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ABSTRACT
Large scale analytics engines have become a core dependency for

modern data-driven enterprises to derive business insights and

drive actions. These engines support a large number of analytic

jobs processing huge volumes of data on a daily basis, and work-

loads are often inundated with overlapping computations across

multiple jobs. Reusing common computation is crucial for efficient

cluster resource utilization and reducing job execution time. De-

tecting common computation is the first and key step for reducing

this computational redundancy. However, detecting equivalence

on large-scale analytics engines requires efficient and scalable solu-
tions that are fully automated. In addition, to maximize computation

reuse, equivalence needs to be detected at the semantic level in-
stead of just the syntactic level (i.e., the ability to detect semantic

equivalence of seemingly different-looking queries). Unfortunately,

existing solutions fall short of satisfying these requirements.

In this paper, we take a major step towards filling this gap by

proposing GEqO, a portable and lightweight machine-learning-

based framework for efficiently identifying semantically equivalent

computations at scale. GEqO introduces two machine-learning-

based filters that quickly prune out nonequivalent subexpressions

and employs a semi-supervised learning feedback loop to iteratively

improve its model with an intelligent sampling mechanism. Further,

with its novel database-agnostic featurization method, GEqO can

transfer the learning from one workload and database to another.

Our extensive empirical evaluation shows that, on TPC-DS-like

queries, GEqO yields significant performance gains—up to 200×
faster than automated verifiers—and finds up to 2× more equiva-

lences than optimizer and signature-based equivalence approaches.

1 INTRODUCTION
Modern data-driven enterprises fundamentally rely on large-scale

analytics engines (e.g., Spark [7], SCOPE [52], Synapse [38], Big-

Query [20], Redshift [23]) to derive business insights and drive

actions. Concretely, engines such as SCOPE process exabytes of

data and execute millions of jobs, with trillions of operators [31]

per cluster [56]. Computational redundancy within these analytics

engines is strikingly common [31, 51], where intermediate results

are duplicated across different queries (i.e., they contain equiva-
lent subexpressions). According to Jindal et al. [32], about 40% of

the jobs in SCOPE contain equivalent subexpressions (i.e., at least

one subexpression is equivalent to a subexpression in another job).

∗
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Because of this pervasive redundancy, identifying and reusing com-

mon computation has long been recognized as a critical technique

to improve query performance and reduce operational costs. For

example, a wide range of tools and approaches for leveraging ma-

terialized views have been developed, including CloudViews [30],

Google Napa [2], and Redshift AutoMV [5]. Common computation

reuse has also been exploited for multi-query optimization [46, 48]

in the context of multiple-query-at-a-time systems.

For all these tools and techniques, detecting equivalent subex-

pressions is the first and crucial step. For example, view selection

algorithms (e.g. [3]) maximize the benefit of materializing compu-

tation that is most redundant in cost or frequency of use, under a

storage or maintenance cost constraint. Similarly, view matching

relies on detecting and leveraging equivalent views to improve

query performance. At the query level, identifying equivalence is

also a crucial step in efficient rewriting (either automatically by an

optimizer or manually by a DBA), where a query is transformed

into an equivalent—but better-performing—variant [21, 22]. Finally,

determining query equivalence is also important in generating func-

tional or performance tests for database implementations [34, 50].

In this paper, we focus on the problem of detecting subexpression
equivalence at scale.1 There are a number of distinct challenges

in doing so. First, the detection process must be automatic due to
the sheer number of developers and jobs involved. Second, scala-

bility is crucial as quadratic pairwise comparison over trillions of

subexpressions is intractable in most current solutions. Third, to

maximize computation reuse, equivalence detection needs to be

sufficiently general to identify common computation expressed in

different ways by different users. This means that a detection algo-

rithm should go beyond merely “judging a book by its cover” (i.e.,

only identifying superficially- or syntactically-equivalent subex-

pressions) but rather “look beneath the surface” to detect semantic
equivalence between subexpressions with dissimilar structures. Fig-

ure 1 shows such an example, where the highlighted subexpressions

differ syntactically but are nonetheless semantically equivalent.

Existing approaches to detecting subexpression equivalence do

not address all of the above challenges. Optimizer-based approaches,

which are used by many classical materialized view selection and

matching algorithms [3, 18], defer to the query optimizer to de-

tect equivalence. This approach lacks generality, given that even

1
This work does not propose a novel view selection or rewriting algorithm. Rather, it

presents a framework designed to accelerate equivalence detection, which is considered

a fundamental step for these and other algorithms.
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Q1: SELECT y, AVG(x) FROM (

SELECT A.x, B.y FROM A, B
WHERE A.joinKey = B.joinKey

AND A.val > B.val + 10
AND B.val > 10

) GROUP BY B.y

Q2: SELECT SUM(x), SUM(y) FROM (

SELECT A.x, B.y FROM B, A
WHERE B.joinKey = A.joinKey

AND B.val + 10 < A.val
AND B.val + 10 > 20
AND A.val > 20

)

Figure 1: Two queries that contain semantically-equivalent
subexpressions highlighted by shaded boxes.

highly-mature optimizers such as SQL Server are missing equiva-

lence rules necessary to identify common scenarios [50]. It is also

inefficient given cloud-scale volumes of complex queries, where the

query optimizer quickly becomes a bottleneck. Manual approaches,

commonly used in many relational OLAP databases—including

state-of-the-art cloud-based analytics systems like Snowflake [12],

BigQuery, and NAPA— require users to manually identify com-

mon computations and create materialized views, which is error-

prone, tedious and simply does not scale. Signature-based view

materialization approaches, like CloudViews [30], use Merkle tree-

like signatures for efficient identification of syntactically-identical

subexpressions. However, this approach sacrifices completeness as

it may miss opportunities for identifying semantically-equivalent

subexpressions, as illustrated in Figure 1. At the other end of the

spectrum, verification-based approaches, such as Cosette [10] and

SPES [54], formally prove the semantic equivalence of queries using

automated proof assistants or SMT solvers. While these approaches

are highly effective, they suffer from scalability issues. Exhaus-

tively evaluating all pairs of subexpressions over a single day of

jobs at cloud-scale would require over a trillion expensive formal

verifications and more than a century of compute time!

In this paper, we introduce GEqO (a General Equivalence
Optimizer) , which addresses the aforementioned challenges. GEqO

is a general framework for efficiently identifying semantically-

equivalent subexpressions at scale. It applies a series of equivalence
filters to sets of subexpressions, enabling accelerated detection.

To ensure correctness, GEqO finally applies an expensive formal

verifier—but only after filtering most nonequivalent subexpressions,

which constitute the vast majority of the pairs. As a result, GEqO

produces subexpression pairs that are, with perfect precision and

near-perfect recall, semantically equivalent.

A desirable equivalence filter has two important properties: it

should (i) admit virtually all of the equivalences (i.e., exhibit a high

true positive rate; TPR) and (ii) reject most non-equivalences (i.e.,

have a high true negative rate; TNR). Table 1 illustrates this for

GEqO’s filters (detailed below), where the TPR is near-perfect, and

the TNR steadily increases until all negatives have been eliminated.

Tomaximize performance, GEqO arranges filters to rapidly reject

“easy” nonequivalent subexpression pairs, with faster filters applied

first, as shown in Table 1. Slower but increasingly complex filters are

then applied to identify more difficult cases. This trade-off allows

GEqO to achieve performance close to optimal, assuming an oracle

that verifies only equivalent pairs, and is almost 200× faster than
verifying all subexpression pairs.

While prior work has established quick-but-low-precision

heuristic-based filters—i.e., matching common table and column

sets [18], which we refer to as schema filter (SF) in Table 1—and

expensive automated verifiers (AV in Table 1) that are slow with

perfect precision, there currently exists no “middle ground”: a way

to filter non-equivalent subexpressions rapidly with high precision.

GEqO fills this gap by introducing two such filters.

First, GEqO’s vector matching filter (VMF) embeds subexpressions

in a learned vector space and identifies likely equivalent pairs by

applying an approximate nearest neighbor search (ANNS). ANNS

is a popular, high-performance technique [16, 45] with moderate

precision. GEqO leverages the VMF to efficiently prune moderately-

difficult cases not handled by the SF, while at the same time ensuring

that equivalence pairs are admitted with high recall.

Next, GEqO’s equivalence model filter (EMF ) employs a novel,

high-precision, supervised ML model trained over a workload sam-

ple to predict semantic equivalence. As we detail below, the EMF
is database- and schema-agnostic and can be easily transferred to

other workloads. As far as we are aware, GEqO is the first work to

present a machine-learning-accelerated framework for detecting

semantic equivalence at scale.

