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1 INTRODUCTION

Over the past two decades, secure data outsourcing to untrusted clouds has emerged as an important
research area. Techniques to support operations such as keyword search [4, 8, 11, 18, 24, 31, 49],
range search [14, 23, 37, 40, 43, 51, 53, 54], join computation [2, 7, 28, 41, 50], aggregations [45, 50],
as well as, techniques to support SQL queries [2, 41] have been developed. Many such techniques
use cryptographic primitives that allow the untrusted cloud to match queries by checking whether
the ciphertexts corresponding to the query keys are stored at the cloud without having to decrypt
the data. One of the first methods proposed as searchable encryption [4, 11, 24, 31, 46, 49] embeds
a trapdoor/token (which is an encrypted query predicate) for a given query key into a random
string, such that the equality/inequality of a query key can be checked against ciphertext. Several
order-preserving encryption techniques [3, 35] to support range queries have subsequently been
proposed. To find matching records over ciphertext in sublinear time, several encrypted indexing
techniques have been proposed [4, 11, 17, 18, 29–31].

These cryptographic techniques suffer from information leakages via access patterns and volumes
(or, output-size). Access patterns refer to the identity of the returned records. Volumes refer to
the number of records returned to answer queries. The impact of access pattern leakage has been
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extensively discussed in literature [9, 16, 26, 32]. Oblivious Random Access Memory (ORAM) [19,
20, 36] and its improved version, known as Path-ORAM [47] are well-known tools to hide access
patterns. However, both ORAM and Path-ORAM do not hide volume. Furthermore, they suffer
from two problems: (i) query inefficiency, as they require fetching poly-logarithmic amount of
data for a query, and (ii) limited throughput and limited support for concurrent users due to the
underlying tree structure, which can support 0.055MB/s throughput (see Table 1 of [5]) and 30
concurrent clients [6], while existing DBMS, such as MySQL, offer high throughput and support
for concurrent users.
In contrast, volume-hiding techniques have not been given much attention, until recently.The

seminal work by Kellaris et. al. [33] and subsequent work [13, 22, 34, 42, 52] have shown that
systems that hide access patterns can still be vulnerable to attacks that allow an adversary to
reconstruct the database counts. e.g., if an adversary has prior knowledge about the number of
records corresponding to a query, it can potentially deduce/narrow down the query by observing
the number of records in the answer set.

Volume hiding can be achieved by ensuring that the number of records returned is always equal,
irrespective of the query being asked. Such records must include all the matching records, though
they may also return additional records that are then filtered out by the querier. In the context of
keyword queries (e.g., as in key-value stores), this necessitates that the cloud returns at least the
number of results that is greater than or equal to the number of key-value pairs corresponding to
any key, i.e., the maximum key size, denoted by 𝐿max . Clearly, a technique returning less than 𝐿max

records will reveal to the adversary that the corresponding query is not for the key corresponding
to the 𝐿max values. A trivial solution to prevent volume leakage is to use Path-ORAM [47]. However,
Path-ORAM will incur a huge communication cost of 𝑂 (𝐿𝑚𝑎𝑥 × log2 |D|), where |D| is the total
number of key-value pairs (as discussed in §1.1 of [29]).

To avoid such communication cost, recent volume-hiding techniques [1, 17, 29, 30, 38, 44] have
explored alternative approaches that do not use ORAM. As will become clear, such techniques store
spurious (fake) encrypted records to prevent volume leakage. These methods may return more
than 𝐿max records in response to a query, or may store a typically small number of data records on
the local side in plaintext, referred to as a “stash”. Note that an optimal approach would not store
any fake records, would not use a stash, and would retrieve 𝐿max records for any query. We can,
thus, compare the volume-hiding techniques based on the following metrics:
• Query amplification (QA): the ratio of the number of records returned for a query and 𝐿max

(optimal is 1).
• Storage amplification (SA): the ratio of the number of records stored in the encrypted database
and the number of records in the plaintext dataset (optimal is 1).
• Stash ratio (SR): the ratio of the number of records stored locally and the number of records in
the plaintext dataset (optimal is 0).
These metrics offer trade-offs, and we can easily design schemes with zero stash size (or, SR)

that are optimal for one of QA or SA (but not for both). For instance, a strategy that retrieves the
entire ciphertext database for any keyword query prevents volume leakage and has optimal storage
overhead (SA is 1 since it does not store any fake records). But it has abysmal QA (which could
be 𝑂 ( |D|), if, for instance, 𝐿max is considered a constant and |D| is the size of the database). An
alternate baseline strategy is to store key-value pairs as a multimap [1, 17, 29, 30, 38, 44], wherein
volume leakage is prevented by storing enough fake records in the multimap associated with each
key to ensure the number of records for each key is equal to 𝐿max . Such a strategy will always
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retrieve 𝐿max records (hence optimal QA), but may result in very poor SA. In particular, if 𝐿max is
𝑂 ( |D|), then the resulting ciphertext dataset may have 𝑂 ( |D|2) key-value pairs!1

One could possibly design schemes that are more efficient in terms of QA compared to retrieving
the entire database, and more efficient in terms of 𝑆𝐴 compared to padding each key to 𝐿𝑚𝑎𝑥 . For
example, using Path-ORAM over multi-map, one can design an approach to obliviously retrieve
𝐿𝑚𝑎𝑥 records including all records associated with the query key, but at the cost of QA to be
log2 ( |D|), which is impractical. Instead, the existing volume-hiding techniques [17, 29, 30, 38, 48]
have explored significantly better strategies for better QA and/or SA (and some of them [17, 29, 30]
are likely integrated into MongoDB). For instance, one of these strategies, dprfMM [38], uses
cuckoo hash to achieve QA and SA of 2, with a small stash having tight upper bounds. The most
recent approach, XorMM [48] uses an XOR filter [21] to store the dataset and achieves QA of 1 and
SA of 1.23. We will discuss these and other related strategies in §7.
Our contribution:We develop a novel strategy, entitled Veil, that, given a key 𝑘 , retrieves records
associated with the key from the encrypted key-value store while preventing volume leakage.2
Our approach is based on bucketing, wherein keys are mapped to a set of buckets that are then
encrypted and stored. To retrieve the records for a given key, Veil retrieves all the buckets that
could contain the records of the given key. Unlike prior approaches, Veil allows the database owner
(or, user) to fine-tune the parameters/metrics – viz., QA and SA, which are input parameters to the
system. A user can set the values of QA and SA to be any value more than or equal to 1, which
Veil can subsequently guarantee by using a local stash. Like existing volume-hiding techniques,
Veil also does not focus on hiding access-patterns.

Given that [38] already achievesQA and SA values of 2 with a small stash, our primary exploration
in Veil is the resulting stash size when QA and SA are below 2, i.e., the number of records retrieved
remains below 2𝐿max and the total number of records in the ciphertext database are below 2|D|.
We show both analytically and experimentally that even when we choose relatively small values
of these parameters (e.g., SA = 1.2 and QA close to 1), Veil achieves a very small stash, which
experimentally is significantly smaller than that of the scheme in [38]. Thus, Veil is a significantly
better strategy that guarantees the prevention of volume leakage and achieves a near-optimal
value of QA and acceptably small values of SA compared to the best-known strategy. We further
optimize on Veil by developing a modified strategy that allows buckets to share common records
to further reduce SA. The modified strategy requires significantly less fake records to be added
without increasing QA or the stash size. In summary, our contributions are:
• A flexible volume-hiding strategy that allows tuning storage overhead and query overhead to
achieve a trade-off.
• A random bucketing strategy that distributes records of a key to buckets in a greedy way.
• Two strategies to add fake values to the created buckets, including a basic strategy that pads
each created bucket to equal size, and an overlapping strategy that further reduces the number
of fake records using a 𝑑-regular graph.
• Experimental evaluation shows that Veil achieves flexible tuning of SA and QA and uses a small
stash.

2 SETTINGS

This section describes the problemmore concretely, including the adversarial model and the security
model in Veil.
1Consider a key with 𝐿𝑚𝑎𝑥 = |D |/2 records and the rest of the keys with only a single record each. The number of fake
records is ( |D |/2 − 1)2, which is𝑂 ( |D |2 ) .

2Implementation of Veil: https://github.com/han-shanshan/VEIL.
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2.1 Problem Definition

We consider a key-value (KV) dataset D with a set of unique keys K , where each key 𝑘𝑖 ∈ K
is associated with |𝑘𝑖 | records. The maximum number of records associated with any key in K
is denoted by 𝐿max , i.e., 𝐿max = MAX{|𝑘𝑖 |}𝑘𝑖 ∈K . The dataset D is encrypted in a ciphertext-secure
manner, ensuring that no information is revealed from the ciphertexts, and subsequently outsourced
to an untrusted public cloud server. Users, or the database owner, can query the encrypted dataset
by sending encrypted queries for a key 𝑘𝑖 to the cloud. In the absence of volume-hiding techniques,
an adversary learns the number of records returned in response to an encrypted query, and this
leakage enables the adversary to deduce the plaintext query key based on prior knowledge of the
data distribution.
Our goal in this paper is to develop solutions to hide real volumes, i.e., the number of records

associated with the query key, during query processing. Before presenting an overview of our
approach, we first discuss the adversarial model.

2.2 Adversarial Model

We consider a powerful adversary who knows the data distribution. That is, for a KV dataset D
and its key set K , the adversary is aware of each key 𝑘𝑖 ∈ K and its volume |𝑘𝑖 |. The adversary
also has full access to the ciphertext database. Let 𝑞 be a query. Let Cipher(𝑞) be the ciphertexts
that 𝑞 touches. Consequently, on executing the query, the adversary learns the association between
𝑞 and the ciphertexts Cipher(𝑞). The adversary may also know the keywords corresponding to (a
subset of) prior queries. Let 𝑄 be the set of queries that have been executed in the database so far,
and let 𝑄 ′ ⊆ 𝑄 . Suppose for each 𝑞 ∈ 𝑄 ′, the adversary knows the plaintext keyword associated
with 𝑞. In the worst case, 𝑄 ′ = 𝑄 , i.e., the adversary knows the query keyword for all prior queries
executed in the database.

The adversary’s objective is to determine the query keyword. It can achieve this by deducing the
real volume of the current query key or other keys by observing queries and then mapping the
ciphertexts to the corresponding plaintexts based on prior knowledge and/or query execution. It
can also use known keys from previous queries to infer information about the plaintext query key.
The goal of hiding volumes is to prevent the adversary from deducing the query keys and obtaining

information for other keys based on the knowledge of past queries.

Security Requirement (VSR). Consider a KV dataset D with a key set K and a series of past
queries to keys K𝑄 = {𝑘1, . . . , 𝑘𝑚}. We assume that there are at least two keys, say 𝑘1, 𝑘2 ∈ K
that have never been queried before, i.e., |K𝑄 | ≤ |K | − 2, 𝑘1, 𝑘2 ∈ K , and 𝑘1, 𝑘2 ∉ K𝑄 . Consider
an adversary (based on the adversarial model discussed above) with the knowledge of: (i) data
distribution, (ii) the corresponding ciphertext records and volume for each queried key 𝑘𝑖 ∈ K𝑄 ,
and (iii) the plaintext key for some queried keys 𝑘𝑖 ∈ K𝑄 . Suppose the adversary observes a new
query to key 𝑘𝛼 , where 𝑘𝛼 ∈ K − K𝑄 , the goal of the adversary is to deduce whether 𝑘𝛼 = 𝑘1 or
𝑘𝛼 = 𝑘2. A technique will be volume-hiding if the following condition holds:

Prob[𝑘𝛼 = 𝑘1 |𝐴𝑑𝑣] = Prob[𝑘𝛼 = 𝑘2 |𝐴𝑑𝑣] (1)
That is the probability of the adversary (𝐴𝑑𝑣) for guessing 𝑘𝛼 = 𝑘1 is identical to the probability

of guessing 𝑘𝛼 = 𝑘2.

