
268

R2D2: Reducing Redundancy and Duplication in Data Lakes∗

RAUNAK SHAH†, University of Illinois, Urbana-Champaign, USA

KOYEL MUKHERJEE†, Adobe Research, India
ATHARV TYAGI, Adobe Research, India
SAI KEERTHANA KARNAM, Adobe, India
DHRUV JOSHI, Indian Institute of Technology Kharagpur, India

SHIVAM BHOSALE, Adobe, India
SUBRATA MITRA, Adobe Research, India

Enterprise data lakes often suffer from substantial amounts of duplicate and redundant data, with data

volumes ranging from terabytes to petabytes. This leads to both increased storage costs and unnecessarily

high maintenance costs for these datasets. In this work, we focus on identifying and reducing redundancy in

enterprise data lakes by addressing the problem of “dataset containment". To the best of our knowledge, this is

one of the first works that addresses table-level containment at a large scale.

We propose R2D2: a three-step hierarchical pipeline that efficiently identifies almost all instances of

containment by progressively reducing the search space in the data lake. It first builds (i) a schema containment

graph, followed by (ii) statistical min-max pruning, and finally, (iii) content level pruning. We further propose

minimizing the total storage and access costs by optimally identifying redundant datasets that can be deleted

(and reconstructed on demand) while respecting latency constraints.

We implement our system on Azure Databricks clusters using Apache Spark for enterprise data stored in

ADLS Gen2, and on AWS clusters for open-source data. In contrast to existing modified baselines that are

inaccurate or take several days to run, our pipeline can process an enterprise customer data lake at the
TB scale in approximately 5 hours with high accuracy. We present theoretical results as well as extensive

empirical validation on both enterprise (scale of TBs) and open-source datasets (scale of MBs - GBs), which

showcase the effectiveness of our pipeline.

CCS Concepts: • Information systems→ Data management systems; Database management system
engines;

Additional Key Words and Phrases: data management, data provenance, storage, redundancy

ACM Reference Format:
Raunak Shah, Koyel Mukherjee, Atharv Tyagi, Sai Keerthana Karnam, Dhruv Joshi, Shivam Bhosale, and Sub-

rata Mitra. 2023. R2D2: Reducing Redundancy and Duplication in Data Lakes. Proc. ACM Manag. Data 1, 4

(SIGMOD), Article 268 (December 2023), 25 pages. https://doi.org/10.1145/3626762

∗
All the work done in this paper was while all the authors were affiliated with Adobe Research.

†
Both authors contributed equally to this research.

Authors’ addresses: Raunak Shah, raunaks3@illinois.edu, University of Illinois, Urbana-Champaign, Champaign, USA; Koyel

Mukherjee, komukher@adobe.com, Adobe Research, Bangalore, India; Atharv Tyagi, athtyagi@adobe.com, Adobe Research,

Bangalore, India; Sai Keerthana Karnam, skarnam@adobe.com, Adobe, Bangalore, India; Dhruv Joshi, dhruvjoshi43@gmail.

com, Indian Institute of Technology Kharagpur, Kharagpur, India; Shivam Bhosale, sbhosale@adobe.com, Adobe, Bangalore,

India; Subrata Mitra, subrata.mitra@adobe.com, Adobe Research, Bangalore, India.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/12-ART268 $15.00

https://doi.org/10.1145/3626762

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

ar
X

iv
:2

31
2.

13
42

7v
1

 [
cs

.D
B

]
 2

0
D

ec
 2

02
3

HTTPS://ORCID.ORG/0000-0002-2889-7855
HTTPS://ORCID.ORG/0000-0002-8690-323X
HTTPS://ORCID.ORG/0009-0008-3904-7953
HTTPS://ORCID.ORG/0000-0003-1328-5167
HTTPS://ORCID.ORG/0009-0007-4543-846X
HTTPS://ORCID.ORG/0000-0002-5817-5271
HTTPS://ORCID.ORG/0009-0009-8436-3119
https://doi.org/10.1145/3626762
https://orcid.org/0000-0002-2889-7855
https://orcid.org/0000-0002-8690-323X
https://orcid.org/0000-0002-8690-323X
https://orcid.org/0009-0008-3904-7953
https://orcid.org/0000-0003-1328-5167
https://orcid.org/0009-0007-4543-846X
https://orcid.org/0000-0002-5817-5271
https://orcid.org/0009-0009-8436-3119
https://doi.org/10.1145/3626762

268:2 Raunak Shah et al.

1 INTRODUCTION
Enterprises nowadays ingest and process huge amounts of data daily. Roughly 2.5 quintillion bytes

of data are generated every day. The data storage unit market revenue worldwide in 2022 was 44.7

billion USD [26]. Managing such huge amounts of data is a tedious task, and it requires innovative

data management techniques that are motivated towards saving costs. In fact, if not managed well,

data ceases to be of value to enterprises or their customers or consumers and instead ends up

incurring huge amounts of COGS (cost of goods sold) and liabilities for enterprises.

Costs Associated with Data Regulations:GDPR1 and other privacy regulations (e.g., CCPA in

California) are becoming increasingly important, with major tech firms incurring fines of hundreds

of millions of dollars [18]. As a result, companies are spending huge amounts to ensure such

compliance. According to estimates by IAPP
2
and others [1], the spends range from 7.8 - 17 billion

USD, resulting in 8% decline in profit [16].

The costs for data maintenance can be potentially reduced manifold by better management of

data, namely, effective data retention and destruction policies [17].

The Redundant and Untracked Data problem: To further complicate the problem, enter-

prise data lakes, with data volumes ranging in petabytes, often suffer from rampant data duplication.

For instance, a marketer and an analyst from the same organization can process the same dataset,

often in the same manner, for analytics and insight generation, saving the results for future use.

This ends up creating even more data, without any record of the mutual relationship of the newly

created datasets either with one another or with the existing datasets. As a result, enterprise data

lakes often end up having untracked instances of related, or even, duplicate datasets. As an example,

we analyzed the data containment for 3 customers in our enterprise data lake. We found that out

of 1400 datasets, over 115 datasets are fully contained within others, and 231 datasets are more

than 75% contained, accounting for 400 GBs of redundant data for these 3 customers alone.

Cost Implications of Redundant Data: Data storage as well as data access costs on the cloud3

both contribute substantially to the overall data maintenance costs for enterprises. Our enterprise

data lake typically has at least one GDPR or privacy request-initiated access per customer dataset

per week. This results in a full table scan4
which is very expensive, especially since it is done at

regular intervals. For a data lake of size 1.4PBs in our enterprise, we can potentially save 0.15 billion

row scans incurred due to privacy-initiated (GDPR) accesses per month by deleting contained

datasets.

Identifying and deleting redundant or duplicate data therefore becomes important. We define

data redundancy as a condition in which the contents of a dataset are exactly contained in another

dataset. We study this ‘Dataset Containment’ problem across our data lake and propose to build

a dataset containment graph, encoding the mutual containment information. Following that, we

propose to delete some of the redundant (contained) datasets optimally. Building a containment

graph for an existing data lake is an interesting but hard problem that presents challenges in

scalability as well as in identifying the correct relationships between datasets.

Recently, several works have studied data discovery and data relatedness subject to different

notions of similarity between datasets [3, 5–7, 9, 10, 15, 23, 30]. Many of these consider joinability

or unionability [13, 19, 22] as the target relatedness metric, and often use schema based features to

1
General Data Protection Regulation

2
The International Association of Privacy Professionals

3
For example, the data storage and access costs on ADLS Gen 2 can be found here: https://azure.microsoft.com/en-

in/pricing/details/storage/data-lake/.

4
For many organizations, including ours, the data lake can only be accessed via APIs that use Apache Spark [2], which does

not use an indexed database. In some cases, the data may be partitioned via timestamp, but that does not indicate user-level

information. Thus, currently, a privacy-initiated access is a full table scan.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://azure.microsoft.com/en-in/pricing/details/storage/data-lake/
https://azure.microsoft.com/en-in/pricing/details/storage/data-lake/

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:3

determine similarity in this context. These are insufficient for our use case of detecting containment

since we need to look at content based similarity, as discussed in Section 1.2. For similar reasons,

the large body of works on entity resolution and matching, e.g. [20, 27] also become inapplicable.

Existing works on content similarity have looked at set similarity, which is insufficient for our case,

where we need to detect exact row (record) level containment across subsets of columns (schema).

Moreover, most of the existing work (on content similarity) has shown results on a smaller scale,

for example, MBs to GBs, whereas we need to operate at a scale of TBs and PBs in enterprise data

lakes. Works on storage layer de-duplication at block-level e.g. [11, 24, 25] are also orthogonal

to our use case because they would be ineffective in detecting containment arising out of logical

operations, and inefficient due to additional storage and processing overheads.

We propose a scalable, hierarchical framework R2D2 (which stands for “Reducing Redundancy

and Duplication in Data Lakes”) for identifying data containment relations, that operates on TBs
of data within a few hours with high accuracy. To the best of our knowledge, this is one of

the first works on identifying table-level containment at a large scale. Unlike R2D2, brute force

approaches to compute ground truth and (modified) baselines from literature can take days to

compute and/or give inaccurate results, respectively. We present results on datasets from multiple

customer orgs
5
spread across different domains with different types and distributions of data to

show the generalizability of our approach. Additionally, we study the cost optimization problem

arising out of the trade-off of retention versus deletion (and reconstruction on demand), along with

the challenges of implementing such an algorithm in a dynamic, enterprise environment.

We also discuss the challenges of identifying "approximately contained" datasets in Section 7.2.

1.1 Our Contributions
(1) R2D2 Framework: We propose a scalable, hierarchical framework R2D2 for identifying

dataset containment relations, that operates on TBs of data within a few hours with high
accuracy. It progressively reduces the search space by first building (i) a schema containment

graph, followed by (ii) statistical min-max pruning, and finally, (iii) content level pruning.

(Section 4).

(2) Schema Graph Builder: We propose an efficient schema clustering algorithm for building

the schema containment relationship graph between datasets. We prove theoretically that no

(ground truth) edges are missed in the resultant graph. (Section 4.1).

(3) Min-Max and Content Level Pruning: We propose efficient algorithms based on statistical

(minimum and maximum values in numerical columns) and content level similarity for

eliminating edges from the schema graph to progressively build the dataset containment graph.

We theoretically bound the sampling complexity with respect to the extent of containment

with a probabilistic guarantee for correctly eliminating edges. (Section 4.2 and 4.3.)

(4) Cost Optimization: We provide an optimization algorithm that minimizes the overall

expected storage and access costs while respecting latency constraints. It takes a containment

graph as input and identifies redundant datasets that can be deleted (and reconstructed on

demand). (Section 5).