A key challenge in training the EMF is the need for large amounts

of labeled data. Although the cloud makes collecting query work-

loads much more accessible, labeling the equivalent subexpressions

within the workload requires running expensive equivalence ver-

ifiers on all subexpression pairs (i.e., trillions of invocations). To

reduce this cost, GEqO employs a semi-supervised feedback loop

(SSFL) pipeline that iteratively improves the accuracy of the EMF
until it matures. The SSFL employs inexpensive filters (i.e., the SF

and VMF ) to ensure approximately balanced classes in its gener-

ated training data. This approach enables GEqO to both avoid the

cold start training problem and fine-tune its EMF model as new

workload data becomes available for training.

A second challenge addressed by GEqO involves ensuring that

its learned EMF model is not tied to a fixed database schema. For

example, the EMF should be able to determine that the subexpres-

sions shown in Figure 1 are equivalent even if table A’s name was

replaced with C. Unlike existing instance-based ML-for-DB solu-

tions [25], GEqO uses a database and schema-agnostic approach

that focuses on learning general semantic equivalence patterns. It

accomplishes this during EMF featurization by replacing references

to database schema with symbolic correspondences. This allows

GEqO to pretrain on existing database workloads and apply the

resulting model to new database workloads.

GEqO is a standalone framework that can be used alongside a

query optimizer to complement its ability to detect equivalent com-

putation. Unlike adding new rewrite rules, which requires changing

the core database engine code, GEqO can learn any equivalence

relationship in a workload, including those missed by the optimizer.

We focus on subexpressions that contain selections, projections,

and joins (i.e., SPJ subexpressions) with conjunctive predicates.



GEqO: ML-Accelerated Semantic Equivalence Detection

Table 1: Performance of GEqO and its filters (SF , VMF , EMF ) on ∼50k subexpression pairs and 50 equivalences generated using
a TPC-DS schema; see §7.5.

Filter Time (sec) TPR TNR Complexity

Schema Filter (SF ) 0.3 0.98 0.37 O(𝑛)
Vector Matching Filter (VMF ) 0.5 0.98 0.66 O(𝑛 log𝑛)
Equivalence Model Filter (EMF ) 1.3 0.98 0.80 O(𝑛3)
Automated Verifier (AV ) 898.5 1.00 1.00 O(𝑛 · 2𝛺 (𝛾 ) )

GEqO 3.1 0.93 1.00 O(𝜖 · 2𝛺 (𝛾 ) ) + 𝑜𝑝𝑡
Oracle + AV 1.0 1.00 1.00 𝑜𝑝𝑡 = O(|𝐸 | · 2𝛺 (𝛾 ) )

We report true positive rate (TPR) and true negative rate (TNR). The “Oracle+AV” row shows a hypothetical optimal case where an oracle correctly

identifies all equivalent pairs, which are then verified. We assume a verifier with perfect recall. 𝑛 is the number of subexpressions, 𝛾 is the number of

symbols in the AV’s SAT formulation, and 𝐸 is the set of equivalent subexpression pairs. GEqO verifies 𝜖 more pairs than the oracle, which we empirically

show to be ∼5–10% (see Section 7.5).

Through detailed experiments, we demonstrate the efficiency

and effectiveness of GEqO in detecting common computations.

We systematically evaluate its filters and discuss their trade-offs

between prediction accuracy and the overhead involved.

Contributions. The paper makes the following contributions:

• We introduce GEqO, a scalable ML-framework for detecting

semantically-equivalent subexpressions. GEqO’s novel VMF
and EMF filters quickly prune non-equivalent subexpres-

sions, reducing the overhead of running expensive equiva-

lence verifiers by up to 200× (§2).

• We introduce a database agnostic featurization technique

that generalizes instance-specific (non)equivalent subex-

pression pairs into (non)equivalent patterns, making the

EMF transferable to new workloads and databases (§4).

• We address the challenge of requiring large volumes of la-

beled training data by introducing a semi-supervised feed-

back loop (SSFL) to iteratively improve GEqO’s EMF filter

(§6). This process is aided by drawing high-quality samples

leveraging the cheaper SF and VMF filters.

• Our evaluation demonstrates the efficiency and effective-

ness of GEqO (§7).

2 PRELIMINARIES AND OVERVIEW
This section defines the key concepts used in the paper and provides

an overview of GEqO.

2.1 Problem definition
GEqO assumes that a SQL query can be transformed into a tree

(i.e., a logical plan) 𝑄 consisting of operator nodes (we use 𝑜𝑝𝑠 (𝑄)
to denote the set of all operators in𝑄). We term each subtree rooted

at node 𝑖 to be a subexpression 𝑞𝑖 of 𝑄 . Let 𝑆 (𝑄) = {𝑞1, ..., 𝑞𝑛} be
the set of all subexpressions induced by𝑄 . Note that𝑄 ∈ 𝑆 (𝑄); the
root of the logical plan is itself a (trivial) subexpression of 𝑄 .

GEqO assumes that as a subtree in a logical query plan, subex-

pressions are unambiguously executable. Let𝑞𝑖 (𝑑) denote the result
of executing subexpression 𝑞𝑖 on some database instance 𝑑 . Let 𝐷

be the set of all database instances. Given two subexpressions 𝑞𝑖
and 𝑞 𝑗 , they are semantically equivalent, denoted as 𝑞𝑖 ≡ 𝑞 𝑗 , if and
only if ∀𝑑 ∈ 𝐷,𝑞𝑖 (𝑑) = 𝑞 𝑗 (𝑑). Note that 𝑞𝑖 and 𝑞 𝑗 need not be

drawn from the same query 𝑄 , and that this definition holds under

both set and bag semantics [11].

An equivalence verifier applies an automated technique (e.g., a

proof assistant [14] or formal solver [17]) to decide 𝑞𝑖 ≡ 𝑞 𝑗 . We

denote equivalence determined using an automated verifier 𝐴𝑉 as

𝑞𝑖
AV≡ 𝑞 𝑗 . A verifier is correct but not complete (i.e., (𝑞𝑖

AV≡ 𝑞 𝑗 ) ⇒
(𝑞𝑖 ≡ 𝑞 𝑗 ) but (𝑞𝑖 ≡ 𝑞 𝑗 ) ⇏ (𝑞𝑖

AV≡ 𝑞 𝑗 )) and in general run in expo-

nential time. Finally, given a pair of subexpressions, an equivalence
filter applies a model, heuristic, or similar technique to approxi-

mately decide equivalence (i.e., pseudo-equivalence). In GEqO, filters
trade off speed and precision to reduce the false positives that must

be checked by an equivalence verifier. We denote pairwise pseudo-

equivalence determined using a filter 𝑓 as 𝑞𝑖
f∼∼∼ 𝑞 𝑗 .

Given the above, we now formally define the core problem ad-

dressed by GEqO:

Problem (Workload eqivalence). Given a workload 𝑊 =

{𝑞1, ..., 𝑞𝑛} of subexpressions, GEqO approximates 𝐸 (𝑊 ) =

{(𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝑊 ×𝑊 | 𝑞𝑖 ≡ 𝑞 𝑗 }, i.e., the equivalence set amongst
all the pairwise combinations of subexpressions in𝑊 .

There are two important special cases of the workload equiv-

alence problem. In the first case, the workload just has a pair of

subexpressions𝑊 = {𝑞𝑖 , 𝑞 𝑗 }. The task reduces to just detecting

pairwise equivalence (𝑞𝑖 ≡ 𝑞 𝑗 ). This version of the problem is com-

mon for applications such as query rewriting or viewmatching. The

second special case is when the input is a set of queries {𝑄1, ...𝑄𝑚}.
Then the workload is the enumeration of all the subexpressions

of the input queries, i.e.,𝑊 =
⋃

𝑘 𝑆 (𝑄𝑘 ). This formulation is of

critical importance to applications such as view recommendation,

when the goal is to find common computation among a large set of

queries. Although GEqO can handle pairwise equivalence detection

very well, it is designed more as an efficient and scalable solution

for supporting general workload equivalence when the workload

set𝑊 is large (which includes the second special use case).
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Figure 2: GEqO Overview

2.2 GEqO Overview
The overall architecture of GEqO is illustrated in Figure 2. GEqO

approximates computing an equivalence set by applying the series

of filters 𝐹 = ⟨𝑓1, ..., 𝑓𝑛⟩ listed in Table 1 to a workload of subexpres-

sions. Filters are applied in decreasing order of speed and increasing

order of precision. Each filter is applied to every subexpression pair

in the target workload𝑊 to approximate the equivalence set. To en-

sure correctness (e.g., for use in a view materialization algorithm),

GEqO utilizes an automated verifier to eliminate false positives

from the resulting equivalence set. It is important to note that if a

pair is determined to be non-equivalent by a filter, it is not evaluated

by subsequent filters and it is not verified (i.e., filters short-circuit).

