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PLATON: Top-down R-tree Packing with Learned Partition
Policy
JINGYI YANG, Nanyang Technological University, Singapore
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The exponential growth of spatial data poses new challenges to the performance of spatial databases. Spatial

indexes like R-tree greatly accelerate the query performance and can be effectively constructed through

packing, i.e., loading all data into the index at once. However, existing R-tree packing methods rely on a set

of fixed heuristic rules, which may not be suitable for different data distributions and workload patterns. To

address the limitations of existing R-tree packing methods, we propose PLATON, a top-down R-tree packing

method with learned partition policy that explicitly optimizes the query performance with regard to the

given data and workload instance. We develop a learned partition policy based on Monte Carlo Tree Search

and carefully make design choices for the MCTS exploration strategy and simulation strategy to improve

algorithm convergence. We propose a divide and conquer strategy and two optimization techniques, early

termination and level-wise sampling, to drastically reduce the MCTS algorithm’s time complexity and make

it a linear-time algorithm. Experiments on both synthetic and real-world datasets demonstrate the superior

performance of PLATON over existing R-tree variants and recently proposed learned/workload-aware spatial

indexes.
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1 INTRODUCTION
Spatial data is rapidly generated from mobile GPS sensors through location-based apps like Uber

and Google Reviews, from embedded GPS sensors in vehicles, vessels, and airplanes, and from a

vast number of Lidar sensors with the increasing adoption of self-driving technology. With the

exponential growth of spatial data, there is an increasing need for database systems to efficiently

manage and analyse spatial data. One of the key components of a spatial database is the spatial

index, a data structure that facilitates spatial query processing. Under the ongoing trend of applying

machine learning techniques to enhance database systems, several learning-based methods have

been proposed to improve the spatial index performance. Existing work on machine learning for

spatial indexes can be categorized into two classes: learned spatial indexes and ML-enhanced

spatial indexes. Learned spatial indexes use machine learning models to map spatial coordinates to

storage locations [40, 46, 47, 53], while ML-enhanced spatial indexes [10, 21, 26] learn to enhance

certain operations, e.g., insertion and search operations, of traditional spatial indexes like R-tree.
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Learned spatial indexes have several limitations. Firstly, depending on the index design, some

learned spatial indexes may produce approximate results for certain types of query, e.g., KNN
query [47, 53]. Secondly, existing learned spatial indexes only support point data, and cannot handle

data with geometry. Thirdly, most learned indexes model the cumulative density function (CDF) of

the data [40, 53], which makes them vulnerable to data poisoning attacks [35]. As a consequence, it

would be a long way for real-world systems to integrate learned spatial indexes. In contrast, the

ML-enhanced spatial indexes can be more easily deployed into real-world systems, as they are built

on top of popular spatial indexes like R-tree, which are already widely used in DBMS. Moreover, as

the basic structure and properties of R-tree are unchanged, existing query processing algorithms

remain applicable.

Existing ML-enhanced spatial indexes [21, 27] construct an R-tree through one-by-one insertion,

and use ML techniques to optimize the 𝑐ℎ𝑜𝑜𝑠𝑒𝑆𝑢𝑏𝑡𝑟𝑒𝑒 and 𝑠𝑝𝑙𝑖𝑡𝑁𝑜𝑑𝑒 process. However, in real-

world applications, R-tree packing, or bulk-loading is usually performed at index construction,

because packing constructs an R-tree with better space utilization and query performance compared

to one-by-one insertion. Moreover, packing is performed during the periodic reload of clustered

indexes to optimize the index performance. As we will discuss, existing methods for R-tree packing

suffer from two major limitations, which motivate the use of machine learning techniques to

enhance R-tree packing.

Two classes of methods have been proposed for R-tree packing, bottom-up methods and top-

down methods. Bottom-up [12, 15, 17, 30, 31, 33, 39, 48, 49] methods build the R-tree from leaf nodes

upward by sorting the data objects in a heuristic order with a good clustering property. Top-down

methods [25, 38] build the R-tree through recursive partitioning, with a partition policy that greedily

optimizes a heuristic cost function, e.g., the sum of the area of node minimum bounding rectangles

(MBRs). The first limitation of existing methods is that both bottom-up and top-down methods

are not adaptive to different data distributions and workload patterns, as they rely on a fixed set

of heuristic rules. Bottom-up methods use a heuristic sort order, while top-down methods use a

heuristic cost function. The use of heuristic rules results in the constructed R-tree only performing

well for certain data distributions and workload patterns, while performing poorly for others. The

second limitation is that existing top-down packing methods ignore the dependencies between the

partition decisions on different nodes, which leads to a partition policy that only makes locally

optimal partitions. We will discuss the two limitations in detail in Section 2.4.

In this work, we propose PLATON: top-down R-tree Packing with Learned pArTitiON policy,

which addresses the two limitations of the existing packing methods. PLATON adopts a top-down

packing framework and explicitly optimizes the query performance with regard to the given data

and workload instance, so that it is adaptive to any data distribution and workload pattern.

We prove in Section 3 that optimal R-tree packing with regard to the given data and workload

instance, is an NP-hard problem.While it is possible to design greedy partition policies that optimize

a heuristic function with regard to the given data and workload, such an approach, like existing

top-down methods, ignores the dependencies between the partition decisions on different nodes.

To identify the partition policy that optimizes query performance while avoiding locally optimal

partition actions, we propose to learn a partition policy using an effective and lightweight RL

technique, Monte Carlo Tree Search (MCTS), which maximizes the long-term reward of the partition

actions.

The partition problem setup, however, poses unique challenges to the design of the MCTS

algorithm, specifically, to the design of the exploration strategy and simulation strategy in MCTS.

As the return of a state across different rollouts usually has a high variance, the standard Upper
Confidence Bound for Trees (UCT) selection policy no longer works well. Meanwhile, due to a

long action sequence and a huge state space, the standard random rollout policy leads to slow
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convergence. We carefully design these two policies to address the challenges, as we will discuss in

Section 5.4.

Another main obstacle in learning a partition policy using MCTS is that the MCTS algorithm

has a time complexity of𝑂 (𝑘 ·𝑁 2
log𝑁 ) (𝑁 is the size of data, k is the number of MCTS iterations),

which is not scalable to large datasets. To address this challenge, we develop a divide and conquer

strategy, which drastically reduces the size of the state space. We further propose two optimization

techniques, early termination and level-wise sampling, to reduce the time complexity to 𝑂 (𝑘 · 𝑁 ).
Moreover, we consider the case when no training workload is available, and propose to learn from

a synthetic query workload following the data distribution.

Contributions. This work makes the following contributions.

• We propose PLATON, a top-down R-tree packing method adaptive to different data distributions

and workload patterns. We formulate the optimal R-tree packing problem with regard to the

given data and workload instance, and prove its NP-hardness. (Sec. 3) To take into account the

dependencies between the partition decisions at different nodes, we develop a learned partition

policy based on Monte Carlo Tree Search and carefully designed the selection policy and rollout

policy for our problem to achieve better convergence. (Sec. 5)

• We propose a divide and conquer strategy, and two optimization techniques to reduce the MCTS

algorithm complexity from higher than quadratic time to linear time. (Sec. 6)

• When a workload is not available at the time of index construction, we propose to optimize the

I/O cost of a query workload that follows the data distribution. (Sec. 7)

• We integrate PLATON into two real-world systems, libspatialindex and PostgreSQL, and conduct

comprehensive experiments to show that PLATON significantly outperforms existing R-tree

variants and recently proposed learned spatial indexes.

2 BACKGROUND
We first provide the preliminaries in Section 2.1. We then review two classes of existing methods

for R-tree packing, bottom-up methods and top-down methods, in Section 2.2 and Section 2.3

respectively. We discuss the limitations of existing methods in Section 2.4.

2.1 Preliminaries
Consider a set D = {𝑅1, ...𝑅𝑁 } of 𝑁 (hyper-)rectangle data objects in a 𝑑-dimensional Euclidean

space. R-tree packing considers the problem of constructing a balanced R-tree 𝑇 from D with a

node capacity 𝐵.

We label the levels of the R-tree in a bottom-up manner, with leaf nodes being level 1 and

root nodes being level ⌈log𝐵 𝑁 ⌉. Each node at level 𝑡 indexes at most 𝐵𝑡 data objects. For ease of

presentation, we use 𝑑 = 2 in the following discussion, but the discussion can be generalized to any

𝑑 > 2.

2.2 Bottom-up R-tree Packing
Bottom-up methods [12, 15, 17, 31, 33, 39, 48, 49] start by packing data objects into leaf nodes, and

then repeatedly build the tree upward by packing lower-level nodes into nodes one level higher. To

achieve good query performance and create tree nodes with minimal overlap, bottom-up methods

typically rely on a heuristic sort order with a good clustering property, i.e., after sorting the data
objects in the heuristic order, neighboring objects are spatially close. Example heuristic sort orders

include Hilbert ordering [17, 31, 33], Sort-Tile-Recursive [39], as well as space-filling curve-based

ordering in rank space [48]. Bottom-up methods first sort data objects in the heuristic sort order,

and pack every 𝐵 consecutive objects into a leaf node. This process then repeats over the Minimum
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Bounding Rectangles (MBRs) of nodes at level 𝑡 to create nodes at level 𝑡 + 1. Bottom-up packing

finishes when the root node of the tree is built. We note that a special case is the Priority R-tree [12]

(PR-tree), which does not rely on a sort order. However, the construction of PR-tree nodes also

involves heuristic rules.

