
The Online Pause and Resume Problem: Optimal Algorithms and

An Application to Carbon-Aware Load Shifting

Adam Lechowicz∗ Nicolas Christianson† Jinhang Zuo‡ Noman Bashir§

Mohammad Hajiesmaili¶ Adam Wierman‖ Prashant Shenoy∗∗

March 31, 2023

Abstract

We introduce and study the online pause and resume problem. In this problem, a player
attempts to find the k lowest (alternatively, highest) prices in a sequence of fixed length T ,
which is revealed sequentially. At each time step, the player is presented with a price and
decides whether to accept or reject it. The player incurs a switching cost whenever their decision
changes in consecutive time steps, i.e., whenever they pause or resume purchasing. This online
problem is motivated by the goal of carbon-aware load shifting, where a workload may be paused
during periods of high carbon intensity and resumed during periods of low carbon intensity
and incurs a cost when saving or restoring its state. It has strong connections to existing
problems studied in the literature on online optimization, though it introduces unique technical
challenges that prevent the direct application of existing algorithms. Extending prior work on
threshold-based algorithms, we introduce double-threshold algorithms for both the minimization
and maximization variants of this problem. We further show that the competitive ratios achieved
by these algorithms are the best achievable by any deterministic online algorithm. Finally, we
empirically validate our proposed algorithm through case studies on the application of carbon-
aware load shifting using real carbon trace data and existing baseline algorithms.

∗University of Massachusetts Amherst. Email: alechowicz@cs.umass.edu
†California Institute of Technology. Email: nchristianson@caltech.edu
‡UMass Amherst & Caltech. Email: jhzuo@cs.umass.edu
§University of Massachusetts Amherst. Email: nbashir@cs.umass.edu
¶University of Massachusetts Amherst. Email: hajiesmaili@cs.umass.edu
‖California Institute of Technology. Email: adamw@caltech.edu

∗∗University of Massachusetts Amherst. Email: shenoy@cs.umass.edu

1

ar
X

iv
:2

30
3.

17
55

1v
1

 [
cs

.D
S]

 3
0

M
ar

 2
02

3

1 Introduction

This paper introduces and studies the online pause and resume problem (OPR), considering both
minimization (OPR-min) and maximization (OPR-max) variants. In OPR-min, a player is presented
with time-varying prices in a sequential manner and decides whether or not to purchase one unit
of an item at the current price. The player must purchase k units of the item over a time horizon
of T and they incur a switching cost whenever their decision changes in consecutive time steps,
i.e., whenever they pause or resume purchasing. The goal of the player is to minimize their total
cost, which consists of the aggregate price of purchasing k units and the aggregate switching cost
incurred over T slots. In OPR-max, the setting is exactly the same, but the goal of the player is
to maximize their total profit, and any switching cost they incur is subtracted. In both cases, the
price values are revealed to the player one by one in an online manner, and the player has to make
a decision without knowing the future values.

Our primary motivation for introducing OPR is the emerging importance of carbon-aware com-
puting and, more specifically, carbon-aware temporal workload shifting, which has seen significant
attention in recent years [RKS+22, ALK+23, BGH+21, WBS+21]. In carbon-aware temporal work-
load shifting, an interruptible and deferrable workload may be paused during periods of high carbon
intensity and resumed during periods of low carbon intensity. The workload needs to be running
for k units of time to complete and must be finished before its deadline T . However, pausing
and resuming the workload typically comes with overheads such as storing the state in memory
and checkpointing; hence frequent pausing and resuming is undesirable. The objective of temporal
workload shifting is to minimize the total carbon footprint of running the workload, which includes
both the original compute demand and the overhead due to pausing and resuming (a.k.a., the
switching cost). The carbon intensity of the electric grid is time-varying due to the intermittency
of renewable energy, and thus finding the best pause and resume strategy is challenging due to the
unknown future fluctuations of carbon intensity. Note that OPR can also capture other potentially
interesting applications where pricing changes over time and switching frequently is undesirable.
One example is renting spot virtual machines from a cloud service provider in the setting where
pricing is set according to supply-demand dynamics [ZLW17, ABI+20, SRI16].