We formalize the above process with the following two functions:

𝐺𝐸𝑞𝑂
set
(𝑊, 𝐹 ) = {(𝑞𝑖 , 𝑞 𝑗 ) ∈𝑊 ×𝑊 | 𝐺𝐸𝑞𝑂pair

(𝑞𝑖 , 𝑞 𝑗 , 𝐹 )} (1)

𝐺𝐸𝑞𝑂
pair
(𝑞𝑖 , 𝑞 𝑗 , 𝐹 ) =


𝑞𝑖

AV≡ 𝑞 𝑗 if 𝐹 = ∅

⊥ if 𝑞𝑖

𝑓
1

̸∼∼∼ 𝑞 𝑗
𝐺𝐸𝑞𝑂

pair
(𝑞𝑖 , 𝑞 𝑗 , 𝐹 \ 𝑓1) otherwise

(2)

2.2.1 Detecting an Equivalence Set for a Large Workload.
We now describe, given a large workload of subexpressions, how

GEqO applies the filters in Table 1 to efficiently narrow down

the candidate equivalent subexpression pairs, before calling the

expensive automated verifier (AV).

The first filter applied is the widely-used schema filter (SF). Subex-
pressions that access different sets of tables or return different num-

bers of columns are highly unlikely to be equivalent. Therefore,

GEqO groups all subexpressions in the workload based on the tables

used and the number of columns returned, resulting in SF-groups.
From this point forward, only subexpression pairs from the same

SF-group are considered by subsequent filters.

In the second step, for each SF-group, the vector matching filter
(VMF) embeds the subexpressions in a learned vector space and

identifies likely equivalent pairs by employing approximate nearest

neighbor search (ANNS). It is formalized as follows:

Definition 2.1 (Vector matching filter (VMF )). Let 𝑒 (𝑞) be
a function that embeds a subexpression 𝑞 in a vector space V . Let
𝑑 be a distance metric on V and 𝜏 be a threshold distance. Given
subexpressions 𝑞1 and 𝑞2, let 𝑞1

VMF∼∼∼ 𝑞2 when 𝑑 (𝑒 (𝑣1), 𝑒 (𝑣2)) < 𝜏 .

To further improve efficiency, we construct a hierarchical nav-

igable small world (HNSW) index [35], a common approach to

applying ANNS at scale [27].

In the third step, GEqO applies the equivalence model filter (EMF),
which is a trained deep learning model, to predict whether each

candidate subexpression pair from the VMF filter are equivalent.

Finally, GEqO utilizes an automated verifier (AV) (we leverage
SPES [54]) to verify the correctness of the prediction from EMF .

Among the filters used in GEqO, both VMF and EMF are ma-

chine learning based. The EMF is a deep learning model comprising

multiple tree convolutions and fully connected layers. On the other

hand, the VMF utilizes the learned tree convolution from EMF to

embed subexpressions into its metric space.

2.3 Equivalence Model Filter (EMF ) Overview
The EMF is a deep learning model trained to classify equivalence.

We now briefly describe its training process and the semi-supervised

feedback loop (SSFL) to iteratively improve the model.

To train the EMF , GEqO first featurizes (§3) and labels a set

of subexpression pairs as the training data. Labels are generated

using the SPES automated verifier. During featurization, in ad-

dition to converting subexpressions to a fixed-length vector rep-

resentation, the EMF applies its database-agnostic (db-agnostic)

transformation (§4.2). This transformation replaces references to

specific tables and column names with symbolic correspondences

between subexpression pairs, generalizing the EMF learning from

specific examples of (non)equivalent subexpressions to patterns
of (non)equivalent subexpressions. It also ensures that the model

learned on a particular workload and database is transferable to
other workloads and databases, allowing for user-supplied or syn-

thetically generated initial training workloads (§5).

GEqO employs the SSFL as a guardrail against regressions. It mon-

itors the confidence levels of EMF ’s predictions, and if confidence
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falls below a threshold (e.g., due to new or evolving workloads), it

iteratively fine-tunes the EMF model through the SSFL pipeline.

The key challenge in the SSFL pipeline is generating high-quality
samples with balanced positive and negative examples for model

fine-tuning in each iteration. Even a modest workload produces

an intractably large training dataset that is quadratic in the num-

ber of subexpression pairs—1000 queries with 10 subexpressions

each produces a training dataset of almost 100 million pairs! This

dataset is also highly imbalanced, since most subexpression pairs

are unlikely to be equivalent.

To address this challenge, GEqO employs the cheap SF and VMF
filters to efficiently identify pseudo-equivalent subexpression pairs

(i.e., it computes 𝑞𝑖
SF∼∼∼ 𝑞 𝑗 ∧ 𝑞𝑖

VMF∼∼∼ 𝑞 𝑗 over a workload sample). This

computation approximates Equation 2 without the verification step

(§2.2.1). Together with another set of randomly-generated, likely

non-equivalent pairs, they form an approximately-balanced new

sample. As before, GEqO labels and applies its db-agnostic trans-

formation to the new sample. It then augments its training dataset

with the new data and fine-tunes the EMF .
As previously highlighted, GEqO identifies general semantic

equivalence, agnostic to the underlying database. It therefore does

not consider database constraints or other instance-specific meta-

data. Nonetheless, extending GEqO to incorporate database-specific

constraints [15] remains an interesting direction for future work.

2.4 Complexity Analysis of GEqO Filters
This subsection provides a complexity analysis (summarized in

Table 1) for applying each GEqO filter on a workload𝑊 containing

𝑛 subexpressions.

Schema Filter (SF). Assuming a constant-sized schema, GEqO

groups 𝑛 subexpressions by the used tables and the number of

returned columns in O(𝑛) time.

Vector Matching Filter (VMF). Given that the HNSW index used

by the VMF has claimed search complexity logarithmic in the num-

ber of indexed objects [35], GEqO indexes the workload subex-

pressions in O(𝑛) time (we assume a constant embedding size; see

§7). Next, for each vector, it performs a O(log𝑛) radius search for

neighbors within Euclidean distance 𝜏 , with total complexity in

O(𝑛 log𝑛).

Equivalence Model Filter (EMF). As shown in §5, GEqO’s equiv-

alence model contains two convolution layers followed by three

fully connected layers. Its input is a pair of subexpressions, each

with 𝑜𝑝𝑠 (𝑞𝑖 ) nodes. We assume that there are many more subex-

pressions in our workload than operators in the largest tree, i.e.,

max{𝑜𝑝𝑠 (𝑞𝑖 ) | 𝑞 ∈𝑊 } ≪ 𝑛. Total complexity is thus dominated by

the matrix multiplication in the fully connected layers (i.e., O(𝑛3)).2

Automated Verification (AV). To ensure correctness, GEqO veri-

fies pairs produced by its filters. GEqO’s AV leverages SPES [54],

which uses the Z3 SMT prover [13] to check equivalence. A SMT

program can be transformed into an equivalent SAT formulation

containing 𝛾 symbols, which is solvable in O(2𝛺 (𝛾 ) ) time.

2
The two convolution layers are each in O(𝑛2 ) [49].

3 FEATURE ENGINEERING
In this section, we describe the features used by the EMF (§3.1) and

how these features are mechanically featurized (§3.2).

3.1 Feature Selection
After conducting extensive feature analysis, we find that logical

plans play the most important role in predicting equivalence, since

the logical plan captures the semantics of a subexpression. As a

result, in GEqO, we use the logical plans of the subexpression pairs

as inputs to the EMF model.

We additionally considered leveraging cardinalities as an aux-

iliary feature. Intuitively, since 𝑞𝑖 ≡ 𝑞 𝑗 ⇒ |𝑞𝑖 | = |𝑞 𝑗 |, this would
appear to be a strongly positive signal for equivalence. However,

while our initial analysis indicates that cardinalities do improve EMF
recall, actual subexpression cardinalities are not generally available

for use as inputs to GEqO and executing candidate subexpressions

to determine cardinality is infeasible at scale. Conversely, estimated

cardinalities are quick to compute but yield only marginal benefit

to the prediction task. Thus, we exclusively rely on logical plans as

input features to EMF .
GEqO canonicalizes the conjunctive predicates in selection and

join operators by splitting each 𝑛-clause predicate into a composite

containing 𝑛 single-clause predicates. For example, GEqO trans-

forms a relational selection operator 𝜎x>25∧y<10000 (𝑅), into the

composite 𝜎x>25 (𝜎y<10000 (𝑅)). As a result, each node in the logical

plan has at most one selection or join predicate.

3.2 Logical Plan Featurization
Featurizing the tree structure of a logical plan is challenging since

it is difficult to express an arbitrarily-shaped, variable-size tree

as a fixed-size feature vector without losing the structure of the

tree. To address this, we apply a tree-vector transformation that

converts an arbitrary logical plan into a fixed-length vector [39].

Our transformation is inspired by [37]; however, we use a different

encoding for each node in the tree.

