 for 64 threads. We omit

8We made all experimental results publicly available from https://algo2.iti.kit.edu/heuer/talg/

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://algo2.iti.kit.edu/heuer/talg/

Scalable High-Quality Hypergraph Partitioning 9:41

Table 3. Summary of algorithms (first column) outperforming others (second column)

Sequential Parallel (64 threads)

Base Algo. Outperformed Med. [%] Rel. Slow. Base Algo. Outperformed Med. [%] Rel. Slow.

G
P

Metis-K Metis-R 2.9 1.4 KaMinPar Mt-Metis 0 9.11
Metis-K KaFFPa-Fast 5.8 4.3 KaMinPar ParMetis 4.4 211.2
Metis-K KaFFPa-FastS 2.2 4,79 KaMinPar ParHIP-Fast 2.8 8.18
Metis-K Scotch 2.5 4.66 Mt-KaHIP ParHIP-Eco 2.2 11.62
KaFFPa-EcoS KaFFPa-Eco 3.2 1.04

H
G

P

PaToH-D Mondriaan 0.6 5.63 Zoltan BiPart 69 2.31
KaHyPar-CA hMetis-R 0.5 3.31
KaHyPar-CA hMetis-K 2.6 2.62
kKaHyPar r KaHyPar 2.1 ∼ 1

It shows the median improvement in the connectivity resp. edge cut metric in percent for each baseline over the
outperformed algorithm and the average slowdown of the outperformed relative to the baseline algorithm.

the suffix for sequential algorithms. For graph partitioning, Mt-KaHyPar uses the partition and
graph data structure presented in Section 10.

We use the default settings provided by the authors to configure the different partitioning al-
gorithms. However, for algorithms based on recursive bipartitioning, we adjust the input imbal-

ance parameter ε to ε ′ := (1+ ε)
1

�log2 k� (based on Equation (1) by applying it to the first bipartition-
ing step) when we observed that most of the computed partitions are imbalanced. This applies to
Metis-R, hMetis-R, and BiPart. We further set hMetis to optimize the sum-of-external-degree met-
ric fs (Π) :=

∑
e ∈ECut(Π) λ(e) ·ω(e) = fλ−1(Π)+ fc (Π) (connectivity plus cut-net metric) and calculate

the connectivity metric accordingly. We additionally configure Mt-Metis to use its hill-scanning
refinement algorithm [82]. Moreover, we do not perform multiple repetitions when running Scotch
or BiPart as both do not provide a command line parameter for setting a seed value.

Identifying Competitors. Since some of the included algorithms already outperform others with
regards to solution quality and running time, we compare Mt-KaHyPar only to a subset of Pareto-
optimal partitioning algorithms. Table 3 presents a summary of the results that we used to identify
our main competitors. The data is based on a detailed evaluation that can be found in the disserta-
tion of Heuer [60, see Section 8.2 on p. 160–167]. We added the performance profiles and running
time plots used for this evaluation in Appendix A. In the table, the algorithms in the second column
are outperformed by the algorithms in the first column and are therefore excluded from the follow-
ing experimental evaluation. The included systems can be classified into fast partitioning methods
(PaToH-D, Zoltan, Metis-K, and KaMinPar), configurations providing a good trade-off between
solution quality and running time (PaToH-Q, KaFFPa-EcoS, and Mt-KaHIP), and high-quality par-
titioning algorithms (KaHyPar-CA, kKaHyPar, and KaFFPa-Strong/-StrongS). To simplify the fol-
lowing evaluation, we compare the high quality algorithms to Mt-KaHyPar-Q-F (highest quality
configuration) and all others to Mt-KaHyPar-D (fastest configuration).

Comparison to Sequential Systems. Figure 16 compares Mt-KaHyPar to the sequential hyper-
graph partitioners PaToH and KaHyPar on set MHG. In an individual comparison, Mt-KaHyPar-D
(geometric mean running time 0.88s) computes better partitions than PaToH-D (1.17s) and PaToH-
Q (5.85s) on 82.9% and 58.34% of the instances (median improvement is 6.6% and 1.2%),9 while

9It appears that Mt-KaHyPar-D performs slightly worse than PaToH-Q in the performance profiles. However, if we would
compare them in a performance profile individually, we would see that the performance line of Mt-KaHyPar-D lies strictly
above the line of PaToH-Q. We therefore point out that performance profiles do not permit a full ranking between three
or more algorithms.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:42 L. Gottesbüren et al.

Fig. 16. Performance profiles and running times comparing Mt-KaHyPar to PaToH and KaHyPar on set MHG.

Fig. 17. Performance profiles and running times comparing Mt-KaHyPar to Metis and KaFFPa on set MG.

it achieves a speedup of 1.32 w.r.t. PaToH-D and 6.6 w.r.t. PaToH-Q with ten threads on average.
Thus, Mt-KaHyPar-D outperforms PaToH-D and PaToH-Q.

We can also see that the performance lines of Mt-KaHyPar-Q-F and kKaHyPar – the cur-
rently best sequential hypergraph partitioning algorithm – are almost identical, which means that
both compute partitions of comparable solution quality. Mt-KaHyPar-Q-F (5.08s) is faster than
KaHyPar-CA (28.14s) and kKaHyPar (48.97s) on almost all instances with ten threads (≥ 99%).
This shows that we achieved the same solution quality as the currently highest-quality sequential
partitioning algorithm, while being almost an order of magnitude faster with only ten threads.
Moreover, Mt-KaHyPar-Q-F is also slightly faster than PaToH-Q, while it computes better parti-
tions than PaToH-Q on 87.7% of the instances (median improvement is 6.4%).

Figure 17 compares Mt-KaHyPar to the sequential graph partitioners Metis-K and KaFFPa on set
MG. Mt-KaHyPar-D (geometric mean running time 0.55s) is slightly slower than Metis-K (0.39s)
with ten threads but produces significantly better edge cuts (median improvement is 5.9%). If we
disable the FM algorithm in Mt-KaHyPar-D, we obtain a configuration that is slightly faster than
Metis-K, while the edge cuts are comparable (see Figure 31 in Appendix A).