(5) Empirical Validation: We validate our pipeline through substantial empirical results on

both enterprise and open-source data, ranging from MBs to TBs. We compare with baselines

and show that our method achieves very good results compared to the ground truth, both in

terms of correctness and efficiency. We also test the scalability of the pipeline and potential

storage and compute savings. (Section 6).

Figure 1 shows an end-to-end high level view of our proposed pipeline and framework.

5
Here, a "customer org" refers to datasets sourced from and belonging to a particular customer in the data lake.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:4 Raunak Shah et al.

Fig. 1. An illustration of our end-to-end framework. After computing the schema graph, each step successively
prunes the graph space, first based on the minimum and maximum values of columns and then based on the
contents. At the end, nodes marked in red are recommended for deletion.

1.2 Enterprise Schema and Data Containment
In our enterprise data lake, different customer orgs have different distributions of schemas as well

as data. In some orgs, many pairs of datasets have similar schema, whereas in others, this number is

lower (refer Fig. 2). Not only does the distribution of schema similarity vary widely across customers,

but the schema similarity alone is insufficient to conclude data similarity or extent of containment.

Existing approaches such as [3] that focus on identifying similar datasets with respect to joinable

columns, use schema based features and data features computed on small samples of data with high

accuracy. However, in our enterprise data lake, tables with similar, generic schemas often have

very different distributions of values within a column, since the tables often come from different

sources and have gone through varied types of processing and transformations before reaching

their current state. In another experiment, we considered tables with the same schema from a

customer’s data, and computed quantiles (at fractions 0, 0.5, 0.8, 0.95, and 1) from the distribution of

values in each column. We found that despite having the same schema, over 20% of table pairs have

normalized quantiles that are at least 50% different, which indicates a large degree of independence

between the schema (column) name and exact values within a column. Thus, it is important to

consider data based features as well as schema based features while identifying containment. The

scale of our problem is massive, and building the ground truth dataset containment graph through

pairwise dataset comparisons would require the order of 10
21
pairwise record level comparisons

(see Table 3) for certain customer accounts.

Fig. 2. Histograms of schema containment between dataset pairs in 2 different customer orgs in our enterprise
data lake. The x-axis ranges from 0 to 1 (zero schema intersection to complete containment between two
tables). Clearly, the distributions of schema similarities vary across orgs.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:5

2 RELATEDWORK
Joinability Discovery: Data discovery based on joinability has beenwidely studied in the literature
[3, 10, 15, 30]. In general, joinability based approaches do not apply to the containment problem,

as joinability is between two column pairs and not the complete set of columns from tables. It

is possible for two tables from completely different domains to be joinable but they may not be

related at all. We next discuss a few existing works in this field.

NextiaJD [15] studies joinability using a learning-based approach, only considering attributes

comprised of string datatypes (ignoring numerical attributes). The quality of join is computed based

on containment (Jaccard Distance) and cardinality proportions between two attributes (columns).

Similar to [15], JOSIE [30] too focuses on non-numerical attributes. JOSIE aims to find tables that

can be joined with the given column on the largest number of distinct values, changing columns

to sets. JOSIE minimizes the cost of set reads and uses inverted index probes to find the top-k

related sets. However, building an inverted index is inefficient, both computationally and from the

perspective of memory management. Moreover, considering columns as sets loses crucial row tuple

based information which is important for identifying containment
6
. Bharadwaj et al.[3] address

the task of finding joinable tables, that occur in the join clauses in enterprise queries. They train a

random forest classifier to predict whether two columns are related or not based on features such

as metadata (column name similarities), and sample-based features (based on similarities of the first

1000 values in numeric columns). They find that a very large proportion of these joinable columns

have similar schemas, which makes schema features useful for identifying joinability. However,

as discussed earlier in Section 1.2, this is not enough to judge the containment between tables.

Additionally, we need to consider both numeric and non-numeric features.

Inverted Index based approaches: Inverted index based data structures have been widely used

to address the problem of set similarity, column joinability, and relatedness, e.g. [6–9, 14, 30, 31].

These approaches primarily reduce the number of column/set comparisons. They do not optimize

how the table similarity is computed and generally require full sweeps of all the rows in a table. As

a result, such approaches do not scale well with increasing dataset sizes. We now discuss a few of

these works.

LSHEnsemble[31] identifies containment between domains (or sets of column attributes) of tables

on the web. Although the number of domains can be very large (and this is what they focus on),

identifying containment between two attributes is not expensive since domain sizes are relatively

small as they are mainly keywords. This is not the case when we want to find the containment

between entire columns. In our case, the number of datasets (equivalent to the number of domains)

is less of a bottleneck, and the number of rows (equivalent to domain sizes) is extremely large, so

techniques based on min-hash become computationally infeasible. LCJoin[9] tries to find all pairs

of sets (R, S) such that 𝑅 ⊂ 𝑆 where R and S belong to a collection of sets R and S respectively.
Although we can apply [9] to find subset relationships between column sets of different tables, it

does not translate to overall table containment, for similar reasons as explained earlier. Similarly,

Silkmoth [7] tries to solve the problem of set relatedness and set containment. The metric used

measures the relatedness of two sets by treating the elements as vertices of a bipartite graph and

calculating the score of the maximum matching pairing between elements. Unfortunately, the

metric suffers from expensive computational cost, taking 𝑂 (𝑛3) time, where n is the number of

elements in the sets, for each set-to-set comparison. For data lakes, the time complexity of 𝑂 (𝑛3) is
unacceptable because of the size (number of rows) in enterprise datasets, and thus [7] cannot be

applied in our setting.

6
For example, consider 2 tables with 2 columns. Table 1 entries are: (June, 20) and (May, 12). Table 2 entries are: (June, 12)

and (May, 20). At a set level, there is column-wise containment in both columns, but as row tuples, there is no containment.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:6 Raunak Shah et al.

Data Discovery: There are other approaches that look into discovering related datasets, e.g.

[5, 21, 23, 29]. D3L [5] uses schema-and instance-based features (name, value, format, embeddings,

and domain/distribution) to construct hash-based indices (locality sensitive hashing based) that

map these features into a uniform distance space. This makes it possible to consider hash value

similarities as measures for table relatedness. However, LSH indexing is computationally expensive,

and dynamically adding a new dataset requires recomputing the indices over the entire space of

data, making it computationally infeasible. RONIN [23] enables user exploration of a data lake by

navigation of a hierarchical structure. Here, table similarities are computed by averaging word

embeddings of tokens in the table schema and metadata (description, tags) where available. This

does not consider exact containment of schema nor does it consider content level similarity at all.

Juneau[29] finds target tables related to a source table, given a task such as finding tables with

some augmented data, linked (joinable) tables, and finding tables where data cleaning has occurred

(like removing null values). Their use-case is focused on small tables used by data scientists in a

jupyter notebook environment, and evaluation is done on a 5GB corpus with an average table size

of 1MB. Our use case however focuses on finding redundant data in a vast data lake at a much

higher scale in terabytes. Additionally, they assume the presence of a data provenance graph, which

is not given in our setting.

Data Versioning: There has been some work [4, 28] on selectively storing and deleting dataset

versions. Although we are not dealing with dataset versions, it is useful to examine this related line

of work. [4] takes a static provenance graph as input, and trades off the storage and reconstruction

cost of keeping or deleting dataset versions. This problem is related to the optimization part of our

pipeline however the exact optimization formulation considered by us is different from [4, 28].

Storage Layer Deduplication: Some existing approaches de-duplicate data via block-level

de-duplication at the storage layer[11, 24, 25].

As an enterprise data management platform, we operate above the abstractions provided by

Apache Spark [2] and therefore we do not have access to the storage layer nor do we have access

to the individual files. In an enterprise data lake the sources of data are largely heterogeneous, so a

system that de-duplicates at write-time would be infeasible. Even for post-processing de-duplication,

the block sizes used in existing work are generally very small (of the order of KBs). This implies

maintaining indexes for up to hundreds of millions of blocks since the size of even a single table can

go up to tens or hundreds of terabytes. Storing such metadata in a “chunk store", and/or running

block compression is infeasible in our enterprise setting, and would take too long. On the other

hand, R2D2 can be run end-to-end as a Spark job in memory. The only extra metadata we use

is existing partition level metadata that already exists. It is also convenient to delete datasets or

partitions completely - deleting chunks from certain parts of partitions and then reconciling these

partitions would require maintaining such a system at the storage layer, which is difficult (we use

cloud services for storage). Finally, chunking cannot handle logical operations/transformations - e.g.

it would consider a sorted and unsorted table to be different. However, these tables are contained

within one another. In fact, in Spark, since row ordering is not preserved, the tables are essentially

equivalent. Our pipeline would be able to capture this.

3 PROBLEM DEFINITION
Our goals are as follows. We first want to generate a mapping of the redundancy or, containment

among the datasets in the data lake in a scalable, efficient manner. Second, we want to identify

candidates for “safe deletion” from this pool of datasets to minimize the redundancy and associated

storage and maintenance costs. We use the terms ‘datasets’ and ‘tables’ interchangeably in the rest

of the paper because we work with tabular datasets (commonly used for storing digital transactions

and clickstream event logs). We now formally define our problem statement.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:7

We first define the term “containment fraction” of one table in another. The containment fraction

of a table 𝐴 in table 𝐵 is defined as 𝐶𝑀 (𝐴, 𝐵) = |𝐴∩𝐵 |
|𝐴 | , where 𝑛(𝐵) ≥ 𝑛(𝐴). Note that we consider

containment of table schema as well as full table contents. We use the same notation for both these

cases.

If A and B are schemas, 𝑛(𝐵) refers to the length of the flattened schema set in B, and |𝐴 ∩ 𝐵 |
refers to the length of the intersection between the flattened schema sets. If they are tables, 𝑛(𝐵)
refers to the number of rows in B and |𝐴 ∩ 𝐵 | refers to the number of rows common to both tables.

Throughout the rest of the paper,𝐴 ⊆ 𝐵 will denote that A is contained within B (i.e.𝐶𝑀 (𝐴, 𝐵) = 1).

We will use this notation for both schema as well as table level containment. Next, we explain the

term "safe deletion". A recommendation of deletion for a candidate dataset 𝐷 is considered to be

“safe deletion” as long as (i) the (recommended) retained set of datasets contains at least one parent

dataset 𝐷𝑝 from which 𝐷 can be reconstructed if accessed in the future, and (ii) this reconstruction

can be done within a bounded latency (this will be further discussed in Section 5.1) This is to ensure

that the Quality of Service (QoS) experienced by the customer is high and as per the Service Level

Agreements (SLAs).