2.3 Top-down R-tree packing
Top-down methods [25, 38] start with the root node, and construct the R-tree downward by

recursively partitioning higher-level nodes into nodes one level lower. To illustrate the top-down

packing process, we first define several key concepts.

Definition 2.1 (Partially Constructed Tree). A partially constructed tree is a 𝐵-ary tree that represents
an intermediate state during the top-down R-tree packing process. A partially constructed tree node
𝑛 corresponds to one or more R-tree nodes and is described by two fields, 𝑛.𝑑𝑎𝑡𝑎 and 𝑛.𝑙𝑒𝑣𝑒𝑙 . 𝑛.𝑑𝑎𝑡𝑎
represents the set of data to be indexed, while 𝑛.𝑙𝑒𝑣𝑒𝑙 represents the level of the corresponding R-tree
nodes.
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Fig. 1. Top-down R-tree packing example, 𝑁 = 27, 𝐵 = 3.

Definition 2.2 (Partition Action). A partition action 𝑎 on a partially constructed tree node 𝑛 partitions
𝑛.𝑑𝑎𝑡𝑎 into two subsets, and creates two new nodes. Each partition action 𝑎 is described by a pair
of fields (𝑑𝑖𝑚, 𝑝𝑜𝑠), where 𝑑𝑖𝑚 denotes the dimension along which to partition the data, and 𝑝𝑜𝑠
denotes the position of the partition. To build a balanced tree, at least one child node’s size should
be an integer multiple of the corresponding R-tree node’s size, i.e., one of the child nodes 𝑛′ satisfies
|𝑛′ .𝑑𝑎𝑡𝑎 | = 𝑖 × 𝐵𝑛′ .𝑙𝑒𝑣𝑒𝑙 , where 𝑖 is a positive integer.

Example. Figure 1 shows the first three partially constructed trees during top-down packing. The

initial partially constructed tree only consists of a single root node 𝑛0. 𝑛0.𝑑𝑎𝑡𝑎 = D, and 𝑛0.𝑙𝑒𝑣𝑒𝑙 = 3.

The first partition acts on the root node 𝑛0 of the initial state, with 𝑑𝑖𝑚 = 𝑥𝑚𝑖𝑛 and 𝑝𝑜𝑠 = 9. We

first sort 𝑛0.𝑑𝑎𝑡𝑎 by their 𝑥𝑚𝑖𝑛 values, and partition them into two sets. The first 9 objects with

the smallest 𝑥𝑚𝑖𝑛 form node 𝑛1, while the rest 18 objects form node 𝑛2. Both 𝑛1 and 𝑛2 are at level

2, as they correspond to R-tree nodes at level 2. The second partition acts on the node 𝑛2 with

𝑑𝑖𝑚 = 𝑦𝑚𝑖𝑛 and 𝑝𝑜𝑠 = 9. Similarly, we create two new nodes 𝑛3 and 𝑛4. Both nodes are at the same

level as 𝑛2, and we remove 𝑛2 from the tree.

Partition Policy. At each step, there are multiple candidate partition actions for the given partially

constructed tree node 𝑛. Specifically, along each dimension, there are ⌈ |𝑛.𝑑𝑎𝑡𝑎 |
𝐵𝑛.𝑙𝑒𝑣𝑒𝑙 −1⌉ possible partition

positions given the constraints in Definition 2. Assuming 𝑐 possible dimensions, e.g., 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 ,

to sort the data, this gives us a total of 𝑐 · ⌈ |𝑛.𝑑𝑎𝑡𝑎 |
𝐵𝑛.𝑙𝑒𝑣𝑒𝑙 − 1⌉ candidate partition actions. The key to
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top-down packing is the partition policy, which chooses a partition action among all the candidates

at each step, so that the constructed R-tree has good query performance. Existing top-down packing

methods like TGS [25] proposed partition policies that greedily minimize a heuristic cost function,

e.g., the sum of the area of node MBRs.

Top-down packing starts with a partially constructed tree of a single node 𝑛0, which corresponds

to the root of the R-tree. 𝑛0 is initialized with 𝑛0 .𝑑𝑎𝑡𝑎 = 𝐷 , 𝑛0.𝑙𝑒𝑣𝑒𝑙 = ⌈log𝐵 𝑁 ⌉. The first partition
action 𝑎1 is chosen by the partition policy, and acts on the root 𝑛0, which bi-partitions 𝑛0.𝑑𝑎𝑡𝑎 to

form two nodes at the next level. We then recursively choose and perform partition actions on the

newly created partially constructed tree nodes, until all leaf nodes of the R-tree are created.

2.4 Limitation of Existing Methods
Limitation 1: Not adaptive to different data distributions and workload patterns. One
common limitation of both classes of packing methods is that they rely on heuristic rules during

tree construction, which only work well for certain data distributions and workload patterns, and

fail for the others.

As mentioned, bottom-up packing methods rely on a heuristic sort order with a good clustering

property in order to work well. However, this is not always the case, as no heuristic sort order

works for all data distribution and workload patterns. The left part of Figure 2 shows a packing

example using ZR [48], the most recently proposed bottom-up packing method. It first maps the

data objects from the euclidean space to the rank space, and then sort them using a space-filling

curve, e.g, Z-curve. With the heuristic sort order, ZR packs {𝑅2, 𝑅3, 𝑅4}, {𝑅8, 𝑅1, 𝑅5}, {𝑅7, 𝑅6, 𝑅9}
into three leaf nodes. We note that the leaf node {𝑅8, 𝑅1, 𝑅5} has a huge MBR that almost spans

the entire data space, because although 𝑅8 and 𝑅1 are neighbors under the heuristic sort order,

they are far apart spatially. As a result, this leaf node needs to be accessed for queries that do

not intersect with any object in the node. For instance, given the query 𝑞, the node {𝑅8, 𝑅1, 𝑅5} is
accessed, although the query only intersects with 𝑅2 and 𝑅3, leading to 2 leaf node I/O. An R-tree

with better performance on the given data and query is shown on the right of Figure 2, in which

case the leaf node I/O is 1.
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Fig. 2. Example failure of bottom-up packing, 𝑁 = 9, 𝐵 = 3.

Top-down methods explicitly optimize a heuristic cost function like the sum of the area of

node MBRs. However, such heuristics may not be effective for all data distributions and workload

patterns. As shown in Figure 3, certain data distributions and workload patterns can make the

heuristic cost function fail. The left part of the figure shows the four leaf nodes created using TGS.

As TGS makes its partition decisions by greedily minimizing the sum of the area of node MBRs, it

packs the data points into leaf nodes with the shape of long and thin stripes. Given the query 𝑞,

which spans a large range along the y-axis, the result R-tree has poor performance because every

leaf node needs to be visited. An R-tree with better performance on the given data and query is
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shown on the right of Figure 3. Only 1 leaf node I/O is needed for the same query 𝑞. Note that

bottom-up methods can also fail due to the heuristic nature of the sort order used. A detailed

example can be found in the appendix.
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Fig. 3. Example failure of TGS, 𝑁 = 8, 𝐵 = 2.

Limitation 2: Ignoring the dependencies between partition decisions. Existing top-down
packing methods greedily choose the partition that optimizes a heuristic cost function, and the

partition decisions are independently made at each step. However, the partition decisions are not

independent of one another, because the partition on a node can affect subsequent partitions on

its lower-level child nodes. Ignoring the dependencies between the partitions on the parent nodes

and its child nodes results in locally optimal partition decisions and R-tree structures that are not

optimized with regard to the cost function.

Our work aims at addressing the limitations of existing methods and designing a packing strategy

that optimizes the index performance for any given data distribution and workload patterns.

3 OPTIMAL R-TREE PACKING
In this section, we define the problem of optimal R-tree packing with regard to the given data and

workload instance, and show the NP-hardness of the problem.

Problem: Optimal R-tree Packing with regard to data and workload. Given a set D =

{𝑅1, ...𝑅𝑁 } of 𝑁 (hyper-)rectangle data objects and a workloadW = {𝑞1, ...𝑞𝑀 } of 𝑀 window

queries in a 𝑑-dimensional Euclidean space. Our goal is to construct a balanced R-tree 𝑇 from D
with a node capacity 𝐵, so that the query performance is optimized for workloadW. Specifically,

we consider the case of constructing a disk-based R-tree, where each node is stored on a disk page.

The I/O cost 𝐶 (𝑇,W) is measured by the total number of nodes accessed by the queries.

Theorem 3.1. Optimal R-tree packing with regard to the workload I/O cost 𝐶 (𝑇,W) is NP-hard.