On the theory front, the OPR problem has strong connections to various existing problems in
the literature on online optimization. We extensively review the prior literature in Section 7 and
focus on the most relevant theoretical problems below. The OPR problem is strongly connected
to the k-search problem [LPS08, LSLH22], which belongs to the broader class of online conversion
problems [SLH+21], a.k.a, time series search and one-way trading [EYFKT01]. In the minimization
variant of the k-search problem, an online decision-maker aims to buy k units of an item for the
least cost over a sequence of time-varying cost values. At each step, a cost value is observed, and
the decision is whether or not to buy one unit at the current observed cost without knowing the
future values. In contrast to k-search, the OPR problem introduces the additional component of
managing the switching cost, which poses a significant additional challenge in algorithm design.

The existence of the switching cost in OPR connects it to the well-studied problem of smoothed
online convex optimization (SOCO) [LLWA12], also known as convex function chasing (CFC) [FL93],
and its generalizations including metrical task systems (MTS) [BLS92]. In SOCO, a learner is faced
with a sequence of cost functions ft that are revealed online, and must choose an action xt after
observing ft. Based on that decision, the learner incurs a hitting cost, ft(xt) as well as a switching
cost, ‖xt − xt−1‖, which captures the cost associated with changing the decision between rounds.
In contrast to SOCO, OPR includes the long-term constraint of satisfying the demand of k units over
the horizon T , which poses a significant challenge not present in SOCO-like problems.

The coexistence of these differentiating factors, namely the switching cost and the long-term

2

deadline constraint, make OPR uniquely challenging, and means that prior algorithms and analyses
for related problems such as k-search and SOCO cannot be directly adapted.

Contributions. We introduce online algorithms for the minimization and maximization vari-
ants of OPR and show that our algorithms achieve the best possible competitive ratios. We also
evaluate the empirical performance of the proposed algorithms on a case study of carbon-aware
load shifting. The details of our contributions are outlined below.

Algorithmic idea: Double-threshold To tackle OPR, we focus our efforts on online threshold-
based algorithms (OTA), the prominent design paradigm for classic problems such as k-search [LPS08,
LSLH22], one-way trading [EYFKT01, SLH+21], and online knapsack problems [ZCL08, SYH+22,
YZH+21]. In the k-min search problem, for example, a threshold-based algorithm specifies k thresh-
old values and chooses to trade the i-th item only if the current price is less than or equal to the
value suggested by the i-th threshold value.

Direct application of prior OTA algorithms to OPR results in undesirable behavior (such as fre-
quently changing decisions) since their threshold function design is oblivious to the switching cost
present in OPR. To address this challenge, we seek an algorithm that can simultaneously achieve
the following behaviors: (1) when the player is in “trading mode,” they should not impulsively
switch away from trading in response to a price that is only slightly worse, since this will result
in a switching penalty; and (2) the player should not switch to “trading mode” unless prices are
sufficiently good to warrant the switching cost. These two ideas motivate an algorithm design that
uses two distinct threshold functions, each of which captures one of the above two cases. We present
our algorithms DTPR-min and DTPR-max for OPR-min and OPR-max, respectively, in Section 3, which
build upon this high-level idea of a double-threshold.

Main results While OTA algorithms are intuitive and simple to describe, it is highly challenging
to design threshold functions that lead the corresponding algorithms to be competitive against the
offline optimum. The addition of switching cost in OPR further exacerbates the technical challenge of
designing optimal threshold functions. The key result which enables our double-threshold approach
is a technical observation (see Observation 3), which shows that the difference between the functions
guiding the algorithm’s decisions should be a factor of β, where β represents the fixed switching
cost incurred by changing the decision in OPR.