Specifically, we first encode each node in the logical plan as a

node vector (NV). Each NV has the same size and format (to be

described in §4), but the number of NVs (i.e., number of nodes

in the logical plan) can vary widely. Given a tree of NVs, GEqO

next performs a breath-first traversal of the tree and concatenates

each visited NV into a 𝑚 × 𝑙 matrix 𝑀 , where 𝑚 is the number

of nodes in a logical plan and 𝑙 is the size of each NV. We finally

apply the tree convolution layers of the EMF , to be described in

§5, which transforms 𝑀 into a vector of a fixed dimension ℎ that

summarizes a subexpression. In our prototype, ℎ = 128 bytes. As

demonstrated by prior work [36, 37, 40], tree convolution has been

proven effective at representing tree-structured SQL query plans

for various ML-for-DB tasks.
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Figure 3: Instance-based node vector encoding of an SPJ subexpression. Each operator’s metadata is converted to its “vector
segment”; unrelated segments are set to zero.

4 LOGICAL PLAN ENCODING
We now detail how GEqO encodes each node in a logical plan

as a node vector (NV). We begin by describing an instance-based
encoding, i.e., one where the encoding is specific to a workload on

a particular database instance. Though the specifics vary, this is a

common transformation and most existing approaches are instance-

based [25, 37, 42]. We then extend this approach to our novel db-
agnostic encoding which is oblivious to the specific workload or

database.

4.1 Instance-Based Encoding
Notation.Our instance-based encoding is inspired by the encoding
technique described in [25]. Given a workload𝑊 on a database

instance, let 𝑇𝑊 , 𝐶𝑊 , 𝑂𝑊 , and 𝐽𝑊 respectively represent the set

of tables, columns, arithmetic operators (e.g., ≤, =, ≥, ≠), and join

types (⊲⊳, Z, Z , ⊲⊳ ) referenced in the workload. Let 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑒,𝑈 )
produce a one-hot encoded vector of size |𝑈 | with entry 𝑒 ∈ 𝑈 set

to one, 𝑛𝑢𝑙𝑙 (𝑥) indicate whether 𝑥 is null, and 𝑛𝑜𝑟𝑚(𝑥) normalize

𝑥 over all scalars in a workload.

Encoding method. Figure 3 illustrates the instance-based encod-

ing process. Each NV consists of table, join and selection segments,

denoted as𝑉
table

,𝑉join, and𝑉select, respectively. For a scan operator

on table 𝑡 , GEqO generates the segment𝑉
table

= 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑡,𝑇𝑊 ). For
a selection operator with a predicate referencing a column 𝑐 , an

arithmetic operator 𝑜 , and up to one constant value 𝑣 (we perform

constant folding prior to encoding), GEqO generates the segment

𝑉
select

= 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐,𝐶𝑊 )⊕𝑜𝑛𝑒ℎ𝑜𝑡 (𝑜,𝑂𝑊 )⊕𝑛𝑜𝑟𝑚(𝑣)⊕𝑛𝑢𝑙𝑙 (𝑣), where
⊕ is the concatenation operation. Finally, a join operator has a join

predicate referencing a left-side column 𝑐𝑙 , an arithmetic operator 𝑜 ,

right-side column 𝑐𝑟 , and a join type 𝑗 . GEqO generates the join seg-

ment𝑉join = 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐𝑙 ,𝐶𝑊 ) ⊕ 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑜,𝑂𝑊 ) ⊕ 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐𝑟 ,𝐶𝑊 ) ⊕
𝑜𝑛𝑒ℎ𝑜𝑡 ( 𝑗, 𝐽𝑊 ).

As is common in ML featurization, we simply concatenate the

table, join, and selection segments to form the final vector, i.e. 𝑁𝑉 =

𝑉
table
⊕ 𝑉join ⊕ 𝑉select. For a segment that does not apply to a tree

node, GEqO sets it to be zero, e.g. the join segment for a non-join

operator is all zeros. Note that |𝑁𝑉 | = |𝑇𝑊 | + 3 · |𝐶𝑊 | + 2 · |𝑂𝑊 | +
|𝐽𝑊 | + 2 (in our prototype |𝑁𝑉 | = 210; see §7).

q1: SELECT t1.c3, t2.c3 FROM t1,t2
WHERE t1.c1 = t2.c1

AND t1.c2 > t2.c2 + 10
AND t2.c2 > 10

q2: SELECT t1.c3, t2.c3 FROM t2,t1
WHERE t2.c1 = t1.c1

AND t2.c2 + 10 < t1.c2
AND t2.c2 + 10 > 20
AND t1.c2 > 20

Figure 4: Symbolized versions of the
subexpression pairs highlighted in
Figure 1.

Reference Symbol

A t1

A.joinKey t1.c1

A.val t1.c2

A.x t1.c3

B t2

B.joinKey t2.c1

B.val t2.c2

B.y t2.c3

Table 2: Symbols gen-
erated for queries in
Figure 1 under db-
agnostic encoding.

4.2 DB-Agnostic Encoding
Instance-based encoding makes sense for solving problems such as

cardinality estimation and query optimization, where the solution

targets a specific workload on a particular database instance. In

contrast, the problem of learning equivalent subexpressions can

be reformulated to be database agnostic. To motivate, consider the

two subexpressions highlighted in Figure 1. If we were to change

the table and column names to those shown in Figure 4, the two

new subexpressions remain equivalent, even though they are now

for a completely different database, workload, or dataset. This ob-

servation is the basis for our db-agnostic node vector encoding

technique. Conceptually, for each labeled training data point, we

generalize the pair of subexpressions into subexpression patterns,

and feed these generalized patterns into our model. As a result, we

are able to transfer the learning from one workload for a database

instance to a different workload on a different database.

For equivalence detection, what really matters is the tables and

columns referenced in the pair of subexpressions. Further, in terms

of columns, only the columns actually referenced by the join condi-

tions, selection predicates, and projections (instead of all columns

from the referenced tables) need to be considered. Moreover, the
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Figure 5: Example of converting instance-based to db-agnostic encoding (table segments only)

actual names of the tables and columns are unimportant. As a result,

we can convert the tables and columns in a pair of subexpressions

into a generic symbolic form to derive their underlying patterns.

GEqO does this by transforming referenced tables into a set

of distinct, generic table symbols {𝑡1, ..., 𝑡𝑛} based on an arbitrary

lexicographical order (we sort alphanumerically in our implemen-

tation). It similarly symbolizes the referenced columns as 𝑐1,..., 𝑐𝑛 .

Table 2 shows this for the example in Figure 4.

With db-agnostic encoding, we set 𝑇 ′
𝑊

= {𝑡1, ..., 𝑡𝑛},
where 𝑛 is the maximum number of symbolized ta-

ble correspondences expected in any workload, and

𝐶′
𝑊

= {𝑡1 .𝑐1, ..., 𝑡1 .𝑐𝑚, ..., 𝑡𝑛 .𝑐1, , ..., 𝑡𝑛 .𝑐𝑚}, where 𝑚 is the

maximum number of symbolized column correspondences per

table expected in any workload. We can set 𝑛 and 𝑚 to be large

enough numbers to cover arbitrarily complex subexpressions.

However, in general 𝑛 and 𝑛 ×𝑚 are much smaller than the total

number of tables and columns in the workload, respectively.

Following this transformation, we now treat 𝑇 ′
𝑊

and 𝐶′
𝑊

as

our new “workload tables” and “workload columns” to replace

𝑇𝑊 and 𝐶𝑊 described in §4.1. Then to encode, for each pair of

subexpressions, we first symbolize each subexpression into sym-

bolic pattern and apply the previously-introduced instance-based

encoding to produce a final db-agnostic encoding 𝑁𝑉𝛼 of size

|𝑁𝑉𝛼 | = |𝑇 ′𝑊 | + 3 · |𝐶
′
𝑊
| + 2 · |𝑂𝑊 | + |𝐽𝑊 | + 2.

4.2.1 Scaling to large workloads. The db-agnostic encoding de-

scribed above is for a pair of subexpressions. The encoding of one

subexpression is different depending upon which other subexpres-

sion it is paired with during featurization. Given a large workload

of 𝑛 subexpressions, we have to re-compute the encoding for each

pair—an 𝑂 (𝑛2) computation. In contrast, in the instance-based en-

coding, the encoding of one subexpression stays unchanged no mat-

ter what it is paired with. In other words, we only need to compute

the encoding for each subexpression once (an 𝑂 (𝑛) computation).

For offline training, the performance of db-agnostic encoding is

not so crucial, but for online inference any improvement in the

encoding process is valuable. To speed up the db-agnostic encod-

ing process, we develop an efficient method to quickly convert

an instance-based encoding to a db-agnostic encoding. With this

approach, we only incur𝑂 (𝑛) computation to produce the instance-

based encoding, then apply a lightweight converter for each pair

of subexpressions.