Proof. To prove the theorem, we prove for the case of a 2-level R-tree. Optimal packing

of a 2-level R-tree is equivalent to finding the optimal partitioning of D into leaf nodes 𝑃 =

{𝑝1, 𝑝2, ..., 𝑝𝑙 }, 𝐵/2 ≤ |𝑝𝑖 | ≤ 𝐵, such that for a given weight function 𝑤 : 𝑝𝑖 → R+, the sum of the

weights is minimized. In our case,𝑤 (𝑝) = ∑
𝑞∈W 1ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑝,𝑞) , i.e., the weight of a partition is

the number of query windows it overlaps. We prove the NP-hardness by a reduction from the

optimal partitioning problem without considering the workload [11], which shows that for the

weight function𝑤 (𝑝) = 𝑎𝑟𝑒𝑎(𝑀𝐵𝑅(𝑝)), the optimal partitioning problem is NP-hard.

An instance of the optimal partitioning problem [11] consists of a datasetD of N rectangles. The

problem finds a partitioning 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑙 }, 𝐵/2 ≤ |𝑝𝑖 | ≤ 𝐵, that minimizes

∑𝑙
𝑖=1 𝑎𝑟𝑒𝑎(𝑀𝐵𝑅(𝑝𝑖 )).

We assume that all rectangles have integer coordinates. We reduce this instance of optimal parti-

tioning to our problem with the same dataset D, and construct a workload such that we have an

equivalent weight functions. We construct our query workloadW to be the set of 1× 1 squares that
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packs the data space, i.e.,W = {(𝑥,𝑦, 𝑥+1, 𝑦+1) | 𝑥 ∈ [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥−1], 𝑦 ∈ [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥−1], 𝑥,𝑦 ∈ Z},
where 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 , 𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥 are the minimal and maximal coordinates of the input data along

each dimension. It is easy to see that𝑤 (𝑝) = ∑
𝑞∈W 1ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑝,𝑞) = 𝑎𝑟𝑒𝑎(𝑀𝐵𝑅(𝑝)). As a result,

a solution to the optimal partition problem [11] is a solution to the optimal partition problem with

regard to data D and the constructed workloadW, and vice versa. This completes the proof.

4 OVERVIEW OF PLATON
PLATON aims at exploiting the advantage of the top-down R-tree packing framework, while

addressing its limitations. We summarize the design goals and our solutions as follows.

1. Goal: Optimizing query performance. Optimal R-tree packing with regard to a given data

and workload instance is NP-hard. While existing top-down packing methods propose partition

policies that greedily optimize a heuristic cost function, such policies lead to locally optimal

partitions.

Solution: To address this issue, we frame top-down packing as an MDP and leverage an effective,

lightweight RL technique, Monte Carlo Tree Search (MCTS) to learn a partition policy that

optimizes the long-term reward.

2. Goal: Designing exploration and simulation strategy for better convergence. The partition
problem setup makes it hard for MCTS to converge due to a huge state space and the high variance

of simulation returns across different rollouts.

Solution:We carefully design the MCTS exploration strategy and simulation strategy to achieve

better convergence. We incorporate domain knowledge of R-tree packing into MCTS simulation

by proposing a greedy rollout policy.

3. Goal: Efficiently learning the partition policy. While the learned partition policy achieves

good query performance, the MCTS algorithm, despite being lightweight compared with many

other RL techniques, still has a high time complexity, which makes it hard to scale to large

datasets.

Solution: We propose a divide and conquer strategy, and two optimization techniques, early

termination and level-wise sampling, which drastically reduce the time complexity of the MCTS

algorithm and makes it a linear-time algorithm.

Top-down Packing

Learned Partition Policy
MCTS

Contructed R-tree

Data

Query
Workload

Fig. 4. Workflow of PLATON.

Workflow of PLATON. Figure 4 shows the high-level workflow of PLATON. The inputs include
the dataset and a training workload representative of the workload patterns. We construct an

R-tree on the data in a top-down manner. At each step, the partition action is chosen based on

the learned policy using MCTS, which optimizes the query performance for the given data and

workload instance. This process is repeated until the R-tree is fully constructed.

Insertion and Deletion. Like all prior packed R-trees, PLATON is compatible with existing R-tree

insertion and deletion methods, e.g., the methods used in R*-tree or learning-based methods like

RLR-tree [26] .
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5 LEARNING PARTITION POLICY
We first discuss the motivation for learning the partition policy in Section 5.1. We then discuss how

to frame top-down packing as a MDP in Section 5.2. We propose to learn a partition policy using

Monte Carlo Tree Search (MCTS) in Section 5.3. We discuss our design of MCTS exploration and

simulation strategy in Section 5.4.

5.1 Motivation for Learned Partition Policy
Due to the NP-hardness of the optimal R-tree packing problem, one can only design approximate

algorithms for the problem. To develop a partition policy that minimizes the I/O cost, a natural

idea is to adopt an approach similar to TGS [25], which chooses the partition action that greedily

optimizes a heuristic at each step. However, this approach ignores the dependencies between the

partition decisions at different nodes. As the partition on a node can affect subsequent partitions

on its lower-level child nodes, the greedy partition policy only makes locally optimal partition

decisions by choosing the partition with the highest immediate reward.

We identify that choosing the partition action at each step is a sequential decision-making

process. To avoid making locally optimal decisions, we consider a class of algorithms that optimizes

the long-term rewards in sequential decision-making, reinforcement learning (RL) [52].

5.2 Top-down Packing as an MDP
As discussed in Section 5.1, choosing the partition action at each step is a typical sequential decision-

making process. We now discuss how we can frame it as a Markov Decision Process (MDP). We

define the components of our MDP as follows. State space: The state space 𝑆 , is defined as the set of
all possible partially constructed R-trees, and a state 𝑠 ∈ 𝑆 is represented by a partially constructed

R-tree. A state is terminal if the corresponding R-tree is fully constructed. Action space: Without

loss of generality, we define the action space 𝐴 for a state, i.e., partially constructed R-tree, to be

the set of possible partition actions on the left-most unpartitioned node. As there may be multiple

unpartitioned nodes for a partially constructed R-tree, we fix a node to partition so that we reduce

the action space. Transition probability: The state transition function 𝑃𝑎 is deterministic. Taking

an action 𝑎 on a state 𝑠 transits into a new partially constructed tree state 𝑠′ with 100% probability.

Reward function: The reward function of our MDP should be designed in a way so that the

objective of our MDP is equivalent to minimizing the I/O cost of the given workload. However, the

I/O cost of an R-tree can only be computed when the R-tree is fully constructed. If the reward is

only associated with the last action, the extremely sparse reward makes it hard to learn a good

policy. To address this problem, we process a way to break down the objective into a series of

rewards associated with each partition action. We first transform the objective of minimizing the

workload I/O cost into the equivalent objective of maximizing the number of skipped page access.

Consider an R-tree 𝑇 and a workloadW, the number of skipped page access 𝑆 (𝑇,W) refers to the

total number of disk pages one avoid accessing due to the R-tree 𝑇 when executing the workload

W.

𝑆 (𝑇,W) =
∑︁
𝑞∈𝑊

∑︁
𝑛∈𝑇

1¬ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑛,𝑞) (1)

where ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑛, 𝑞) computes whether the MBR of a partially constructed tree node 𝑛

overlaps query 𝑞. It is easy to see that maximizing the number of skipped page access 𝑆 (𝑇,W) is
equivalent to minimizing the I/O cost 𝐶 (𝑇,W). While we can only calculate the I/O cost when

the R-tree is fully constructed, we can define each partition action’s contribution to the number of

skipped page access.

To see how a partition action leads to skipped page access, we first look at an example in Figure 5.

The partition action 𝑎1 creates two partially constructed tree nodes, 𝑛1 and 𝑛2. 𝑛1 overlaps with the
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Fig. 5. How partition actions lead to skipped page access.
query 𝑞, while 𝑛2 does not overlap with query 𝑞. Because 𝑛2 does not overlap with query 𝑞, any

node created by further partitioning 𝑛2 does not overlap with query 𝑞 either. As a result, we can

skip all the subtrees that index 𝑛2.𝑑𝑎𝑡𝑎 when executing query 𝑞, i.e., the two subtrees rooted at N11

and N12 in the constructed R-tree. In this case, 𝑎1 leads to a total of 2 × (1 + 3) = 8 skipped disk

pages.

Definition 5.1 (Reward of a partition action). Assume partition action 𝑎 on partially constructed tree
state 𝑠 partitions node 𝑛, and creates two new nodes 𝑛1 and 𝑛2, the reward of the action is defined as:

𝑅𝑒𝑤𝑎𝑟𝑑 (𝑠, 𝑎) =
∑︁
𝑞∈W

1¬ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑞,𝑛) · (1ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑞,𝑛1)

· 𝑝𝑎𝑔𝑒𝑆𝑖𝑧𝑒 (𝑛1) + 1ℎ𝑎𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑞,𝑛2) · 𝑝𝑎𝑔𝑒𝑆𝑖𝑧𝑒 (𝑛2))
(2)

where 𝑝𝑎𝑔𝑒𝑆𝑖𝑧𝑒 (𝑛) = ( |𝑛.𝑑𝑎𝑡𝑎 |/𝐵𝑛.𝑙𝑒𝑣𝑒𝑙 ) · 𝐵𝑛.𝑙𝑒𝑣𝑒𝑙−1
𝐵−1 computes the number of disk pages to store

the subtree(s) that indexes 𝑛.𝑑𝑎𝑡𝑎 in the fully constructed tree. For each query, we sum up the size

of nodes that do not overlap with the query. This value is then summed over all queries in the

workload to produce the reward of a partition action. To avoid redundant reward computation,

page skipping should only be counted if the node 𝑛 before partitioning overlaps with the query.