Identifying this relationship between the two threshold functions significantly facilitates the
competitive analysis of both DTPR-min and DTPR-max, enabling our derivation of a closed form of
each threshold. Using this idea, we characterize the competitive ratios of DTPR-min and DTPR-max

as a function of problem parameters, including an explicit dependence on the magnitude of the
switching cost β (see Theorems 4 and 5). Furthermore, we derive lower bounds for the competitive
ratio of any deterministic online algorithm, showing that our proposed algorithms are optimal
for this problem (formal statements in Theorems 8 and 9). The competitive ratios we derive for
both DTPR-min and DTPR-max exactly recover the best prior competitive results for the k-search
problem [LPS08], which corresponds to the case of β = 0 in OPR, i.e., no switching cost. Formal
statements and a more detailed discussion of our main results are presented in Section 4.

Case study. Finally, in Section 6, we illustrate the performance of our proposed algorithm by
conducting an experimental case study simulating the carbon-aware load shifting problem. We
utilize real-world carbon traces from Electricity Maps [Map20], which contain carbon intensity
values for grid-sourced electricity across the world. Our experiments simulate different strategies
for scheduling a deferrable and interruptible workload in the face of uncertain future carbon intensity

3

values. We show that our algorithm’s performance significantly improves upon existing baseline
methods and adapted forms of algorithms for related problems such as k-min search.

2 Problem Formulation and Preliminaries

We begin by formally introducing the OPR problem and providing background on the online threshold-
based algorithm design paradigm, which is used in the design of our proposed algorithms. Table 1
summarizes the core notations for OPR. Recall that this formulation is motivated by the setting of
carbon-aware temporal workload shifting, as described in the introduction.

2.1 Problem Formulation

There are two variants of the online pause and resume problem (OPR).1 In OPR-min (OPR-max) a
player must buy (sell) k ≥ 1 units of some asset (one unit at each time step) with the goal of
minimizing (maximizing) their total cost (profit) within a time horizon of length T . At each time
step 1 ≤ t ≤ T , the player is presented with a price ct, and must immediately decide whether to
accept this price (xt = 1) or reject it (xt = 0). The player is required to complete this transaction
for all k units by some point in time T . Both k and T are known in advance. Thus, the requirement
of k transactions is a hard constraint, i.e.,

∑T
t=1 xt = k, and if at time T − i the player still has i

units remaining to buy/sell, they must accept the prices in the subsequent i slots to accomplish k
transactions.

Additionally, in both variants of OPR, the player incurs a fixed switching cost β > 0 whenever
they decide to change decisions between two adjacent time steps (i.e., when ‖xt−1 − xt‖ = 1). We
assume that x0 = 0 and xT+1 = 0, implying that any player must incur a minimum switching cost
of 2β, once for switching “on” and once for switching “off”. While the player incurs at least a
switching cost of 2β, note that the total switching cost incurred by the player is bounded by the
size of the asset k since the switching cost cannot be larger than k2β.
In summary, the offline version of OPR-min can be summarized as follows:

min

(
T∑
t=1

ctxt

)
︸ ︷︷ ︸

Accepted prices

+

(
T+1∑
t=0

β||xt − xt−1||

)
︸ ︷︷ ︸

Switching cost

, s.t.,
T∑
t=1

xt = k,︸ ︷︷ ︸
Deadline constraint

xt ∈ {0, 1}, ∀t ∈ [1, T], (1)

while the offline version of OPR-max is

max

(
T∑
t=1

ctxt

)
−

(
T+1∑
t=0

β||xt − xt−1||

)
, s.t.,

T∑
t=1

xt = k, xt ∈ {0, 1}, ∀t ∈ [1, T]. (2)

Of course, our focus is the online version of OPR, where the player must make irrevocable
decisions at each time step without the knowledge of future inputs. More specifically, in both
variants of OPR the sequence of prices {ct}t∈[1,T] is revealed sequentially – future prices are unknown
to an online algorithm, and each decision xt is irrevocable.