The converter takes as input the instance-based tree matrices for

both subexpressions. For each subexpression, it first projects out

the submatrix 𝑆𝑇 = 𝑀 [𝑇 ] that corresponds to the table segment,

and the submatrices 𝑆𝐶𝑠
= 𝑀 [𝐶𝑠 ], 𝑆𝐶𝑙

= 𝑀 [𝐶𝑙 ], and 𝑆𝐶𝑟
= 𝑀 [𝐶𝑟 ]

that correspond to the column encoding from the selection segment,

the left-side column encoding, and the right-side column encoding

from the join segment. We first union the column submatrices

by applying bit-wise 𝑜𝑟 to compute the column submatrix 𝑆𝐶 =

𝑆𝐶𝑠
∨ 𝑆𝐶𝑙

∨ 𝑆𝐶𝑟
. For the table submatrix 𝑆𝑇 , we compute a vector

𝑟 that represents the column-wise union of the tables referenced

in each subexpression, with 𝑟 𝑗 =
∨

𝑖 𝑆𝑇 [𝑖, 𝑗]. Next, we generate a
mask𝑚𝑇 by unioning the vectors from both subexpressions; this

represents all tables referenced in either of subexpressions. We

then apply this mask on 𝑆𝑇 from both subexpressions to eliminate

matrix columns corresponding to unreferenced tables. The resulting

submatrix is 𝑆 ′
𝑇
. We apply the same process on the column matrices

to compute the mask𝑚𝐶 , and use𝑚𝐶 to eliminate matrix columns

corresponding to unreferenced table columns from 𝑆𝐶𝑠
, 𝑆𝐶𝑙

, and 𝑆𝐶𝑟

for each subexpression, resulting in 𝑆 ′
𝐶𝑠
, 𝑆 ′

𝐶𝑙
, and 𝑆 ′

𝐶𝑟
. Finally, for

each subexpression in the pair, we replace the submatricies 𝑆𝑇 , 𝑆𝐶𝑠
,

𝑆𝐶𝑙
, and 𝑆𝐶𝑟

with their transformed variants. The result is a pair

of db-agnostic tree matrices 𝑀𝛼 which eliminates references not

found in either subexpression. Figure 5 illustrates the conversion

process for table fragments in a pair of subexpressions.

Through experiments, we find that applying the converter de-

scribed above is 1.8× faster than computing pairwise db-agnostic

encodings from scratch.

4.2.2 Tensor-based extensions. In the previous subsection we de-

scribed the db-agnostic encoding process for a single pair of subex-

pressions. We now describe two tensor-based extensions.

Batch pairwise encoding. Db-agnostic encoding can be eas-

ily extended to support batch encoding 𝑛 pairs. To do so, rather

than performing 𝑛 discrete operations on pairs of two-dimensional

submatrices of size |𝑞𝑖 | × |𝑋 |—where |𝑞𝑖 | represents the number

of tree nodes in a subexpression’s logical plan and 𝑋 is a table or

column segments of the NV—GEqO represents the batch as a pair

of three-dimensional tensors of sizemax( |𝑞𝑖 |) × |𝑋 | ×𝑛. Subexpres-
sions with fewer than max(𝑞𝑖 ) operators are zero-padded, which
does not affect correctness.

The resulting tensor is amenable to being operated on using

tensor-oriented frameworks such as PyTorch [43]. As we describe

in Section 5, the EMF batch-converts workloads using this approach.

Generalizing from pairs to 𝒏-subexpressions. The db-

agnostic transformation we describe above is a binary operation
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Figure 6: The EMF architecture. Instance-based encoding (𝑁𝑉 ) (§4.1); db-agnostic encoding (𝑁𝑉𝛼 ) (§4.2).

over two subexpressions. A second generalization involves extend-

ing it to be an 𝑛-ary operation over many subexpressions. This

extension only impacts the computation of the mask (e.g., in Fig-

ure 5, rather than 𝑟1 ∨ 𝑟2 we compute 𝑟1 ∨ ...∨ 𝑟𝑛); other operations
are unchanged. This extension is also amenable to tensor execution.

In fact, this 𝑛-ary, tensor-based encoding is used in the VMF filter

in GEqO. Recall that after applying the SF filter, GEqO groups input

workload into SF-groups based on tables accessed and the number

of columns returned (§2.2.1). In the VMF , GEqO then applies the

𝑛-ary db-agnostic transformation to all subexpressions in each SF-
group. It then convolves the encoded node vectors to produce a

fixed-size vector for each subexpression (§3.2). It finally conducts

an approximate nearest-neighbor search (ANNS) on the resulting

vectors to identify candidate subexpression pairs that are likely to

be equivalent. Note that all subexpressions in an SF-group access

the same set of tables. Therefore, the group-based db-agnostic en-

codings for subexpressions from the same SF-group approximate

their pairwise db-agnostic counterparts.

5 EQUIVALENCE MODEL FILTER (EMF )
In this section, we discuss the architecture and training process of

the equivalence model filter (EMF ). Recall from §2.3 that the EMF
is a schema-independent deep learning model trained to classify

equivalence between a pair of subexpressions. In building the EMF ,
we evaluated many candidate architectures, including various su-

pervised classifiers, logistic regression (LR) [41], random forests

(RF) [26], and multi-layer perceptrons (MLP) [19]. While the LR and

RF models are simple to train and exhibit moderate performance,

they suffered from one fundamental limitation: they do not allow

incremental training and fine-tuning. As we detail in §6, the ability

to incrementally fine-tune a model is critical to adapting to chang-

ing workloads and maximizing transferability. On the other hand,

MLPs are more expensive to train but support incremental training,

thus we only need to feed newly-labeled samples to fine-tune the

previous model.

As a result, we utilize the MLP model for classification in the

EMF . The overall architecture of the EMF is illustrated in Figure 6.

It comprises two tree convolution layers and three fully connected

layers. As inputs, the EMF accepts a pair of instance-encoded logical
plans, where each node is an instance-encoded vector of size |𝑁𝑉 |
(see §4.1). These plans are then transformed into their db-agnostic

counterparts (i.e., vectors of size |𝑁𝑉𝛼 |) by applying the transforma-

tion described in §4.2. Next, the EMF applies two tree convolutions

to the db-agnostic plans. Each convolution is followed by batch

normalization and parametric rectified linear unit (PReLU) activa-

tion. The two resulting 128-byte summaries of each subexpression

logical plan are then concatenated and passed through three fully

connected layers for classification.

EMF training and testing data. To train the EMF , GEqO
requires a large set of labeled training data (i.e., subexpression pairs).

Because our db-agnostic encoding technique enables transferability

between workloads and database instances, we can initially train

the EMF model on a high-quality synthetic workload that contains

a wide range of positively- and negatively-labeled subexpression

pairs. To generate such data, we leverage two state-of-the-art query

generation tools: AMOEBA [34] and WeTune [50].

AMOEBA employs a domain-specific fuzzing technique to gen-

erate a set of base queries 𝐵𝑄 . It then applies a set of semantic-

preserving query rewrite rules 𝑅 on a given query 𝑞𝑖 ∈ 𝐵𝑄 and

generates a set of queries 𝑄 ′
𝑖
= {𝑞′1

𝑖
, ..., 𝑞′𝑛

𝑖
} equivalent to 𝑞𝑖 .

GEqO leverages AMOEBA by applying it to produce a dataset of

positively-labeled pairs𝑊+ =
⋃

𝑖 {(𝑞𝛼 , 𝑞𝛽 ) | 𝑞𝛼 ∈ 𝑄 ′𝑖 ∪ {𝑞𝑖 } ∧ 𝑞𝛽 ∈
𝑄 ′
𝑖
∪ {𝑞𝑖 } \ 𝑞𝛼 }.
To ensure a wide variety of training examples, we further lever-

age WeTune [50], which is an optimizer rule generator that auto-

matically generates a set of non-reducible and interesting rewrite

rules (including rules missed by prominent commercial query opti-

mizers). We apply WeTune-generated rules to rewrite the set 𝐵𝑄 of

base queries produced by AMOEBA. We then repeat the process

described above to produce a WeTune-augmented training data set

𝑊 ′+ .
The above process yields a diverse set of equivalent subexpres-

sion pairs. To generate a corresponding set of non-equivalent pairs,

we group all subexpressions in 𝐵𝑄 into schema-compatible groups

({𝐵1
𝑄
, ..., 𝐵𝑛

𝑄
}) by applying the SF . Each group contains subexpres-

sions that reference the same base tables and return the same num-

ber of columns (i.e., they are non-degenerate and would not be

subsequently filtered by the SF ). Next, we generate a set of neg-
ative examples by randomly pairing the subexpressions in each

group:𝑊− = {(𝑞𝛼 , 𝑞𝛽 ) | 𝑞𝛼 , 𝑞𝛽 ∈ 𝐵𝑖𝑄 ∧ (𝑞𝛼 , 𝑞𝛽 ) ∉𝑊+}. While this

process might (with low probability) yield a false negative (i.e., by
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negatively labeling a pair that is actually equivalent), model train-

ing is resilient to small amounts of noise in training data and we

did not observe a decrease in performance. Nonetheless, a perfect

dataset could be produced by applying the automated verifier (AV)

to confirm the label of each negative pair.