Mt-KaHyPar-Q-F (5.22s) is faster than KaFFPa-EcoS (10.51s) and produces better edge cuts by
2.9% in the median. The differences between the edge cuts computed by Mt-KaHyPar-Q-F and
KaFFPa-Strong (162.83s) are not statistically significant (Z = −2.3101 and p = 0.02088). Out of all

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:43

Table 4. Geometric mean running times of different sequential (hyper)graph partitioning algorithm and
Mt-KaHyPar-D/-Q-F with an increasing number of threads on set set MG (left) and MHG (right)

Mt-KaHyPar Mt-KaHyPar
Seq. Algo. t[s] Threads -D -Q-F Seq. Algo. t[s] Threads -D -Q-F

Metis-K 0.39 16 0.45 4.23 PaToH-D 1.17 16 0.74 3.98
Metis-R 0.55 10 0.55 5.22 PaToH-Q 5.86 10 0.88 5.08
KaFFPa-Fast 1.69 8 0.61 5.74 Mondriaan 6.62 8 1.08 5.58
Scotch 1.84 4 0.98 8.98 KaHyPar-CA 28.14 4 1.83 9.07
KaFFPa-FastS 1.88 2 1.69 15.64 rKaHyPar 46.10 2 3.33 16.04
KaFFPa-EcoS 10.51 1 3.00 28.56 kKaHyPar 48.98 1 6.24 29.52
KaFFPa-Eco 10.94 hMetis-K 73.75
KaFFPa-Strong 162.83 hMetis-R 93.21
KaFFPa-StrongS 201.99

tested algorithms, KaFFPa-StrongS (201.99s) is the only algorithm producing slightly better edge
cuts than Mt-KaHyPar-Q-F (median improvement is 1%). However, this comes at the cost of a 38.66
times longer running time on average, making the quality improvement questionable in practice.

As we have seen, Mt-KaHyPar-D is faster than most of the sequential algorithms using ten
threads. This raises the question of whether or not the result still holds when we use fewer threads.
We therefore compare the running times of Mt-KaHyPar-D/-Q-F with an increasing number of
threads to the different sequential algorithms on set MG and MHG in Table 4.10 On set MG, Mt-
KaHyPar-D is faster than most of the sequential algorithms using two threads. Metis-K is still
faster than Mt-KaHyPar-D, but their running times become comparable when we use 16 threads.
The sequential time of Mt-KaHyPar-Q-F is almost an order of magnitude faster than the running
time of the best sequential partitioner KaFFPa-StrongS, and it becomes faster than KaFFPa-EcoS
when we use 4 threads. On set MHG, we have to run Mt-KaHyPar-D with 8 threads to achieve
comparable speed to PaToH-D. However, this number decreases to 2 threads when we compare
their running times on the larger instances of set LHG [49, see Figure 4.17]. The sequential time
of Mt-KaHyPar-D is comparable to PaToH-Q, and Mt-KaHyPar-Q-F is significantly faster than its
sequential counterpart kKaHyPar when we use only one thread.

Comparison to Parallel Systems. Figure 18 compares Mt-KaHyPar to the hypergraph partitioners
Zoltan (distributed-memory), BiPart (deterministic shared-memory), and PaToH (sequential) on
set LHG. Note that PaToH-D is fast enough to conduct the experiments on set LHG in a reasonable
time frame, while this is not the case for any of the other sequential partitioners. Despite the fact
that Zoltan has been shown to outperform BiPart (see Table 3), we have included it for a direct
comparison to our deterministic configuration Mt-KaHyPar-SDet.

The median improvement of Mt-KaHyPar-SDet (geometric mean running time 3.14s) over Bi-
Part (29.19s) – the only existing competitor for deterministic partitioning – is 200%, while it is
almost an order of magnitude faster. Our deterministic algorithm also outperforms Zoltan (12.63s,
median improvement is 12%) and the Wilcoxon signed-ranked test reveals that there is no statist-
ically significant difference between the solutions produced by Mt-KaHyPar-SDet and PaToH-D
(51.2s, Z = 1.7314 and p = 0.08337).

Mt-KaHyPar-D (4.64s) is slightly slower than Mt-KaHyPar-SDet, but it computes solutions that
are 23% resp. 6.6% better than those of Zoltan resp. PaToH-D in the median and is still significantly
faster than both algorithms. When flow-based refinement is used (Mt-KaHyPar-D-F, not shown

10Note that increasing the number of threads does not affect the solution quality of Mt-KaHyPar-D/-Q-F, as shown in
Figure 14.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:44 L. Gottesbüren et al.

Fig. 18. Performance profiles and running times comparing Mt-KaHyPar to PaToH and Zoltan on set LHG.

Fig. 19. Performance profiles and running times comparing Mt-KaHyPar to KaMinPar and Mt-KaHIP on
set LG.

in the plots), we achieve a median improvement over Zoltan of 34%. This shows that Mt-KaHyPar
can partition extremely large hypergraph with high solution quality, which was previously only
possible with sequential codes on medium-sized instances.

Figure 19 compares Mt-KaHyPar to the parallel graph partitioner KaMinPar (shared-memory)
and Mt-KaHIP (shared-memory, also implements a parallel version of the FM algorithm) on set LG.
We can see that Mt-KaHyPar-D (10.8s) computes on most of the instances the best solutions. The
median improvement of Mt-KaHyPar-D over Mt-KaHIP (13.69s) is 2.1%, while it is also slightly
faster. Out of all tested algorithms, KaMinPar (2.69s) is the only algorithm that is faster than Mt-
KaHyPar-D, but the edge cuts produced by KaMinPar are worse than those of Mt-KaHyPar-D by
9.9% in the median. On larger graph instances, KaMinPar is the method of choice when speed is
more important than quality, and Mt-KaHyPar should be used if one aims for high solution quality.