The objective of an MDP is to find the optimal policy function 𝜋 that maximizes the expected

return 𝑉𝜋 (𝑠) of a state 𝑠 following the policy. The expected return 𝑉𝜋 (𝑠) is the expected discounted

sum of rewards with decay factor 𝛾 . Under our formulation, we set 𝛾 = 1, so maximizing the

expected return is equivalent to maximizing the total number of skipped page access.

5.3 Monte Carlo Tree Search algorithm
To find the partition policy that optimizes the I/O cost while taking the dependencies between the

partition decisions into consideration, we propose to use Monte Carlo Tree Search (MCTS), an

effective and lightweight search algorithm. We first motivate our use of MCTS over other common

families of RL techniques like dynamic programming, value-based RL (e.g. Q-learning), and policy

gradient methods.

• Efficiency and Effectiveness. Due to the large state space, a dynamic programming algorithm

for our problem has exponential complexity. Value-based (typically temporal difference methods)

and policy gradient methods require neural networks to approximate the value/policy function.

They are slow to train (several days for 1 million records) even with lightweight models and

hardly converge for our problem. In contrast, MCTS is a statistical anytime algorithm [16], i.e., it
can work under any given amount of computing power, while more computing power leads to

better solutions to the problem. MCTS achieves much better convergences under limited time

and computing resources compared to value-based and policy gradient methods.
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Fig. 6. Overview of MCTS.

• Free of Tuning. RL techniques that use neural networks to learn the value/policy function usually
require hyper-parameter tuning during training. As the optimal set of hyper-parameters differs

across datasets, the time-consuming tuning process makes it costly to apply these techniques to

new data. In comparison, MCTS is free of hyper-parameter tuning, and therefore much easier to

apply on new instances.

MCTS is a simulation-based search algorithm that explores the state space in the form of a search

tree. Each search tree node 𝑣 corresponds to a state 𝑠 , i.e., partially constructed R-tree. We use

𝑣 (𝑠) to represent the search tree node corresponding to the state 𝑠 , and 𝑠 (𝑣) to represent the state

corresponding to the search tree node 𝑣 . Note that a search tree is not the R-tree being constructed.

During the search process, MCTS leverages Monte Carlo methods to evaluate the action value

function𝑄 (𝑠, 𝑎) of state-action pairs, i.e., the expected return from state 𝑠 by taking action 𝑎. In our

problem, the Q-values represent the expected return from a partially constructed R-tree by taking a

particular partition action. The Q-values are approximated by averaging the returns from a number

of simulated episodes, or rollouts. By leveraging the approximated Q-values of explored states

and actions, MCTS progressively builds a search tree that focuses on the branches with the most

promising states. We maintain two values for each search tree node 𝑣 , 𝑁 (𝑣) and 𝑄 (𝑣). 𝑁 (𝑣) is the
number of times a state is visited, and 𝑄 (𝑣) is the approximated return of the state from the Monte

Carlo evaluations. Given that 𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡 transit to 𝑣 with action 𝑎, 𝑄 (𝑣) effectively approximates the

action value function 𝑄 (𝑠 (𝑣 .𝑝𝑎𝑟𝑒𝑛𝑡), 𝑎).
MCTS involves an iterative process. In each iteration, the search tree grows by one node and the

approximated returns of the explored states are updated. As the number of iterations increases, the

approximated returns of the states gradually approach the expected returns. An iteration consists

of four steps: Selection, Expansion, Simulation and Backpropagation. The number of iterations is

dependent on the computational budget. We use the example in Figure 6 to show how the search

tree evolves over an iteration. For simplicity, we only show 𝑄 (𝑣) for each search tree node 𝑣 , and 𝜙

denotes no approximated return available.

• Selection.MCTS starts from the root 𝑣0, and recursively descends into the child nodes following

a 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 to find the most promising search tree node whose child nodes will be explored. In

the figure, assuming the 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 simply finds the child node 𝑣 with the largest approximated

return 𝑄 (𝑣). MCTS starts from the search tree root, and descends into node 𝑣1 with the partition

action (𝑥𝑚𝑖𝑛, 9), which has the highest approximated return among the three child nodes. Since

𝑣1 has unexplored child nodes, we select 𝑣1 to be the node to expand.

• Expansion.MCTS randomly adds one of the selected node’s child 𝑣𝑙 to the search tree. In the

figure, we choose a random partition action from the state 𝑠 (𝑣1), e.g., (𝑦𝑚𝑎𝑥 , 9), and act on it. We

add the result state to the search tree as node 𝑣𝑙 .
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• Simulation. MCTS performs a rollout from the new node 𝑣𝑙 to approximate its return. A rollout

is a Monte Carlo evaluation of the node 𝑣𝑙 , where a sequence of actions is taken following a

𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 until a terminal state is reached. The return of the actions from the rollout, Δ, is
obtained. In the figure, we perform a sequence of random actions from 𝑣𝑙 , until the R-tree is fully

constructed. We record the return Δ = 1.

• Backpropagation. After obtaining the return Δ from a rollout, we use it to update the 𝑁 (𝑣)
and 𝑄 (𝑣) values of nodes on the path from 𝑣𝑙 to 𝑣0. In the figure, we update the approximated

return of the nodes 𝑣𝑙 and 𝑣1 with the return Δ = 1 from the current rollout. 𝑄 (𝑣𝑙 ) becomes 1,

and 𝑄 (𝑣1) increases to 0.9.

An overview of PLATON with MCTS is shown in Algorithm 1. We start by initializing a partially

constructed R-tree 𝑇 with a single root node (line 1). We maintain three variables, 𝑐𝑎𝑛𝑆𝑝𝑙𝑖𝑡 tracks

if the tree can be further partitioned, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 tracks the tree level currently being partitioned,

and 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 records the next node to partition (line 2). We partition the tree level-by-level,

starting from the top. As long as the tree can be partitioned (line 3), we iterate through nodes at

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 , and finds the left-most unpartitioned node 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 (lines 4–7). If it is found, we

run MCTS to find a good partition action (line 9). Specifically, we first create a search tree root

with the current partially constructed R-tree 𝑇 (line 15), and then run MCTS for 𝑘 iterations (lines

16–19). After 𝑘 iterations, the action that leads to the state with the highest approximate return is

chosen and performed on 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 (line 10). If no unpartitioned node is found at 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 , we

decrease 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 by 1 (line 11-12). The algorithm returns the fully constructed R-tree when

all bottom-level nodes are partitioned.

Algorithm 1 PLATON with MCTS

Input: data D, workloadW, node capacity 𝐵, # of iterations 𝑘

Output: packed R-tree 𝑇

1: 𝑇 ← {𝑛0}, 𝑛0.𝑑𝑎𝑡𝑎 = D, 𝑛0.𝑙𝑒𝑣𝑒𝑙 = ⌈log𝐵 𝑁 ⌉
2: 𝑐𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝑇𝑟𝑢𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 ← ⌈log𝐵 𝑁 ⌉, 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← 𝜙

3: while canSplit do
4: 𝑐𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝐹𝑎𝑙𝑠𝑒

5: for each node 𝑛 ∈ 𝑇 at level 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 do
6: if |𝑛.𝑑𝑎𝑡𝑎 | > 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 then
7: 𝑐𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝑇𝑟𝑢𝑒 , 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← 𝑛

8: if canSplit then
9: 𝑎 = MCTS(𝑇, 𝑘)

10: perform partition 𝑎 on 𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒

11: else if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 > 1 then
12: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 − 1, 𝑐𝑎𝑛𝑆𝑝𝑙𝑖𝑡 ← 𝑇𝑟𝑢𝑒

13: return 𝑇
14: procedure MCTS(𝑇, 𝑘)

15: Initialize search tree root 𝑣0 with state 𝑇

16: for 𝑖 = 1 to 𝑘 do
17: 𝑣𝑙 ← 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 (𝑣0)
18: Δ← 𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑣𝑙 )
19: 𝐵𝑎𝑐𝑘𝑈𝑝 (𝑣𝑙 ,Δ)
20: return 𝑎(𝐵𝑒𝑠𝑡𝐶ℎ𝑖𝑙𝑑 (𝑣0))
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5.4 MCTS Policy Designs
Challenges. In order for MCTS to return good actions, the exploration strategy and simulation

strategy, i.e., selection policy and rollout policy, must be carefully designed. There are unique

challenges in designing the policies for our problem step. For the selection policy, as the return of a

state across different rollouts usually has a high variance, the standard Upper Confidence Bound for
Trees (UCT) algorithm no longer works well. For the rollout out policy, due to a long action sequence

and a huge state space, random rollouts lead to slow convergence. We now discuss in detail the

design choices we make for the selection policy and rollout policy to address the challenges.