3 OVERVIEW OF VEIL

This section overviews Veil, a secure volume-hiding strategy for key-value stores. Veil partitions
a KV dataset into buckets by associating records for a given key with one or more buckets. Given a
query key, the buckets corresponding to the key, which may potentially store the records for the
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key, are retrieved. These retrieved buckets may include extra records that are not associated with
the query key. Such records are filtered out to obtain the query answer.

3.1 Notation

To describe Veil formally, we define the following notations. Let D be a key-value dataset, K be
the set of keys in D, and B = {𝐵1, . . . , 𝐵𝑛} be the set of 𝑛 buckets created over D. Veil associates
each key 𝑘𝑖 ∈ K with a set of 𝑓 buckets from B, where 𝑓 is referred to as the fanout. We define a
function MAP that associates/maps a given key 𝑘𝑖 to a set of buckets.
Definition 3.1 (MAP).We define MAP : K → P(B) where P(B) is the powerset of B. For a key
𝑘𝑖 ∈ K, the functionMAP(𝑘𝑖 ) returns a set of 𝑓 bucket-ids, denoted as B[𝑘𝑖 ], that corresponds to 𝑓

buckets in B, i.e., |B[𝑘𝑖 ] | = 𝑓 , such that each record of 𝑘𝑖 may reside in one of the buckets in B[𝑘𝑖 ].
Further, ∀𝑘𝑖 and ∀𝐵 𝑗 such that 𝐵 𝑗 ∉ MAP(𝑘𝑖 ), the records of 𝑘𝑖 ∉ 𝐵 𝑗 . □

Note that based on the definition above, records corresponding to a key 𝑘𝑖 may or may not be in
bucket 𝐵 𝑗 . We illustrate the notation above using the example below.

Example 3.1 (Example of MAP(*)). Consider a key-value dataset D that contains three records:
D = {⟨𝑘1, 𝑣1⟩, ⟨𝑘1, 𝑣2⟩, ⟨𝑘2, 𝑣3⟩}. Let B = {𝐵1, 𝐵2, 𝐵3} be the set of buckets created over D, where
bucket 𝐵1 contains {⟨𝑘1, 𝑣1⟩}, bucket 𝐵2 contains {⟨𝑘1, 𝑣2⟩, ⟨𝑘2, 𝑣3⟩}, and bucket 𝐵3 is empty. Here,
MAP(𝑘1) = {𝐵1, 𝐵2} and MAP(𝑘2) = {𝐵2, 𝐵3} indicates that records of 𝑘1 reside in 𝐵1 and/or 𝐵2,
and records of 𝑘2 reside in 𝐵2 and/or 𝐵3. □
Below we define well-formed buckets. Intuitively, we say that a set of buckets formed over a

dataset is well-formed if each bucket is of the same size and MAP is defined appropriately.
Definition 3.2 (Well-Formed Buckets). Let MAP be the function as defined above. The buckets are

well-formed, if and only if the following hold:

(1) Equal bucket size. For all buckets 𝐵𝑝 and 𝐵𝑞 ∈ B, |𝐵𝑝 | = |𝐵𝑞 |.
(2) Disjoint Buckets. For all buckets 𝐵𝑝 and 𝐵𝑞 ∈ B, 𝐵𝑝 ∩ 𝐵𝑞 = ∅.
(3) Consistent mapping. For all buckets 𝐵𝑝 ∈ B and all key 𝑘𝑖 ∈ K , if 𝐵𝑝 contains one or multiple

records of 𝑘𝑖 , then 𝐵𝑝 ∈ MAP(𝑘𝑖 ).
We denote the set of well-formed buckets after padding by B𝑓 . □

Buckets can be made equal-sized by adding fake records to them appropriately. Suppose 𝜃1, 𝜃2
and 𝜃3 refer to “fake” records. Consider, again, Example 3.1. We add 𝜃1 to bucket 𝐵1 and 𝜃2 and 𝜃3 to
bucket 𝐵3. Thus, we have 𝐵1 = {⟨𝑘1, 𝑣1⟩, 𝜃1}, bucket 𝐵2 = {⟨𝑘1, 𝑣2⟩⟨𝑘2, 𝑣3⟩}, and bucket 𝐵3 = {𝜃2, 𝜃3}.
The set of buckets {𝐵1, 𝐵2, 𝐵3} is now well-formed.

3.2 Components of Veil

Veil is characterized by the following five operations: Bucket Creation, Padding, Data Outsourcing,
Query Evaluation, and Filtering.

Bucket Creation BC (D,𝑄𝐴, 𝑆𝐴, 𝑓 )→ ⟨MAP, B, stash⟩: The function BC takes the dataset D,
the parameter QA (query amplification), the parameter SA (storage amplification), and a fanout 𝑓
as inputs and returns a mapping MAP from keys to buckets, a set of buckets B = {𝐵1, . . . , 𝐵𝑛}, and
a stash (containing a few records that do not fit in any buckets). Observe that B is consistent to
MAP but buckets in B may be of unequal size.

Padding. Tomake the buckets well-formed, Veil adds fake records to make the buckets equi-sized.
Let ℓ𝑏 be the bucket size (§4 will explain the method of computing ℓ𝑏 ). For each bucket 𝐵 𝑗 ∈ B, if
|𝐵 𝑗 | < ℓ𝑏 , we add fake records to 𝐵 𝑗 to pad it to size ℓ𝑏 . We denote the set of well-formed buckets
after padding by B𝑓 .
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Data Outsourcing. This operation takes the well-formed buckets B𝑓 and produces the following:
• Encrypted Record Set: that includes the set of all real or fake records in each bucket 𝐵𝑖 ∈ B𝑓 .
All such records are appropriately encrypted and outsourced as a record set. Each record is
associated with a RID that will be used in a multimap index. For example, a key-value pair or a
record ⟨𝑘𝑖 , 𝑣⟩ in a bucket is represented as: ⟨𝑅𝐼𝐷, 𝐸 (𝑘𝑖 , 𝑣)⟩, where 𝐸 is an encryption function,
such as AES256 [12].3
• Multimap Index,𝑀𝑚𝑎𝑝 (𝐵𝑖 ): contains a map for each bucket 𝐵𝑖∈B𝑓 consisting of a list of RIDs
associated with records in 𝐵𝑖 .
The encrypted record set and the multimap index for each bucket are outsourced to a server. Fur-

thermore, Veil also maintains information at the client for converting user queries into appropriate
server-side queries. In particular, Veil stores the following information at the client:
• 𝑓 : fanout that is the number of buckets in which records of a key may get mapped to.
• 𝑛: total number of buckets created by bucketing.
• Stash.
Aside. Note that the above strategy for outsourcing the𝑀𝑚𝑎𝑝 (𝐵𝑖 ) corresponds to implementing

the multimap index as a secondary index over an encrypted database of records. We could, instead,
also implement𝑀𝑚𝑎𝑝 (𝐵𝑝 ) as a primary index in which case the𝑀𝑚𝑎𝑝 (𝐵𝑝 ) would store encrypted
records instead of RIDs to the encrypted record stored in the encrypted record store.

Query Evaluation QE(𝑘𝑖 ) → B[𝑘𝑖 ]: QE takes a query key 𝑘𝑖 as input from the user and fetches
encrypted buckets stored at the public cloud. Particularly, the client utilizesMAP function,MAP(𝑘𝑖 ),
to determine the 𝑓 bucket-ids that may store the encrypted records of 𝑘𝑖 and sends the 𝑓 bucket-ids
to the cloud to fetch the 𝑓 buckets. Depending on the way the data is stored at the cloud (either in
the form of a primary index or a secondary index, e.g., multimap index), the cloud returns all the 𝑓
buckets to the client.

Filtering: This operation takes the query key 𝑘𝑖 and the encrypted records in the buckets retrieved
by QE as inputs and decrypts them. All the records that are not corresponding to 𝑘𝑖 are discarded.
Further, the client reads the stash to find records having the key 𝑘𝑖 .
Observe that in Veil, irrespective of the key, the volume of data retrieved remains the same

because (1) buckets generated by BC are well-formed (hence equal-sized); (2) QE always retrieves
the same number of buckets, i.e., 𝑓 .
Leakage from BC. A potential leakage arises when the adversary possesses knowledge of the
algorithm used by BC to create buckets. This serves as a motivation to address the design re-
quirement of the BC algorithm developed in Veil, which will be discussed in §4. We illustrate a
scenario where the adversary is aware that the algorithm BC used to create buckets is the first-fit
decreasing4 (FFD) [27] algorithm.

Example 3.2. Consider a dataset D with three keys 𝑘1, 𝑘2, and 𝑘3 containing 3, 2, and 1 records,
respectively. The bucket size is 3 (same as the largest number of records associated with any key
in D). Using FFD [27], we allocate the keys to buckets by first placing the largest key, i.e., 𝑘1, in
bucket 𝐵1. Since bucket size is 3 and 𝑘1 has three corresponding records, 𝐵1 lacks space for 𝑘2. We
create a new bucket 𝐵2 for 𝑘2. We also add 𝑘3 to 𝐵2. Thus, each query retrieves a bucket with 3
records from an adversary’s perspective.
3AES produces an identical ciphertext for more than one appearance of a cleartext. Since each ⟨𝑘𝑖 , 𝑣⟩ pair is unique (i.e., differs in at least
one bit), all the ciphertext values will be non-identical (due to avalanche effect property [15]). In case there are two or more appearances of
a ⟨𝑘𝑖 , 𝑣⟩ pair due to insert operation, we could add a random number to ⟨𝑘𝑖 , 𝑣, 𝑟 ⟩ before encryption to produce non-identical ciphertext.

4FFD is a well-known bin-packing algorithm that sorts keys in descending order by the size and places each key into the first available bucket
with sufficient space. If a key cannot fit in an existing bucket, the algorithm creates a new bucket for the key. FFD creates at most 11

9 ×𝑂𝑃𝑇

equisized buckets [27], where𝑂𝑃𝑇 is the least number of buckets required to store the database.
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Consider an adversary (based on the adversarial model in §2.2) that has the following knowledge:
• Data distribution, i.e., knowledge that 𝑘1, 𝑘2, and 𝑘3 associate with 3, 2, and 1 records respectively.
• Prior queries, i.e., the adversary knows that a prior query that retrieved 𝐵2 corresponds to 𝑘2.
Given the data distribution, the adversary can execute the FFD algorithm by itself to determine that
of the two buckets, one contains records of 𝑘1 and the other has records corresponding to 𝑘2 and 𝑘3.
Now, if a query retrieves 𝐵1, the adversary can infer that the query is for the key 𝑘1. Likewise, if the
query returns 𝐵2, the adversary can determine that the query is for either 𝑘2 or 𝑘3 but NOT for 𝑘1.