Limitations. In this study, we partitioned (hyper)graphs in up to 128 blocks with an allowed
imbalance of ε = 3%. We want to point out that there are still settings where the results of this eval-
uation do not apply. For example, KaMinPar is specifically designed for partitioning graphs into
a large number of blocks (e.g., k ∈ O(

√
n)). In this setting, existing algorithms struggle to find bal-

anced solutions or do not complete in a reasonable time frame [48]. We are integrating KaMinPar’s
deep multilevel partitioning scheme in Mt-KaHyPar and hope to offer support for very large k in

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:45

the near future. Another limitation is the restriction of our algorithms to running in-memory on
a single machine, and thus instances are restricted to the size of currently available RAM. Finally,
partitioning (hyper)graphs with a tight balance constraint (e.g., ε ≈ 0) poses additional challenges
for traditional refinement algorithms as this drastically reduces the set of possible moves.

13 CONCLUSION

We have presented the first set of shared-memory algorithms for partitioning hypergraphs. Our
solver Mt-KaHyPar produces solutions on par with the best sequential codes, while it is faster
than most of the existing parallel algorithms. We demonstrated this achievement in our extensive
experimental evaluation with 25 sequential and parallel graph and hypergraph partitioners tested
on over 800 (hyper)graphs. We contributed parallel formulations for all phases of the multilevel
scheme: a parallel clustering-based coarsening algorithm guided by the community structure of
the input hypergraph obtained via a parallel community detection algorithm, initial partitioning
via parallel recursive bipartitioning using work-stealing, the first fully-parallel FM implementa-
tion, and a parallelization of flow-based refinement. Perhaps the most suprising result is the effi-
cient parallelization of the n-level partitioning scheme, even though we showed that traditional
multilevel algorithms can compute comparable solutions when flow-based refinement is used. Fur-
thermore, we presented multiple techniques to accurately (re)compute gain values for concurrent
node moves, which had not been addressed in parallel partitioning algorithms before. We also
proposed data structure optimizations for plain graphs, making Mt-KaHyPar the state-of-the-art
solver for graph partitioning. Additionally, we devised a deterministic version of our multilevel
algorithm based on the synchronous local moving scheme.

Given that quality improvements often come at the cost of significantly longer running times,
it may be interesting to evaluate the quality-time trade-off of existing tools for applications before
advancing the field of high-quality partitioning. For instances that do not fit into the main memory
of a single machine, translating the techniques presented in this work into the distributed-memory
setting is also an important area for future research. We see further algorithmic improvements in a
localized version of flow-based refinement that runs after each batch uncontraction in the n-level
scheme as well asimproving clustering decisions in the coarsening phase.

APPENDIX

A COMPARISON TO OTHER SYSTEMS

Fig. 20. Performance profiles and running times comparing PaToH-D and Mondriaan on set MHG.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:46 L. Gottesbüren et al.

Fig. 21. Performance profiles and running times comparing KaHyPar-CA and hMetis on set MHG.

Fig. 22. Performance profiles and running times comparing rKaHyPar and kKaHyPar on set MHG.

Fig. 23. Performance profiles and running times comparing Metis-R and Metis-K on set MG.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:47

Fig. 24. Performance profiles and running times comparing Metis-K and KaFFPa-Fast/-FastS on set MG.

Fig. 25. Performance profiles and running times comparing Metis-K and Scotch on set MG.

Fig. 26. Performance profiles and running times comparing KaFFPa-Eco and KaFFPa-EcoS on set MG.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

9:48 L. Gottesbüren et al.

Fig. 27. Performance profiles and running times comparing Zoltan and BiPart on set LHG.

Fig. 28. Performance profiles and running times comparing KaMinPar to Mt-Metis and ParMetis on set LG.

Fig. 29. Performance profiles and running times comparing KaMinPar to ParHIP-Fast on set LG.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

Scalable High-Quality Hypergraph Partitioning 9:49

Fig. 30. Performance profiles and running times comparing Mt-KaHIP to ParHIP-Eco on set LG.

Fig. 31. Performance profiles and running times comparing Mt-KaHyPar-S (Speed, Mt-KaHyPar-D without
FM refinement) to Metis-K on set MG.

REFERENCES

[1] Amine Abou-Rjeili and George Karypis. 2006. Multilevel algorithms for partitioning power-law graphs. In 20th In-

ternational Parallel and Distributed Processing Symposium (IPDPS). IEEE. https://doi.org/10.1109/IPDPS.2006.1639360
[2] Yaroslav Akhremtsev. 2019. Parallel and External High Quality Graph Partitioning. Dissertation. Karlsruhe Institute

of Technology.
[3] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2017. Engineering a direct k-way hyper-

graph partitioning algorithm. In 19th Workshop on Algorithm Engineering & Experiments (ALENEX). SIAM, 28–42.
https://doi.org/10.1137/1.9781611974768.3

[4] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. 2017. High-quality shared-memory graph partitioning.
In European Conference on Parallel Processing (Euro-Par). Springer, 659–671. https://doi.org/10.1007/978-3-319-96983-
1_47

[5] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. 2004. MINCE: A static global variable-ordering heuristic for
SAT search and BDD manipulation. The International Journal of Universal Computer Science 10, 12 (2004), 1562–1596.
https://doi.org/10.3217/jucs-010-12-1562

[6] Charles J. Alpert. 1998. The ISPD98 circuit benchmark suite. In International Symposium on Physical Design (ISPD).
80–85. https://doi.org/10.1145/274535.274546

[7] Charles J. Alpert, Jsen-Hsin Huang, and Andrew B. Kahng. 1997. Multilevel circuit partitioning. In 34th Conference

on Design Automation (DAC). 530–533. https://doi.org/10.1145/266021.266275
[8] Charles J. Alpert and Andrew B. Kahng. 1995. Recent directions in netlist partitioning: A survey. Integration: The

VLSI Journal 19, 1–2 (1995), 1–81. https://doi.org/10.1016/0167-9260(95)00008-4

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1109/IPDPS.2006.1639360
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.3217/jucs-010-12-1562
https://doi.org/10.1145/274535.274546
https://doi.org/10.1145/266021.266275
https://doi.org/10.1016/0167-9260(95)00008-4

9:50 L. Gottesbüren et al.