Selection Policy. At the selection stage, the algorithm follows a 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 to find the most

promising search tree node to expand. The key challenge in designing the selection policy is the

exploitation-exploration dilemma, i.e., how to balance the choice between states of high approx-

imated returns and unexplored states. A popular choice is the Upper Confidence Bound for Trees
(UCT) algorithm. When selecting the search tree nodes, UCT considers both the average return

from previous rollouts, which prioritize nodes with high returns, and an upper confidence bound

term, which prioritize less frequently visited child states.

While the UCT policy works for many problems, using the average return in node selection

does not work well for our problem setup. This is because the return of a state has a high variance

across different rollouts, and a good partition choice followed by some bad partition choices can

lead to an extremely low return. If the average return is used for node selection, rollouts with high

returns may be averaged out by a few rollouts with low returns, making it hard to identify good

partition actions. To address this issue, we propose a new selection policy.

𝑣 ← argmax

𝑣′∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑣
𝑄𝑚𝑎𝑥 (𝑣 ′) + 𝑐

√︄
2 ln𝑁 (𝑣)
𝑁 (𝑣 ′) (3)

The first term is the maximal return from previous rollouts, and the second term is a confidence

bound that makes the selection to prioritize less frequently visited child states. With the new design,

the selection policy considers the most successful previous experience instead of the average

experience, which prevents promising states from being overlooked during selection. We present

our 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 in Algorithm 2 .

Algorithm 2 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 (𝑣)
1: while 𝑣 is non-terminal do
2: if 𝑣 not fully expanded then
3: randomly choose untried action 𝑎 ∈ 𝐴(𝑠 (𝑣))
4: add a new child 𝑣 ′ to 𝑣
5: return 𝑣 ′
6: else
7: 𝑣 ← argmax𝑣′∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑣 𝑄𝑚𝑎𝑥 (𝑣 ′) + 𝑐

√︃
2 ln𝑁 (𝑣)
𝑁 (𝑣′ )

Subsequently, as our𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 makes the selection based on the maximum return from previous

iterations, we record the maximum 𝑄-value for each state during Backpropagation.

Rollout Policy. The standard choice of 𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 in MCTS is selecting a random action from

the action space. However, due to a long action sequence and a huge state space, random rollouts

lead to slow convergence. To address the problem, we propose to incorporate domain knowledge of

R-tree packing into the simulation using a greedy rollout policy. The greedy rollout policy chooses

the action that leads to the highest immediate reward, i.e., the partition with the most page skipping.

The greedy rollout policy makes better partitions than random rollouts, and the return obtained
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from the rollouts more closely approximates the optimal return. Thus, we need fewer iterations for

MCTS to converge and find a good solution. We present our 𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 in Algorithm 3.

Algorithm 3 𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑣)
1: Δ = 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑤𝑎𝑟𝑑 (𝑣)
2: 𝑠 = 𝑠 (𝑣)
3: while 𝑠 is non-terminal do
4: 𝑎𝑔𝑟𝑒𝑒𝑑𝑦 = argmax𝑎∈𝐴 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑠, 𝑎)
5: 𝑠 ← 𝑓 (𝑠, 𝑎𝑔𝑟𝑒𝑒𝑑𝑦)
6: Δ← Δ + 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑠, 𝑎𝑔𝑟𝑒𝑒𝑑𝑦)
7: return Δ

Complexity. The complexity of PLATON (Algorithm 1) consists of two parts, the complexity of

running the MCTS algorithm (line 15-20) at each partitioning step, as well as the complexity of the

top-down construction of the index on disk given the learned partitions. The running time of the

top-down construction of the tree is𝑂 ((𝑁 /𝐵) log
2
𝑁 )[12]. We next focus on the time complexity of

the MCTS algorithm. We first consider the complexity of a single MCTS iteration. The complexity

of the selection and expansion step is 𝑂 (𝑘) (line 17). For the simulation step (line 18), we need to

construct the entire R-tree using the greedy rollout policy. Computing and performing the greedy

partition action for a single partially constructed tree node 𝑛 incurs a complexity of𝑂 (𝐵 · |𝑛.𝑑𝑎𝑡𝑎 |).
As we construct the entire tree, we add up this complexity for all nodes. We first add up the

complexity for all nodes at the same level, which gives us a complexity of 𝑂 (𝐵 · 𝑁 ) because the
sum of the node sizes at the same level is 𝑂 (𝑁 ). We then add up the complexity for all log𝐵 𝑁

levels of partially constructed R-tree nodes, which leads to a time complexity of 𝑂 (𝐵 · 𝑁 log𝑁 ) for
the simulation step. The complexity of the backpropagation step is 𝑂 (𝑘) (line 19). As a result, the
complexity of an MCTS iteration is dominated by that of the simulation step and is 𝑂 (𝑁 log𝑁 ).
We then multiply the per-iteration complexity by the number of iterations 𝑘 and the total number

of actions 𝑁 /𝐵, which gives a time complexity of 𝑂 (𝑘 · 𝑁 2
log𝑁 ) for the MCTS algorithm.

To summarize, PLATON’s complexity is the sum of the complexity of the top-down construction

of the index,𝑂 ((𝑁 /𝐵) log
2
𝑁 ), and the complexity of the MCTS algorithm,𝑂 (𝑘 ·𝑁 2

log𝑁 ). We note

that in practice, the total running time is dominated by the running time of the MCTS algorithm.

6 OPTIMIZATION OF MCTS
The MCTS algorithm has a running time that dominates the total running time. In this section, we

propose to reduce the running time of MCTS with a divide and conquer strategy. Together with

two optimization techniques, early termination and level-wise sampling, we are able to drastically

reduce the time complexity of the MCTS algorithm to linear time.

The main reason of the high complexity is the long action sequence. For example, for a three-level

R-tree with node size 𝐵 = 100, there is a total of 9999 actions. To make the first partition decision,

the MCTS algorithm needs to consider all 9998 follow-up actions, which results in the long running

time of the rollouts. We first make the observation that the optimal partition decision on the two

child nodes of a partially constructed tree node does not depend on each other. Formally speaking,

if we denote the optimal total return from partitioning partially constructed tree node 𝑛 and its

child nodes as 𝑉 ∗ (𝑛), we have the following:
𝑉 ∗ (𝑛) = max

𝑎∈𝐴
(𝑅𝑒𝑤𝑎𝑟𝑑 (𝑛, 𝑎) +𝑉 ∗ (𝑛1) +𝑉 ∗ (𝑛2)), (4)

where 𝑛1 and 𝑛2 are the two partially constructed tree nodes created from a partition action a on

node 𝑛. The equation above identifies the optimal substructure in our problem: in order to find the
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Fig. 7. Illustration of divide and conquer.

sequence of actions that maximizes the total return from a partially constructed tree node 𝑛, we

only need to independently solve the subproblems of finding the sequence of actions that maximizes

the total return from the two child nodes 𝑛1 and 𝑛2. In other words, to construct the subtree rooted

at 𝑛 with the maximal return, we break it down into two subproblems of constructing the subtrees

rooted at 𝑛1 and 𝑛2 with the maximal return respectively.

With the optimal substructure identified, we can leverage a divide and conquer strategy to reduce

the algorithm complexity. For the partition decision on a node 𝑛, instead of running MCTS on the

original state space, we consider a new state space consisting of smaller trees, i.e., the subtrees
rooted at 𝑛. The new state space is equivalent to the state space we have for constructing an R-tree

from 𝑛.𝑑𝑎𝑡𝑎. To run MCTS on this new state space, we create a new partially constructed tree with

a single root node 𝑛, initialize a search tree with this partially constructed tree state, and perform

the MCTS iterations to find a good action, as if we are constructing a new R-tree from 𝑛.𝑑𝑎𝑡𝑎.

Figure 7 illustrates how divide and conquer helps make the MCTS algorithm run faster. The dashed

boxes denote the states that form the search tree root of MCTS. Previously, we always run MCTS

on the original partially constructed tree state space to find the partition actions for nodes 𝑛1 and

𝑛2. As a result, to find the partition action for 𝑛1, MCTS also considers the partition actions on 𝑛2
and its child nodes at the simulation step, leading to slow rollouts. With divide and conquer, to

find the partition action on 𝑛1/𝑛2, we only need to run MCTS algorithm on the new state space

of subtrees rooted at 𝑛1/𝑛2, and the action sequence is much shorter. This greatly accelerates the

rollouts.

Algorithm 4 shows the pseudocode of MCTS with the divide and conquer strategy. We maintain

a queue of unpartitioned nodes (line 2). We repeatedly pop nodes from the queue and perform

partitions as long as the queue is not empty (line 3). Given a node 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 , instead of running

MCTS on the original state space, we runMCTS on the state space of subtrees rooted at 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒

to get the partition action 𝑎 (line 5). After obtaining the two newly created nodes 𝑛1 and 𝑛2 from

the partition (line 6), we add them to the queue as long as they are not leaf nodes (line 7).