The example above illustrates leakage in scenarios where keys are mapped to a single bucket
using FFD, i.e., the fanout 𝑓 is 1. Analogous examples can be created for other bucket creation
algorithms, whether they yield a fanout of 1 or more, as these strategies construct buckets based on
key sizes and a desired bucket size, which may inadvertently aid adversaries to infer information
about keys. A possible solution to avoid such a leakage when using FFD is to use ORAM to fetch a
bucket; however, this will come with communication overhead, as has been discussed in §1.

In this paper, we develop Veil, a bucketization-based strategy that prevents the attack illustrated
above and ensures that the adversary cannot determine the volume of the results and thus cannot gain

any information from the queries.
To pad the buckets to well-formed, we also propose two strategies for padding, including a basic

strategy that adds fake records to buckets to make them equal-size (in §4), and a sophisticated
overlapping strategy that allows buckets to “borrow” records from other buckets to further minimize
the number of fake records added while making the buckets well-formed (in §5).
Throughout the rest of this paper, we mainly focus on the bucket creation operation, which

allocates records to buckets and pads them to achieve a well-formed structure. We do not extensively
discuss the outsourcing and filter operations, as they are relatively straightforward. Since the query
operation is intrinsically connected to the way we create buckets, we discuss it alongside bucket
creation.

4 VEIL WITH RANDOM BUCKET CREATION

Veil uses a random bucket creation strategy, denoted by BC, that allows users to specify input
parameters of query amplification QA, storage amplification SA, as well as the fanout 𝑓 . BC
generates a randomized mapping between keys and buckets, denoted by MAP, based on which
it creates a set of buckets B. In BC, since keys are assigned randomly to buckets (i.e., MAP is a
randomized function), there is always a chance that not all records in D fit into the buckets in B.
Records that do not fit into the assigned buckets, i.e., records in D − ∪𝐵 𝑗 ∈B𝐵 𝑗 are assigned to a
local storage that we refer to as a stash. Such a stash is stored at the local site (and not the public
cloud). With the possibility of a stash, the retrieval algorithm in Veil is slightly modified.

Given a query key 𝑘𝑖 , in addition to retrieving all the corresponding buckets inMAP(𝑘𝑖 ), the user
also checks the stash for presence of records for key 𝑘𝑖 . Note that the effectiveness of the strategy
depends upon the size of the stash which we would like to be as small as possible. The stash size
in BC , as will become clear, depends upon factors including the QA, SA, and 𝑓 . We theoretically
show that even when we set these factors close to their optimal values , i.e., 1, the expected size
of the stash remains very small. This is also reflected by our experiments which clearly establish
the superiority of the BC not only in terms of QA and SA but also in a much smaller size of stash
compared to dprfMM [38] which also exploits the stash to store spillover records that do not fit
into the cuckoo hash tables.

TheMAP function in Veil is implemented using a hash functionH such as SHA-256 [39]. To gen-
erate bucket-ids for a query key 𝑘𝑖 , Veil appends an integer counter𝛾 to the key 𝑘𝑖 , where 1 ≤ 𝛾 ≤ 𝑓 .
Subsequently, the hash function H processes the concatenated strings and produces 𝑓 distinct
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Algorithm 1:Map Algorithm
Inputs: 𝑘𝑖 : a query key; 𝑛: total number of buckets;H : a hash function. Outputs: B[𝑘𝑖 ]: a list of 𝑓
bucket-ids corresponding to 𝑘𝑖 .

FunctionMAP(𝑘𝑖 , 𝑛,H) begin
1 B[𝑘𝑖 ] ← []
2 for 𝛾 ∈ [1, 𝑓 ] do
3 B[𝑘𝑖 ].append(H (𝑘𝑖 |𝛾 ) % 𝑛) ⊲ Map to [0, 𝑛 − 1]
4 return B[𝑘𝑖 ]

Algorithm 2: BC: Random Bucket Creation Algorithm.
Inputs: SA: a desired storage amplification. QA: a desired query amplification. 𝑓 : fanout. 𝐿max :
maximum key size in the dataset. D: dataset. K : key set. MAP: a map function for each key and its
corresponding buckets.

Outputs: B: a list of buckets; S: a stash.
1 ℓ𝑏 ← ⌈𝑄𝐴 · 𝐿max/𝑓 ⌉ ⊲ bucket size
2 𝑛 ← ⌈𝑆𝐴 · |D|/ℓ𝑏⌉ ⊲ the total number of buckets
3 B ← create_empty_buckets(𝑛) ⊲ create 𝑛 empty buckets
4 shuffle(D) ⊲ mix the dataset D
5 S ← [] ⊲ a local stash
6 for each tuple t ∈ D do

7 key ← t .extract_key() ⊲ extract the key from 𝑡

8 bucket_id ← find_smallest_bucket (MAP(key)) ⊲ find the smallest bucket from the 𝑓 buckets
9 if B[bucket_id] is not full then
10 B[bucket_id] .add (t) ⊲ add 𝑡 to the smallest bucket

else

11 S.add (t) ⊲ all buckets are full: add 𝑡 to stash
12 return B,S

bucket-ids that are then associated with the key 𝑘𝑖 . The algorithm forMAP is shown in Algorithm 1.

Veil Steps.We next discuss the components of Veil based on the randomized bucket creation.

Bucket Creation BC. The pseudo-code for BC is presented in Algorithm 2. Initially, the algorithm
calculates the bucket size ℓ𝑏 , based on the maximum key size 𝐿max , a user desired query amplification
(QA), and the fanout 𝑓 (Line 1). Subsequently, the algorithm determines the number of buckets 𝑛
according to the desired storage amplification (SA) and the data size |D| (Line 2).

ℓ𝑏 =
𝑄𝐴 × 𝐿max

𝑓
, 𝑛 =

SA × |D|
ℓ𝑏

(2)

Next, the algorithm generates 𝑛 empty buckets (Line 3) and shuffles the dataset to mix the key-
value pairs of different keys (Line 4). Additionally, a local stash is established for key-value pairs
that cannot fit into a bucket (Line 5). For each key-value pair ⟨𝑘𝑖 , 𝑣⟩ arranged in a random order,
the algorithm identifies the corresponding 𝑓 bucket-ids for 𝑘𝑖 based on MAP(𝑘𝑖 ) (i.e., Algorithm 1)
and locates the smallest among the 𝑓 buckets corresponding to 𝑘𝑖 (Line 8) to place the key-value
pair (Line 10). If the bucket is at capacity, indicating that all 𝑓 buckets corresponding to 𝑘𝑖 are full,
the key-value pair will be placed into the local stash (Line 11).
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Note that shuffling (in Line 4) prevents the adversary from learning the order in which keys
are inserted into buckets. If we insert keys in the order in which they appear in the database, the
adversary may be able exploit such information to gain information about the ciphertext. Say
MAP(𝑘1) = {𝐵1, 𝐵2, 𝐵3} and QA = 1. Thus, all records in the 3 buckets are for 𝑘1. Records of any
other key mapped to these buckets will go to stash. Now, if an adversary gets to learn that a query
𝑞 is for 𝑘1, it will learn that all records in 𝐵1, 𝐵2, and 𝐵3 are for the same key 𝑘1. Shuffling prevents
such a situation. Shuffling is implemented by permuting records in the database prior to creating
buckets.

Also, note that BC utilizes user-defined SA and QA to determine the bucket size and the number
of buckets. Consequently, the desired SA sets a limit on the number of fake records needed to pad
the buckets later.

Padding. As the buckets created by Algorithm 2 may contain different numbers of records. In
order to generate equi-sized buckets of size ℓ𝑏 , we pad the buckets with fake records once BC has
terminated.

Data Outsourcing. Let B𝑓 be the set of well-formed buckets created by Veil (Algorithm 2) after
padding. Finally, the encrypted record set and multimap index are created and outsourced to the
cloud, as explained in §3.2.

Query Evaluation and Filter. A query for 𝑘𝑖 is executed by fetching 𝑓 buckets from the cloud,
after which the filter operation is executed at the client, as has been explained in §3.2.

Discussion: Analysis of Veil based on both performance & security is formally presented in the
extended version [25]. From the performance perspective, Veil provides guaranteed storage and
query amplification as specified by the user while ensuring that the expected size of stash is zero.
From the security perspective, Veil is secure based on the security requirement VSR in §2.2.

5 REDUCING STORAGE AMPLIFICATION

Veil creates equal-sized buckets by padding each bucket to the same size, as discussed in §4.
The resulting buckets are “disjoint”, indicating that no two buckets share common records. In
this section, we propose an optimization to Veil that reduces storage amplification SA without

increasing the stash size or query amplification QA. We introduce an alternate strategy called
Veil-O that allows buckets to share records, thereby decreasing the need to insert fake records
to equalize the bucket sizes. The letter O represents “overlapping” between buckets due to the
common records.

Definition 5.1. Given a set of buckets B where each bucket contains key-value pairs, we say two

distinct buckets 𝐵𝑝 and 𝐵𝑞 in B are overlapping if there exists a key-value pair ⟨𝑘, 𝑣⟩ in both 𝐵𝑝 and

𝐵𝑞 . The records shared by the overlapping buckets are referred to as common records. The number of

common records in 𝐵𝑝 ∩ 𝐵𝑞 , i.e., |𝐵𝑝 ∩ 𝐵𝑞 |, is the overlapping size. □

Intuitively, the optimized strategy allows buckets to borrow key-value pairs from other buckets
instead of inserting fake records to pad themselves to the desired bucket size ℓ𝑏 , thereby reducing
the storage amplification SA.

5.1 Overlapping Buckets

Creating well-formed buckets by borrowing records from other buckets may seem straightforward.
However, borrowing records indiscriminately may lead to information leakage.
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Example 5.1. Consider a dataset D with three keys, 𝑘1, 𝑘2, 𝑘3, containing 3, 1, and 3 values,
respectively. Let the desired fanout 𝑓 be 1, and let D be partitioned into three buckets B =

{𝐵0, 𝐵1, 𝐵2} of size 3, where 𝐵0 contains records of 𝑘1, 𝐵1 contains records of 𝑘2, and 𝐵2 contains
records of 𝑘3. To create equal-sized buckets, we allow 𝐵1 to borrow records from 𝐵0 and 𝐵2 to
increase its size to 3, as illustrated in Fig. 1. Observe that in this example, the buckets are well-
formed: each bucket is equal-sized and consistent with the MAP function, which maps 𝑘1, 𝑘2, and
𝑘3 to 𝐵0, 𝐵1, and 𝐵2, respectively.