We study the following two problems in this work:

1. Containment Detection: Identify all pairs of tables (𝑃,𝑄) such that 𝐶𝑀 (𝑃,𝑄) ≥ 𝑇 , where
𝑛(𝑄) ≥ 𝑛(𝑃). In this paper we focus on solving the problem of exact containment detection, i.e.

when 𝑇 = 1, which implies 𝑃 ⊆ 𝑄 , or that all the rows in 𝑃 are present in 𝑄 . Note that this

would also capture exact duplicates (𝑃 = 𝑄). Approximate containment detection, i.e. when 𝑇 < 1,

introduces several additional challenges. These are out of the scope of this paper - however, we

briefly discuss this case in Section 7.3.

2. Recommending Candidates for Deletion: Based on the containment information, identify

all tables that can be safely deleted, without any loss of information, so that the overall costs

incurred due to data storage, data access as well and data maintenance are optimized. In order to

formalize the above statement, first consider a dataset relationship graph, where the datasets are

nodes, and there exists an edge directed from dataset node 𝐵 to 𝐴 if and only if : (a) 𝐴 is contained

in 𝐵, that is, 𝐶𝑀 (𝐴, 𝐵) = 1, (b) the transformation to generate 𝐴 from 𝐵 is known to the system,

and (c) the expected latency to generate the transformation is bounded and within some threshold.

For each such directed edge from 𝐵 to 𝐴, we denote 𝐵 as a parent of 𝐴 and we can reconstruct 𝐴

from 𝐵, if required by a customer-initiated access, in case 𝐴 is deleted. The problem is to identify

the optimal set of such contained datasets for deletion while retaining at least one parent for every

deleted dataset. This captures the “safe deletion" requirement. Detailed problem descriptions along

with important system level aspects for the deletion process are discussed in Section 7.1.

4 R2D2 FRAMEWORK
In this section, we describe the key components of the R2D2 framework. We approach the problem

in a step-by-step hierarchical manner, which makes our method scalable as well as modular. We

model the underlying space of datasets as a graph, capturing their pairwise relationships. We

solve the data redundancy problem in two parts. First, we identify data containment between

pairs of tables and build the corresponding containment graph. Second, we solve an optimization

problem on top of this containment graph, that recommends the subset of datasets that can be

“safely deleted” (as explained in Section 3), while minimizing the overall storage, maintenance, and

expected reconstruction costs. In order to solve the first problem, that is, building a containment

graph, we approach the problem hierarchically, first building a schema based containment graph,

then progressively eliminating edges from the graph to build the containment graph, where the

existence of a directed edge indicates with high probability that the child (where the edge is

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:8 Raunak Shah et al.

incoming) is contained in the parent (where the edge is outgoing). In this work, we assume that

exact schema level containment is a necessary condition for full containment. We plan to study

approximate schema and content containment in future work. However, we do discuss aspects

of approximate containment and some special cases that we can handle in Section 7.2. We next

discuss the different steps of the R2D2 pipeline in detail.

4.1 Schema Graph Builder: Computing Schema Containment Graph
At this stage, our goal is to build a schema containment graph that might contain additional edges

(to be pruned at later stages) but no missing edges. In other words, our goal is to ensure 100% recall

for detecting containment edges at this stage. Here, an edge 𝐵 → 𝐴 denotes the presence of a

pairwise schema level containment (𝐴.𝑠𝑐ℎ𝑒𝑚𝑎 ⊆ 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎). Note that schema level containment is

a necessary, but insufficient condition for full table level containment. One possible brute-force

approach would be to do pairwise comparisons between all pairs of schemas. For 𝑁 datasets (where

𝑁 is a very large number for even moderately sized enterprise data lakes), this would result in

𝑂 (𝑁 2) comparisons and no additional edges. However, we propose to trade-off precision (without

affecting the recall, that is, not missing any edges) with compute at this stage.

We propose to find an initial set of (overlapping) clusters in the space of schema entities, and build

the graph by examining the containment between any pair of schema entities that are members of

the same cluster. If containment exists, we construct a directed edge directed from the larger schema

to the smaller schema. Instead of using traditional clustering algorithms such as K-Means which

would be computationally expensive, and would require featurization, we propose the following

algorithm for generating the overlapping clusters. We first select ‘centers’ in the schema entity

space, and then assign cluster members to each center based on containment. Note that the center

is also a cluster member. We call this algorithm Schema-Graph-Builder or SGB in short.

We next describe the SGB Algorithm in detail.

(1) First, construct a schema set for each dataset. For flat schemas, this is simply a list of all

columns. For tree schemas, which are typical in enterprise workloads, the schema set is

computed by flattening the schema tree so that the resulting tokens are distinct. For ex-

ample, a schema tree with root 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 and children 𝑝𝑟𝑖𝑐𝑒 and 𝑖𝑑 would be represented as

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 .𝑝𝑟𝑖𝑐𝑒 and 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 .𝑖𝑑 . Empirically we have observed that this can be done in seconds.

(2) Sort the list of schemas in non-increasing order of the size or cardinality of the corresponding

schema sets.

(3) Initialize the list of schema centers as empty sets.

(4) Traverse the list of schemas in the sorted order.

(5) For the next schema set, check if it is contained in any of the current centers. If not, then this

becomes a new center. Else, add it as a cluster member to each center that it is contained in.

Continue traversing (i.e., go to Step 4) till the end of the list.

(6) Now, add edges between every pair of schemas within a cluster that satisfy the exact contain-

ment condition. We include the cluster center schema as a part of a cluster in this process.

This builds the Schema Containment Graph. Note that one entity can have edges to members

of multiple clusters. This is possible because the same node can be a member of two or more

clusters.

Figure 3 illustrates the above steps on a small example in a step-by-step manner. The flattened

columns in each schema along with the traversal order are shown on the left (steps 1-4). Each

iteration wherein we populate the clusters and assign cluster centers is shown in the middle of

the figure (step 5). Finally, we add edges within clusters to create the final schema graph based

on whether containment exists or not (step 6). The pseudocode is given in Algorithm 1. For 𝐾

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:9

Fig. 3. 𝑆𝑖 - schemas, 𝑐𝑖 - columns. Left: 6 schema definitions along with our order of traversal (non-decreasing
order of size of the schema) in the SGB algorithm. Middle: Populating clusters in each iteration in the SGB
algorithm. Cluster centers are in orange. Right: How we construct the final schema graph from these clusters.

clusters, the total complexity of the sorting and traversal would be 𝑂 (𝑁 log𝑁) +𝑂 (𝐾 (𝑁 − 𝐾)).
We next prove that we will not miss any edge by SGB (even though many additional edges might

be detected at this stage).

Theorem 4.1. The schema containment graph identified by the algorithm SGB will not be missing

any correct (containment) edges.

Proof. Let us assume for the sake of contradiction that the schema graph built by SGB for a given

data lake has missed at least one correct edge 𝐵 → 𝐴, that is, 𝐴.𝑠𝑐ℎ𝑒𝑚𝑎 ⊆ 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎. That means

when 𝐴.𝑠𝑐ℎ𝑒𝑚𝑎 was being processed or traversed in the list of schemas, the containment with

𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 was undetected. Since 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 is longer than 𝐴.𝑠𝑐ℎ𝑒𝑚𝑎, it would have been traversed

earlier in the list. First, consider the case that 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 is a cluster center. Since the algorithm

checks containment with each center explicitly, this edge would have been detected, leading to a

contradiction. Now, consider the case that 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 is not a cluster center. Then, by definition of

the algorithm, 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 must have been marked as a cluster member of at least one existing cluster,

say 𝐶.𝑠𝑐ℎ𝑒𝑚𝑎. This further implies that 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 is fully contained in 𝐶.𝑠𝑐ℎ𝑒𝑚𝑎. Therefore, when

𝐴.𝑠𝑐ℎ𝑒𝑚𝑎 is being traversed by SGB, it would have detected containment to at least one cluster

center 𝐶.𝑠𝑐ℎ𝑒𝑚𝑎 and would have marked 𝐴.𝑠𝑐ℎ𝑒𝑚𝑎 as a cluster member of 𝐶.𝑠𝑐ℎ𝑒𝑚𝑎. However, by

definition of the algorithm, we build an edge between every pair of cluster members, which would

include an edge between 𝐴.𝑠𝑐ℎ𝑒𝑚𝑎 and 𝐵.𝑠𝑐ℎ𝑒𝑚𝑎 since both are members of the same cluster. This

again leads to a contradiction. This completes the proof. □

4.2 Min-Max Pruning
The second step of our algorithm (Algorithm 2) takes the schema graph as input and chooses which

edges to prune. Note that our final goal is to have a graph where a directed edge 𝐵 → 𝐴 between

two nodes (datasets) represents that 𝐴 ⊆ 𝐵, i.e. 𝐴 is contained within 𝐵. In this step, we exploit the

relationship between the minimum and maximum values of columns in datasets that are contained

within one another. Assume 𝑛(𝐴) <= 𝑛(𝐵). Consider𝐶 to be the set of common columns between𝐴

and 𝐵. If𝐴 ⊆ 𝐵, it is necessary for (i) min𝐴.𝑐 ≥ min𝐵.𝑐 ∀ 𝑐 ∈ 𝐶 and (ii) max𝐴.𝑐 ≤ max𝐵.𝑐 ∀ 𝑐 ∈ 𝐶 .
If any one of these conditions is violated for any column, we can eliminate that edge and safely

conclude that containment is not present. Moreover, for datasets that are partitioned and stored in

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:10 Raunak Shah et al.

Algorithm 1: SGB: Schema Graph Builder

Data: 𝑆 = list of schemas, 𝐶 = set of clusters

Result: 𝐺 = Schema Containment Graph

1 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑆𝑡𝑟𝑢𝑐𝑡 (𝑐𝑒𝑛𝑡𝑒𝑟,𝑚𝑒𝑚𝑏𝑒𝑟𝑠)
2 𝑠𝑐ℎ𝑒𝑚𝑎 = 𝑆𝑡𝑟𝑢𝑐𝑡 (𝑠𝑖𝑧𝑒, 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
3 for 𝑠𝑐ℎ𝑒𝑚𝑎 𝑠 ∈ 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑆, 𝑏𝑦 = 𝑠𝑖𝑧𝑒, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔) do
4 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 = 0

5 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐 ∈ 𝐶 do
6 𝑐𝑐 = 𝑐.𝑐𝑒𝑛𝑡𝑒𝑟

7 if (𝑠 .𝑠𝑖𝑧𝑒 <= 𝑐𝑐.𝑠𝑖𝑧𝑒) and (𝑠 ⊆ 𝑐𝑐) then
8 𝑐.𝑚𝑒𝑚𝑏𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠)
9 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 = 1

10 end
11 end
12 if 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 == 0 then
13 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = new 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑠)
14 𝐶.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟)
15 end
16 end
17 for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐 ∈ 𝐶 do
18 for 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑎𝑖𝑟𝑠 (𝑥,𝑦) s.t. 𝑥,𝑦 ∈ 𝑐.𝑚𝑒𝑚𝑏𝑒𝑟𝑠 do
19 if 𝑦 ⊆ 𝑥 then

// WLOG x.size > y.size

20 𝐺.𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑥 .𝑑𝑎𝑡𝑎𝑠𝑒𝑡 → 𝑦.𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
21 end
22 end
23 end
24 return G

parquet format, values such as the columnar minimum and maximum are often stored as metadata.