Early termination. With the divide and conquer strategy, to carry out a rollout, we still need to

construct the entire subtree using the greedy policy, which involves a long action sequence if the

partition is on a high-level node. To further speed up the rollouts, we propose early termination:

instead of using the greedy policy to construct the entire subtree, 𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 will terminate as

long as all the next-level partially constructed tree nodes are created. For example, if we are finding

the optimal partition action on a partially constructed tree node 𝑛 at level 𝑡 with size 𝐵𝑡 , a rollout

will terminate as long as all 𝐵 child nodes at level 𝑡 − 1 are created. This further reduces the number

of steps to run for each rollout.

Level-wise sampling. To accelerate the training of RL, we learn on a sample set of data. Intuitively,

one can learn the R-tree partition policy on a data sample, where the size of the partially constructed

tree nodes scales by the sample rate. However, the inherent structure of the R-tree makes it hard to

directly learn from a data sample. Consider building an R-tree on a data set of size 1000,000, with

node capacity 𝐵 = 100. If we perform top-down packing on a sample of 5% of the data, then each

leaf node on average contains 100 × 5% = 5 data object. As a result, the leaf node MBRs are no
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Algorithm 4 PLATON with Divide and Conquer

Input: dataset D, workloadW, node capacity 𝐵, # of iterations 𝑘

Output: packed R-tree 𝑇

1: 𝑇 ← {𝑛0}, 𝑛0.𝑑𝑎𝑡𝑎 = D, 𝑛0.𝑙𝑒𝑣𝑒𝑙 = ⌈log𝐵 𝑁 ⌉
2: 𝑄𝑢𝑒𝑢𝑒 = {𝑛0}
3: while !𝑄𝑢𝑒𝑢𝑒.𝑒𝑚𝑝𝑡𝑦 () do
4: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 = 𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
5: 𝑎 = MCTS(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒, 𝑘)

6: 𝑛1, 𝑛2 ← 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒, 𝑎)
7: add 𝑛1 and 𝑛2 to 𝑄𝑢𝑒𝑢𝑒 if not leaf node

8: return 𝑇
9: procedureMCTS(𝑛, 𝑘)

10: 𝑛′ = 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑛, 𝑟𝑎𝑡𝑒 = 𝑠/𝐵𝑛.𝑙𝑒𝑣𝑒𝑙 );
11: 𝑇𝑛𝑒𝑤 = {𝑛′}
12: Initialize search tree root 𝑣0 with state 𝑇𝑛𝑒𝑤
13: for 𝑖 = 1 to 𝑘 do
14: 𝑣𝑙 ← 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 (𝑣0)
15: Δ← 𝑅𝑜𝑙𝑙𝑜𝑢𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑣𝑙 ); # Early termination
16: 𝐵𝑎𝑐𝑘𝑈𝑝 (𝑣𝑙 ,Δ)
17: return 𝑎(𝐵𝑒𝑠𝑡𝐶ℎ𝑖𝑙𝑑 (𝑣0))

longer representative of the original leaf node MBRs when the R-tree is built on the full dataset,

and the rewards derived from the samples may deviate significantly from that of the original data.

While a small sample rate makes leaf node MBRs no longer representative, for higher-level

nodes, it is possible to apply a small sample rate. Under the same example, with a sample rate of

5%, nodes at level 2 on average contain 100
2 × 5% = 500 data objects, which can still form node

MBRs that are sufficiently representative of the original node MBRs. By taking into consideration

the varying node sizes at different levels, we develop a level-wise sampling technique that applies

a different sampling rate to partially constructed tree nodes at different levels when running the

MCTS algorithm. The core idea of level-wise sampling is that after applying data sampling, bottom-

level tree nodes at the terminal states have a fixed size 𝑠 , which ensures that the result node MBRs

are still representative of the original node MBRs. Level-wise sampling applies a sample rate of

𝑠/𝐵𝑙 when running the MCTS algorithm to partition a partially constructed R-tree node into child

nodes at level 𝑙 . Level-wise sampling makes the MCTS algorithm more efficient using samples,

without compromising the accurate calculation of rewards.

Complexity. We now analyze the time complexity of the MCTS algorithm with the proposed

optimization (Algorithm 4). Similar to the analysis in Section 5, we compute the complexity of the

simulation step in an MCTS iteration (line 15). With early termination, we compute and perform the

greedy partition actions for 𝑂 (𝐵) steps. At each step, the size of a node is 𝑂 (𝐵 · 𝑠) after level-wise
sampling (line 10) , and therefore it takes 𝑂 (𝐵2 · 𝑠) to compute and perform the greedy action

for the sampled node. We multiply the two terms and obtain a complexity of 𝑂 (𝐵3 · 𝑠) for the
simulation step. The complexity of an MCTS iteration is therefore also 𝑂 (𝐵3 · 𝑠). We then multiply

the per-iteration complexity by the number of iterations 𝑘 and the total number of actions 𝑁 /𝐵,
which gives us a time complexity of𝑂 (𝑘 ·𝐵2 ·𝑠 ·𝑁 ). As discussed earlier, 𝑠 is a constant in level-wise

sampling, and therefore the complexity of the MCTS algorithm is effectively𝑂 (𝑘 ·𝑁 ). Note that the
top-down construction of the tree in PLATON still has a complexity of 𝑂 ((𝑁 /𝐵) log

2
𝑁 ). However,
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at the data scale this work concerns, the total running time is always dominated by that of the

MCTS algorithm. Thus reducing the complexity of the MCTS algorithm to linear with regard to

the input size 𝑁 makes PLATON scalable to large datasets.

7 PACKINGWITHOUTWORKLOAD
When a workload is not available at the time of index construction, we propose to learn a partition

policy that optimizes the I/O cost of a workload that follows the data distribution. We first provide

the intuition on why this can lead to a well-packed R-tree.
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Fig. 8. Motivating example of optimizing for a synthetic query workload following the data distribution.

Intuition. Consider the example in Figure 8, where we need to pack 9 data points into a 2-level

R-tree with node capacity 𝐵 = 3. The data points are distributed over three clusters. We have a

query workloadW = {𝑞1, 𝑞2, 𝑞3} containing three window queries, and the centers of the query

windows follow the data distribution. The R-tree that minimizes the I/O cost of the workloadW is

shown on the right of Figure 8, which leads to an I/O cost of 2 for each query. Note that this R-tree

essentially packs the data objects in the same cluster into the same leaf node, which is the ideal

R-tree given no specific assumption on the workload pattern.

The reason why our proposed objective works is as follows. An R-tree that minimizes the I/O

cost of a query workload would pack data objects overlapping the same query window into the

same leaf node or subtree. As we sample the queries from the data distribution, the constructed

R-tree packs each data object into the same leaf node or subtree as its neighbors, achieving a good

clustering property. Moreover, the generated workload covers the entire data space, therefore the

constructed R-tree would perform well for queries accessing different regions of the data space.

Another problem is how to set the height and width of the query windows. A naive approach is

to uniformly sample window height and width from a range to form query windows of different

sizes. For example, to generate query window sizes between 0.0001% and 1% of the unit square, we

can simply sample from the range [0.001, 0.1]. However, uniform sampling results in an unbalanced

portion of large query windows. In fact, only 10% of samples are from [0.001, 0.01], while 90% of

samples are from [0.01, 0.1]. To remedy this, we sample the height and width from a log-uniform

distribution, i.e., the log of the sampled values are uniformly distributed. As a result, there will be

as many samples from [0.001, 0.01] as samples from [0.01, 0.1], creating a much more balanced

ratio between small query windows and large query windows.

8 EXPERIMENTS
8.1 Experimental Settings
Datasets. We use three synthetic datasets and three real-world datasets for our experiments. Each

synthetic dataset contains 10 million data objects generated within a unit square. We generate

synthetic datasets following three types of data distributions: Uniform, Skew, Gaussian.
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• Uniform (UNI): rectangle data whose centers are uniformly distributed over the unit square. The

height and width of the rectangles are uniformly sampled from [0, 0.001].
• Skew: point data with a distribution that is highly skewed over one dimension. Following previous

work on R-tree packing [12, 48], we first generate uniformly distributed points over the unit

square, and then squeeze the 𝑦-dimension by raising 𝑦 to 𝑦9.

• Gaussian (GAU): rectangle data following Gaussian distribution. We generate the center of the

rectangles by sampling each dimension’s value from N(0, 1). We then normalize sampled values

to ensure the centers fall within the unit square. The height and width of the rectangles are

uniformly sampled from [0, 0.001].
The real-world datasets are fromUSCensus Bureau TIGER/Line Shapefiles [6] andOpenStreetMap [4].

A summary of the real-world datasets is in Table 1. The Area Water dataset and the OSM Parks

dataset are pre-processed and published by SpatialHadoop [22]. We use four rectangle datasets and

two point datasets.

Name Type Cardinality Description

Area Water(AW) Polygon 2.3M US Area Hydrography

OSM Parks(PARK) Polygon 10M Parks around the world

OSM India(IND) Point 100M Landmarks in India

Table 1. Summary of real-world datasets.