Using the above, GEqO finally draws a balanced set of labeled

examples from𝑊+ and𝑊− to produce a synthetic training dataset

that contains a variety of syntactically dissimilar and semantically

equivalent logical plans. This, along with well-known machine

learning techniques such as tree convolution and dynamic pool-

ing [39] that provide resiliency to minor perturbations, enables

GEqO to generalize to plans of varying shapes and sizes.

Hyperparameter tuning. To maximize EMF performance, we

perform a search over model structure and hyperparameters. Our

search considers various network architectures (i.e., between 1–5

linear and convolution layers and sizes 32–512), activation func-

tions, dropout, and optimizer parameters such as learning rate and

decay. We evaluate on the synthetic dataset based on TPC-H as

described in §7.

As we show in Figure 7, we find that increasing the number

of convolution and hidden layers beyond two did not improve

accuracy. Layer sizes have a modest impact on accuracy. Optimizer

choice and learning rate had a negligible impact on performance.

6 SEMI-SUPERVISED FEEDBACK LOOP (SSFL)
When applied to a new workload or as the distribution of

(non)equivalent subexpressions in a workload drifts over time, the

performance of the previously-trained EMF model may suffer. To

mitigate this, GEqO employs a semi-supervised learning bootstrap-
ping feedback loop (SSFL) inspired by Zhu et al. [55]. The SSFL
continuously monitors EMF performance and retrains with newly-

generated training data when needed.

To accomplish this, GEqO continuously measures the confidence

level of classifications made by the EMF . If this confidence level
falls below a threshold 𝑇ℎ , the SSFL dynamically samples a new,

balanced set of labeled samples from the current workload. It uses

this sample to fine-tune the EMF . The SSFL iterates this process

until EMF performance reaches a desirable confidence level. We

formalize the SSFL confidence level as follows:

Definition 6.1 (SSFL Confidence Level). Let𝑊 be a set of
queries we wish to compute 𝐺𝐸𝑞𝑂set (𝑊, 𝐹 ) over (q.v. Equation 1).
Let 𝑃𝑝

1
be the probability estimate that the pair 𝑝 ∈𝑊 ×𝑊 exhibits

an equivalence relationship, and 𝑃𝑝
0
the probability that 𝑝 exhibits a

Algorithm 1: The semi-supervised feedback loop (SSFL).
Input: A workload𝑊 .

Output: A EMF model, fine-tuned if confidence is low.

1 function 𝑆𝑆𝐹𝐿(𝑊 ):
2 𝑃0 ← ∅
3 𝑃1 ← ∅
4 foreach (𝑞𝑖 , 𝑞 𝑗 ) ∈𝑊 ×𝑊 do
5 𝜌 ← 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝐸𝑀𝐹 (𝑞𝑖 , 𝑞 𝑗 )

)
6 𝑃1 ← 𝑃1 ∪ {𝜌}
7 𝑃0 ← 𝑃0 ∪ {1 − 𝜌}
8 if 𝑆𝑆𝐹𝐿-𝐶𝐿(𝑊, 𝑃0, 𝑃1) ≤ 𝑇ℎ then
9 𝑆+ ← 𝐴𝑉

(
𝑉𝑀𝐹

(
𝑆𝐹 (𝑊 ×𝑊 )

) )
10 𝑆− ← 𝑠𝑎𝑚𝑝𝑙𝑒

(
(𝑊 ×𝑊 ) \ 𝑆+, |𝑆+ |

)
11 EMF← 𝑡𝑟𝑎𝑖𝑛(EMF, 𝑆+ ∪ 𝑆−)
12 return EMF

non-equivalence relationship. We compute the SSFL confidence level
𝑆𝑆𝐹𝐿-𝐶𝐿 of𝑊 as:

𝑆𝑆𝐹𝐿-𝐶𝐿(𝑊, 𝑃0, 𝑃1) =
∑
𝑝∈𝑊 ×𝑊

[
max(𝑃𝑝

0
, 𝑃

𝑝

1
) ≥ 𝑇ℎ

]
|𝑊 ×𝑊 |

Ideally, we want the semi-supervised learning feedback to only

trigger a few rounds of fine-tuning before it reaches a satisfactory

confidence level. In order to achieve this, we need to choose good

samples with good positive and negative examples in each iteration

for retraining or fine-tuning the EMF model. A naive sampling

approach is to random sample pairs of subexpressions from the

workload. However, this simple approach is like shooting in the dark

and is unlikely to provide sufficient positive examples for the model

to learn, since positive examples (equivalent subexpressions) are

generally rare events compared to negative examples in a typical

workload. The key is to make sure we find some good positive

examples for training.

As described in §2.2.1, by leveraging SF and VMF , we can quickly

identify a set of likely equivalent subexpression pairs from a large

search space, then label the pairs by actually running the equiv-

alence verifier. We keep all the positive and negative examples.

Moreover, if more negative examples are needed for a balanced

sample, we can also get random sample pairs of subexpressions

from the workload. As we show in §7, this filter-balanced sampling
mechanism can significantly improve the model quality with fewer

labeled sample data compared to random sampling.

We formalize the SSFL algorithm in Algorithm 1. It accepts a

workload𝑊 and examines each pair in the cross product (line 4).

For each pair, it applies the Sigmoid function to the EMF output to

compute the probability 𝜌 that the pair (𝑞𝑖 , 𝑞 𝑗 ) exhibits an equiv-

alence relationship (line 5-7). Note that probability estimates are

trivial to compute when applying the EMF during prediction. Next,

it computes a confidence level (line 8) and, if the model is insuffi-

ciently confident, generates a sample of likely-equivalent pairs by

applying the SF and VMF (line 9). It then produces a complimentary

sample of size |𝑆+ | sampled randomly from non-equivalent pairs to

form 𝑆− (line 10). It finally retrains or fine-tunes the EMF using the

full sample (line 11).
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7 EXPERIMENTAL EVALUATION
We now present an experimental evaluation of GEqO. The goals of

our evaluation are as follows: to (i) compare various EMF models

to determine their effectiveness in predicting equivalence relation-

ships, as well as assessing their ability to transfer learning across

different workloads and databases (§7.1); (ii) study the performance

of the VMF filter in terms of its ability to filter out “easy”equivalence

cases (§7.2); (iii) evaluate the SSFL pipeline with the filter-based

sampling mechanism (§7.3); (iv) examine runtimes of VMF and

EMF filters on CPU- and GPU-based implementations (§7.4); and (v)

evaluate the impact of GEqO on scaling state-of-the-art equivalence

solvers for a large workload (§7.5).

Implementation.We implement GEqO using Python 3.10.0 and

Java 18.0.2. We manipulate subexpressions, parse and generate ab-

stract syntax trees, and perform instance-based featurization using

Calcite 1.27.0. The EMF is implemented using PyTorch 1.12 [43]

and employs the Adam optimizer [33] with a learning rate of 10
−3

and a weight decay of 5
−4

. We train using a dropout of 50% applied

to all layers. The VMF is implemented using FAISS 1.7.2, where we

construct a quantizer using 128-bit locality-sensitive hashes (LSH),

an 128-dimension inverted index, and limit neighbor searches to a

radius of 𝑑 = 1. Finally, we set the SSFL confidence level to𝑇ℎ = 0.9.

Experimental Setup. We conducted our experiments using a sin-

gle machine with two CPU sockets (Intel Xeon Platinum 8272CL)

each with 16 physical cores (32 with hyper-threading), 264GB of

main memory, and 512GB storage device. Our GPU-based experi-

ments are executed on a single Nvidia Tesla T4 with 16GB memory.

Workloads. We generate a set of base subexpressions on the TPC-

DS and TPC-H schema using AMOEBA augmented with rules from

WeTune (§5) as our workload queries. The set of TPC-DS subexpres-

sions comprises ∼34k queries, while the TPC-H dataset contains

∼19k queries. Section 5 describes how we obtained our balanced,

labeled data to train our initial model.

7.1 EMF performance
We first evaluate the performance of EMF model in terms of model

architecture, computational cost, and ability to transfer to unseen

workloads and database schema.

7.1.1 Model type. This experiment compares the effectiveness

of three candidate EMF classifiers: multi-layer perceptrons (MLP),

random forests (RF), and logistic regression (LR). We train the three

variants on the TPC-H workload and measure performance on the

TPC-DS dataset. Table 3 summarizes the results. The MLP model

provides superior accuracy versus the simpler models.

Figure 8 shows confusion matrices for each model type, drilling

down into how the prediction aligns with the ground truth for

each model. Since the EMF serves as a filter, it should be the one

that strives to simultaneously minimize the false positives (i.e., 𝛼

error in the top right quadrant) and false negatives (i.e., 𝛽 error in

the bottom left quadrant) of the prediction. Here 𝛽 error is most

important—since GEqO always invokes the equivalence verifier

to verify the predicated equivalence, false positives from the EMF
model do not affect the correctness of GEqO, but represent wasted

computation (i.e., by invoking the expensive automated verifier). By

Table 3: Classifier performance (train TPC-H, test TPC-DS).