[9] Richard J. Anderson and João C. Setubal. 1995. A parallel implementation of the push-relabel algorithm for the
maximum flow problem. J. Parallel and Distrib. Comput. 29, 1 (1995), 17–26. https://doi.org/10.1006/jpdc.1995.1103

[10] Robin Andre, Sebastian Schlag, and Christian Schulz. 2018. Memetic multilevel hypergraph partitioning. In Genetic

and Evolutionary Computation Conference (GECCO). ACM, 347–354. https://doi.org/10.1145/3205455.3205475
[11] Pablo Andres-Martinez and Chris Heunen. 2019. Automated distribution of quantum circuits via hypergraph parti-

tioning. Physical Review A 100, 3 (2019), 1–11.
[12] Cevdet Aykanat, Berkant Barla Cambazoglu, and Bora Uçar. 2008. Multi-level direct k-way hypergraph partitioning

with multiple constraints and fixed vertices. Journal of Parallel Distributed Computing 68, 5 (2008), 609–625. https:
//doi.org/10.1016/j.jpdc.2007.09.006

[13] David Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner (Eds.). 2013. Graph Partitioning and Graph

Clustering, 10th DIMACS Implementation Challenge Workshop. Contemporary Mathematics, Vol. 588. American Math-
ematical Society.

[14] Stephen T. Barnard and Horst D. Simon. 1993. A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems. In 6th SIAM Conference on Parallel Processing for Scientific Computing (PPSC).
711–718.

[15] Niklas Baumstark, Guy E. Blelloch, and Julian Shun. 2015. Efficient implementation of a synchronous parallel push-
relabel algorithm. In 23rd European Symposium on Algorithms (ESA), Vol. 9294. Springer, 106–117. https://doi.org/10.
1007/978-3-662-48350-3_10

[16] Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. 2014. The SAT Competition 2014. http://www.
satcompetition.org/2014/

[17] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012. Internally deterministic parallel al-
gorithms can be fast. In PPoPP 2012. https://doi.org/10.1145/2145816.2145840

[18] Vincent D. Blondel, Jean Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment 10 (2008).

[19] Robert L. Bocchino, Vikram Adve, Sarita Adve, and Marc Snir. 2009. Parallel programming must be deterministic by
default. Usenix HotPar 6 (2009).

[20] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran Nikoloski, and Dorothea Wagner.
2008. On modularity clustering. IEEE Transactions on Knowledge and Data Engineering 20, 2 (2008), 172–188. https:
//doi.org/10.1109/TKDE.2007.190689

[21] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. 2016. Recent advances in graph
partitioning. In Algorithm Engineering - Selected Results and Surveys. Vol. 9220. 117–158. https://doi.org/10.1007/978-
3-319-49487-6_4

[22] Michael J. Campbell and Thomas D. V. Swinscow. 2009. Statistics at Square One. BMJ Publishing Group.
[23] Ümit V. Çatalyürek and Cevdet Aykanat. 2001. A fine-grain hypergraph model for 2D decomposition of sparse

matrices. In 15th International Parallel and Distributed Processing Symposium (IPDPS). 118. https://doi.org/10.1109/
IPDPS.2001.925093

[24] Ümit V. Çatalyürek and Cevdet Aykanat. 2001. A hypergraph-partitioning approach for coarse-grain decomposition.
In ACM/IEEE Conference on Supercomputing. ACM, 28. https://doi.org/10.1145/582034.582062

[25] Ümit V. Çatalyürek and Cevdet Aykanat. 2011. PaToH: Partitioning Tool for Hypergraphs.
[26] Ümit V. Çatalyürek, Mehmet Deveci, Kamer Kaya, and Bora Uçar. 2012. Multithreaded clustering for multi-level

hypergraph partitioning. In 26th International Parallel and Distributed Processing Symposium (IPDPS). 848–859. https:
//doi.org/10.1109/IPDPS.2012.81

[27] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, Tobias Heuer, Henning Meyerhenke,
Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier, and Dorothea Wagner. 2022. More recent ad-
vances in (hyper)graph partitioning. Computing Research Repository (CoRR) abs/2205.13202 (2022). arXiv:2205.13202

[28] Ümit V. Catalyurek and Cevdet Aykanat. 1999. Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 10, 7 (1999), 673–693. https://doi.
org/10.1109/71.780863

[29] Boris V. Cherkassky and Andrew V. Goldberg. 1997. On implementing the push-relabel method for the maximum
flow problem. Algorithmica 19, 4 (1997), 390–410. https://doi.org/10.1007/PL00009180

[30] Cédric Chevalier and François Pellegrini. 2008. PT-Scotch: A tool for efficient parallel graph ordering. Parallel Comput.

34, 6–8 (2008), 318–331. https://doi.org/10.1016/j.parco.2007.12.001
[31] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010. Schism: A workload-driven approach to

database replication and partitioning. Proceedings of the VLDB Endowment 3, 1 (2010), 48–57. https://doi.org/10.14778/
1920841.1920853

[32] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Software

38, 1 (11 2011), 1:1–1:25. https://doi.org/10.1145/2049662.2049663

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1006/jpdc.1995.1103
https://doi.org/10.1145/3205455.3205475
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1007/978-3-662-48350-3_10
http://www.satcompetition.org/2014/
https://doi.org/10.1145/2145816.2145840
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1109/IPDPS.2001.925093
https://doi.org/10.1145/582034.582062
https://doi.org/10.1109/IPDPS.2012.81
https://doi.org/10.1109/71.780863
https://doi.org/10.1007/PL00009180
https://doi.org/10.1016/j.parco.2007.12.001
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/2049662.2049663

Scalable High-Quality Hypergraph Partitioning 9:51

[33] Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. 2013. Hypergraph sparsification and its application to parti-
tioning. In 42nd International Conference on Parallel Processing (ICPP). 200–209. https://doi.org/10.1109/ICPP.2013.29