This makes looking up these values very fast, since a full table scan is not necessary - looking at

partition level metadata would suffice. Caching the columnar minimum and maximum is another

option that would improve the speed even further.

4.3 Content Level Pruning
Finally, we prune the graph based on the contents of the datasets under consideration. We exploit

the insight that if table level containment holds, i.e. 𝐴 ⊆ 𝐵, it will also hold between a sample of

𝐴 and 𝐵, i.e. 𝑠𝑎𝑚𝑝𝑙𝑒 (𝐴) ⊆ 𝐵. For instance, consider a categorical or timestamp type of column,

such as "id" or "timestamp", which are commonly found in enterprise data. Consider the rows

where specific values are present in such columns - this is equivalent to running a query such as

SELECT * FROM A WHERE column = value. If any of the rows returned by this sample are not

present in 𝐵, we can safely conclude that containment does not hold between 𝐴 and 𝐵 either. Then

we can prune the edge 𝐵 → 𝐴 from the graph. Choosing to sample values from 𝐴 that result in

a lower number of rows will lower the time complexity of checking containment with 𝐵. Thus,

this idea can be extended further - instead of running a query with a single WHERE filter, we can

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:11

Algorithm 2:MMP: Min-Max Pruning

Data: 𝐺 = Schema Containment Graph

Result: 𝐺 = Updated Containment graph

1 for 𝑒𝑑𝑔𝑒 𝑥 → 𝑦 ∈ 𝐺.𝑒𝑑𝑔𝑒𝑠 do
2 𝑐𝑜𝑚𝑚𝑜𝑛𝐶𝑜𝑙𝑠 = 𝑥 .𝑠𝑐ℎ𝑒𝑚𝑎 ∩ 𝑦.𝑠𝑐ℎ𝑒𝑚𝑎
3 for 𝑐 ∈ 𝑐𝑜𝑚𝑚𝑜𝑛𝐶𝑜𝑙𝑠 do
4 if ((𝑥 .𝑐.𝑚𝑖𝑛 > 𝑦.𝑐.𝑚𝑖𝑛) or (𝑥 .𝑐.𝑚𝑎𝑥 < 𝑦.𝑐.𝑚𝑎𝑥)) then
5 𝐺.𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑑𝑔𝑒 (𝑥 → 𝑦)
6 break
7 end
8 end
9 end

10 return G

simultaneously use multiple WHERE filters on different columns and values to make this step even

faster. Another possible extension is to sample from both 𝐴 and 𝐵 using a query with WHERE filters,

and then check containment between the sampled rows. For example, if 𝑠𝐴 = all the rows of A

with a particular timestamp 𝑡 and 𝑠𝐵 = all the rows of B with timestamp 𝑡 , containment should be

preserved between them, i.e. 𝑠𝐴 ⊆ 𝑠𝐵 if 𝐴 ⊆ 𝐵. Otherwise, we can conclude 𝐴 ⊈ 𝐵. This would hold
as long as we sample using WHERE queries, since the containment relationship is unaffected by such

a sampling operation. The key in all of the above variations is that the sampling does not need to

scan the full table. If information about the column to be sampled is known beforehand (e.g. we

may know a range of timestamp values present in the dataframe), or the data has been partitioned

based on timestamp values, or if the database is indexed (all of which are common scenarios), only

certain rows of the table need to be accessed while sampling. The pseudocode is given in Algorithm

3.

Algorithm 3: CLP: Content Level Pruning
Data: 𝐺 = Containment Graph after MMP, 𝑠=max columns to consider, 𝑡=max rows to

sample

Result: 𝐺 = Updated Containment graph

1 for 𝑒𝑑𝑔𝑒 𝑥 → 𝑦 ∈ 𝐺.𝑒𝑑𝑔𝑒𝑠 do
2 𝑐𝑜𝑚𝑚𝑜𝑛𝐶𝑜𝑙𝑠 = 𝑥 .𝑠𝑐ℎ𝑒𝑚𝑎 ∩ 𝑦.𝑠𝑐ℎ𝑒𝑚𝑎
3 𝑠𝑒𝑎𝑟𝑐ℎ𝐶𝑜𝑙𝑠 = 𝑐𝑜𝑚𝑚𝑜𝑛𝐶𝑜𝑙𝑠.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑠)
4 𝑠𝑌 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑦, 𝑠𝑒𝑎𝑟𝑐ℎ𝐶𝑜𝑙𝑠,𝑚𝑎𝑥𝑅𝑜𝑤𝑠 = 𝑡)
5 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑠𝑌 . 𝑗𝑜𝑖𝑛(𝑥, 𝑡𝑦𝑝𝑒 = ”𝑙𝑒 𝑓 𝑡 − 𝑎𝑛𝑡𝑖”)
6 if !𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 then
7 𝐺.𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑑𝑔𝑒 (𝑥 → 𝑦)
8 end
9 end

10 return G

Let us now examine the number of samples that would be required to give a probabilistic

guarantee on the correctness of containment inference, similar to a PAC bound.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:12 Raunak Shah et al.

Theorem 4.2. Given a pair of datasets with fraction of containment at most (1 − 𝜖), the number

of samples 𝑛𝑠 required to ensure that we are able to eliminate or prune the edge between the pair of

datasets with probability at least (1 − 𝛿) is 𝑛𝑠 ≥ ln
1

𝛿
/ln 1

1−𝜖 .

Proof. Consider two datasets 𝐷1 and 𝐷2, where the fraction of containment of 𝐷2 in 𝐷1, that

is, 𝐶𝑀 (𝐷2, 𝐷1) ≤ (1 − 𝜖). Ideally, we want to be able to prune the edge between 𝐷1 and 𝐷2 with

a high probability 𝑃 (𝐷2 ∉ 𝐷1) ≥ (1 − 𝛿), given the containment is ≤ (1 − 𝜖). This requires that
at least 1 sample be retrieved from the non-intersecting rows of 𝐷2 and 𝐷1. Let the sampling be

uniformly random with replacement and let the minimum number of samples required be 𝑛𝑠 . We

denote the part of 𝐷2 contained in 𝐷1 as 𝐷
𝑐
2
.

𝑃 (𝐷2 ∉ 𝐷1) = 1 − 𝑃 (𝐷2 ⊆ 𝐷1) = 1 −
|𝐷𝑐

2
|𝑛𝑠

|𝐷2 |𝑛𝑠
= 1 −

(
𝐷𝑐
2

𝐷2

)𝑛𝑠
(1)

The containment

𝐷𝑐
2

𝐷2

≤ (1 − 𝜖). We want the probability 𝑃 (𝐷2 ∉ 𝐷1) to be ≥ (1 − 𝛿) for some small

𝛿 . Substituting, we require

𝑃 (𝐷2 ∉ 𝐷1) ≥ 1 − (1 − 𝜖)𝑛𝑠 ≥ (1 − 𝛿) (2)

Therefore, we need 𝛿 ≥ (1 − 𝜖)𝑛𝑠 . This gives 𝑛𝑠 ln 1

1−𝜖 ≥ ln
1

𝛿
. or, 𝑛𝑠 ≥ ln

1

𝛿

ln
1

1−𝜖
. As an example,

for 𝛿 = 0.05 (that is, a probability of 95%) and fraction of containment at most 0.9 or 90% (that is,

𝜖 = 0.1), 𝑛𝑆 ≥ 29. □

5 MINIMIZING REDUNDANCY
Thus far, we have presented the pipeline to construct a dataset relationship graph, where the

relationship denotes exact containment. Specifically, if a dataset 𝑞 is completely contained in

another dataset 𝑝 , then with high probability, there exists a directed edge from the node 𝑝 to

the node 𝑞 in this graph. Now, we would like to exploit this containment information to reduce

the storage, maintenance, and related compute costs. We propose to “safely delete” some of the

contained datasets, while retaining the others, thereby lowering the overall costs.

5.1 Graph Pre-processing for “Safe Deletion”
We first pre-process the dataset relationship graph to encode the reconstruction (or, transformation)

information between datasets. This is required to ensure the “safe deletion” requirement. For each

directed edge from dataset 𝑝 to dataset 𝑞, we first ensure that the transformation used to generate

the child dataset 𝑞 from the parent dataset 𝑝 is known. Such transformation can be potentially

known through human input
7
or inferred by a model. We propose to use human input because

of the sensitive and critical nature of the client data. Inference through a model is currently a

work in progress and is out of scope for this paper. In case the transformation between a pair of

datasets is not known or cannot be inferred by the human expert, we prune the corresponding edge.

Let us assume that the transformation for the edge 𝑒 from 𝑝 to 𝑞 has been given by the human

expert. We need to estimate the (monetary) reconstruction cost and latency associated with such a

reconstruction. The reconstruction cost mainly comprises of the read cost of the parent dataset

𝑝8 and the write cost of the child dataset 𝑞. The read and write costs can be easily estimated by

the size of the parent and child datasets respectively and the read cost and write cost per unit size

of data as charged by the corresponding cloud provider. Let the read cost per unit size of data be

7
Human examination of every edge is feasible at the current step of the pipeline, as the number of edges to consider has

been reduced greatly at this stage. For enterprise data, we have empirically observed that the number of edges remaining at

this step is of the order of 100-300 across customers.

8
Generally, enterprise use cases do not require heavy compute for data analytics, hence the compute charges are negligible.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:13

𝑟 and the write cost per unit size of data𝑤 . Then the read cost is estimated as: 𝑟 · 𝑠𝑝 , where 𝑠𝑝 is
the size of the parent dataset 𝑝 in bytes, and the write cost is estimated as:𝑤 · 𝑠𝑞 where 𝑠𝑞 is the
size of the child dataset 𝑞 in bytes. Therefore, the estimated total cost 𝐶𝑒 of reconstructing 𝑞 from

𝑝 is given by: 𝐶𝑒 ≈ 𝑟 · 𝑠𝑝 +𝑤 · 𝑠𝑞 . Generally, the cloud costs for write operations in the premium

and hot tiers are an order of magnitude higher than the read costs
9
, hence if the sizes 𝑠𝑝 and 𝑠𝑞 are

comparable, then the cost 𝐶𝑒 can be further approximated by the write costs alone: 𝐶𝑒 ≈ 𝑤 · 𝑠𝑞 .
Note that “safe deletion” does not simply ensure that a dataset can be reconstructed (if deleted) on

demand, it also ensures that the associated latency of such a reconstruction is bounded to maintain

the Quality of Service (QoS) experienced by the customer. Hence, if the estimated latency exceeds

that QoS bound, that edge needs to be deleted.