1We use OPR whenever the context is applicable to both minimization (OPR-min) and maximization (OPR-max)
variants of the problem, otherwise, we refer to the specific variant. The same policy applies to DTPR, our proposed
algorithm for OPR.

4

Table 1: A summary of key notations

Notation Description

k ∈ N Number of units which must be bought (or sold)

T Deadline constraint; the player must buy (or sell) k units before time T

t ∈ [1, T] Current time step

xt ∈ {0, 1} Decision at time t. xt = 1 if price ct is accepted, xt = 0 if ct is not accepted

β Switching cost incurred when algorithm’s decision xt 6= xt−1

U Upper bound on any price that will be encountered

L Lower bound on any price that will be encountered

θ = U/L Price fluctuation ratio

ct (Online input) Price revealed to the player at time t

cmin & cmax (Online input) The actual minimum and maximum prices in a sequence

Competitive analysis Our goal is to design an online algorithm that maintains a small com-
petitive ratio [BLS92], i.e., performs nearly as well as the offline optimal solution. For an online
algorithm ALG and an offline optimal solution OPT, the competitive ratio for a minimization problem
is defined as: CR(ALG) = maxσ∈Ω ALG(σ)/OPT(σ), where σ denotes a valid input sequence for the
problem and Ω is the set of all feasible input instances. Further, OPT(σ) is the optimal cost given
this input, and ALG(σ) is the cost of the solution obtained by running the online algorithm over this
input. Conversely, for a problem with a maximization objective, the competitive ratio is defined as
maxσ∈Ω OPT(σ)/ALG(σ). With these definitions, the competitive ratio for both minimization and
maximization problems is always greater than or equal to one, and the lower the better.

Assumptions and additional notations. We make no assumptions on the underlying distri-
bution of the prices other than the assumption that the set of prices arriving online {ct}t∈[1,T]

has bounded support, i.e., ct ∈ [L,U]∀t ∈ [1, T], where L and U are known to the player. We
also define θ = U/L as the price fluctuation. These are standard assumptions in the literature for
many online problems, including one-way trading, online search, and online knapsack; and without
them the competitive ratio of any algorithm is unbounded. We use cmin(σ) = mint∈[1,T] ct and
cmax(σ) = maxt∈[1,T] ct to denote the minimum and maximum encountered prices for any valid OPR

sequence σ.

2.2 Background: Online Threshold-Based Algorithms (OTA)

Online threshold-based algorithms (OTA) are a family of algorithms for online optimization in which
a carefully designed threshold function is used to specify the decisions made at each time step. At
a high level, the threshold function defines the “minimum acceptable quality” that an arriving
input/price must satisfy in order to be accepted by the algorithm. The threshold is chosen specifi-
cally so that an agent greedily accepting prices meeting the threshold at each step will be ensured
a competitive guarantee. This algorithmic framework has seen success in the online search and
one-way trading problems [LSLH22, SLH+21, LPS08, EYFKT01] as well as the related online
knapsack problem [ZCL08, SYH+22, YZH+21]. In these works, the derived threshold functions
are optimal in the sense that the competitive ratios of the resulting threshold-based algorithms
match information-theoretic lower bounds of the corresponding online problems. As discussed in
the introduction, the framework does not apply directly to the OPR setting, but we make use of

5

ideas and techniques from this literature. We briefly detail the most relevant highlights from the
prior results before discussing how these related problems generalize to OPR in the next section.