[34] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling, and Ümit V. Çatalyürek. 2006. Parallel hy-
pergraph partitioning for scientific computing. In 20th International Parallel and Distributed Processing Symposium

(IPDPS). IEEE. https://doi.org/10.1109/IPDPS.2006.1639359
[35] Elizabeth D. Dolan and Jorge J. Moré. 2002. Benchmarking optimization software with performance profiles. Math-

ematical Programming 91, 2 (2002), 201–213. https://doi.org/10.1007/s101070100263
[36] Andreas E. Feldmann. 2013. Fast balanced partitioning is hard even on grids and trees. Theoretical Computer Science

485 (2013), 61–68. https://doi.org/10.1016/j.tcs.2013.03.014
[37] Charles M. Fiduccia and Robert M. Mattheyses. 1982. A linear-time heuristic for improving network partitions. In

19th Conference on Design Automation (DAC). 175–181. https://doi.org/10.1145/800263.809204
[38] Lester Randolph Ford and Delbert R. Fulkerson. 1956. Maximal flow through a network. Canadian Journal of Math-

ematics 8 (1956), 399–404. https://doi.org/10.4153/CJM-1956-045-5
[39] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von Looz. 2018. Communication-free massively distributed

graph generation. In 32nd International Parallel and Distributed Processing Symposium (IPDPS). 336–347. https://doi.
org/10.1109/IPDPS.2018.00043

[40] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Vol. 174. W. H. Freeman.

[41] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. 1976. Some simplified NP-complete graph problems.
Theoretical Computer Science 1, 3 (1976), 237–267. https://doi.org/10.1016/0304-3975(76)90059-1

[42] Andrew V. Goldberg and Robert Endre Tarjan. 1988. A new approach to the maximum-flow problem. Journal of the

ACM (JACM) 35, 4 (1988), 921–940. https://doi.org/10.1145/48014.61051
[43] Lars Gottesbüren and Michael Hamann. 2022. Deterministic parallel hypergraph partitioning. In Euro-Par 2022: Par-

allel Processing - 28th International Conference on Parallel and Distributed Computing, Glasgow, UK, August 22–26,

2022, Proceedings (Lecture Notes in Computer Science, Vol. 13440). Springer, 301–316. https://doi.org/10.1007/978-3-
031-12597-3_19

[44] Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner. 2020. Advanced flow-based multilevel
hypergraph partitioning. 18th International Symposium on Experimental Algorithms (SEA) (2020). https://doi.org/10.
4230/LIPIcs.SEA.2020.11

[45] Lars Gottesbüren, Michael Hamann, and Dorothea Wagner. 2019. Evaluation of a flow-based hypergraph bipartition-
ing algorithm. In 27th European Symposium on Algorithms (ESA). 52:1–52:17. https://doi.org/10.4230/LIPIcs.ESA.2019.
52

[46] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. 2022. Parallel flow-based hypergraph partitioning. In 20th In-

ternational Symposium on Experimental Algorithms (SEA) (LIPIcs, Vol. 233). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 5:1–5:21. https://doi.org/10.4230/LIPIcs.SEA.2022.5

[47] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2022. Shared-memory n-level hypergraph
partitioning. In 24th Workshop on Algorithm Engineering & Experiments (ALENEX). SIAM, 131–144. https://doi.org/
10.1137/1.9781611977042.11

[48] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier. 2021. Deep multilevel graph
partitioning. In 29th European Symposium on Algorithms (ESA) (LIPIcs, Vol. 204). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 48:1–48:17. https://doi.org/10.4230/LIPIcs.ESA.2021.48

[49] Lars Gottesbüren. 2022. Parallel and Flow-Based High-Quality Hypergraph Partitioning. Ph. D. Dissertation. Karlsruhe
Institute of Technology.

[50] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2021. Scalable shared-memory hypergraph
partitioning. In 23rd Workshop on Algorithm Engineering & Experiments (ALENEX). SIAM, 16–30. https://doi.org/10.
1137/1.9781611976472.2

[51] Johnnie Gray and Stefanos Kourtis. 2021. Hyper-optimized tensor network contraction. Quantum 5 (2021), 410. https:
//doi.org/10.22331/q-2021-03-15-410

[52] Lars W. Hagen, Dennis J.-H. Huang, and Andrew B. Kahng. 1997. On implementation choices for iterative improve-
ment partitioning algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems 16, 10
(1997), 1199–1205. https://doi.org/10.1109/43.662682

[53] Michael Hamann and Ben Strasser. 2018. Graph bisection with Pareto optimization. ACM Journal of Experimental

Algorithmics (JEA) 23 (2018). https://doi.org/10.1145/3173045
[54] Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz. 2018. Distributed graph clustering using modularity

and map equation. In European Conference on Parallel Processing (Euro-Par). 688–702. https://doi.org/10.1007/978-3-
319-96983-1_49

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1109/ICPP.2013.29
https://doi.org/10.1109/IPDPS.2006.1639359
https://doi.org/10.1007/s101070100263
https://doi.org/10.1016/j.tcs.2013.03.014
https://doi.org/10.1145/800263.809204
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1145/48014.61051
https://doi.org/10.1007/978-3-031-12597-3_19
https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.4230/LIPIcs.ESA.2019.52
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://doi.org/10.1137/1.9781611977042.11
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1109/43.662682
https://doi.org/10.1145/3173045
https://doi.org/10.1007/978-3-319-96983-1_49

9:52 L. Gottesbüren et al.

[55] Scott Hauck and Gaetano Borriello. 1995. An evaluation of bipartitioning techniques. In 16th Conference on Advanced

Research in VLSI (ARVLSI). 383–403.
[56] Bruce Hendrickson and Robert W. Leland. 1995. A multi-level algorithm for partitioning graphs. In Supercomputing.