Model Type Accuracy F1

𝑀𝐿𝑃 0.970 0.964
𝑅𝐹 0.592 0.030

𝐿𝑅 0.588 0.486

Table 4: Transfer learning performance on randomly-
generated schema.

Dataset Size Precision Recall F1

1.2k 0.94 0.99 0.97

5.0k 0.93 0.98 0.97

11.0k 0.90 0.96 0.94

19.9k 0.93 0.97 0.95

44.9k 0.88 0.96 0.94

contrast, false negatives represent the missed equivalent queries by

the EMF model and thus should be minimized at all costs. Clearly

shown in Figure 8, MLP is by far the clear winner in simultaneously

minimizing the false positives and false negatives. In particular,

the false negatives for MLP is kept around 0.1%, which is orders of

magnitude smaller than the other two models. Due to the superior-

ity of the MLP architecture to detect equivalence, all subsequent

experiments in this section utilize this model.

7.1.2 Computational Cost. We next analyze the training, pre-

diction, and space costs of the EMF trained using the architecture

described in §5 averaged over five runs. We train the EMF using

∼47k subexpression pairs drawn from the TPC-H dataset. On aver-

age, a training run with 20 epochs takes approximately 40 minutes.

The size of the model when serialized to disk is approximately

2.3MB, including all the learned parameters. EMF prediction time

is 0.00319s per pair of subexpressions averaged over ∼70k random

TPC-DS subexpression pairs.

7.1.3 Transfer Learning. We now discuss the ability of the EMF
to transfer to unseen datasets. First, note that the results shown in

Table 3 and Figure 8 already illustrate this ability, where the EMF is

trained on the TPC-H workload and tested on TPC-DS workload.

Next, we generate five additional datasets ranging from approxi-

mately 1k to 50k on a random schema using the method described

in §5. We then evaluate the EMF using the TPC-H-trained model

and report model performance in Table 4. The high performance on

additional unseen datasets reinforces EMF ’s ability to easily adapt

to new, unseen workloads.

7.2 VMF performance
In Table 5, we study the performance of the VMF filter, which filters

out “easy” equivalence cases before GEqO applies the EMF . As in
§7.1, we evaluate the VMF by applying it to the TPC-DS workload.

We observe that the VMF is able to substantially reduce the search

space and serves as an excellent filter prior to invoking the EMF .
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Figure 8: Confusion matrices of three candidate EMF models (trained on TPC-H and tested on TPC-DS).

Table 5: VMF performance (train TPC-H, test TPC-DS).

Accuracy Precision Recall F1

0.74 0.42 0.98 0.60
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Figure 9: SSFL accuracy and F1 for filter-based and random
samples. Each samplingmethod was used to iteratively select
and train over successive batches of 512 samples.

7.3 SSFL performance
In this experiment, we evaluate the semi-supervised feedback loop

(SSFL) in GEqO. To do so, we iteratively train on additional labeled

samples to fine-tune the EMF model. We compare our filter-based

sampling method (§6) against random sampling.

For this experiment, we start with a scenario where the workload

changes with new equivalent and non-equivalent patterns that the

model has never seen before. We expect an initial model with low

quality that improves with subsequent SSFL iterations. To model

this, we first create a degenerate TPC-H dataset by omitting all

queries that contain joins. We then train an initial model on the

degenerate dataset and test on the TPC-DS workload.

Figure 9 shows the accuracy and F1 score of the variants as they

are exposed to additional labeled samples. Since the initial model

has only been exposed to limited forms of equivalent and non-

equivalent patterns, it does not perform well on the new workload

which contains lots of subexpressions with joins. In each iteration

of the feedback loop, we draw 512 labeled samples, using either

filter-based or random sampling, from the new workload to help

improve the model.

With random sampling, performance does not improve mean-

ingfully. Due to the non-equivalence of most subexpressions in the

workload, identifying positive examples through random sampling

is nearly impossible. As a result, the accuracy and F1 score remain

extremely low.

By contrast, the filter-based sampling is more intelligent in se-

lecting balanced samples that contain both positive and negative

examples. This leads to significant improvements in both accuracy

and F1 score. It takes only ∼4k samples to improve model accuracy

and F1 score to 90%.

We next measure SSFL execution time at various batch sizes.

Figure 10 shows the result. Each bar in the figure shows the end-to-

end SSFL runtime, including both the time for sampling and training.

Obviously, the filter-based sampling is more expensive than random

sampling since it needs to do extra work to identify likely equivalent

subexpression pairs (e.g., by executing the SF and VMF filters and

verifying). As we see in the figure, as more samples are trained

over, the difference between the two reduces from 6.9× to less

than 2×. At the same time, it’s worth recalling that the filter-based

sampling requires many fewer iterations to achieve a satisfactory

model accuracy and F1 score. Additionally, the SSFL process may

be performed out-of-band with model prediction and the improved

model may be substituted after training, mitigating performance

impact on the prediction path. Once a model has stabilized, the SSFL
will no longer be active, and no further overhead will be incurred.

Finally, Figure 11 shows the breakdown of the time for the feed-

back loop with filter-based sampling. As can be seen, the time spent

in featurization, sampling, and verification is modest and does not

substantially increase with batch size. On the other hand, the in-

crease in training time is more dramatic and it quickly dominates

SSFL runtime.
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Figure 10: SSFL training time for filter-based sampling versus random sampling. Each iteration trains over a batch of 512
newly-labeled samples.
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Figure 11: Runtime of the operations applied by the SSFL.

7.4 VMF & EMF compute performance
In the previous sections we evaluated the performance of the VMF
and EMF in terms of their ability to identify equivalences and elim-

inate non-equivalences. In this section, we further examine the

runtimes of each filter. To do so, we execute each filter on increas-

ingly large subsets of the TPC-DS dataset. We reduce confounds by

disabling all other filters and compare performance using a CPU-

and GPU-based implementation.

In Figure 12(a), we observe that the CPU-based VMF exhibits

excellent performance for smaller numbers of subexpression pairs,

whereas the GPU-based variant surpasses it for ≥∼1 million pairs

due to a decrease in the proportion of data transfer I/O overheads

in the overall runtime. In contrast, in Figure 12(b), the EMF con-

sistently shows superior performance with GPU-based execution,

although the CPU variant performs well at lower numbers of pairs.

These results highlight the flexibility of GEqO in targeting and

adapting to heterogeneous hardware, providing a distinct advan-

tage over other heuristic- and optimizer-based techniques

7.5 End-to-End GEqO performance
We now evaluate GEqO performance in detecting equivalent subex-

pression pairs in various workloads. To do so, we randomly cre-

ate a series of forty ∼50𝑘 pair datasets generated on the TPC-DS

schema and unseen by the GEqOmodel. We verify that each dataset

contains approximately 8, 16, 32, 64, or 128 equivalent pairs. We
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Figure 12: Total runtimes of the VMF and EMF filters on
varying number of subexpression pairs (log-log scale).

ensure that we have at least five (or more) datasets at each equiva-

lence count.
3
We then execute GEqO on each dataset by executing

𝐺𝐸𝑞𝑂
set
(𝑊, {𝑆𝐹,𝑉𝑀𝐹, 𝐸𝑀𝐹 }) defined in §2.2 along with the base-

lines described below. For this experiment, we assume that the

equivalences admitted by the AV constitute ground truth and GEqO

has executed its SSFL and reached a confidence level above its

minimum threshold (𝑇ℎ ≥ 0.9).

We compare GEqO against three baselines: (i) the SPES query

equivalence solver [54]; (ii) signature-based equivalence detection

based on [32], which compares signatures computed on each subex-

pression’s abstract syntax tree (AST); and (iii) an optimizer-based

equivalence detection technique that leverages the Calcite optimizer

to check whether two subexpressions are equivalent.

As shown in Figure 13(a), we observe that GEqO identifies nearly

all the semantic equivalences in the dataset (with a true positive rate

averaging 88% across all datasets and equivalence rates), whereas

the Calcite and signature-based techniques average far fewer. Un-

surprisingly, SPES correctly verifies all equivalences.

Next, Figure 13(b) shows the runtimes for each method. SPES’s

runtime is more than 200× more expensive than the other meth-

ods. Figure 13(c) omits SPES and illustrates that the Calcite and

signature-based methods have approximately constant runtimes

across all datasets, whereas GEqO exhibits a curve that is similar at

low numbers of equivalences and gradually rises for datasets with

more equivalences. These plots demonstrate that GEqO is able to

3
A small number of datasets had additional (up to 6.25%) equivalences as a byproduct

of the randomized selection process.
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Figure 13: End-to-end GEqO performance vs. the Calcite query optimizer, signature-based detection, and SPES.
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detect equivalences at an accuracy level near that of SPES but at a

runtime similar to the heuristic-based techniques.