6

𝑣!! 𝑣"! 𝑣#! 𝑣!" 𝑣!# 𝑣"# 𝑣##

𝐵! 𝐵" 𝐵#

Fig. 1. An Intuitive Example of Unsecure Buckets

Such overlapping buckets can, however, lead to leakage. An adversary may infer buckets for
some keys using the data distribution and access pattern (i.e., the records retrieved when a query
is executed). Let’s examine how an adversary could infer that MAP(𝑘2) = 𝐵1 in the example
above. Assume the adversary observes three queries that retrieve records in buckets 𝐵0, 𝐵1, and 𝐵2,
respectively. 𝐵0 and 𝐵1 share a common record (in the intersection of 𝐵0 and 𝐵1), so do 𝐵1 and 𝐵2.
Note that 𝐵0 and 𝐵2 do not intersect. Given that 𝑘1 and 𝑘3 each have 3 records, and 𝑘2 has 1 record,
the adversary can easily deduce that neither 𝑘1 nor 𝑘3 could be mapped to 𝐵1. If either were, all
records in 𝐵1 would correspond to 𝑘1 (or 𝑘3), in which case the other key with 3 records (i.e., 𝑘3 or
𝑘1) would not have enough space for its records in either 𝐵0 or 𝐵2, since at least one of the records
in those buckets (i.e., the intersecting record with 𝐵1) belongs to 𝑘1 (or 𝑘3). As a result, it must be
the case that MAP(𝑘2) = {𝐵1}, and the first three records and the last three records in Fig. 1 are
for keys 𝑘1 or 𝑘3, respectively. Thus, the adversary not only learns which query is for key 𝑘2, but
also which ciphertext (in this case, the ciphertext in 𝐵1 that does not intersect with either 𝐵0 or 𝐵2)
corresponds to the key-value pair for key 𝑘2.□

As shown in the example above, while allowing buckets to overlap can help ensure that results
returned for queries are equi-sized, the resulting access pattern (which specific records get retrieved)
could lead to inferences about the keyword. Of course, if the underlying system used an access
pattern hiding technique such as ORAM to prevent access pattern leakage, the leakage above
would not occur. But as we mentioned in §1, techniques such as ORAM can be computationally
prohibitive. Instead, in Veil-O we devise clever ways to share records amongst buckets such that
resulting access patterns do not leak additional information. This is described in the remainder of
this section.

To prevent leakage for overlapping buckets, we must ensure that the adversary cannot distinguish
between buckets based on the intersections between them. For a bucket, we define the notion of its
neighborhood as the set of all buckets it overlaps with.

Definition 5.2. Given a set of buckets B, for a bucket 𝐵 𝑗 ∈ B, we define its neighborhood as

N(𝐵 𝑗 ) = {𝐵𝑝 ∈ B | |𝐵 𝑗 ∩ 𝐵𝑝 | > 0}. We call each bucket in N(𝐵 𝑗 ) a neighbor of 𝐵 𝑗 .

The well-formed bucket criteria in Definition 3.2, while sufficient, is not necessary to prevent
leakage, thus we generalize the well-formed criteria for overlapping buckets.

Definition 5.3 (Well-Formed Buckets with Overlap.). LetD be a key-value dataset,K be the set

of keys in D, and B be the set of 𝑛 buckets created over D. Let MAP(*) be the function that maps

keys in K to 𝑓 buckets in B. We say that the buckets in B are well-formed if and only if
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(1) Equal bucket size. For all buckets 𝐵𝑝 and 𝐵𝑞∈B, we have |𝐵𝑝 |=|𝐵𝑞 |.
(2) Constraints on Overlap.
• Equal sized neighborhood. For all buckets 𝐵𝑝 and 𝐵𝑞 ∈ B,|N (𝐵𝑝 )| = |N (𝐵𝑞)|.
• Equal overlapping size. For all B1 and B2 in P(B), where P(B) is the power set of B, with
– |B1 | = |B2 |,
– for all 𝐵1, 𝐵

′′
1 ∈ B1, buckets 𝐵′1 and 𝐵′′1 are overlapping, and for all 𝐵′2, 𝐵

′′
2 ∈ B2, buckets 𝐵′2

and 𝐵′′2 are overlapping, we have | ⋂
𝐵∈N(𝐵𝑝 )

𝐵 | = | ⋂
𝐵′∈N(𝐵𝑞 )

𝐵′ |.

(3) Consistent mapping. For all buckets 𝐵𝑝 ∈ B and all keys 𝑘𝑖 ∈ K , if 𝐵𝑝 contains one or multiple

records of 𝑘𝑖 , then 𝐵𝑝 ∈ MAP(𝑘𝑖 ). □

Intuitively, the well-formed definition above requires each bucket to overlap with the same
number of buckets, and the number of common records between a subset of overlapping buckets
of any size to be the same. This ensures buckets are indistinguishable from each other. Note that
the well-formed definition in §3.2 is subsumed by the definition above - i.e., if buckets are not
overlapping, the above definition reduces to that of the well-formed buckets as in Definition 3.2.
Henceforth, by well-formed, we refer to the well-formed buckets with overlap.
To form well-formed overlapping buckets, we superimpose a structure of a random 𝑑-regular

graph over B, the set of buckets. In the graph, 𝐺 = (𝑉 , 𝐸), each vertex 𝑣𝑖 ∈ 𝑉 corresponds to the
bucket 𝐵 𝑗 ∈ B, and edges correspond to 𝑑 neighbors, which we will see are assigned randomly.
For illustration, let us consider a situation where 𝑑 is 3, thus, each node has exactly 3 neighbors
(i.e., intersection of any four buckets is empty). Fig. 2 illustrates such a 3-regular graph with an
initial set of buckets B= {𝐵0, 𝐵1, 𝐵2, 𝐵3} and the corresponding neighbors. Neighboring buckets
borrow/lend records to each other, and hence may overlap.
With the 𝑑-regular graph G = (𝑉 , E), we further associate the following: (i)Weight (denoted

by 𝛿) that specifies the number of records shared between one bucket and each of its neighbors.
Note that 𝛿 is a constant - i.e., the number of records shared between neighbors is always equal
to 𝛿 . (ii) Direction that is a function dir (𝑣𝑝 , 𝑣𝑞) : 𝐸 → {0, 1} that assigns to each edge in 𝐺 a
direction representing which corresponding bucket borrows/lends to its neighbor. Suppose bucket
𝐵𝑝 borrows from bucket 𝐵𝑞 then dir (𝑣𝑝 , 𝑣𝑞) = 0 and dir (𝑣𝑞, 𝑣𝑝 ) = 1. (iii) Labels that indicate
the specific common records that neighbors borrow/lend from each other. For an edge (𝑣𝑝 , 𝑣𝑞),
if dir (𝑣𝑝 , 𝑣𝑞) = 0, then the label label(𝑣𝑝 , 𝑣𝑞) is the set of the records that 𝐵𝑝 borrows from 𝐵𝑞 .
Conversely, if dir (𝑣𝑝 , 𝑣𝑞) = 1, then label(𝑣𝑝 , 𝑣𝑞) is the set of the records that 𝐵𝑞 borrows from 𝐵𝑝 .
We illustrate an example graph G. To simplify notations, we only show values in the buckets.

Suppose the generated buckets {𝐵0, 𝐵1, 𝐵2, 𝐵3} contain 4, 2, 1, and 3 records, respectively, with
the bucket size to be 4. We can pad each bucket to the size of 4 as follows. 𝐵0 currently contains 4
records and, thus, cannot accept additional values. It can, however, provides one value to each of its
neighbors 𝐵1, 𝐵2, and 𝐵3. In turn, 𝐵3 receives one record from 𝐵0, achieving the target bucket size
of 4, and contributes one record to each of 𝐵1 and 𝐵2. Now, 𝐵1 receives two records from 𝐵0 and
𝐵3 to reach the desired size of 4, subsequently offering one record to 𝐵2. Finally, 𝐵2 receives three
values from 𝐵0, 𝐵1, and 𝐵3 to fulfill its size requirement of 4. In Fig. 2, each bucket overlaps with 3
buckets, the weight over each edge is 1, and each bucket is padded to size 4, thus the buckets are
indistinguishable from the adversary’s perspective.
Observe that overlapping strategies reduce SA by allowing sharing records across buckets. In

Fig. 2, each bucket overlaps with 3 buckets to achieve the desired bucket size. The number of fake
records required is 0. On the other hand, when simply padding each bucket to size 4 using fake
records, 𝐵1, 𝐵2, and 𝐵3 require 2, 3, and 1 fake records, respectively, and the total number of fake
records is 6.
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Based on the idea to pad buckets to make them equi-sized by lending/borrowing records from
neighboring buckets, we develop a strategy, entitled Veil-O, that ensures the security requirement
VSR. Veil-O uses the same randomized strategy to create initial buckets B as that used in Veil. It,
however, allows buckets to overlap to make the buckets equi-sized as discussed in the following
subsection.

5.2 Veil-O: Padding

Veil-O uses a padding strategy that allows sharing of records between buckets to reduce the
number of fake records added, thereby reducing 𝑆𝐴. Given a KV-dataset D, Veil-O first creates
a set of 𝑛 buckets B = {𝐵0, . . . , 𝐵𝑛−1} using the randomized bucket creation algorithm BC (§4),
then implements a padding strategy that, unlike Veil, enables buckets to borrow records from
their neighboring buckets, creating well-formed buckets with overlap as defined in Definition 5.3.
The padding strategy consists of a sequence of steps (an overview of the strategy is presented in
Algorithm 3) that starts by first creating a 𝑑-regular graph from the buckets in B (function Graph
Creation (GC)). Such a graph has 𝑛 nodes, each corresponding to a bucket in B, and undirected
edges between overlapping buckets (i.e., buckets that share records). The graph G = (𝑉 , E) is repre-
sented as B, representing the set of buckets (vertices), andM, an adjacency matrix corresponding
to E. The next step determines the maximum possible overlap size between neighbors that will
still result in well-formed overlapping buckets, i.e., function Maximum Overlap Determination
(MOD). The MOD function returns the number of records that a bucket 𝐵𝑝 can borrow/lend from/to
a specific neighbor 𝐵𝑞 . Next, Veil-O uses the function Edge Direction Determination (EDD)
to determine the directions of edges, i.e., for each pair of neighbors 𝐵𝑝 and 𝐵𝑞 whether 𝐵𝑝 bor-
rows or lends records from/to 𝐵𝑞 . This determines dir (𝑣𝑝 , 𝑣𝑞) for each (𝑣𝑝 , 𝑣𝑞) ∈ E . We represent
dir (𝑣𝑝 , 𝑣𝑞) by transformingM into an adjacency matrixM that represents directed edges. Thus,
if dir (𝑣𝑝 , 𝑣𝑞) = 0 and dir (𝑣𝑞, 𝑣𝑝 ) = 1 (i.e., 𝐵𝑝 borrows from 𝐵𝑞), we remove the edge (𝑣𝑝 , 𝑣𝑞) from
M but let the edge (𝑣𝑞, 𝑣𝑝 ) remain. Next, fake records are added to buckets to ensure that each
bucket consists of all records assigned to it originally, all the records it borrows from its neighbors,
and fake tuples add up to exactly the bucket size. Addition of fake tuples changes the buckets in B
resulting in B 𝑓 , where 𝑓 represents “full”. A bucket 𝐵𝑝 ∈ B 𝑓 contains fake records in addition to
the original records associated with 𝐵𝑝 . Next, the algorithm determines the labels to be associated
with each edge in the 𝑑-regular graph G. Each label represents the records that are borrowed/lent
between two overlapping buckets. As a final step, using the labels generated, and the buckets in
B 𝑓 , Veil-O generates the set of well-formed buckets which are then outsourced.

7
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Fig. 2. A 3-Regular Graph.
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To retrieve +%:
• +%
• 2 fake values for +%
• 2 common values from +!
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• 2 common values from +$

Fig. 3. A 3-Regular Graph of Veil-O

𝐵0 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5
𝐵0 ✓ ✓ ✓
𝐵1
𝐵2 ✓ ✓
𝐵3
𝐵4 ✓ ✓ ✓
𝐵5 ✓

Fig. 4. Adjacency MatrixM

We illustrate the above described algorithm in Algorithm 3 and then describe each step in
details. The algorithm takes the set of buckets B created using BC as inputs and returns 𝛿 , the
overlapping size, i.e., the number of records shared by any two overlapping buckets, and a matrix
M, representing the 𝑑-regular graph containing information about neighbors and a directed edge
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Algorithm 3: Veil-O Padding Algorithm
Inputs: B: buckets created using BC (Algorithm 2); 𝑑 : the number of neighbors for each bucket; ℓ𝑏 :
bucket size.