ACM, 28. https://doi.org/10.1145/224170.224228
[57] Alexandra Henzinger, Alexander Noe, and Christian Schulz. 2020. ILP-based local search for graph partitioning. ACM

Journal of Experimental Algorithmics (JEA) 25 (2020), 1–26. https://doi.org/10.1145/3398634
[58] Tobias Heuer. 2015. Engineering Initial Partitioning Algorithms for Direct k -way Hypergraph Partitioning. Bachelor

Thesis. Karlsruhe Institute of Technology.
[59] Tobias Heuer. 2018. High Quality Hypergraph Partitioning via Max-Flow-Min-Cut Computations. Master Thesis. Karls-

ruhe Institute of Technology.
[60] Tobias Heuer. 2022. Scalable High-Quality Graph and Hypergraph Partitioning. Ph. D. Dissertation. Karlsruhe Institute

of Technology. https://doi.org/10.5445/IR/1000152872
[61] Tobias Heuer, Nikolai Maas, and Sebastian Schlag. 2021. Multilevel hypergraph partitioning with vertex weights

revisited. In 19th International Symposium on Experimental Algorithms (SEA) (LIPIcs, Vol. 190). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 8:1–8:20. https://doi.org/10.4230/LIPIcs.SEA.2021.8

[62] Tobias Heuer, Peter Sanders, and Sebastian Schlag. 2019. Network flow-based refinement for multilevel hypergraph
partitioning. ACM Journal of Experimental Algorithmics (JEA) 24, 1 (09 2019), 2.3:1–2.3:36. https://doi.org/10.1145/
3329872

[63] Tobias Heuer and Sebastian Schlag. 2017. Improving coarsening schemes for hypergraph partitioning by exploiting
community structure. In 16th International Symposium on Experimental Algorithms (SEA). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 21:1–21:19. https://doi.org/10.4230/LIPIcs.SEA.2017.21

[64] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. 2010. Engineering a scalable high quality graph parti-
tioner. In 24th International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1–12. https://doi.org/10.
1109/IPDPS.2010.5470485

[65] T. C. Hu and K. Moerder. 1985. Multiterminal flows in a hypergraph. In VLSI Circuit Layout: Theory and Design. IEEE,
Chapter 3, 87–93.

[66] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita, Yaroslav Akhremtsev, and Alessandro
Presta. 2017. Social hash partitioner: A scalable distributed hypergraph partitioner. Proceedings of the VLDB Endow-

ment 10, 11 (2017), 1418–1429. https://doi.org/10.14778/3137628.3137650
[67] Gökçehan Kara and Can C. Özturan. 2019. Graph coloring based parallel push-relabel algorithm for the maximum

flow problem. ACM Trans. Math. Software 45, 4 (2019), 46:1–46:28. https://doi.org/10.1145/3330481
[68] George Karypis. 2003. Multilevel hypergraph partitioning. In Multilevel Optimization in VLSICAD. Springer, 125–154.
[69] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multilevel hypergraph partitioning: Ap-

plications in VLSI domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7, 1 (1999), 69–79.
https://doi.org/10.1109/92.748202

[70] George Karypis and Vipin Kumar. 1996. Parallel multilevel k-way partitioning scheme for irregular graphs. In
ACM/IEEE Conference on Supercomputing. 35. https://doi.org/10.1109/SC.1996.32

[71] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing 20, 1 (1998), 359–392. https://doi.org/10.1137/S1064827595287997

[72] George Karypis and Vipin Kumar. 1998. Multilevel k-way partitioning scheme for irregular graphs. J. Parallel and

Distrib. Comput. 48, 1 (1998), 96–129. https://doi.org/10.1006/jpdc.1997.1404
[73] George Karypis and Vipin Kumar. 2000. Multilevel k-way hypergraph partitioning. VLSI Design 2000, 3 (2000), 285–

300. https://doi.org/10.1155/2000/19436
[74] Alexander V. Karzanov. 1974. Determining the maximal flow in a network by the method of preflows. In Soviet

Mathematics Doklady, Vol. 15. 434–437.
[75] Enver Kayaaslan, Ali Pinar, Ümit V. Çatalyürek, and Cevdet Aykanat. 2012. Partitioning hypergraphs in scientific

computing applications through vertex separators on graphs. SIAM Journal on Scientific Computing 34, 2 (2012).
https://doi.org/10.1137/100810022

[76] Brian W. Kernighan and Shen Lin. 1970. An efficient heuristic procedure for partitioning graphs. The Bell System

Technical Journal 49, 2 (2 1970), 291–307. https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
[77] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Scalable SIMD-efficient graph processing on GPUs. In

International Conference on Parallel Architectures and Compilation (PACT). 39–50. https://doi.org/10.1109/PACT.2015.
15

[78] K. Ashwin Kumar, Abdul Quamar, Amol Deshpande, and Samir Khuller. 2014. SWORD: Workload-aware data
placement and replica selection for cloud data management systems. The VLDB Journal 23, 6 (2014), 845–870.
https://doi.org/10.1007/s00778-014-0362-1

[79] University of Milano Laboratory of Web Algorithms. [n. d.]. Datasets. http://law.di.unimi.it/datasets.php

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1145/224170.224228
https://doi.org/10.1145/3398634
https://doi.org/10.5445/IR/1000152872
https://doi.org/10.4230/LIPIcs.SEA.2021.8
https://doi.org/10.1145/3329872
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.14778/3137628.3137650
https://doi.org/10.1145/3330481
https://doi.org/10.1109/92.748202
https://doi.org/10.1109/SC.1996.32
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1155/2000/19436
https://doi.org/10.1137/100810022
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1109/PACT.2015.15
https://doi.org/10.1007/s00778-014-0362-1
http://law.di.unimi.it/datasets.php

Scalable High-Quality Hypergraph Partitioning 9:53

[80] Jesper Larsson Träff. 2006. Direct graph k-partitioning with a Kernighan–Lin like heuristic. Operations Research

Letters 34, 6 (Nov. 2006), 621–629. https://doi.org/10.1016/j.orl.2005.10.003
[81] Dominique Lasalle and George Karypis. 2013. Multi-threaded graph partitioning. In 27th International Parallel and

Distributed Processing Symposium (IPDPS). 225–236. https://doi.org/10.1109/IPDPS.2013.50
[82] Dominique LaSalle and George Karypis. 2016. A parallel hill-climbing refinement algorithm for graph partitioning.