Finally, we observe that while Figure 13(c) suggests a gradually

rising runtime for GEqO, this occurs because it detects more equiva-
lences. Figure 13(d) plots the runtime per equivalence detected and

demonstrates that GEqO spends approximately the same amount

of time as Calcite and the signature-based method per equivalence.

For scaling reasons, we do not show SPES values in this plot, which

ranged from 13.8 to 118.2 seconds per identified equivalence.

7.6 GEqO Filters Ablation Study
Next we explore the relative contribution of each GEqO filter. We

execute𝐺𝐸𝑞𝑂
set
(𝑊, 𝐹 ) (see §2.2), by varying 𝐹 to be some combi-

nation of the filters available in GEqO (i.e., the nonempty power

set of {VMF, EMF, SF}) and𝑊 to be each of the 32-equivalence
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Figure 15: Result Caching Performance.

datasets described in §7.5. We report mean runtime over evaluated

workloads, including verification time of the filtered pairs.

Figure 14 shows the result of this experiment. We observe that

GEqO achieves best performance only when applying all filters;
no other combination minimizes the total runtime. This implies

that GEqO’s filters are complimentary to each other, and not redun-

dantly filtering the same sets of subexpression pairs.

7.7 A Case Study on Result Caching
In our final experiment, we evaluate how GEqO can be utilized in

a result caching or materialization application, where results of

queries are cached under a storage budget, to save computation

for future semantically-equivalent queries. Using the workload

from §7 on the 100GB TPC-DS dataset, we obtain approximately
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∼23k unique expressions after excluding those that produce empty

results. Our experiment assumes no updates.

When executing with unlimited storage budget, the result cache

using GEqO could materialize the first occurrence of each equiva-

lent expression (there are 5,277 equivalence classes in the workload),

resulting in a total of ∼2GB storage space (in this workload, the

expressions are computationally expensive but return small results),

which we use as the upper-bound for our storage budget. We then

vary the storage budget for the cache, and simulate a caching policy

that materializes the most expensive queries (leveraging past run-

time statistics). Figure 15 shows a reduction of up to 61.5% in the

total workload execution time (running on a modern commercial

database system), with 10% of storage budget. With 100% storage

budget, a total of 96.2% computation reduction is achieved.

8 RELATEDWORK
Materialized Views and Query Rewriting. As one of the most

widely used approaches for computation reuse, materialized views

are supported in many analytics engines. However, most systems—

even including some modern cloud-based analytics engines like

Snowflake [12], BigQuery [20], and NAPA [2]—still require manual

identification of common computation and creation of views. To

automate view materialization, many view selection algorithms

have been proposed [3, 5, 32, 51] to choose views that maximize

computation reuse for a workload.

Efficient and effective detection of overlapping computation is

crucial in optimally selecting views to materialize. Some classical

view selection methods heavily depend on the query optimizer to

identify equivalences. They consider factors such as resource con-

straints when selectingwhich views tomaterialize. CloudViews [30]

employs Merkle tree-like signatures to quickly detect equivalent

subexpressions. The ML-based view selection algorithm in [51]

utilizes a SQL equivalence verifier, called EQUITAS [53], to detect

equivalent subexpressions (we discuss verifiers in detail below). In

terms of efficiency and scalability, the signature-based approach

is clearly the best; however, it is the least effective since it only

admits syntactic equivalence. By contrast, equivalence verifiers are

superior in detecting semantic equivalence, but are computationally

expensive. The optimizer’s ability to detect semantic equivalence is

bound by its rewrite rules. Interestingly, the work in [50] found that

even a mature optimizer like the one in SQL Server could still miss

some rewrite rules. In addition, repeatedly invoking the optimizer

to check equivalence at cloud scale could easily turn the optimizer

into a bottleneck. Compared to all these existing approaches, GEqO

is designed to be efficient and scalable, achieving effectiveness close

to that of a verifier.

To utilize materialized views, view matching algorithms

(e.g., [18]) match a query against previously-materialized views

to determine whether the query can be rewritten into an improved

variant by leveraging the views at runtime. In fact, query rewrite is

generally an important query optimization step applied in many

settings inside or outside the optimizer [21, 22]. Most optimizers

continue to rely on rewrite rules to identify equivalence and trans-

form the original query into a semantically equivalent alternative.

GEqO can be used to learn equivalence relationships present in the

given workload and complement these existing rewrite rules.

Query Equivalence Verification. Verification of SQL query equiv-
alence has been a long-standing topic of research in database the-

ory [1]. Several practical verifiers have been proposed [9, 10, 47, 53,

54]. Cosette [10] and its extended version UDP [9] transform SQL

queries into algebraic expressions and then utilize the Coq proof

assistant [44] to compare the two resultant algebraic expressions.

However, these two approaches are computationally expensive

due to the large number of normalized algebraic representations.

Recently, EQUITAS [53] and its extension SPES [54] address this

limitation by efficiently deriving symbolic representation of SQL

queries and use satisfiability modulo theories (SMT) to determine

their equivalence under set and bag semantics. Approaches such

as Peggy [47] leverage equality saturation, where the optimizer

enumerates equivalent expressions for a given input expression

based on predefined rules and collects them in a compact graph

representation. While saturating every subexpression in a workload

is not scalable, this technique could be leveraged by GEqO as an

alternative equivalence verifier.

Since GEqO is a general framework, it can plug in any of the

above equivalence verifiers, or even new customized ones, to verify

the predication from the EMF filter.

9 CONCLUSION AND FUTUREWORK
In this paper, we presented GEqO, a portable lightweight ML-based

framework for efficiently identifying semantically equivalent subex-

pressions at scale. We introduced VMF and EMF filters to fill in

the gap between a simple but very coarse schema-based filter and

the accurate but very expensive equivalence verifier. We trained

a deep-learning-based model to efficiently predict equivalence re-

lationship between a pair of subexpressions. The db-agnostic fea-

turization allows the learning from one workload and database

to be transferrable to another. We also introduced an end-to-end

semi-supervised learning feedback loop with clever sampling to

circumvent the expensive data labeling process. Our experimen-

tal evaluation demonstrates that GEqO is up to 200× faster than

verifiers on TPC-DS subexpressions.

9.1 Extension to Complex Subexpressions
Even though a query workload might contain non-SPJ queries,

GEqO can still detect the equivalence of the SPJ subexpressions in

the workload. Therefore, it represents a significant step forward

in building an end-to-end framework for efficiently identifying

semantically equivalent computations at scale. Nevertheless, We

plan to extend GEqO to support complex subexpressions beyond

SPJ (e.g., unions, aggregation, and complex predicates), using a

similar approach to [25]. We next briefly sketch potential encoding

extensions.

OR and IN operators.We convert the WHERE clause with the

OR operator to DNF, considering each conjunctive as a separate

query and introduce unions. Each conjunctive branch is encoded as

described in Section 3. However, this approach encounters scalabil-

ity issues due to the exponential growth in the number of clauses

and the redundant encoding across union branches. The 𝐼𝑁 clause

can be considered as a shorthand representation for multiple 𝑂𝑅

conditions. Unnesting the clause and introducing 𝑂𝑅 conditions

still pose scalability issues, which we intend to investigate.
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Union and except operators.We add a one-hot vector indicating

union or except operators.

Group By and aggregation operators. We add a new group-by

segment that contains a one-hot vector for each of the group-by

columns and an aggregate segment [AGG,COL], which is a concate-

nation of AGG and COL one-hot vectors of supported aggregation

functions and columns.

In addition to addressing encoding scalability issues with certain

operators, we plan to assess the effectiveness of the current EMF
model on complex queries and determine if any enhancement to the

current architecture (e.g., augmenting the number of convolution

layers) is necessary.

9.2 Extension to Query Containment
A second important future direction involves using GEqO to scal-

ably detect semantic containment, which is crucial for some view

selection algorithms [4, 8].

We think the GEqO framework should be applicable to semantic

containment. The EMF model can be directly extended to classify

containment. We conduct a preliminary experiment to demonstrate

this by training a new containment model over TPC-H subexpres-

sions with one-way joins and up to three predicates. This model

achieved ∼98% accuracy on a test TPC-DS workload of similar com-

plexity. As we increased the complexity of the workload (e.g., with

additional joins), the accuracy dropped to ∼78%. We believe these

results are promising since detecting containment is strictly harder

than equivalence.

In the prediction pipeline, the SF filter is adaptable to support

containment. For instance, for a given pair, the table set of one of the

subexpressions should be a subset of the other subexpression’s table

set, same condition applies on the projected columns. However, the

distance metric used in the VMF filter is not as easily adpatable, and

we leave this as future work. In terms of automated verification

of semantic containment, this problem is well-studied under set

semantics [1], but far less understood under bag semantics (e.g.,

the class of unions of conjunctive queries is undecidable under bag

semantics [28, 29]). We direct readers to the survey [24], which

describes several practical containment checking algorithms in

the context of rewriting queries using views, among which the

algorithm in [18] is a popular one that has been adopted by SQL

Server and Calcite [6] optimizers.
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