1-min/1-max search. In the online 1-min/1-max search problem, a player attempts to find the
single lowest (respectively, highest) price in a sequence, which is revealed sequentially. The player’s
objective is to either minimize their cost or maximize their profit. When each price arrives, the
player must decide immediately whether to accept the price, and the player is forced to accept
exactly one price before the end of the sequence. For this problem, El-Yaniv et al. [EYFKT01]
presents a deterministic threshold-based algorithm. The algorithm assumes a finite price interval,
i.e., the price is bounded by the interval [L,U], where L and U are known. Then, it sets a constant
threshold Φ =

√
LU , and the algorithm simply selects the first price that is less than or equal

to Φ (for the maximization version, it accepts the first price greater than or equal to Φ). This
algorithm achieves a competitive ratio of

√
U/L =

√
θ, which matches the lower bound; hence, it

is optimal [EYFKT01].

k-min/k-max search. The online k-min/k-max search problem extends the 1-min/1-max search
problem – a player attempts to find the k lowest (conversely, highest) prices in a sequence of prices
revealed sequentially. The player’s objective is identical to the 1-min/1-max problem, and the player
must accept at least k prices by the end of the sequence. Several works have developed a known
optimal deterministic threshold-based algorithm for this problem, including [LPS08, EYFKT01].
Leveraging the same assumption of a finite price interval [L,U], the threshold function is a sequence
of k thresholds {Φi}i∈[1,k], which is also called the reservation price policy. At each step, the
algorithm accepts the first price, which is less than or equal to Φi, where i − 1 is the number
of prices that have been accepted thus far (for the maximization version, it accepts the first price
which is ≥ Φi). In the k-min setting, this algorithm is α-competitive, where α is the unique solution
of

1− 1/θ

1− 1/α
=

(
1 +

1

αk

)k
. (3)

For the k-max variant, this algorithm is ω-competitive, where ω is the unique solution of

θ − 1

ω − 1
=
(

1 +
ω

k

)k
. (4)

The sequence of thresholds {Φi}i∈[1,k] for both variants of the problem are constructed by
analyzing possible input cases, “hedging” against the risk that future (unknown) prices will jump
to the worst possible value, i.e., U for k-min search, L for k-max search. These potential cases can
be enumerated for different values of i, where 0 ≤ i ≤ k denotes the number of prices accepted
so far. By simultaneously balancing the competitive ratios for each of these cases (setting each
ratio equal to the others), the optimal threshold values and the optimal competitive ratios are
derived. We refer to this technique as the balancing rule and a rigorous proof of this approach,
with corresponding lower bounds, can be found in [LPS08]. The lower bounds highlight that
the α and ω which solve the expressions for the competitive ratios above are optimal for any
deterministic k-min and k-max search algorithms, respectively. Further, α and ω provide insight
into a fundamental difference between the minimization and maximization settings of k-search.
As discussed in [LPS08], for large θ, the best algorithm for k-max search is roughly O(k k

√
θ)-

competitive, while the best algorithm for k-min search is at best O(
√
θ)-competitive. Similarly, for

fixed θ and large k, the optimal competitive ratio for k-max search is roughly O (ln θ), while the
optimal competitive ratio for k-min search converges to O(

√
θ).

6

Algorithm 1 Double Threshold Pause and Resume for OPR-min (DTPR-min)

Input: threshold values {`i}i∈[1,k] and {ui}i∈[1,k] defined in Eq. (5), deadline T
Output: online decisions {xt}t∈[1,T]

1: initialize: i = 1;
2: while price ct arrives and i ≤ k do
3: if (k − i) ≥ (T − t) then . close to the deadline T, we must accept remaining prices

4: price ct is accepted, set xt = 1
5: else if xt−1 = 0 then . If previous price was not accepted

6: if ct ≤ `i then price ct is accepted, set xt = 1
7: else price ct is rejected, set xt = 0

8: else if xt−1 = 1 then . If previous price was accepted

9: if ct ≤ ui then price ct is accepted, set xt = 1
10: else price ct is rejected, set xt = 0

11: update i = i+ xt

3 Double Threshold Pause and Resume (DTPR) Algorithm

A fundamental challenge in algorithm design for OPR is how to characterize threshold functions
that incorporate the presence of switching costs in their design. Our key algorithmic insight is
to incorporate the switching cost into the threshold function by defining two distinct threshold
functions, where the function to be used for price admittance changes based on the current state
(i.e., whether or not the previous price was accepted by the algorithm).