In 45th International Conference on Parallel Processing (ICPP). 236–241. https://doi.org/10.1109/ICPP.2016.34
[83] Dominique LaSalle, Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan Sundaram, Pradeep Dubey, and George

Karypis. 2015. Improving graph partitioning for modern graphs and architectures. In 5th Workshop on Irregular

Applications - Architectures and Algorithms IA3. 14:1–14:4. https://doi.org/10.1145/2833179.2833188
[84] Eugene L. Lawler. 1973. Cutsets and partitions of hypergraphs. Networks 3, 3 (1973), 275–285. https://doi.org/10.1002/

net.3230030306
[85] Edward A. Lee. 2006. The problem with threads. Computer 39, 5 (2006), 33–42. https://doi.org/10.1109/MC.2006.180
[86] Thomas Lengauer. 1990. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons. https://doi.org/

10.1017/S0263574700015691
[87] J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/

data
[88] Sepideh Maleki, Udit Agarwal, Martin Burtscher, and Keshav Pingali. 2021. BiPart: A parallel and deterministic hy-

pergraph partitioner. In 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).
161–174. https://doi.org/10.1145/3437801.3441611

[89] Zoltán Á. Mann and Pál A. Papp. 2014. Formula partitioning revisited. In 5th Pragmatics of SAT Workshop. 41–56.
https://doi.org/10.29007/9skn

[90] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. 2008. A new diffusion-based multilevel algorithm
for computing graph partitions of very high quality. In 22nd International Parallel and Distributed Processing Sym-

posium (IPDPS). IEEE, 1–13. https://doi.org/10.1109/IPDPS.2008.4536237
[91] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2017. Parallel graph partitioning for complex networks.

IEEE Transactions on Parallel and Distributed Systems 28, 9 (2017), 2625–2638. https://doi.org/10.1109/TPDS.2017.
2671868

[92] Mark E. J. Newman and Michelle Girvan. 2004. Finding and evaluating community structure in networks. Physical

Review 69 (2 2004). Issue 2.
[93] Vitaly Osipov and Peter Sanders. 2010. n-level graph partitioning. In 18th European Symposium on Algorithms (ESA).

Springer, 278–289. https://doi.org/10.1007/978-3-642-15775-2_24
[94] David A. Papa and Igor L. Markov. 2007. Hypergraph partitioning and clustering. In Handbook of Approximation

Algorithms and Metaheuristics. https://doi.org/10.1201/9781420010749.ch61
[95] François Pellegrini and Jean Roman. 1996. SCOTCH: A software package for static mapping by dual recursive bi-

partitioning of process and architecture graphs. In High-Performance Computing and Networking (HPCN), Vol. 1067.
Springer, 493–498. https://doi.org/10.1007/3-540-61142-8_588

[96] Chuck Pheatt. 2008. Intel threading building blocks. Journal of Computing Sciences in Colleges 23, 4 (2008), 298–298.
[97] Jean-Claude Picard and Maurice Queyranne. 1980. On the structure of all minimum cuts in a network and applica-

tions. Combinatorial Optimization II (1980), 8–16. https://doi.org/10.1007/BF01581031
[98] R. A. Rutman. 1964. An algorithm for placement of interconnected elements based on minimum wire length. In Spring

Joint Computer Conference of the American Federation of Information Processing Societies (AFIPS). ACM, 477–491.
[99] Youssef Saab. 1995. A fast and robust network bisection algorithm. IEEE Trans. Comput. 44, 7 (1995), 903–913. https:

//doi.org/10.1109/12.392848
[100] Laura A. Sanchis. 1989. Multiple-way network partitioning. IEEE Trans. Comput. 38, 1 (1989), 62–81. https://doi.org/

10.1109/12.8730
[101] Peter Sanders and Christian Schulz. 2011. Engineering multilevel graph partitioning algorithms. In 19th European

Symposium on Algorithms (ESA). Springer, 469–480. https://doi.org/10.1007/978-3-642-23719-5_40
[102] Peter Sanders and Christian Schulz. 2012. Distributed evolutionary graph partitioning. In 12th Workshop on Algorithm

Engineering & Experiments (ALENEX). 16–29. https://doi.org/10.1137/1.9781611972924.2
[103] John E. Savage and Markus G. Wloka. 1991. Parallelism in graph-partitioning. J. Parallel and Distrib. Comput. 13,

3 (1991), 257–272. https://doi.org/10.1016/0743-7315(91)90074-J
[104] Sebastian Schlag. 2020. High-Quality Hypergraph Partitioning. Ph. D. Dissertation. Karlsruhe Institute of Technology.

https://doi.org/10.5445/IR/1000105953
[105] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2016. k-

way hypergraph partitioning via n-level recursive bisection. In 18th Workshop on Algorithm Engineering & Experi-

ments (ALENEX). SIAM, 53–67. https://doi.org/10.1137/1.9781611974317.5

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1016/j.orl.2005.10.003
https://doi.org/10.1109/IPDPS.2013.50
https://doi.org/10.1109/ICPP.2016.34
https://doi.org/10.1145/2833179.2833188
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1017/S0263574700015691
http://snap.stanford.edu/data
https://doi.org/10.1145/3437801.3441611
https://doi.org/10.29007/9skn
https://doi.org/10.1109/IPDPS.2008.4536237
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1007/978-3-642-15775-2_24
https://doi.org/10.1201/9781420010749.ch61
https://doi.org/10.1007/3-540-61142-8_588
https://doi.org/10.1007/BF01581031
https://doi.org/10.1109/12.392848
https://doi.org/10.1109/12.8730
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1137/1.9781611972924.2
https://doi.org/10.1016/0743-7315(91)90074-J
https://doi.org/10.5445/IR/1000105953
https://doi.org/10.1137/1.9781611974317.5

9:54 L. Gottesbüren et al.

[106] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Christian Schulz, and Peter Sanders. 2022.
High-quality hypergraph partitioning. ACM Journal of Experimental Algorithmics (JEA) (Mar. 2022). https://doi.org/
10.1145/3529090 Just accepted.