The read latency of 𝑝 and the write latency of 𝑞 can be estimated from the historical logs or

directly from the cloud provider’s latency guarantees. For estimating from historical logs, a simple

approach would be to average the write (read) latency values normalized by the corresponding

dataset sizes on which the write (read) operations were performed as recorded in the historical

logs, and multiply it by 𝑠𝑞 (𝑠𝑝). Let the estimated latency normalized by byte sizes for write be𝑤ℓ
and for read be 𝑟ℓ . The total latency of edge 𝑒 , 𝐿𝑒 is therefore estimated as 𝐿𝑒 ≈ 𝑟ℓ · 𝑠𝑝 +𝑤ℓ · 𝑠𝑞 . Now,
if 𝐿𝑒 ≥ 𝑇ℎ, where 𝑇ℎ is a latency threshold determined by QoS requirements by clients, then we

remove 𝑒 .

5.2 Opt-Ret: Optimally Retain Datasets to Minimize Expected Costs
We now present an optimization problem and solution for reducing the overall costs, which takes the

above pre-processed graph as input and recommends retaining a subset of the datasets while deleting

the others. Our goal is to minimize the overall cost while maintaining the following constraint. We

require for every dataset deleted, there should be at least one parent retained. This ensures that the

dataset can be reconstructed from existing datasets, if the need arises, within a bounded latency.

The total cost we would like to minimize consists of storage costs, data maintenance costs as well

as the additional (expected) compute costs for reconstruction of deleted datasets. Let us denote this

problem as Opt-Ret.

Now we will formally define the optimization problem. We are given as input a directed graph

G = {V, E}, where V denotes the set of nodes (datasets), E denotes the set of directed edges

between datasets denoting the containment relation. Retaining a node contributes to both storage

costs as well as maintenance costs per node (due to data hygiene and other data management

operations, including privacy requests and GDPR). Let the size of a dataset node 𝑣 be 𝑆𝑣 . Considering

the storage cost per unit size of data for a billing period to be 𝐶𝑠 , retaining the node contributes

𝐶𝑠 · 𝑆𝑣 to the storage cost. Let the average (or, expected) compute costs for maintenance per unit

size data be 𝐶𝑚 (this can be determined from historical data maintenance logs, and corresponding

compute costs). Let 𝑓𝑣 denote the expected frequency of such maintenance operations for 𝑣 for a

billing period. The total cost of retention of 𝑣 for the billing period is therefore (𝐶𝑠 +𝐶𝑚 · 𝑓𝑣) · 𝑆𝑣 .
Let P𝑣 denote the set of parents of 𝑣 . From every node 𝑢 ∈ P𝑣 , 𝑣 has an incoming edge and 𝑣

has incoming edges only from the nodes in P𝑣 . Now, let us consider the cost of deleting a node. If

we delete 𝑣 , then there must not be any loss of information, hence at least one parent should be

retained. However, as discussed earlier, there would be additional compute costs for the potential

reconstruction of datasets. Let the (expected) compute cost of reconstructing 𝑣 from its parent 𝑢

through the edge 𝑒 = (𝑢, 𝑣) be 𝐶𝑒 . (Recall that an edge exists only if the latency constraints are

satisfied in expectation.)

9
https://azure.microsoft.com/en-in/pricing/details/storage/data-lake/.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://azure.microsoft.com/en-in/pricing/details/storage/data-lake/

268:14 Raunak Shah et al.

Let the expected number of (customer initiated) accesses to dataset 𝑣 over a billing period (this

can be determined from historical logs) be 𝐴𝑣 .

If the parent 𝑢 is used for reconstructing 𝑣 if accessed, then the cost is given by 𝐶𝑒 · 𝐴𝑣 , where
𝑒 = (𝑢, 𝑣). Let us use 𝑥𝑣 as the indicator variable of whether 𝑣 is retained or not (𝑥𝑣 = 1 for retained).

Let us use 𝑦𝑒=(𝑢,𝑣) as the indicator of whether 𝑢 is the parent used for reconstruction of 𝑣 in case

of deleting 𝑣 (𝑒 is the directed edge from 𝑢 to 𝑣). A dataset 𝑣 can be reconstructed from a parent 𝑢

only if the parent 𝑢 is retained. Hence, we need to add a constraint 𝑦𝑒=(𝑢,𝑣) ≤ 𝑥𝑢 for every edge

𝑒 = (𝑢, 𝑣). There must be a parent retained for every 𝑣 deleted.

Hence we add a constraint: 𝑥𝑣 +
∑
𝑒=(𝑢,𝑣) ∀𝑢∈P𝑣

𝑦𝑒 ≥ 1.

However, we want 𝑦𝑒 to be 1, only when the child node is deleted, hence, we add a constraint

𝑦𝑒=(𝑢,𝑣) ≤ 1 − 𝑥𝑣 . Next, we describe Opt-Ret in Equation 3 .

Minimize

∑︁
𝑣∈V

(𝐶𝑠 +𝐶𝑚 𝑓𝑣)𝑆𝑣𝑥𝑣 +
∑︁
𝑣∈V

∑︁
𝑒=(𝑢,𝑣) ∀𝑢∈P𝑣

𝐴𝑣𝐶𝑒𝑦𝑒 (3)

s.t.

𝑦𝑒=(𝑢,𝑣) ≤ 𝑥𝑢 ∀𝑒 = (𝑢, 𝑣) ∈ E, 𝑢 ∈ P𝑣, 𝑣 ∈ V

𝑥𝑣 +
∑︁

𝑒=(𝑢,𝑣) ∀𝑢∈P𝑣

𝑦𝑒 ≥ 1 ∀𝑣 ∈ V

𝑦𝑒=(𝑢,𝑣) ≤ 1 − 𝑥𝑣 ∀𝑒 = (𝑢, 𝑣) ∈ E, ∀𝑣 ∈ V
𝑥𝑣 ∈ {0, 1} ∀𝑣 ∈ V
𝑦𝑒 ∈ {0, 1} ∀𝑒 ∈ E

5.3 Linear Algorithm for Line Graph
The problem Opt-Ret admits a linear time algorithm for the special case when the pruned directed

graphs are line graphs. That is, every parent has a single child, and every child has a single parent.

This case can often arise in enterprise data lakes, for example, when a sequence of edits or operations

are performed starting from a root dataset, saving every intermediate output. This special case is

solved by an efficient dynamic program Dyn-Lin.

We next define the recursive equations for Dyn-Lin. Without loss of generality, we could solve

the problem optimally for each line graph (that the input consists of). For simplicity, here we discuss

the optimal solution for a single line graph. Let there be 𝑁 nodes in the line graph, where node 0 is

the root (that is, no incoming edges) and node 𝑁 − 1 is the leaf (that is, no outgoing edges). Let

𝐴𝐿𝐺 [𝑖] denote the cost of the optimal solution for nodes [0, . . . , 𝑖].
𝐴𝐿𝐺 [0] = (𝐶𝑠 +𝐶𝑚 · 𝑓0) · 𝑆0 (4)

𝐴𝐿𝐺 [1] = min {((𝐶𝑠 +𝐶𝑚 · 𝑓1) · 𝑆1) ,
(
𝐴1 ·𝐶0,1

)
} +𝐴𝐿𝐺 [0]

∀𝑖 ∈ {2, . . . , 𝑁 − 1} :

𝐴𝐿𝐺 [𝑖] = min

{
((𝐶𝑠 +𝐶𝑚 · 𝑓𝑖) · 𝑆𝑖 +𝐴𝐿𝐺 [𝑖 − 1]) ,(
𝐴𝑖 ·𝐶𝑖−1,𝑖 + (𝐶𝑠 +𝐶𝑚 · 𝑓𝑖−1) · 𝑆𝑖−1 +𝐴𝐿𝐺 [𝑖 − 2]

)
Theorem 5.1. There exists an optimal linear time algorithm (𝑂 (𝑁)) that finds the optimal cost and

the corresponding optimal solution given a directed line graph.

Proof. The base cases are as follows. 𝐴𝐿𝐺 [0] is equal to the cost of retaining node 0, since this

node must be retained. There is no parent for node 0 from which it could be reconstructed. 𝐴𝐿𝐺 [1]

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:15

is the greedy choice (minimum cost) between the retention cost of node 1 versus the deletion (that

is, reconstruction) cost of node 1, because node 0 is retained by default. Consider 𝐴𝐿𝐺 [3]. This
is the greedy choice between retaining node 2 and then adding the cost of the optimal solution

till node 1, or deleting node 2, therefore compulsorily retaining node 1, paying its retention cost

plus the cost of the solution up to node 0 (which is basically the retention cost of node 0). Clearly,

this choice is optimal, as any other choice would lead to sub-optimality in the decision, which

could be improved by bringing in this greedy choice or violating the parent retention constraint.

Now, let us assume by induction hypothesis that the algorithm is optimal for all 𝑘 ≤ 𝑖 < 𝑁 − 1.

Now, consider the solution for node 𝑖 + 1. It is again the greedy minimum cost choice between the

costs of retaining the node 𝑖 + 1, plus the optimal cost till 𝑖 , 𝐴𝐿𝐺 [𝑖], and that of deleting node 𝑖 + 1,

compulsorily retaining node 𝑖 , paying its retention cost, plus the optimal cost till 𝑖 − 2. Since there

are only two possibilities at each step, the greedy choice is optimal, and replacing with other choices

would either lead to a higher cost that can be lowered by switching to the choice recommended by

backtracking Dyn-Lin, or lead to violation of constraints. Therefore, by induction, we prove that

Dyn-Lin is optimal. The algorithm makes one pass through all the nodes to build the optimal cost

solution, and then another pass while backtracking to determine the optimal sequence of nodes to

retain, leading to overall 𝑂 (𝑁) complexity. □

6 EXPERIMENTAL RESULTS
6.1 Datasets
We evaluate our solution on both enterprise and synthetic data.

• Enterprise Data - we used 3 enterprise customer accounts with many datasets, each with

data ranging from 0.6TB - 42TB in size.

• Synthetic Data - We constructed two sets of synthetic data. One was constructed using an

existing public dataset that is commonly used in this domain, namely Table Union Benchmark

[22]. We generated synthetic data consisting of around 300 tables, with the entire dataset size

being 324MB. The other dataset was created using tables from Kaggle competitions as root

tables (refer Section 6.1.1). The synthetically generated dataset consists of 140 tables, with

the entire dataset size being 24GB. Further details regarding the data generation process are

given below.