To provide intuition for the state-dependence of the threshold function, consider the setting of
OPR-min. At a high level, if the player has not accepted the previous price, they should wait to
accept anything until prices are sufficiently low to justify incurring a cost to switch decisions. On
the other hand, if the player has accepted the previous price, they might be willing to accept a
slightly higher price – if they do not accept this price, they will incur a cost to switch decisions.
While this high-level idea is intuitive, characterizing the form of threshold functions such that the
resulting algorithms are competitive is challenging.

The DTPR-min algorithm Our proposed algorithm, Double Threshold Pause and Resume (DTPR)
for OPR-min is summarized in Algorithm 1. Prior to any prices arriving online, DTPR-min computes
two families of threshold values, {`i}i∈[1,k] and {ui}i∈[1,k], where `i ≤ ui ∀i ∈ [1, k], whose values
are defined as follows.

Definition 1 (DTPR-min Threshold Values). For each integer i on the interval [1, k], the following
expressions give the corresponding threshold values of ui and `i for DTPR-min.

ui = U

[
1−

(
1− 1

α

)(
1 +

1

kα

)i−1
]

+ 2β

[(
1

kα
− 1

k
+ 1

)(
1 +

1

kα

)i−1
]
, `i = ui − 2β, (5)

where α is the competitive ratio of DTPR-min defined in Equation (9).

The role of these thresholds is to incorporate the switching cost into the algorithm’s decisions,
and to alter the acceptance criteria of DTPR-min based on the current state. For OPR-min, the
current state is whether the previous item was accepted, i.e., whether xt−1 is 0 or 1. As prices are
sequentially revealed to the algorithm at each time t, the ith price accepted by DTPR-min will be

7

2β

Figure 1: DTPR-min thresholds `i and ui for
i ∈ [1, k] plotted using example parameters
(k = 10).

2β

Figure 2: DTPR-max thresholds ui and `i for
i ∈ [1, k] plotted using example parameters
(k = 10).

the first price which is at most `i if xt−1 = 0, or at most ui if xt−1 = 1. Note that, as indicated
in Line 4, DTPR-min may be forced to accept the last prices of the sequence, which can be “worse”
than the current threshold values, to satisfy the deadline constraint of OPR.

The DTPR-max algorithm Pseudocode is summarized in the appendix, in Algorithm 2. The
logical flow of DTPR-max shares a similar structure to that of DTPR-min, with a few important
differences highlighted here. For OPR-max, the ith price accepted by DTPR-max will be the first
price which is at least ui if xt−1 = 0, or at least `i if xt−1 = 1. Further, the threshold functions are
defined as follows.

Definition 2 (DTPR-max Threshold Values). For each integer i on the interval [1, k], the following
expressions give the corresponding threshold values of `i and ui for DTPR-max.

`i = L

[
1 + (ω − 1)

(
1 +

ω

k

)i−1
]
− 2β

[(
ω

k
− 1

k
+ 1

)(
1 +

ω

k

)i−1
]
, ui = `i + 2β, (6)

where ω is the competitive ratio of DTPR-max defined in Equation (10).

In Figures 1 and 2, we plot threshold values for DTPR-min and DTPR-max, respectively, using
example parameters of U = 30, L = 5, k = 10, and β = 3. We annotate the difference of 2β between
`i and ui; recall that each of these thresholds corresponds to a current state for DTPR, i.e. whether
the previous item was accepted. Note that the DTPR-min threshold values decrease as k gets larger,
while the DTPR-max threshold values increase as k gets larger. At a high-level, each ith threshold
“hedges” against a scenario where none of the future prices meet the current threshold. In this
case, even if the algorithm is forced to accept the worst possible prices at the end of the sequence,
we want competitive guarantees against an offline OPT. Such guarantees rely on the fact that in
the worst-case, OPT cannot accept prices that are all significantly better than DTPR’s ith “unseen”
threshold value because such prices did not exist in the sequence.