[107] C. Schulz. 2013. High Quality Graph Partitioning. Ph. D. Dissertation. Karlsruhe Institute of Technology.
[108] Daniel G. Schweikert and Brian W. Kernighan. 1972. A proper model for the partitioning of electrical circuits. In 9th

Conference on Design Automation (DAC). ACM, 57–62. https://doi.org/10.1145/800153.804930
[109] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga, and Michael Stonebraker. 2016.

Clay: Fine-grained adaptive partitioning for general database schemas. Proceedings of the VLDB Endowment 10,
4 (2016), 445–456. https://doi.org/10.14778/3025111.3025125

[110] Yossi Shiloach and Uzi Vishkin. 1982. An O(n2 log n) parallel max-flow algorithm. Journal of Algorithms 3, 2 (1982),
128–146. https://doi.org/10.1016/0196-6774(82)90013-X

[111] Christian L. Staudt and Henning Meyerhenke. 2016. Engineering parallel algorithms for community detection in
massive networks. IEEE Transactions on Parallel and Distributed Systems 27, 1 (01 2016), 171–184. https://doi.org/10.
1109/TPDS.2015.2390633

[112] Guy L. Steele. 1990. Making asynchronous parallelism safe for the world. In POPL 90, Frances E. Allen (Ed.). ACM
Press, 218–231. https://doi.org/10.1145/96709.96731

[113] Aleksandar Trifunovic and William J. Knottenbelt. 2004. Parkway 2.0: A parallel multilevel hypergraph partitioning
tool. In 19th International Symposium on Computer and Information Sciences (ISCIS), Vol. 3280. Springer, 789–800.
https://doi.org/10.1007/978-3-540-30182-0_79

[114] Aleksandar Trifunovic and William J. Knottenbelt. 2004. Towards a parallel disk-based algorithm for multilevel k-
way hypergraph partitioning. In 18th International Parallel and Distributed Processing Symposium (IPDPS). https://
doi.org/10.1109/IPDPS.2004.1303286

[115] Brendan Vastenhouw and Rob H. Bisseling. 2005. A two-dimensional data distribution method for parallel sparse
matrix-vector multiplication. SIAM Rev. 47, 1 (2005), 67–95. https://doi.org/10.1137/S0036144502409019

[116] Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and Yaoguang Wei. 2012. The DAC 2012 routability-
driven placement contest and benchmark suite. In 49th Conference on Design Automation (DAC). ACM, 774–782.
https://doi.org/10.1145/2228360.2228500

[117] C. Walshaw. 2003. An Exploration of Multilevel Combinatorial Optimisation. Springer, 71–124.
[118] C. Walshaw. 2004. Multilevel refinement for combinatorial optimisation problems. Annals of Operations Research 131,

1–4 (2004), 325–372. https://doi.org/10.1023/B:ANOR.0000039525.80601.15
[119] Chris Walshaw and Mark Cross. 2000. Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM

Journal on Scientific Computing 22, 1 (2000), 63–80. https://doi.org/10.1137/S1064827598337373
[120] Chris Walshaw and Mark Cross. 2000. Parallel optimisation algorithms for multilevel mesh partitioning. Parallel

Comput. 26, 12 (2000), 1635–1660. https://doi.org/10.1016/S0167-8191(00)00046-6
[121] Chris Walshaw, Mark Cross, and Martin G. Everett. 1997. Parallel dynamic graph partitioning for adaptive unstruc-

tured meshes. J. Parallel and Distrib. Comput. 47, 2 (1997), 102–108. https://doi.org/10.1006/jpdc.1997.1407
[122] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Breakthroughs in Statistics. Springer, 196–202.

https://doi.org/10.1007/978-1-4612-4380-9_16
[123] Samuel Williams, Leonid Oliker, Richard W. Vuduc, John Shalf, Katherine A. Yelick, and James Demmel. 2007. Op-

timization of sparse matrix-vector multiplication on emerging multicore platforms. In International Conference for

High Performance Computing, Networking, Storage and Analysis (SC). ACM Press, 38. https://doi.org/10.1145/1362622.
1362674

[124] Hannah H. Yang and D. F. Wong. 1996. Efficient network flow based min-cut balanced partitioning. IEEE Transactions

on Computer-Aided Design of Integrated Circuits & Systems 15, 12 (1996), 1533–1540. https://doi.org/10.1007/978-1-
4615-0292-0_41

[125] Wenyin Yang, Guojun Wang, Kim-Kwang Raymond Choo, and Shuhong Chen. 2018. HEPart: A balanced hypergraph
partitioning algorithm for big data applications. Future Generation Computer Systems 83 (2018), 250–268. https://doi.
org/10.1016/j.future.2018.01.009

[126] Boyang Yu and Jianping Pan. 2015. Location-aware associated data placement for geo-distributed data-intensive
applications. In IEEE Conference on Computer Communications (INFOCOM). IEEE, 603–611. https://doi.org/10.1109/
INFOCOM.2015.7218428

Received 20 February 2023; revised 18 September 2023; accepted 24 September 2023

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 9. Publication date: January 2024.

https://doi.org/10.1145/3529090
https://doi.org/10.1145/800153.804930
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.1016/0196-6774(82)90013-X
https://doi.org/10.1109/TPDS.2015.2390633
https://doi.org/10.1145/96709.96731
https://doi.org/10.1007/978-3-540-30182-0_79
https://doi.org/10.1109/IPDPS.2004.1303286
https://doi.org/10.1137/S0036144502409019
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1023/B:ANOR.0000039525.80601.15
https://doi.org/10.1137/S1064827598337373
https://doi.org/10.1016/S0167-8191(00)00046-6
https://doi.org/10.1006/jpdc.1997.1407
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1145/1362622.1362674
https://doi.org/10.1007/978-1-4615-0292-0_41
https://doi.org/10.1016/j.future.2018.01.009
https://doi.org/10.1109/INFOCOM.2015.7218428