Outputs: B𝑓 : A set of well-formed overlapping buckets; begin
1 B,M,← GC(B, 𝑑)
2 𝛿MAX ← MOD(B,M)

3 B,M, 𝛿 ← EDD(B,M, 𝜹MAX , ℓ𝒃 )

4 B𝑓 ,M, 𝛿 ← AFV (M, 𝜹)

5 L ← LC(B𝒇 ,M, 𝜹)

6 B𝑓 ←WFBC(B𝒇 , L)

7 return B𝑓

representing which one of each two neighboring buckets borrow/lends to the other. The strategy of
which specific records a bucket 𝐵𝑝 will borrow from/lend to its neighbor 𝐵𝑞 such that the resulting
buckets become well-formed will be discussed separately.

Step 1. Graph Creation (GC). [Algorithm 4] Input to this step are buckets in B and a value of
𝑑 and the output consists of a 𝑑 regular graph G with nodes corresponding to buckets in B and
undirected edges between buckets that will be neighbors to each bucket.5 It is assumed that at least
one of 𝑑 and |B| are even, as the number of edges in a 𝑑-regular graph is computed as 𝑑 |B|/2, and if
both 𝑑 and |B| are odd then a 𝑑-regular graph cannot be constructed. The graph is represented with
B, the set of vertices, and an adjacency matrixM denoting the edges. Let B = {𝐵0, 𝐵1, . . . , 𝐵𝑛−1}.
For a bucket 𝐵𝑝 ∈ B, Veil-O assigns a set of 𝑑 neighboring buckets 𝐵 𝑗

𝑝 ( 𝑗 = 1, . . . , 𝑑) using an
ordered set of carefully chosen 𝑑 functions F = ⟨𝐹1, 𝐹2, . . . , 𝐹𝑑⟩, where for each function 𝐹 𝑗 ∈ F ,
𝐹 𝑗 : B → B . We denote 𝐹 𝑗 (𝐵𝑝 ) as 𝐵 𝑗

𝑝 and refer to it as the 𝑗𝑡ℎ neighbor of 𝐵𝑝 . The functions in F
are such that if a bucket 𝐵𝑞 is a neighbor of 𝐵𝑝 (i.e., for some function 𝐹 𝑗 ∈ F , 𝐵𝑞 = 𝐹 𝑗 (𝐵𝑝 )), then
𝐵𝑝 is also a neighbor of 𝐵𝑞 , i.e., there exists a 1 ≤ 𝑗 ′ ≤ 𝑑 such that 𝐹 𝑗 ′ (𝐵𝑞) = 𝐵𝑝 .

We define a set of such functions in F = {𝐹1, . . . , 𝐹𝑑 } as follows.
• For 1 ≤ 𝑖 ≤ ⌊𝑑/2⌋ we have 𝐹𝑖 (𝐵𝑝 ) = 𝐵𝑞 where 𝑞 = (𝑝 + 𝑖) mod 𝑛

• For 1≤𝑖≤⌊𝑑/2⌋, we have 𝐹𝑑−𝑖+1 (𝐵𝑝 )=𝐵𝑞 where 𝑞 = (𝑝 − 𝑖 + 𝑛) mod 𝑛

• If 𝑑 is odd 𝐹 (𝑑+1)/2 (𝐵𝑝 ) = 𝐵𝑞 where 𝑞 = (𝑝 + (𝑛/2)) mod 𝑛.6
We illustrate the functions used for assigning neighbors using the example below.

Example 5.2. Consider six buckets 𝐵0, . . . , 𝐵5 in Fig. 3 Thus, 𝑛 = 6. Let us consider 𝑑 to be 3.
According to rule 1, we get 𝐹1 (𝐵𝑝 ) = 𝐵 (𝑝+1) mod 6, which finds neighbor bucket 𝐵1 for 𝐵0, . . ., 𝐵5
for 𝐵4, and 𝐵0 for 𝐵5. According to rule 2, we get 𝐹3 (𝐵𝑝 ) = 𝐵 (𝑝−1+6) mod 𝑛 , which finds neighbor
bucket 𝐵5 for 𝐵0, 𝐵0 for 𝐵1, . . ., and 𝐵4 for 𝐵5. According to rule 3, we get 𝐹2 = 𝐵 (𝑝+𝑛2 ) mod 𝑛 ,
which finds neighbor bucket 𝐵3 for 𝐵0, 𝐵4 for 𝐵1, . . ., and 𝐵2 for 𝐵5. Thus, neighbors for buckets
will be: N(𝐵0) = {𝐵5, 𝐵1, 𝐵3}; N(𝐵1) = {𝐵2, 𝐵0, 𝐵4}; N(𝐵2) = {𝐵3, 𝐵1, 𝐵5}; N(𝐵3) = {𝐵4, 𝐵2, 𝐵0};
N(𝐵4) = {𝐵5, 𝐵3, 𝐵1}; and N(𝐵5) = {𝐵6, 𝐵4, 𝐵2}. □

The example above illustrates that the functions used to define the neighbors ensure that if
𝐵𝑝 is a neighbor of 𝐵𝑞 , then 𝐵𝑞 is a neighbor of 𝐵𝑝 . Since the neighbor relationship to buckets is
symmetric, we can represent the set of buckets and their neighborhood in the form of a graph
G = (𝑉 , E) with the set 𝑉 = {0, . . . , 𝑛 − 1} of vertices corresponding to the 𝑛 buckets. The set
5We will experimentally show the selection of 𝑑 in Experiment 5 in §8.
6Note that in this case 𝑛 must be even.
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Algorithm 4: Veil-O:Graph Creation (GC).
Inputs: B:Set of buckets 𝑛 generated using BC. 𝑑 : degree of the graph
Outputs: B: the set of 𝑛 buckets;M: A adjacency matrix of a 𝑑-regular (undirected) graph

1 Function GC(B, 𝑑) begin

2 M ← 0 ⊲ Initialise matrix to 0
3 for 𝑝 ∈ [0, 𝑛 − 1] do
4 for 𝑗 ∈ [1, 𝑑] ⊲ Assigning 𝑑 neighbors to 𝑝𝑡ℎ bucket do

5 𝐵𝑞 ← 𝐹 𝑗 (𝐵𝑝 ),M[𝑝] [𝑞] ← 1
6 return B,M

Algorithm 5: Veil-O:Maximum Overlap Size Determination (MOD).
Inputs: B: the set of 𝑛 buckets;M:Undirected graph; 𝑑 : degree of graph
Outputs: 𝛿𝑀𝐴𝑋 : Maximum overlapping size

1 Function MOD(B,M, 𝑑) begin

2 𝐵
N(𝐵𝑝 )
𝑚𝑎𝑥 ← find_largest_neighbor_of _full_buckets(B)

3 𝐿
N(𝐵𝑝 )
𝑚𝑎𝑥 ← compute_bucket_size(𝐵N(𝐵𝑝 )

𝑚𝑎𝑥 )
4 𝐵min ← find_smallest_buckets(B)
5 𝐿min ← compute_bucket_size(𝐵min)
6 𝛿1 ← ℓ𝑏 − 𝐿

N(𝐵𝑝 )
𝑚𝑎𝑥 , 𝛿2 ← ⌊ ℓ𝑏𝑑 ⌋, 𝛿3 ← ⌊

ℓ𝑏−𝐿min

𝑑
⌋

7 return MIN{𝛿1, 𝛿2, 𝛿3}

E = {⟨𝐵𝑝 , 𝐵𝑞⟩|𝐵𝑝 ∈ N (𝐵𝑞)} are edges. Note that the resulting graph G is 𝑑-regular graph. Fig. 3
illustrates the resulting 𝑑-regular graph for the buckets in Example 5.2.

After constructing the 𝑑-regular graph for a given set of input buckets, Veil-O next determines
the maximum number of records that can be lent/borrowed, i.e, the weight of each edge denoted
with 𝛿 ; the direction of the edges, i.e., which bucket lends/borrows; the labels, i.e., the records that
will be shared by neighboring buckets. We will illustrate this in the following steps.
Step 2. Maximum Overlap Determination (MOD). [Algorithm 5] This step finds an initial
value (upper bound) of the overlapping size, i.e., the weight of the edges in the graph, denoted as 𝛿 .
Veil-O determines the limiting value for 𝛿 as follows:

(1) For each bucket 𝐵𝑝 ∈ B such that |𝐵𝑝 | = ℓ𝑏 (i.e., full buckets), it must be the case that
𝛿 ≤ ℓ𝑏 − 𝐿

N(𝐵𝑝 )
max

, where 𝐿N(𝐵𝑝 )
𝑚𝑎𝑥 denotes the number of records in the largest neighbor of 𝐵𝑝 .

More specifically, 𝐿N(𝐵𝑝 )
𝑚𝑎𝑥 = MAX𝐵𝑞 ∈N(𝐵𝑝 ) |𝐵𝑞 |. To see this, suppose 𝐵𝑞 is the largest neighbor

of 𝐵𝑝 . Then it can only borrow no more than ℓ𝑏 − |𝐵𝑞 | records and this limits 𝛿 from being
larger.

(2) It always holds that 𝛿 ≤ ℓ𝑏
𝑑
, as in a 𝑑-regular graph, each node has 𝑑 edges, i.e., each bucket

has 𝑑 neighbors, and each pair of neighboring buckets has to share an equal number of
records.

(3) If 𝐿min is the size of the smallest bucket inB, then the overlapping size is at most 𝛿 ≤ ⌊ ℓ𝑏−𝐿min

𝑑
⌋.

To construct a 𝑑-regular graph successfully, the smallest bucket must borrow records from
each of its 𝑑 neighbors. Moreover, it must borrow an equal number of records from each of
its neighbors.

The maximum possible overlapping size is then determined by taking the minimum of the values
in (1)-(3). Note that the overlapping size is not final and can be adjusted in Step 3.
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Algorithm 6: Veil-O:Edge Direction Determination (EDD)
Inputs: B: A set of 𝑛 buckets, 𝑑 : degree of graph;M:Adjacency matrix of the 𝑑-regular graph; 𝛿MAX :
maximum overlapping size

Outputs: B; Set of 𝑛 buckets;M: An adjacency matrix encoding the direction of each edge inM
1 Function EDD(B,M, 𝛿𝑀𝐴𝑋 ) begin

2 sort (B) ⊲ Sort buckets by their sizes in increasing order
3 𝛿 ← 𝛿𝑀𝐴𝑋

4 M ← []
5 for 𝐵 𝑗 ∈ B do

6 𝐿𝑗 ← compute_bucket_size(𝐵 𝑗 )
7 N(𝐵 𝑗 ) ← find_neighbors(𝐵 𝑗 ,M)
8 sort (N (𝐵 𝑗 )) ⊲ In decreasing order by sizes
9 for 𝐵𝑝 ∈ N (𝐵 𝑗 ) do
10 ifM[𝑝] [ 𝑗]! = 1 andM[ 𝑗] [𝑝]! = 1 then
11 if 𝐿𝑗 + 𝛿 < ℓ𝑏 then

12 M[𝑝] [ 𝑗] = 1, 𝐿𝑗 ← 𝐿𝑗 + 𝛿 ⊲ Assign an edge between 𝐵𝑝 and 𝐵 𝑗

13 else

14 M[ 𝑗] [𝑝] = 1 ⊲ Assign an edge between 𝐵 𝑗 and 𝐵𝑝
15 𝐿𝑝 ← compute_bucket_size(𝐵𝑝 )
16 if 𝐿𝑝 + 𝛿 > ℓ𝑏 then

reduce 𝛿

17 returnB,M, 𝛿

Example 5.3. In Fig. 3, the overlapping sizes 𝛿 determined using the three rules are 8, 6, and 2,
respectively, the initial value of 𝛿 = 2.