The enterprise data is partitioned and stored in parquet format in our enterprise Azure data

lake (ADLS Gen2
10
). Experiments on enterprise data were run using Apache Spark and Azure

Databricks on an L16s storage optimized cluster (128GB memory, 16 cores). We queried data and

metadata directly from the Azure data lake using Spark, and the reported times of our experiments

reflect this. Note that Spark does not have an indexed database. Using an indexed database can

potentially reduce the processing time further since it can speed up certain operations like sampling.

Experiments on synthetic data were run in jupyter notebooks on a c5.24xlarge AWS CPU cluster

(192GB RAM, 96 CPUs) without parallelism.

6.1.1 Synthetic Data Generation Process. In typical data lakes, data is often processed and trans-

formed, and the results are saved as a new table. We started with a set of root datasets from Table

Union Data [22] (which has been used in prior work) and Kaggle competitions. We simulate the

main types of transformations and processing that occur in real data lakes via the following:

• Size reduction via Sampling: We generated synthetic SELECT ... FROM ... WHERE ... queries based
on a skewed Zipfian distribution whose parameters were fitted based on enterprise queries

that followed the same distribution.

10
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction

268:16 Raunak Shah et al.

• Adding rows: The new values are chosen by sampling from each respective column’s distri-

bution.

• Adding columns: Adding new columns to the tables which are linear combinations of existing

numerical columns.

• Noise: Adding noise to certain numerical columns.

• A combination of the above.

6.2 Generating Ground Truth
We created the ground truth for both schema and content level containment in a brute force manner.

For each pair of tables, we checked the containment of schema sets to compute the ground truth

schema graph. Then for each edge, we checked whether each row of the smaller table occurs in the

larger table to compute the ground truth containment graph.

We compare R2D2’s results with several baselines, including the ground truth graphs for both

schema and content level containment. The ground truth graphs can be used to check for correctness.

We also compare the time and complexity of generating these graphs to understand the extent of

improvement we bring.

6.3 Evaluating Containment Graph
We compare the graph after each step of the pipeline with the ground truth containment graph for

both enterprise and synthetic data in Tables 1 and 2, respectively. After every step of our pipeline,

we reduce the number of incorrect edges in the graph by a significant number. In Tables 1 and 2,

the label ‘Incorrect(<1)’ refers to all edges between datasets with a containment fraction less than 1.

This is because in our use case, an edge is correct only if the child node is completely contained in

the parent.

It is important to note that all the correct edges are captured from the schema step itself, and we

focus on reducing the total number of incorrect edges in each step.

6.4 Comparison with Baselines
In order to evaluate our method in comparison to other approaches, we compare with several

baselines. To the best of our knowledge, there is no method in the literature that directly computes

table level containment, thus we have modified several related approaches to serve as our baselines.

We next discuss these approaches for both schema containment as well as content containment.

Data Size Number Graph after Graph after Graph after
(TB) of edges SGB MMP CLP

Customer 1 0.681

Correct 278 278 278

Incorrect (<1) 6657 3414 110

Not detected 0 0 0

Customer 2 41.8

Correct 31 31 31

Incorrect (<1) 1192 600 315

Not detected 0 0 0

Customer 3 27.6

Correct 21 21 21

Incorrect (<1) 1769 421 272

Not detected 0 0 0

Table 1. Enterprise data results: Number of correct, incorrect, and undetected edges after each step of our
algorithm, with respect to the ground truth containment graph. We are able to preserve the correct edges
while significantly reducing the number of incorrectly detected edges in each step of the R2D2 pipeline.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:17

6.4.1 Schema Containment. We considered the following baselines.

(1) Ground Truth Schema - A brute force baseline is to compare the schema sets for all pairs of

datasets and check whether containment holds.

(2) Bharadwaj et. al [3] - It considers tables that occur in the same join query to be "joinable".

While we have the access logs at a dataset level, we did not have access to actual query data

for the corresponding customer orgs. Moreover, our use case requires looking at containment,

not joinability. The ground truth schema containment graph gives us examples of pairs of

tables that satisfy the schema containment condition (we call them positive samples). For

negative samples, we randomly sample two tables that are not present in the ground truth

graph. For every pair of tables, we build the feature vector using column name similarity and

column name uniqueness as done in the original paper. Further, we train multiple classifiers

on this set of positive and negative samples with the task of predicting whether containment

exists. Accuracy numbers are reported in Table 4.

(3) KMeans Clustering - Our method, SGB computes clusters algorithmically. We compare this

with a baseline of generating clusters with KMeans/KMedoids. We get embedding vectors for

each table schema by computing the average of the column embedding vectors for that table.

We then employ KMeans clustering to create schema clusters based on these embedding

vectors. Pairwise schema containment is computed for members within each cluster similar

to SGB. Evaluation is done with respect to the ground truth schema containment graph.

We compare the generated table pairs of our method as well as the baselines with the ground truth

schema containment graph in Table 4. It can be clearly observed from the above results that both

baselines (which are embedding based) perform worse than our deterministic SGB algorithm.

Data Size Number Graph after Graph after Graph after
of edges SGB MMP CLP

Table Union 324 MB

Correct 1863 1863 1863

Incorrect (<1) 2902 707 115

Not detected 0 0 0

Kaggle 24 GB

Correct 1093 1093 1093

Incorrect (<1) 1663 476 58

Not detected 0 0 0

Table 2. Synthetic data results: Number of correct, incorrect, and undetected edges after each step of our
algorithm, with respect to the ground truth containment graph. We are able to preserve the correct edges
while significantly reducing the number of incorrectly detected edges in each step of the R2D2 pipeline.

6.4.2 Full Table Containment. Next, for full table level containment (assuming the schema step is

done), there are a few baselines that solve the problem of set containment and not table containment.

Though the baselines cannot be directly applied to our problem setting, we explain below how we

modified the baselines and why they fail to produce the desired results in the current scenario.

Ground Truth - This is a standard brute-force approach, where we take each edge (pair of

tables) from the schema graph, and subsequently compare hashes of all possible row pairs to check

the extent of containment for each edge. This does not scale.

LCJoin [9] - It solves the problem of finding the subset relationship between sets from two

collections of sets. We can apply this in two ways to our setting. In our setting, we can treat

columns as sets and then find the subset relationship between all the "column sets". This gives

inaccurate results since we’ve already discussed before that column containment does not translate

to table containment. Another option is to treat every table as a set, where an element of the set is

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:18 Raunak Shah et al.

Method Complexity
Pairwise Operations

Customer 2 Customer 1 Kaggle Table Union
41.8TB 0.68TB 24 GB 324 MB

Ground Truth Schema

(
𝑁
2

)
1.34 × 10

9
1.47 × 10

5
9 × 10

3
4.33 × 10

4

SGB (𝐸1 edges) 𝑁 log𝑁 + 𝐾 (𝑁 − 𝐾) +∑𝐾
𝑖

(
𝐾𝑖

2

)
2.13 × 10

5
1.32 × 10

5
2.05 × 10

4
9.1 × 10

4

Ground Truth Content

∑𝐸1
𝑖, 𝑗
𝑀𝑖𝑀 𝑗 7.36 × 10

21
7.4 × 10

21
5.55 × 10

15
9.77 × 10

11

MMP (𝐸2 edges) 𝐸1 1192 6657 5512 9530

CLP
∑𝐸2
𝑖
𝑀𝑖𝑡 1.06 × 10

10
2.5 × 10

12
3.39 × 10

10
4.94 × 10

8

Table 3. Comparison of the number of pairwise row-level operations that need to be conducted to compute
schema and table-level containment. 𝑁 = number of tables,𝑀𝑖 = number of rows in table 𝑖 , 𝐾𝑖 = number of
tables in cluster 𝑖 , 𝑡 = max rows to sample in CLP, 𝐸𝑖 = number of edges in the resulting graph. We compare
each step of R2D2’s pipeline with standard brute force approaches to compute containment. Comparison is
done on the same synthetic and enterprise datasets in Tables 1 and 2 at various scales (MBs - TBs).

Data Method Correctly Not
Identified Detected

Customer 1

[3] 10774 363

KMeans 8781 2356

SGB 11137 0

Customer 2

[3] 2009 61

KMeans 1455 615

SGB 2070 0

Table 4. Comparing [3], KMeans, and our approach (SGB) on enterprise data for schema containment. The
number of correctly detected and undetected edges are reported with respect to edges in the ground truth
schema graph.

represented by a row (tuple of values). This also gives inaccurate results since one table might be

fully contained in another table with a larger number of columns but LCJoin won’t be able to find

it since the elements of the sets in both tables will be of different sizes.

JOSIE [30] - It deals with the problem of finding top-k related sets for a query set. We cannot

apply JOSIE directly to our problem setting because of similar reasons as LCJoin. JOSIE, additionally,

is concerned with table relatedness and not containment.

6.5 Evaluating Scalability
In comparison with ground truth graph generation, R2D2 is several orders of magnitude faster

on both enterprise and synthetic data as indicated by the numbers in Table 5. While running the

pipeline on synthetic data, we cache the minimum and maximum values of all the columns, since

these are generally present as part of table/partition level metadata. The comparable times between

the Kaggle and enterprise data are due to the differences in parallelism, optimization (present in

Spark) and the compute clusters used to run the models.

In Table 3 we compare the number of row level operations that need to be incurred for computing

the ground truth for each step of our pipeline, for various scales of data (MBs - TBs). The smaller size

datasets (MBs - GBs) are synthetic, whereas the larger datasets (in TBs) correspond to enterprise

data. Note that for the baseline ground truth schema computation, we only need to compare

one "row" (that is the flattened column names) from each table. For the brute force ground truth

containment, each row of dataset 𝐴 needs to be hashed and compared with each row of dataset 𝐵

corresponding to each edge of the schema graph. This is done for each edge in the schema graph.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:19

Method
Time Taken

Customer 1 Customer 2 Table Union Kaggle
0.681 TB 41.8 TB 324 MB 24 GB

Ground Truth ∼days ∼days 3.37 hrs ∼days
SGB 0.51s 0.8s 0.03 s 0.0114 s

MMP 7.07 mins 8.25 mins 9 s 3.45 mins

CLP 5.12 hrs 4.75 hrs 5.4 mins 5.15 hrs

Ours (Total) ∼5.24 hrs ∼4.89 hrs 5.5 mins 5.37 hrs

Table 5. Comparison of the time taken for various steps of our optimized pipeline against the ground truth
containment computation on enterprise and synthetic data.

Fig. 4. Variation of the time taken by our pipeline (in hrs) vs total size of the data (in GBs) for Customer 1 and
2. For each datapoint on the curve, we ran the pipeline on datasets below a certain size threshold (ranging
from 10MB to 10TB).