Workloads. We generate workloads with different patterns to train PLATON and to evaluate

different methods. For each workload pattern, we generate a training workload and a test workload,

both of which contain 10000 queries. For the synthetic datasets, we consider two aspects of the

workload patterns:

• aspect ratio: We generate 4 workloads with aspect ratio of 10, 100, 1000, and 10000. The queries

follow the uniform distribution and have a fixed size of 0.001%.

• size: We generate 5 workloads with query size of 0.001%, 0.005%, 0.01%, 0.05% and 0.1% of the

entire data space. The generated queries follow the uniform distribution and have random shapes.

For real-world datasets, we generate workloads with different patterns using the concept of

decimal degree [1]. Decimal degree is an alternative unit for geographic coordinates, and different

decimal degree scales have different interpretations in the physical world. For each real-world

dataset, we generate four workloads with decimal degree scales of 0.001, 0.01, 0.1, and 1, which

correspond to street level, town level, city level, and country level in the real world. The centers of

the query windows are sampled from the data distribution. One advantage of generating workload

in this way is that the queries have actual meaning. For example, the generated workloads contain

queries that answer "How many rivers cross XXX town of US", or "Find all parks in XXX city".

Baseline Methods. We compare PLATON with two classes of methods: R-tree variants and

learned/workload-aware spatial indexes. The R-tree variants include R-tree constructed from

repeated insertion (R*-tree), and four R-tree packing methods: STR [39], TGS [25], PR-tree [12],

and a rank space SFC-based method HRR [48]. The four methods are the best-performing methods

reported in previous works. The four learned/workload-aware indexes
1
are learned index RSMI [47]

and LISA [40], ML-enhanced index RLR-tree [26], and workload-aware index Waffle [44]. RLR-tree

constructs an R-tree through repeated insertion instead of packing. Note that RSMI, LISA, and

1
We do not include RW-tree in the experiments as the source code is not available after communication with the authors.

We note that RW-tree reported up to 1.24× speedup over R*-tree, while PLATON achieves up to 3.17× speedup.
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Waffle only support point data. We find that the released code of RSMI only works on the OSM

India dataset with small data size, i.e., 10 million. Therefore, we exclude RSMI from the experiments

on other datasets and scalability. We use PLATON-D to denote the learned partition policy from

the data distribution.

Implementation. We implement PLATON on top of two real-world systems: libspatialindex [2], a

popular open source library of spatial indexes, as well as PostgreSQL 14.3 [9], with the PostGIS [8]

extension for spatial index. Our implementations use C++ and Python. We also implement all R-tree

variants on top of both libspatialindex and PostgreSQL. For learned/workload-aware indexes, we

use the code released by the authors [3, 5, 7]. We aligned the implementation of PLATON and the

baseline methods and used the same encoding to store the records. Specifically, for each record, we

use 4 double (8 bytes each) to store the MBR coordinate values, and 4 bytes to store the address,

which leads to a total of 4× 8 + 4 = 36 bytes per record. All experiments are conducted on a Ubuntu

server with a 20-core E5-2698 v4 @ 2.20GHz CPU.

Metric. We measure the performance of different methods based on both query I/O cost and query

latency.

I/O Cost. For PLATON and R-tree variants, we obtain the I/O cost from the libspatialindex

implementation. We include the I/O cost of the intermediate nodes when comparing PLATON with

the R-tree variants. When comparing PLATON with learned/workload-aware indexes, we assume

the intermediate nodes of the tree-based indexes, i.e., PLATON, RLR and Waffle, are cached in the

memory, because disk-based learned indexes, i.e., RSMI and LISA, assume their models are cached

in the memory. We normalize the I/O cost by an I/O lower bound, which is calculated by assuming

the result data objects of each query are packed in a minimal subtree. The lower bound includes

I/Os of the intermediate nodes if the I/O cost being compared includes intermediate nodes, and

vice versa.

Query Latency. We obtain the query latency from PostgreSQL. We normalize the results by

PLATON’s query latency.

Parameters.We set the page size to 4KB by default. With 4KB pages, the libspatialindex imple-

mentation of PLATON and the R-tree variants, as well as all learned/workload-aware methods,

have a node capacity 𝐵 of

⌊
4096

36

⌋
= 113. For the PostgreSQL implementation of PLATON and the

R-tree variants, as PostgreSQL reserves 44 bytes for metadata per page, the node capacity is given

by

⌊
4096−44

36

⌋
= 112. We set the level-wise sampling parameter 𝑠 = 𝐵.

8.2 Comparison with R-tree variants
We evaluate the performance of PLATON in comparison with existing R-tree variants for different

types of workloads. Below we report several major findings from the results.

(F1) PLATON significantly outperforms all existing R-tree variants in terms of both query
I/O and query latency across different workload patterns. Figure 9 shows the overall result of
PLATON and existing R-tree variants, in terms of normalized I/O and normalized query latency,

respectively. We observe that PLATON significantly outperforms all existing R-tree variants in terms

of both query I/O and query latency. The performance improvement is a result of PLATON ’s ability

to adapt to both the data distributions and workload patterns. Compared to the best-performing

bottom-up and top-down methods, i.e., STR and TGS, PLATON achieves a speedup of up to 2.70×
and 3.80× respectively in terms of query I/O. The query latency result in general aligns with the

query I/O result, with PLATON achieving a speedup of up to 2.03× and 2.32× compared to STR and

TGS. We notice that the performance gaps are slightly reduced in terms of query latency due to

the existence of the database buffer during query execution. For the remaining experiment results,

we follow previous work and only report query I/O. Figures 10 - 12 show the performance of
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Fig. 9. Query performance of PLATON and R-tree variants, query size 0.001%, decimal degree 0.001.
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Fig. 10. Query I/O of PLATON and R-tree variants on workloads with varying query aspect ratios.

PLATON and existing R-tree variants on workloads with varying aspect ratios, sizes, and decimal

degree scales respectively. We now discuss the observations for each type of workload pattern.

(1)Window query with varying aspect ratios. PLATON achieves the biggest performance improve-

ment on workloads with a large aspect ratio. This shows the benefit of adapting to both the data

distribution and workload distribution, especially when the workload has a special pattern. Com-

pared to the best-performing baseline method, PLATON achieves a speedup of up to 2.90×, 16.31×,
and 2.15× on the Uniform, Skew, and Gaussian dataset respectively.

(2) Window query with varying sizes. PLATON achieves the biggest performance improvement

on workloads with a small query size. Compared to the best-performing baseline method, PLA-
TON achieves a speedup of up to 1.52×, 2.70×, and 1.35× on the Uniform, Skew, and Gaussian

dataset respectively.

(3) Window query with varying decimal degree scales on real-world dataset. We note that among the

existing R-tree variants, the best-performing method is different for each dataset, which shows that

no heuristic rule works well for all data distributions. Meanwhile, PLATON consistently outperforms

all existing R-tree variants across the datasets. Compared to the best-performing baseline method,

PLATON achieves a speedup of up to 1.18×, 1.31×, and 1.29× on the Area Water, OSM Parks, and

OSM India dataset respectively.

(F2) If there is no workload available, by training from a synthetic workload following
data distribution, PLATON still significantly outperforms all existing R-tree variants
across different workload patterns. From Figure 9, we can see that compared to existing R-tree

variants, PLATON-D achieves the best performance in 4 out of 6 datasets and top-2 performance in

5 out of 6 datasets in terms of query I/O. From Figure 10 and Figure 11, we observe that PLATON-
D outperforms all existing R-tree variants on the Skew dataset and Gaussian dataset for different

workload patterns. The performance of PLATON-D is most noticeable on real workload datasets.

Figure 12 shows that PLATON-D achieves similar performance as PLATON across all three real-

world datasets, even outperforming PLATON for smaller decimal degree scales. This demonstrates

the effectiveness of optimizing for a synthetic query workload following data distribution.

(F3) PLATON significantly outperforms all existing R-tree variants for KNN queries.
Figure 13 shows the performance of PLATON and R-tree variants for K-Nearest-Neighbor (KNN)

queries. We sample the query points from the data distribution and conduct experiments for 𝐾 =

1, 5, 25, 125, 625. We observe that although PLATON is optimized for window query performance, it

outperforms all existing R-tree variants for KNN queries.
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Fig. 11. Query I/O of PLATON and R-tree variants on workloads with varying query sizes.
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(F4) PLATON significantly outperforms all existing R-tree packingmethods for spatial join
queries. Table 2 shows the performance of PLATON and R-tree variants for spatial join queries. We

perform spatial join over the OSM Parks and AreaWater dataset to find all pairs of (park, water area)

that intersects with each other. We implement two classic spatial join algorithms [32], index-nested

loop join [23] and hierarchical traversal [28]. For the index-nested loop join, we only build an R-tree

index on the OSM Parks dataset and loops over the Area Water dataset to find the parks intersecting

each water area. For the hierarchical traversal method, we build R-tree index on both datasets.

From the results, we observe that with Index-nested loop join, PLATON outperforms all existing

R-tree variants; with hierarchical traversal, PLATON underperforms R*-tree but outperforms all

existing R-tree packing methods. One interesting finding is that R*-tree outperforms all existing

R-tree packing methods on spatial join.