Step 3. Edge Direction Determination (EDD). [Algorithm 6] To determine the directions
of edges, Veil-O starts from the bucket in B with the smallest size and proceeds in increasing
order of their sizes. This is because buckets with fewer records are less likely to get full, and thus
should borrow as many records as possible from their neighbors. For each bucket that is not full,
it must borrow records starting from its neighbor with the maximum size and continue doing so
from other neighbors in decreasing order of bucket size. This is to maximize the overlapping size
𝛿 , as buckets with more records are more likely to become full to restrict 𝛿 , so they should lend
values whenever possible. The algorithm creates an adjacency matrixM containing the directions
for each edge inM.

Example 5.4. Continuing Example 5.3 (𝛿 = 2, ℓ𝑏 = 20, 𝑑 = 3), the Algorithm EDD generatesM as
shown in Fig. 3. For instance, for bucket 𝐵1 with neighbors 𝐵0 and 𝐵2,M shows edges from both
𝐵0 and 𝐵2 to 𝐵1. Thus, 𝐵1 borrows 𝛿 (which is 2) records from each of these buckets.

Step 4: Adding fake values. Once edge directions have been determined, for each bucket 𝐵𝑝 , we
add appropriate fake records to ensure that all buckets are equisized. Let 𝐿ℎ𝑜𝑚𝑒

𝑝 refer to the number
of records in 𝐵𝑝 when it was created by BC. For each neighbor 𝐵𝑞 ∈ N (𝐵𝑝 ) such that there is an
incoming edge from 𝐵𝑞 to 𝐵𝑝 , the bucket 𝐵𝑝 borrows 𝛿 records. Let there be 𝐿𝑖𝑛𝑝 such neighbors.
To ensure that bucket 𝐵𝑝 has ℓ𝑏 records associated, Veil-O adds 𝐿fake𝑝 = ℓ𝑏 − (𝐿home

𝑝 + 𝛿𝐿in𝑝 ) fake
records to 𝐵𝑝 . The resulting set of buckets with fake values added to them is denoted with Bpadded .

Example 5.5. Based onM as shown in Fig. 3, 𝐵1 adds 20 - (12 + 2×2) = 4 fake records. Likewise,
𝐵3 adds 2, and 𝐵5 adds 4 fake records. Thus, 12 fake records are added in total. Contrast this with
the disjoint strategy that would have required 32 fake records to be added in total.
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Algorithm 7: Label Creation (LC)
Input: B𝑓 : A set of buckets representing the vertices of a 𝑑-regular graph;
M: Adjacency matrix with 𝑑𝑖𝑟 for each edge in the graph;
𝛿 : The weight of each edge in the graph
Output: L: a map of labels for each edge in the graph.1 L ← ∅

2 for 𝐵𝑝 ∈ B𝑓 do

3 for 𝑘 ∈ [1, . . . , 𝑛] do
4 ifM[𝑝] [𝑘] is 1 then
5 labels← ∅
6 for ℓ ∈ [1, 𝛿] do
7 labels← labels ∪ 𝐵<𝑝 [(𝑘 − 1)𝛿 + ℓ]
8 L[(𝑝, 𝑘)] ← L[(𝑝, 𝑘] ∪ labels
9 L[(𝑘, 𝑝)] ← L[𝑘, 𝑝] ∪ labels

Step 5: Label Creation (LC). For each edge (𝑣𝑝 , 𝑣𝑞) in the graph G, we next determine exactly
which records are borrowed/lent between neighbors. Let 𝐵𝑞 = 𝐹 𝑗 (𝐵𝑝 ) be a neighbor of 𝐵𝑝 such that
𝐵𝑝 borrows from 𝐵𝑞 . Furthermore, let 𝐹𝑘 (𝐹𝑖 (𝐵𝑝 )) = 𝐵𝑝 (i.e., 𝐵𝑝 is the 𝑘𝑡ℎ neighbor of 𝐵𝑞). Consider
𝐵𝑞 that contains 𝐿home

𝑞 + 𝐿fake𝑞 records. Henceforth, we will consider 𝐵𝑞 to be an ordered set of
𝐿home

𝑞 +𝐿fake𝑞 records and denote it as 𝐵<
𝑞 .7 When there is no ambiguity we will still continue to refer

to it as 𝐵𝑞 for notational simplicity. We will denote the 𝑖𝑡ℎ record in a bucket 𝐵<
𝑝 as 𝐵𝑝 [𝑖]. Thus,

when the bucket 𝐵𝑝 borrows 𝛿 records from a bucket 𝐵𝑞 , it does so based on the ordering of the
records in 𝐵𝑞 . In particular, it borrows records 𝐵𝑞 [(𝑘 −1)𝛿 +1], 𝐵𝑞 [(𝑘 −1)𝛿 +2], . . ., 𝐵𝑞 [(𝑘 −1)𝛿 +𝛿]
which are added to the 𝑙𝑎𝑏𝑒𝑙 [(𝑣𝑞, 𝑣𝑝 )]. Note that the above strategy ensures that no records of
bucket 𝐵𝑞 are in the label for more than one neighboring bucket, thereby ensuring that intersection
of any three neighboring buckets are always empty.

Example 5.6. Consider bucket 𝐵3 in Fig. 2 where 𝐵3 borrows from each of its neighbors 𝐵0, 𝐵2
and 𝐵4 with 𝛿 = 2. Since 𝐵3 = 𝐹3 (𝐵0), 𝐵3 = 𝐹1 (𝐵2) and 𝐵3 = 𝐹2 (𝐵4), it will borrow the 𝐵0 [5] and
𝐵0 [6] from 𝐵0. Likewise it will borrow 𝐵2 [1] and 𝐵2 [2] from 𝐵2. Finally, it will borrow 𝐵4 [3] and
𝐵4 [4] from 𝐵4. Thus, labels for L[(3, 0)] = L[(0, 3)] = {𝐵0 [5], 𝐵0 [6]}; L[(3, 2)] = L[(2, 3)] =
{𝐵2 [1], 𝐵2 [2]}; L[(3, 4)] = L[(4, 3)] = {𝐵4 [3], 𝐵4 [4]}; □

Step 6: Well-Formed Bucket Creation (WFBC). Once labels have been generated for every
two neighboring buckets, the well-formed overlapping buckets are generated as follows: for each
bucket 𝐵𝑝 ∈ B 𝑓 , for each of its neighbor 𝐵𝑞 ∈ N (𝐵𝑝 ), if 𝑑𝑖𝑟 (𝐵𝑞, 𝐵𝑝 ) is 1 (i.e., 𝐵𝑝 borrows from 𝐵𝑞),
we add to 𝐵𝑝 all records in L[(𝑞, 𝑝)] which correspond to the set of records 𝐵𝑝 borrows from 𝐵𝑞 .
Note that if buckets 𝐵𝑝 and 𝐵𝑞 are neighbors, they will contain 𝛿 common records.

5.3 Veil-O: Outsourcing andQuerying

Outsourcing and querying in Veil-O is identical to that in Veil. First, all real and fake tuples in B 𝑓

are shuffled, encrypted and outsourced as a set of encrypted records along with the RID. Then, to
create a multimap index, we construct for each bucket 𝐵𝑝 a map𝑀𝑚𝑎𝑝 [𝐵𝑝 ] consisting of RID of
the records in 𝐵𝑝 . As before, the encrypted record set, along with the𝑀𝑚𝑎𝑝 [𝐵𝑝 ] for each bucket
𝐵𝑝 , is outsourced to the server.

To execute a query for a keyword 𝑘 , first, the keyword is mapped to the 𝑓 buckets as in Veil. For
each such bucket 𝐵𝑝 , the server retrieves the RID of every record in the multimap index𝑀𝑚𝑎𝑝 [𝐵𝑝 ]
7The exact ordering does not matter, it could be any random ordering
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and uses these RIDs to retrieve data from the encrypted record store which are then returned to
the client.
Note that unlike Veil, in Veil-o the same RID may appear in more than one𝑀𝑀𝑎𝑝 [𝐵𝑝 ] since

Veil-o allows for overlap between buckets. Since we restrict a RID to be replicated in at most two
buckets, the additional number of RIDs replicated equals 𝑑𝛿 | B |

2 . Given a pointer is four bytes, the
number of bytes of overhead can be computed as 2𝑑𝛿 |B| bytes for savings of 𝑑𝛿 | B |

2 fake records.
Such an overhead remains significantly small even when record sizes are relatively small, but are
much more pronounced when individual records are large in which case, the overhead remains a
small fraction of the savings.

5.4 Discussion

Veil-O, like Veil, remains secure under VSR (The proof of Veil-O is presented in the extended
version [25]). Thus, an adversary cannot determine which key the user is accessing based on
how queries are processed. However, in Veil-O, since the maximum overlap between buckets is
data dependent, the adversary could distinguish between databases outsourced based on observed
overlap (and, thus, the effective SA achieved) by Veil-O. A slight modification can, however make
Veil-O achieve indistinguishability. In the modified version, the desired overlap between buckets is
specified by the user (independent of the database) - let us refer to it as 𝑂desired . Veil-O learns the
maximum overlap that can be supported (given random neighbor assignment) as in the original
protocol - let us denote it by𝑂max . If𝑂desired ≤ 𝑂max we simply revert back to𝑂desired and continue
with the rest of the Veil-O to generate buckets. Alternatively, if 𝑂desired > 𝑂max , then for each pair
of neighbor buckets 𝐵𝑖 and 𝐵 𝑗 such that 𝐵 𝑗 is a receiver and 𝐵𝑖 a lender of records, we perform
the following check. Let 𝑓𝐵 𝑗

be the number of RIDs pointing to fake records in 𝐵 𝑗 . We first replace
those fake records by RIDs to additional records from 𝐵𝑖 , thereby increasing the amount of overlap
between 𝐵𝑖 and 𝐵 𝑗 . If 𝑂desired − 𝑂max is greater than the number of fake records 𝑓𝐵 𝑗

, to ensure
overlap of𝑂desired , we shift (𝑂desired −𝑂max) − 𝑓𝐵 𝑗

real records from 𝐵 𝑗 to the stash, thereby creating
space for equivalent number of RIDs to be borrowed from 𝐵𝑖 to 𝐵 𝑗 . Note that in the modified Veil-O
strategy, the number of overlapping records between any two buckets are equal to 𝑂desired and
independent of the database being indexed. As a result, the adversary cannot gain information
about the database being indexed from the data representation, query access patterns, and volume
in addition to being unable to learn query keywords. We refer to the modified version of Veil-O as
Veil-O′. Note that Veil-O′ may have a higher stash compared to Veil-O but the effective SA it
achieves could be even better compared to Veil-O since it could reduce number of fake records
stored on the server side. In the experiment section, we will study impact of the above modified
strategy (to make Veil-O secure based on the security model used in [38, 48]) on increase in stash.