However, in our pipeline, we prune the edges in an optimized manner, which reduces the required

number of operations exponentially. In addition to the above table, we show a variation of the

time taken by our pipeline as the size of the data is varied from 240MB to 41.8TB for Customer

2 and 207MB to 681GB for Customer 1 in Fig. 4. The difference in time between the 2 customers

is influenced by the number of edges remaining after the SGB and MMP steps (which is higher

for Customer 1). At higher scales, the time is dominated by the CLP step since there are a larger

number of rows to scan. However, at lower scales, the MMP step also comes into the picture since

the time taken by CLP and MMP become comparable.

6.6 Content Level Pruning: Parameter Selection
The CLP step of our pipeline requires selecting how many rows to sample in addition to the number

of columns to sample from. Here we present an analysis of the number of edges reduced in each case

while identifying containment for a particular dataset. Empirically, we observed that increasing the

number of columns sampled (denoted by 𝑠) does not help beyond a point (around 𝑠 = 4). Similarly,

increasing the number of rows sampled (denoted by 𝑡) results in diminishing returns beyond a

point, considering that sampling additional rows and columns takes up extra time. We found that

using 𝑠 = 4, 𝑡 = 10 is a fairly reasonable parameter configuration to balance speed and accuracy.

Note that in Apache Spark, sampling a table naively results in a full table scan. Even this is

significantly faster than comparing rows pairwise, however in such situations, the time taken in

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

268:20 Raunak Shah et al.

the CLP step for different parameter configurations will be comparable. This is because the whole

table will be scanned regardless of how the samples are filtered. However, for indexed databases, or

situations where the data is partitioned by a particular column like timestamp, the query can run

in an optimized manner and only access a subset of rows, which results in significantly lower time

taken.

6.7 Evaluating Optimization Framework
So far we have looked into the performance of the containment graph generation portion of our

pipeline. In this section, we evaluate the optimization framework that takes this graph as input and

recommends datasets for deletion based on dataset containment, access patterns, and cloud storage

cost parameters.

We used Azure Data Lake Gen2 public hot tier storage and read costs
11
for the variables 𝐶𝑠 and

𝐶𝑚 in the integer linear program (ILP) in Eq. 3. The expected number of accesses𝐴 and maintenance

frequency 𝑓𝑚 were chosen based on real access patterns for the enterprise datasets. For synthetic

data, we sampled 𝐴 and 𝑓𝑚 from a power law distribution. We took the dataset reconstruction cost

for an edge 𝑢 → 𝑣 to be the write cost for writing dataset 𝑣 . Again, the write cost per unit size was

taken from the Azure public write costs.

s/t 5 10 30
1 908 824 712

4 141 122 110

8 135 121 109

Table 6. Comparison of the number of incorrect edges remaining for different parameter configurations in
CLP for our 42TB enterprise dataset. Here 𝑠 (1,4,8) denotes the number of columns that are sampled and 𝑡
(5,10,30) denotes the number of rows that are sampled from the smaller table.

We ran two types of experiments to check (i) the number of nodes and edges being deleted and

retained, which corresponds to cost reduction; (ii) the optimization scalability and robustness as

the number of nodes and edges in the containment graph increase.

Data Deletion Retention GDPR Savings
Nodes Edges Nodes Edges (per month, row scans)

Customer 1 19 259 99 19 5.3M

Customer 2 12 19 18 12 0.2M

Table 7. Optimization results on enterprise data. Given a customer, this illustrates the fraction of datasets we
delete and retain in our data lake, along with the extent of compute savings (assuming 1 privacy-initiated
access per week).

The optimization routine accounts for an expected number of accesses, and only recommends

deletion if the overall cost benefit is positive. If a dataset is accessed after being deleted, we would

need to pay the reconstruction cost involved. This would reduce the overall cost benefit. In Table 7,

there were no extra accesses for the datasets we recommended for deletion.

We have quantified the overall storage and compute benefits our approach would bring after

accounting for such “accesses after deletion" for a data lake of size 10 PB across a horizon of one

year in Fig. 5. Savings are computed in terms of storage cost as well as maintenance cost. We

11
https://azure.microsoft.com/en-in/pricing/details/storage/data-lake/

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:21

consider two cases - (i) 1 privacy-initiated read access per week, or (ii) 5 privacy-initiated accesses

per week. We subtract the required read and write costs in case reconstruction is necessary. We

used the same public Azure storage, read, and write costs as mentioned earlier.

Fig. 5. Storage and Compute Cost Benefits for a 10 PB data lake varying with the fraction of contained data
across a 1 year horizon. This accounts for any reconstruction write and read cost due to access after deletion.

We also checked the scalability of the optimization routine by generating random graphs of

various sparsity using the Erdos-Renyi model
12

[12] (Figure 6). In the first graph, we plotted

how the time taken to solve the optimization problem varies as the number of nodes (datasets)

increase (while keeping the probability ‘p’ in the Erdos-Renyi model fixed). In the second graph, we

plotted how the time taken to solve the optimization problem varies as the number of containment

relationships or edges increase (this is varied by changing the probability ‘p’ in the Erdos-Renyi

model) while keeping the number of nodes (datasets) fixed.

Fig. 6. Time taken by the optimization framework as the number of (i) nodes increase and (ii) edges increase.

12
Refer https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_

graph.html.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html.
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html.

268:22 Raunak Shah et al.

7 DISCUSSIONS
7.1 Dynamic Graph Updates
In some enterprise data lakes, it is not possible to directly edit the data. In such cases, only data

deletion needs to be considered. However, in others, data can be updated. In such cases, our

containment graph needs to be able to be updated as well. One way to do this is by simply running

our pipeline again. We propose running the system at a monthly frequency on all the candidate

datasets. The time taken to run our system on enterprise data is fairly short even in Apache Spark

(a few hours), so this is feasible. If the use case simply requires updating the containment graph on

the fly, we can do that efficiently. We consider the following dynamic update cases.

Adding new datasets: If a new dataset 𝑣 is added, we can simply check containment between

that dataset and all of the others by applying SGB, MMP, and CLP successively. This can be done

as follows. First, we check whether 𝑣 is contained in any of the cluster centers in the SGB schema

graph. If yes, we add it to the respective clusters as a member. If not, it is a new cluster center and

cluster membership has to be checked for all the datasets, which is linear in the total number of

datasets in the graph. We add edges between 𝑣 and the cluster members, based on containment

evaluation. Then, we successively prune the edges incident on 𝑣 by applying MMP and CLP. The

complexity will be linear in the total number of datasets in the graph, which is fast.

Rows or columns added to existing datasets: For rows or columns added to a dataset, in the

containment graph, all outgoing edges from that dataset will remain. However, any incoming edges

as well as relationships with datasets that did not have an edge previously need to be checked.

Once again, this is linear in the number of datasets in the graph.

Rows or columns removed from a dataset: If rows or columns are removed from a dataset,

the incoming edges incident on the dataset in the containment graph remain. However, for outgoing

edges, we need to re-check containment. This is also linear in the number of datasets.

Deleting existing datasets: While this can be handled easily in the final containment graph by

simply removing the corresponding nodes and all the incident edges to and from the deleted nodes,

we need to be careful here because it has implications for the optimization routine as well, which

is true for the most of the above cases as well. Hence, if the use case only requires an updated

containment graph, the above steps can be implemented very efficiently and dynamically, but for

the full pipeline, including the optimization routine for recommending dataset deletion, it is better

to run R2D2 periodically on the entire data lake for accurate optimization.

7.2 Approximate Dataset Relatedness
In this paper, we have focused on identifying pairs of tables where 𝐶𝑀 (𝑃,𝑄) = 1, where 𝑛(𝑄) ≥
𝑛(𝑃), as defined in Sec. 3. A related problem is to identify cases where 𝐶𝑀 (𝑃,𝑄) > 𝑇 , where 𝑇 < 1.

This can be applied at a schema level as well as at a content level. In this situation, the rows and

schema of P may not be fully contained within those of Q, since P may have some additional

rows and columns, though the majority of the schema or content may be common to both tables.

Approximate Containment is a non-trivial problem and is out of scope for this paper. We next

discuss some aspects of approximate containment and the associated challenges.

7.2.1 Approximate Schema Containment. It is possible that the schema of two tables are slightly

different while their contents are very similar or completely contained within one another. We

would treat such tables to have no containment, since we focus on finding both schema and content

level containment in an exact manner. However, a notion of approximate containment may be

useful - for example, "phone number" may be represented as "Phone", "Mobile", "Work Phone", ...

, etc. Spelling errors and abbreviations are also possible. It would be useful to have a method to

identify whether two tokens represent the same type of content just by looking at the schema. If a

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:23

canonical list of possible schema tokens exists beforehand, we can identify which tokens convey

the same meaning and map them to the same value by maintaining such a look-up or through

human input. Such cases of containment can be handled by SGB by mapping the schema tokens

to canonical values. However, computing this mapping automatically is nontrivial, since different

datasets can have different meanings and quirks based on how the data has been processed. For

instance, "Work phone" and "home phone" are both phone numbers, but we cannot treat these as the

same. Often, enterprise schemas contain columns that may look similar but actually represent very

different things, e.g. there may be columns "company.product.var0" and "company.product.var1".

Understanding the meaning of such columns is limited by our understanding of domain knowledge.

Embedding based approaches to cluster schema tokens can easily treat such columns as the same,

which would give inaccurate results. Understanding approximate containment between enterprise

schemas without knowledge of what possible tokens could exist beforehand is a challenging

problem that we leave for future work.

7.2.2 Approximate Content Containment. Solving the approximate schema containment problem is

a necessary but insufficient condition to solve the approximate content level containment problem.

Thus, any mistakes made in the approximate schema step may propagate later on in the pipeline

when we start analyzing table content. Additionally, using min-max pruning (MMP) will not work

here, since the relative minimum or maximum of two columns are not indicative of their extent

of approximate containment. The content-level pruning (CLP) step of our pipeline can be used to

query rows from one or both tables and claim approximate containment with a certain degree of

confidence. However, care needs to be taken to ensure we do not (i) incur a large number of row

level operations and/or (ii) miss cases of approximate containment between tables.

8 CONCLUSION
We present R2D2, a framework to reduce data redundancy and duplication in large enterprise data

lakes. It is scalable and substantially better than baselines. R2D2 performs well across different

types and scales of data, and can be applied practically in an enterprise setting. Going forward, we

want to quantify approximate data relatedness in addition to exact containment, and detect certain

types of transformations between tables without human input.

REFERENCES
[1] Daniel Castro Alan McQuinn. 2019. The Costs of an Unnecessarily Stringent Federal Data Privacy Law. https:

//itif.org/publications/2019/08/05/costs-unnecessarily-stringent-federal-data-privacy-law/. [Online; accessed 7-July-

2023].