Method R* PR STR TGS HRR PLATON

Index-nested loop (·107) 1.24 2.75 1.49 1.37 1.31 1.00

Hierarchical traversal (·105) 1.42 3.84 2.14 2.24 2.40 1.73

Table 2. Query I/O of PLATON and R-tree variants on spatial join queries.

8.3 Comparison with Learned/Workload-aware Spatial Indexes
Figure 14 shows the performance of PLATON in comparison with learned/workload-aware indexes

on the two point datasets. Note that RSMI, LISA, and Waffle only support point data. We only
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evaluate RSMI on the OSM India dataset as the released code does not work on the synthetic skew

dataset. We observe that PLATON outperforms all baseline methods across all query sizes on the

two datasets, with a speedup of up to 2.30× and 1.42× compared to the best performing baseline

Waffle.

 0

 1

 2

 3

 4

 5

 6

 7

0.001
0.01

0.1 1

N
o

rm
al

iz
ed

 I
/O

Decimal degree

RSMI LISA RLR Waffle PLATON

OSM India

 0

 5

 10

 15

 20

0.001%

0.005%

0.01%
0.05%

N
o
rm

a
li

z
e
d

 I
/O

Size

Skew

 0
 1
 2
 3
 4
 5
 6
 7

0.001
0.01

0.1 1

N
o

rm
al

iz
ed

 I
/O

Decimal degree

OSM India

Fig. 14. Query I/O of PLATON in comparison with learned/workload-aware indexes.

8.4 Does MCTS optimizes the long-term reward?
We investigate whether MCTS optimizes the long-term reward through comparison with a greedy

partition policy that maximizes the immediate reward at each step. Table 3 shows PLATON’s

speedup over the greedy partition policy on different datasets. We observe the PLATON significantly

outperforms the greedy partition policy across all datasets, with the most speedup observed on

large datasets. This shows the effectiveness of MCTS in avoiding locally optimal decisions and

optimizing the long-term reward.

Dataset UNI SKEW GAU AW PARK IND

Speedup 1.04 1.13 1.22 1.07 1.17 1.69

Table 3. PLATON’s speedup over the greedy partition policy.

8.5 Effect of Optimization Techniques
We conduct experiments to evaluate the effect of the proposed optimization techniques. The left

plot in Figure 15 shows the log-log plot of the training time of PLATON with data sizes ranging

from 100K to 100 million on the OSM India dataset. From the figure, we observe that the training

time of PLATON w/o optimization scales super-linearly with regard to the dataset size. With the

proposed optimization, the training time is drastically reduced, and becomes linear with regard to

the data size.

8.6 Scalability
We conduct experiments to evaluate whether PLATON is scalable to larger datasets. We generate

four data samples with sizes ranging from 25 million to 100 million from the OSM India dataset.

The right plot in Figure 15 shows the overall construction time (including training time) of

PLATON in comparisonwith the learned index LISA.We observe that the construction of PLATON is

much faster than LISA for large data sizes, and is only slower than LISA for 25 million records. The

construction time of PLATON scales linearly with regard to the data size, which is consistent with

our analysis in Section 6. We note that existing R-tree variants and workload-aware indexes like
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Fig. 15. Scalability results.

Waffle have a shorter construction time, i.e., several minutes, on such data scales as they do not

require training. As the bulk-loading of an index is typically performed in an offline manner, the

training overhead of PLATON is acceptable.

We also conduct experiments to evaluate whether PLATON keeps the performance gain on larger

datasets. Figure 16 shows the query I/O of PLATON and baseline methods with varying data sizes.

From the left chart, we observe that PLATON consistently outperforms all R-tree variants, as well

as all learned/workload-aware indexes as the data size increases.
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Fig. 16. Query I/O of PLATON and baseline methods with varying data sizes.

8.7 Effect of pages size
Figure 17 shows the performance of PLATON and baseline methods with varying page sizes. We

conduct experiments on the OSM India dataset for page size of 4KB, 8KB, 12KB, and 16KB, which

corresponds to node capacity of 113, 227, 341, and 455 respectively. From the results, we observe that

PLATON consistently outperforms existing R-tree variants and learned/workload-aware indexes as

the page size varies.
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Fig. 17. Query I/O of PLATON and baseline methods with varying page sizes.
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8.8 Effect of dimensionality
We conduct experiments to evaluate the applicability and scalability of PLATON in higher dimen-

sions. We generate hyper-rectangle datasets of size 10 million in up to 6-dimensional space. The

rectangle centers follow uniform distribution, and the edge length in each dimension is uniformly

sampled from (0, 0.001]. The query windows have a fixed size of 0.001% of the data space and

have random shapes. The left plot in Figure 18 shows the query I/O of PLATON and the R-tree

variants as the dimension increases. We observe that while the performance of existing R-tree

variants drastically degrades as the number of dimensions increases, PLATON remains highly

efficient in higher dimensions. The right plot in the figure shows the training time of PLATON as

the dimension varies. We observe that the training time of PLATON is linear with regard to the

number of dimensions.
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8.9 Workload shifts
Figure 19 shows the performance of PLATON when the test workload shifts from the training

workload in terms of workload characteristics. We evaluate two workload shift scenarios: shift in

query aspect ratio and shift in query size. In both scenarios, we train PLATON on a default workload,

i.e., query aspect ratio of 10 and decimal degree scale of 0.1 respectively, and evaluate its performance

on workloads with a range of aspect ratios and sizes. We denote PLATON trained on the default

workload as PLATON-S. We compare the performance of PLATON under workload shifts with the

best-performing baseline methods, the workload-aware index Waffle, as well as PLATON-D. From
the left plot, we observe that PLATON trained on the default workload consistently outperform

the baseline methods as the query aspect ratio changes, while PLATON-D underperforms Waffle.

From the right plot, we observe that PLATON-D achieves the best performance for all query sizes.

PLATON trained on the default workload slightly underperforms PLATON-D, but still outperforms

Waffle. This shows that PLATON is robust to workload shifts.
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9 RELATEDWORK
R-Tree Variants. R-tree [29] was first proposed by Antonin Guttman in 1984 and has since been

extensively studied by the research community. R
+
-tree [51], R*-tree [13], and RR*-tree [14] were

proposed to improve the insertion and deletion operation and produce a better tree structure.

Meanwhile, a number of works have studied the problem of R-tree packing [12, 15, 17, 25, 30, 31,

33, 38, 39, 48, 49], which constructs an R-tree with better space utilization and query performance.

A detailed discussion of existing R-tree packing methods can be found in Section 2. Waffle [44]

combines the concepts of data partitioning from R-tree with space partitioning and proposes an

index structure with square-like, non-overlapping nodes.

Machine Learning for Spatial Index. The initial idea of learned index [37] was to replace 1-d

index structures like B-tree with a machine learning model that learns the cumulative density

function (CDF) of the data. The model then maps the search key to the storage id based on the

learned CDF. Several variants [19, 24, 34, 41] have been proposed to achieve better efficiency

and robustness. Learned spatial indexes extended the idea to multi-dimensional spatial data. ZM

index [53] was proposed for 2-d spatial data points. It linearizes the spatial points using a space-

filling curve, e.g., Z-curve, and learns to model the CDF of the z-order values. RSMI [47] improved

over ZM index by introducing a rank space-based ordering and a recursive partitioning strategy.

Instead of relying on space-filling curves, LISA [40] was proposed to directly learn a mapping from

spatial data points to 1-d value. Flood [45] proposed a grid-based index for multi-dimensional data

that adapts to a particular dataset and workload. Tsunami [20] addressed the performance issue of

Flood in case of correlated data and skewed workload. Note that Flood and Tsunami mainly focus

on in-memory indexes, and they do not support spatial queries like KNN queries. Therefore, we do

not compare Flood and Tsunami with the spatial indexes.

More recently, several methods were proposed to enhance traditional spatial indexes like R-tree

with machine learning techniques. RLR-Tree [27] and RW-tree [21] were proposed to improve

R-tree construction through one-by-one insertion, and they learn to optimize the chooseSubtree and
splitNode process. "AI+R"-tree [10] was proposed to enhance the range query processing algorithm

of R-tree for a given data and workload instance, by leveraging machine learning techniques.

Instance-optimized Databases. The concept of Instance-optimized Databases [36] refers to

data systems that self-adjust to a given workload and data distribution to provide unprecedented

performance. A number of instance-optimized data components have been proposed, including

instance-optimized index [10, 20, 45], data layouts [18, 54], query optimizers [42, 43] and query

scheduler [50].

10 CONCLUSION
This work considers the problem of R-tree packing, such that the query performance is optimized

for a given data and workload instance. We propose PLATON, a top-down packing method that

leverages Monte Carlo Tree Search to learn an optimal partition policy. We propose a divide and

conquer strategy, and two optimization techniques to reduce the MCTS algorithm complexity and

derive a linear-time algorithm. Extensive experiments on both synthetic and real-world datasets

show that PLATON outperforms both existing R-tree variants and learned/workload-aware indexes.
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