6 SUPPORTING DYNAMIC CHANGES

So far, similar to [38, 48], we have discussed Veil and Veil-O under a static setting where the
database to be outsourced is pre-known. While a full development and evaluation of dynamic
operations in Veil is outside the scope of this paper, we briefly discuss how Veil can be extended
to support dynamic operations. Indeed, the flexibility and ease of Veil in supporting dynamic
operations compared to other prior work is one of its advantages as will be discussed in §7. We
focus on the case of insertion though the discussion below which can be extended to updates and
deletions as well. In Veil, adding new data does not require re-execution of the bucketization
strategy as long as the value of 𝐿𝑚𝑎𝑥 after insertions does not exceed 𝐿𝑚𝑎𝑥 × QA. Insertion can
be supported by retrieving the set of records in the 𝑓 buckets corresponding to the key for the
record being inserted, replacing one of the fake tuples (if present) in the buckets by the newly
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inserted tuples, re-encrypting the records in the buckets, and re-outsourcing the modified buckets.
Of course, if the 𝑓 buckets do not contain any fake tuples (and hence have no residual capacity to
store more data), the newly inserted tuple is stored in a stash, as would have been the case had
the buckets become full in the static situation when constructing the original buckets. The above
insertion strategy would continue to work, as long as, the new value of 𝐿𝑚𝑎𝑥 after insertions, say
𝐿′𝑚𝑎𝑥 , remains below 𝑄𝐴 × 𝐿𝑚𝑎𝑥 .8 As 𝐿𝑚𝑎𝑥 increases, since we are not changing the fanout 𝑓 or the
bucket size, effectively the 𝑄𝐴 value reduces which, in turn, increases the probability of a record
having to be stored in the stash. When 𝐿′𝑚𝑎𝑥 goes above 𝑄𝐴 × 𝐿𝑚𝑎𝑥 , we can either continue to map
new records to stash (increasing client side overhead) and/or reorganize the data. While we do not
conduct a formal analysis or experimental validation, we believe that the strategy above will allow
a large number of insertions between reorganizations since 𝐿𝑚𝑎𝑥 can be expected to grow slowly.
Furthermore, a user can begin with a larger value of 𝑄𝐴 to control how often reorganization is
required.

7 RELATEDWORK

Volume hiding (VH) as a security goal, has gained attention starting with the seminal work by
Kamara et al in [29, 30] that utilizes a multimap data structure for encrypted keyword search. VH
is easier to achieve when access pattern (AP) hiding technque, such as ORAM [19, 20, 36, 47], is
already being used. Given prohibitive nature of AP hiding, recent work [1, 17, 29, 30, 38, 44] has
explored VH without requiring ORAM. Veil falls into this category of work.

Below, we focus on two techniques most relevant to Veil: dprfMM [38] that uses a cuckoo hash
based strategy, and XorMM [48] that uses the XOR filter to support volume hiding in key-value
stores. We compare Veil and its variants to these approaches experimentally in the following
section. In the remainder of this section, we focus on a qualitative comparison of the schemes in
terms of several criteria including support for dynamic updates, security offered, applicability as
an indexing technology, and expected performance. We also present a detailed related work in the
extended version [25].
Supporting Dynamic Changes. Different approaches, viz., XorMM, dprfMM and Veil offer
different levels of ease in extending them to support dynamic operations (insertions, updates,
deletion). In particular, Veil and dprfMM offer significant flexibility and ease to support dynamic
operations compared to XorMM as shown in §6. DprfMM, like Veil, also offers flexibility and can
allow periodic reorganization by storing new data in the cuckoo hash and/or stash. In contrast,
XorMM cannot support insertions, as it requires the XOR filter to be recontructed every time there
is an insertion. This is because the XOR filter is constructed through a sequential process that
creates dependencies between cell representations, i.e., a record inserted later into the filter may
depend upon the cipher representation of the record inserted earlier. As a result, when new data
has to be inserted (whether or not it results in change to 𝐿𝑚𝑎𝑥 ), the filter has to be recomputed from
scratch. The challenge of supporting dynamic operations, coupled with the flexibility to choose𝑄𝐴
and 𝑆𝐴 parameters to control the overheads, are the primary advantages of Veil.
Security Offered. We developed Veil and its variants under the security goal VSR (§2.2) that
roughly corresponds to ensuring that an adversary cannot differentiate between query keywords.
One could also consider a stronger security model that also ensures indistinguishability amongst
databases (§5.4) used in [38, 48]. We note that Veil is already secure against the enhanced security
model used in [38, 48], that we refer to as indistinguishability, - we show this formally in the
extended version of the paper [25]. Veil-O, as discussed in §5.4, however, while ensuring VSR, does
8In fact, it can continue to work beyond that except that all new records after the point of increase in 𝐿′𝑚𝑎𝑥 beyond
𝑄𝐴 × 𝐿𝑚𝑎𝑥 will need to be stored locally in the stash.
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not ensure indistinguishability directly. It can, however, be modified with a simple post-processing
step to offer the same level of security as [38, 48], with the post processing step causing a slight
increase in the stash storage.
Probabilistic versus Guaranteed Success. Given a database D, dprfMM and Veil are always
successful in forming the multimap representation on the server, while XOR filters are probabilistic,
and there is a chance (however, small) that the technique may fail to create an appropriate XOR
filter [48]. Hence the XOR filter is not guaranteed to create a multimap to support volume-hiding
in all situations.
Primary versus Secondary Index. The basic Veil approach can outsource records in the form of
buckets containing encrypted data records, or in the form of buckets with RIDs that point to an
encrypted record store. Likewise, dprfMM can also be extended to store either RIDs or the records.
In contrast, xorMM can only be used to store records and cannot easily be extended to store RIDs,
since the security requirement of the XOR filter requires data in the filter to be encrypted. Thus,
storing RIDs in the filter will introduce additional round of communication between client and
server for the client to decrypt the RID and subsequently ask the server to retrieve the records
corresponding to those RIDs. This will significantly increase communication costs. Also, the RIDs
returned by the server may point to some record that does not exist in the data storage, and such
information is revealed to the server, which directly leaks the volume. Veil-O, in contrast, provides
benefit (reduced SA) when used as a secondary index with RIDs that are referenced to retrieve data
from the encrypted store.
Expected Performance Comparison. While we conduct a thorough experimental comparison
between strategies, we make a few observations about expected performance of different strategies.
• In terms of QA and SA, xorMM (if it can be successfully created) overshadows dprfMM since it
offers fixed QA and SA or 1 and 1.23 as compared to 2 and 2.6. Veil supports a tunable QA and SA
values - by appropriately choosing QA and SA, it can outperform xorMM.
• In terms of client storage, all schemes store very little meta data (e.g., Veil needs to store just two
numbers - fanout and the number of buckets ) in addition to the stash containing some overflow
data records. Stash is also stored in dprfMM which, as experiments will show, is higher than what
is stored in Veil. xorMM does not maintain a client side stash, but as a result, has a non-zero
probability of failing to form.

8 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Veil. We study:
• Impact of user-specified parameters (Storage Amplification SA, Query Amplification QA, and
fanout 𝑓 ) on Stash Ratio SR. Based on Equation 2, we make the following observations:
(1) For fixed QA and 𝑓 , as SA increases, while the bucket size remains constant, the number of

buckets increases linearly, and hence lower the expected SR (Exp 2).
(2) For fixed SA and 𝑓 , as QA increases, bucket size increases linearly, but the number of buckets

decreases proportional to 1
𝑄𝐴

. For fixed QA and SA, increasing 𝑓 causes bucket size to
decrease, but increases the number of buckets. We explore how SR changes as a function of
QA and 𝑓 experimentally in Exp 1 and Exp 3.

(3) Since [38] already achieves a QA and SA of 2 with a small stash (viz., SR), we focus on QA

and SA in the range 1 to 2.
(4) Since QA influences the number of records retrieved from the server, it is desirable to keep it

as close to 1 as possible while still ensuring a small SR and an SA below 2. This would be
strictly better than the state-of-the-art.

• Effect of overlapping strategy Veil-O on reducing SA (Exp 5).
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• Comparison of Veil with existing approaches, including dprfMM [38] and XorMM [48], in terms
of SA, QA, and SR (Exp 7).
• Veil and Veil-O performance on larger data sets. (Exp 8 and 9).
• Setup time and query time for Veil and Veil-O and compare them with those for state-of-art
(Exp 10-12).

8.1 Setup

We evaluate Veil using the LineItem table from the variant of TPC-H dataset entitled TPC-H-
SKEW [10]. TPC-H-SKEW generates the same tables, except that it allows us to control the skewness
of the data using a “skew factor”, denoted by 𝑧. We show the impact of changing 𝑧 values in Table 1
by listing the 𝐿max and the number of keys generated in the LineItem table for a scale factor 1
(which corresponds to 6M records in the LineItem table). As shown in Table 1, as 𝑧 increases, the
data gets more skewed with larger 𝐿max . When 𝑧 is zero, the data generated is non-skewed as in
the original TPC-H dataset. We vary 𝑧 from 0 to 1 and use a default of 0.4, which is consistent with
real-world datasets that are most likely to be skewed. To generate key-value datasets, we use the
Partkey (PK) column as the keys and use values of all other columns as their associated values.
For most of our experiments, we use the TPC-H with scale factor 1 (i.e., the datasize is 6M). We
also include the results with the scale factor of 6 to see how Veil scales to a larger dataset. Our
experiments were conducted on a MacBook Pro equipped with an M1 Pro processor and 32 GB
of RAM, running the macOS Monterey operating system. We utilized SHA-256 [39] as the hash
function and employed AES encryption (CBC mode) [12] for our symmetric encryption scheme.

Table 1. TPC-H datasets with different skew factor 𝑧

Skew Factor 𝑧 0 0.2 0.4 0.6 0.8 1
𝐿max 57 63 357 5,234 131,749 370,760

# of keys 200,000 200,000 200,000 200,000 81,153 199, 919

Comparison Metrics: We evaluated our approaches and the state-of-art approaches using the
metrics defined in §1, including query amplification (QA), storage amplification (SA), and stash ratio

(SR). To measure the physical storage overhead at the local side and at the server, we introduced
the following two additional metrics:
Client Storage Amplification, denoted by CSA: that is the ratio of the size of total physical storage
required at the local side to implement a given volume hiding scheme over the size of encrypted
representation of the dataset. For instance, in Veil, clients need to store values of fanout and
number of buckets (2 integers) in addition to the records in the stash. Thus, the CSA corresponds
to the storage requirement of these divided by the encrypted representation of the data.
Server storage amplification, denoted by SSA: the ratio of the size of physical storage required at the
server side to implement a given volume hiding scheme to the the size of encrypted representation
of the dataset. For instance, in Veil, the server needs to store the encrypted record set as well as
the multimap index §3.2). Thus, SSA corresponds to the ratio of the total storage needed at the
server by the size of the encrypted record set.