[2] Apache Spark. 2023. Apache Spark. https://spark.apache.org/. [Online; accessed 13-Sep-2023].

[3] Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha. 2021. Discovering Related Data at Scale. Proc.

VLDB Endow. 14, 8 (apr 2021), 1392–1400. https://doi.org/10.14778/3457390.3457403

[4] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya Parameswaran. 2015. Principles

of Dataset Versioning: Exploring the Recreation/Storage Tradeoff. Proc. VLDB Endow. 8, 12 (aug 2015), 1346–1357.

https://doi.org/10.14778/2824032.2824035

[5] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstantinou. 2020. Dataset Discovery in Data

Lakes. CoRR abs/2011.10427 (2020). arXiv:2011.10427 https://arxiv.org/abs/2011.10427

[6] Raul Castro Fernandez, Dong Deng, Essam Mansour, Abdulhakim A. Qahtan, Wenbo Tao, Ziawasch Abedjan, Ahmed

Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2017. A Demo of

the Data Civilizer System. In Proceedings of the 2017 ACM International Conference on Management of Data (Chicago,

Illinois, USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA, 1639–1642. https://doi.org/

10.1145/3035918.3058740

[7] Dong Deng, Albert Kim, Samuel Madden, and Michael Stonebraker. 2017. SilkMoth: An Efficient Method for Finding

Related Sets with Maximum Matching Constraints. Proc. VLDB Endow. 10, 10 (jun 2017), 1082–1093. https://doi.org/

10.14778/3115404.3115413

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://itif.org/publications/2019/08/05/costs-unnecessarily-stringent-federal-data-privacy-law/
https://itif.org/publications/2019/08/05/costs-unnecessarily-stringent-federal-data-privacy-law/
https://spark.apache.org/
https://doi.org/10.14778/3457390.3457403
https://doi.org/10.14778/2824032.2824035
https://arxiv.org/abs/2011.10427
https://arxiv.org/abs/2011.10427
https://doi.org/10.1145/3035918.3058740
https://doi.org/10.1145/3035918.3058740
https://doi.org/10.14778/3115404.3115413
https://doi.org/10.14778/3115404.3115413

268:24 Raunak Shah et al.

[8] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap Set Similarity Joins with Theoretical Guarantees. In Proceedings of

the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing

Machinery, New York, NY, USA, 905–920. https://doi.org/10.1145/3183713.3183748

[9] Dong Deng, Chengcheng Yang, Shuo Shang, Fan Zhu, Li Liu, and Ling Shao. 2019. LCJoin: Set Containment Join via

List Crosscutting. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). 362–373. https://doi.org/10.

1109/ICDE.2019.00040

[10] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2020. Efficient Joinable Table Discovery

in Data Lakes: A High-Dimensional Similarity-Based Approach. CoRR abs/2010.13273 (2020). arXiv:2010.13273

https://arxiv.org/abs/2010.13273

[11] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Oltean, Jin Li, and Sudipta Sengupta. 2012. Primary Data Deduplication-

Large Scale Study and System Design. In Proceedings of the 2012 USENIX Conference on Annual Technical Conference

(Boston, MA) (USENIX ATC’12). USENIX Association, USA, 26.

[12] Paul Erdős, Alfréd Rényi, et al. 1960. On the evolution of random graphs. Publ. math. inst. hung. acad. sci 5, 1 (1960),

17–60.

[13] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-Aware Dataset Discovery from Data

Lakes with Contextualized Column-Based Representation Learning. Proc. VLDB Endow. 16, 7 (may 2023), 1726–1739.

https://doi.org/10.14778/3587136.3587146

[14] Weiqi Feng and Dong Deng. 2021. Allign: Aligning All-Pair Near-Duplicate Passages in Long Texts. In Proceedings

of the 2021 International Conference on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for

Computing Machinery, New York, NY, USA, 541–553. https://doi.org/10.1145/3448016.3457548

[15] Javier Flores, Sergi Nadal, and Oscar Romero. 2020. Scalable Data Discovery Using Profiles. https://doi.org/10.48550/

ARXIV.2012.00890

[16] Giorgio Presidente Carl Benedikt Frey. 2022. The GDPR effect: How data privacy regulation shaped firm perfor-

mance globally. https://cepr.org/voxeu/columns/gdpr-effect-how-data-privacy-regulation-shaped-firm-performance-

globally. [Online; accessed 7-July-2023].

[17] Robert Healey. 2017. Do not let ROT Impact your GDPR Compliance and Increase your IT Costs exponentially.

https://www.linkedin.com/pulse/do-let-rot-affect-your-gdpr-compliance-increase-costs-robert-healey/. [Online;

accessed 7-July-2023].

[18] Luke Irwin. 2023. How Much Does GDPR Compliance Cost in 2023? https://www.itgovernance.eu/blog/en/how-much-

does-gdpr-compliance-cost-in-2020. [Online; accessed 7-July-2023].

[19] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer, Renée J. Miller, and Mirek Riedewald.

2023. SANTOS: Relationship-Based Semantic Table Union Search. Proc. ACM Manag. Data 1, 1, Article 9 (may 2023),

25 pages. https://doi.org/10.1145/3588689

[20] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020. Deep Entity Matching with

Pre-Trained Language Models. Proc. VLDB Endow. 14, 1 (sep 2020), 50–60. https://doi.org/10.14778/3421424.3421431

[21] Fatemeh Nargesian, Ken Qian Pu, Bahar Ghadiri Bashardoost, Erkang Zhu, and Renee J. Miller. 2022. Data Lake

Organization. IEEE Transactions on Knowledge and Data Engineering (2022), 1–1. https://doi.org/10.1109/TKDE.2021.

3091101

[22] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table Union Search on Open Data. Proc. VLDB

Endow. 11, 7 (mar 2018), 813–825. https://doi.org/10.14778/3192965.3192973

[23] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahareh Ghadiri, Erkang Zhu, Ken Q. Pu, and Renée J. Miller.

2021. RONIN: Data Lake Exploration. Proc. VLDB Endow. 14 (2021), 2863–2866.

[24] Pasquale Puzio, Refik Molva, Melek Önen, and Sergio Loureiro. 2013. ClouDedup: Secure Deduplication with Encrypted

Data for Cloud Storage. In 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, Vol. 1.

363–370. https://doi.org/10.1109/CloudCom.2013.54

[25] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. 2017. A Survey of Secure Data Deduplication Schemes for Cloud

Storage Systems. ACM Comput. Surv. 49, 4, Article 74 (jan 2017), 38 pages. https://doi.org/10.1145/3017428

[26] Statista. 2023. Storage worldwide- Statista market forecast. (2023). https://www.statista.com/outlook/tmo/data-

center/storage/worldwide

[27] Jin Wang, Yuliang Li, and Wataru Hirota. 2021. Machamp: A Generalized Entity Matching Benchmark. In Proceedings of

the 30th ACM International Conference on Information & Knowledge Management (Virtual Event, Queensland, Australia)

(CIKM ’21). Association for Computing Machinery, New York, NY, USA, 4633–4642. https://doi.org/10.1145/3459637.

3482008

[28] Liqi Xu, Silu Huang, SiLi Hui, Aaron J Elmore, and Aditya Parameswaran. 2017. Orpheusdb: a lightweight approach

to relational dataset versioning. In Proceedings of the 2017 ACM International Conference on Management of Data.

1655–1658.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://doi.org/10.1145/3183713.3183748
https://doi.org/10.1109/ICDE.2019.00040
https://doi.org/10.1109/ICDE.2019.00040
https://arxiv.org/abs/2010.13273
https://arxiv.org/abs/2010.13273
https://doi.org/10.14778/3587136.3587146
https://doi.org/10.1145/3448016.3457548
https://doi.org/10.48550/ARXIV.2012.00890
https://doi.org/10.48550/ARXIV.2012.00890
https://cepr.org/voxeu/columns/gdpr-effect-how-data-privacy-regulation-shaped-firm-performance-globally
https://cepr.org/voxeu/columns/gdpr-effect-how-data-privacy-regulation-shaped-firm-performance-globally
https://www.linkedin.com/pulse/do-let-rot-affect-your-gdpr-compliance-increase-costs-robert-healey/
https://www.itgovernance.eu/blog/en/how-much-does-gdpr-compliance-cost-in-2020
https://www.itgovernance.eu/blog/en/how-much-does-gdpr-compliance-cost-in-2020
https://doi.org/10.1145/3588689
https://doi.org/10.14778/3421424.3421431
https://doi.org/10.1109/TKDE.2021.3091101
https://doi.org/10.1109/TKDE.2021.3091101
https://doi.org/10.14778/3192965.3192973
https://doi.org/10.1109/CloudCom.2013.54
https://doi.org/10.1145/3017428
https://www.statista.com/outlook/tmo/data-center/storage/worldwide
https://www.statista.com/outlook/tmo/data-center/storage/worldwide
https://doi.org/10.1145/3459637.3482008
https://doi.org/10.1145/3459637.3482008

R2D2: Reducing Redundancy and Duplication in Data Lakes 268:25

[29] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for Interactive Data Science. In Proceedings of

the 2020 ACM SIGMOD International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association

for Computing Machinery, New York, NY, USA, 1951–1966. https://doi.org/10.1145/3318464.3389726

[30] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE: Overlap Set Similarity Search for

Finding Joinable Tables in Data Lakes. In Proceedings of the 2019 International Conference on Management of Data

(Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 847–864.

https://doi.org/10.1145/3299869.3300065

[31] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH Ensemble: Internet-Scale Domain Search.

Proc. VLDB Endow. 9, 12 (aug 2016), 1185–1196. https://doi.org/10.14778/2994509.2994534

Received April 2023; revised July 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 268. Publication date: December 2023.

https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.14778/2994509.2994534

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Enterprise Schema and Data Containment

	2 Related Work
	3 Problem Definition
	4 R2D2 Framework
	4.1 Schema Graph Builder: Computing Schema Containment Graph
	4.2 Min-Max Pruning
	4.3 Content Level Pruning

	5 Minimizing Redundancy
	5.1 Graph Pre-processing for ``Safe Deletion''
	5.2 Opt-Ret: Optimally Retain Datasets to Minimize Expected Costs
	5.3 Linear Algorithm for Line Graph

	6 Experimental Results
	6.1 Datasets
	6.2 Generating Ground Truth
	6.3 Evaluating Containment Graph
	6.4 Comparison with Baselines
	6.5 Evaluating Scalability
	6.6 Content Level Pruning: Parameter Selection
	6.7 Evaluating Optimization Framework

	7 Discussions
	7.1 Dynamic Graph Updates
	7.2 Approximate Dataset Relatedness

	8 Conclusion
	References