8.2 Evaluation of Parameters on Stash Ratio

We conducted an ablation study of three factors, — the fanout 𝑓 , the storage amplification SA, the
query amplification QA, and the skewness factor 𝑧 by fixing three others in each experiment to
evaluate the impact of each factor on the overall performance of Veil. For each generated database,
we ran Veil 5 times to map keys to buckets randomly and computed an average stash ratio (SR).
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The outcomes of our experiments are illustrated in Fig. 5, Fig. 6, Fig. 7, and Fig. 8. We also recorded
the average stash size, shown as the labels in Fig. 5, Fig. 6, Fig. 7, and Fig. 8.9

Fig. 5. Impact of 𝑓 (SA=1.2, QA=1)** Fig. 6. Impact of SA (QA=1, 𝑓 =6)** Fig. 7. Impact of QA (SA=1.2, 𝑓 =6)**

Fig. 8. Impact of 𝑧 (𝑓 = 6)** Fig. 9. Impact of 𝑑 (QA=1, 𝑓 = 6) Fig. 10. Impact of 𝑑 on 36M Data

Fig. 11. Bucket Creation Time vs 𝑓 Fig. 12. Setup Time vs Fanout Fig. 13. AverageQuery Time vs 𝑓

Exp 1: Impact of fanout 𝑓 . Fig. 5 presents SR as a function of 𝑓 with fixed values of QA and SA,
where QA is 1 and SA is 1.2.10 The results show that SR decreases as the fanout 𝑓 increases. This
is because a larger 𝑓 provides more “choices” when selecting buckets for records, and a record
is placed into the local stash only if all the chosen 𝑓 buckets are full. However, when the fanout
reaches a certain threshold (e.g., 6 in Fig. 5), this benefit is not observed. SR may increase if the
9** Numbers on top of the lines in the figures represent the average number of records in the stash. We will have similar
numbers in all plots with Stash Ratio (Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 14a).

10
QA is more important in a secure outsourcing system compared with the low price for storage in a public cloud.
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fanout 𝑓 is further increased. This is because, at this stage, the bucket size, according to Equation 2,
becomes small, making the buckets more likely to become full during the random bucketing process.
In the rest of the experiments, we will use 6 as an optimal value of 𝑓 .

Exp 2: Impact of storage amplification SA. Fig. 6 illustrates the relationship between the stash
ratio SR and the storage amplification SA, with fixed values of QA = 1 and fanout 𝑓 = 6 (the optimal
value according to Exp 1). The results show that when SA is 1, Veil uses a small stash, with SR to
be approximately 0.002. When SA gets larger (e.g., SA ≥ 1.2), the SR reduces to nearly zero, with
only a small number of values (less than 5) stored in the local stash. This is because when QA and
fanout 𝑓 are fixed, the bucket size ℓ𝑏 remains constant according to Equation 2. Consequently, an
increase in SA leads to the creation of more buckets, which in turn results in a reduced SR.
Exp 3: Impact of QA. Fig. 7 illustrates the relationship between the stash ratio SR and the query
amplification QA, with fixed values of SA = 1 and fanout 𝑓 = 12. The results show that SR is
considerably small and is even reduces to 0 when QA is greater than 1.2.
Exp 4: Impact of skew factor 𝑧. Fig. 8 illustrates the relationship between the stash ratio SR and
the skew factor 𝑧, while fixing SA of 1.2, QA of 1, and 𝑓 of 12. With the skew factor 𝑧 increasing,
the maximum key size 𝐿max and bucket size increases. SR also decreases, since the bucket size is
larger in comparison to the majority of other keys in the dataset, and there is a high likelihood of
available space for a record within the buckets, resulting in a reduced probability of a record being
placed in the stash. However, as 𝑧 continues to increase, reaching a certain threshold, such as 0.8 in
Fig. 8, the stash expands due to the significant disparity between 𝐿max and the sizes of most keys
in the dataset. With a fixed SA, the number of buckets decreases in accordance with Equation 2,
causing the buckets corresponding to the keys with a large number of records to be more likely to
reaching full capacity. Consequently, records mapped to these buckets are more likely to be placed
into the stash.

8.3 Padding Strategy Evaluations

Exp 5: Impact of the degree 𝑑 when creating a 𝑑-regular graph.We fixed SA to 1.2, QA to 1,
and varied the degree 𝑑 to 2, 4, 6, 8, and 10 to evaluate the impact of 𝑑 on the reduction of SA in
Veil-O. The results in Fig. 9 indicate that when 𝑑 is 2, the SA is the smallest, which is 1.08. As 𝑑
increases, the SA increases, since each bucket has more “neighbors”, and the probability of two
large buckets being neighbors gets higher, making the number of common records for each two
neighbored buckets (i.e., the weights over edges in the 𝑑-regular graph) smaller. When the degree 𝑑
is increased to 6, the overlapping size becomes zero, and the SA is equal to the desired value.
Exp 6: Impact of desired overlapping size in Veil-O

′
. We fixed SA to 1.2, QA to 1, degree 𝑑 to

2, and varied the desired overlapping size to 2, 4, 6, 8, and 10 to evaluate the impact of the desired
overlapping size on both SR and SA. Results are presented in Fig. 14. The results show that the SA
decreases with an increasing desired overlapping size, as more common records are shared between
neighboring buckets. Meanwhile, more records are placed into the stash due to the mandatory
sharing of common records.

8.4 Comparison with the State-of Arts

Exp 7: Comparisons with dprfMM and XorMM. To compare Veil with dprfMM [38], we fixed
the fanout 𝑓 , the desired SA and QA of Veil to 12, 1.2 and 1, respectively, and set the SA and
QA of dprfMM [38] to 2 and 2.6, in accordance with their experimental configurations. We also
included XorMM [48], which has a fixed SA of 1.23 and QA of 1, for comparison. We used two
different TPC-H datasets with 6M records, with varying skew factor 𝑧 to be 0 (i.e., the original
TPC-H dataset) and 0.4, respectively. The results are presented in Table 2, and 3, respectively. The
results demonstrate that Veil outperforms dprfMM when processing skewed datasets, utilizing a
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(a) ** SR vs desired overlapping (b) SA vs desired overlapping

Fig. 14. Impact of the desired overlapping size in Veil-O
′
.

significantly smaller stash, almost zero when 𝑧 is 0.4. Additionally, the overlapping strategy Veil-O
reduces SA from 1.2 to 1.12 when 𝑧 is 0.4, as the bucket sizes for skewed datasets are larger in
comparison to the number of records for most keys. However, this is not observed for non-skewed
data which results in a higher stash ratio (SR).

Table 2. Comparisons on 6M non-skewed TPC-H dataset (𝑧 = 0).

QA SA SR CSA SSA

dprfMM [38] 2 2 5.949E-5 1.467E-5 1.000
dprfMM [38] 2 2.6 0 1.287E-9 1.000
XorMM [48] 1 1.23 - 2.18E-8 1.000

Veil 1 1.2 0.056 0.0229 1.020
Veil-O (𝑑= 2 ) 1 1.2 0.056 0.0033 1.041

Veil 1 2 4.566E-5 1.552E-5 1.027
Veil-O (𝑑= 2) 1 2 4.649E-5 2.066E-6 1.050
Note: The CSA and SSA of dprfMM are low because dprfMM stores two tables that
contain 2|D| or 2.6|D| records in total. The SR of Veil and Veil-O can be high when
QA is optimal and SA is low (e.g., when QA is 1 and SA is 1.2), as more collisions happen
when allocating records into buckets.

Table 3. Comparisons on 6M skewed TPC-H dataset (𝑧 = 0.4)

QA SA SR CSA SSA

dprfMM [38] 2 2 5.000E-7 1.411E-5 1.000
dprfMM [38] 2 2.6 0 1.287E-9 1.000
XorMM [48] 1 1.23 - 2.18E-8 1.000

Veil 1 1.2 4.26E-07 2.71E-7 0.018
Veil-O (𝑑 = 2) 1 1.2 3.67E-07 2.68E-8 0.0314

Veil 1 2 0 3.477E-9 1.027
Veil-O (𝑑 = 2) 1 2 0 7.524E-9 1.056

8.5 Performace on Large Datasets

To evaluate how our algorithms (Veil and Veil-O) handle large datasets, we generated a TPC-H
dataset with 36 million records (corresponding to the scale factor of 6 in TPC-H), incorporating a
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skew factor (𝑧) of 0.4 and ran experiments to measure stash ratio SR with fixed QA and SA. We also
evaluate how changing the degree 𝑑 in Veil-O impacts the reduction of SA.
Exp 8: Stash Ratio on Large Datasets.We executed Veil on the 36M dataset 10 times to compute
an average stash ratio (SR), which was found to be nearly zero, with 1.3 records placed in the stash
on average. Specifically, in 7 out of the 10 experiments, the stash size is zero.
Exp 9: Reduction SA in Veil-O on Large Datasets. We ran Veil-O 10 times on the 36M dataset
to compute an average practical SA. We varied the degree of the 𝑑-regular graph in Veil-O to 2, 4,
6, 8, and 10, and varied the desired SA to 1.2, 1.6, and 2.0. The results are in Fig. 10. The results show
that Veil-O effectively reduces the number of fake values, especially when the desired SA is higher.

8.6 Running Time

Exp 10: Bucket creation time.We varied the fanout from 3 to 15 and evaluated the time required
for bucket creation, including allocating each record to a bucket and padding. The results of this
experiment are in Fig. 11. As the fanout increases, the time required for bucket creation increases for
both the basic approach Veil and the overlapping approach Veil-O. This is because more buckets
need to be created given user-desired SA and QA thereby increasing the total processing time.
Exp 11: Setup time.We varied the fanout from 3 to 15 at increments of three and evaluated the
setup time, i.e., the time taken to create, encrypt, and store the buckets. The results are in Fig. 12. We
also take dprfMM [38] and XorMM [48] as a comparison. When SA was set to 2.6, the setup time
for dprfMM was 210.09s, which dropped to 155.349s when SA was 2. The setup time for XorMM is
124.11s. The results show that Veil outperforms Veil-O, which can be attributed to the additional
time Veil-O takes to generate a 𝑑-regular graph. Also, Veil required less setup time than XorMM,
while Veil-O exhibited a setup duration comparable to that of XorMM. Furthermore, both Veil
and Veil-O demonstrated shorter setup times than dprfMM.
Exp 12: Query time. To evaluate the time taken for query execution, we varied the fanout 𝑓
from 3 to 15, with increments of three, and ran 20 queries to compute an average query time for
each query. We also included dprfMM and XorMM as a comparison. The average query time for
dprfMM is 201ms when SA is 2.6 and 63ms when SA is 2. The average query time for XorMM is
33.1ms. The results are shown in Fig. 13. Results show that regarding query time, Veil and Veil-O
outperform both dprfMM and XorMM. Also, note that the query time for Veil is similar when the
fanout varies. That is because fanout only determines the number of buckets to retrieve for each
query and doesn’t have any impact on the number of records retrieved. When processing a query,
both Veil and Veil-O get the desired bucket-ids using Map and retrieve all buckets together.

9 CONCLUSION

This paper proposed Veil to prevent volume leakage in encrypted search. Veil selects multiple
buckets for each key and employs a greedy strategy to distribute key-value pairs into different
buckets. With the created buckets, Veil applies various strategies to add fake values to the created
buckets to pad them to an equal size. This increases SA. To reduce the number of fake values that
need to be added to buckets, we proposed Veil-O which allows sharing values among buckets
by creating regular graphs with vertices corresponding to the buckets and edges connecting two
vertices if the corresponding buckets share values. This significantly improves SA. We verified this
using evaluations and showed that both of our approaches are strictly better than the state of art.
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