Designing the Double Threshold Values

A key component of the DTPR algorithms for both variants are the thresholds in Equations (5)
and (6). The key idea is to design the thresholds by incorporating the switching cost into the
balancing rules as a hedge against possible worst-case scenarios. To accomplish this, we enumerate

8

three difficult cases that DTPR may encounter. (CASE-1): Consider an input sequence where DTPR

does not accept any prices before it is forced to accept the last k prices. Here, the enforced prices in
the worst-case sequence will be U for OPR-min and L for OPR-max. This sequence occurs only if no
price in the sequence meets the first threshold for acceptance. On the other hand, in the case that
DTPR does accept prices before the end of the sequence, we can further divide the possible sequences
into two extreme cases for the switching cost it incurs. (CASE-2): In one extreme, the algorithm
incurs only the minimum switching cost of 2β, meaning that k contiguous prices are accepted by
DTPR. (CASE-3): In the other extreme, DTPR incurs the maximum switching cost of k2β, meaning
that k non-contiguous prices are accepted. Intuitively, in order for DTPR to be competitive in either
of these extreme cases, the prices accepted in the latter case should be sufficiently “good” to absorb
the extra switching cost of (k − 1)2β.

Given the insight from these cases, we use can use the balancing rule (see Section 2.2) to derive
the two threshold families. Let σ be any arbitrary sequence for OPR. Given these extreme input
sequences, we now concretely show how to write the balancing rule equations. We consider the
cases of DTPR-min and DTPR-max separately below.

Balancing equations for DTPR-min To balance between possible inputs for OPR-min, consider
the following examples for three different values of cmin(σ) > `, ` = {`1, `2, `3}. If cmin(σ) > `i, we
know that OPT cannot do better than k`i + 2β. Suppose that α is the target competitive ratio, and
we balance between these and other potential cases:

DTPR-min(σ)

OPT(σ)
≤ kU + 2β

k`1 + 2β︸ ︷︷ ︸
cmin(σ)>`1

=
`1 + (k − 1)U + 4β

k`2 + 2β
=
u1 + (k − 1)U + 2β

k`2 + 2β︸ ︷︷ ︸
cmin(σ)>`2

. . . (7)

· · · = `1 + `2 + (k − 2)U + 6β

k`3 + 2β
=
`1 + u2 + (k − 2)U + 4β

k`3 + 2β
=
u1 + u2 + (k − 2)U + 2β

k`3 + 2β︸ ︷︷ ︸
cmin(σ)>`3

= · · · = α.

As an example, consider cmin(σ) > `2 and the corresponding cases enumerated above. Suppose
DTPR-min accepts one price before the end of the sequence σ, and the other prices accepted are all
U . In the first case, where the competitive ratio is `1+(k−1)U+4β

k`2+2β , we consider the scenario where
DTPR-min switches twice: once to accept the price `1, and once to accept (k − 1) prices at the end
of the sequence, incurring switching cost of 4β.

In the second case, where the competitive ratio is u1+(k−1)U+2β
k`2+2β , we consider the hypothetical

scenario where DTPR-min only switches once to accept some value u1 followed by (k − 1) prices at
the end of the sequence, incurring switching cost of 2β. By enumerating cases in this fashion for
the other possible values of cmin(σ), we derive a relationship between the lower thresholds `i and
the upper thresholds ui in terms of the switching cost.

Balancing equations for DTPR-max The same idea extends to balance between possible inputs
for OPR-max. Consider the following examples for a few values of cmax(σ). If cmax(σ) < ui, we know
that OPT cannot do better than kui − 2β. Suppose that ω is the target competitive ratio, and we

9

balance between these and other potential cases:

OPT(σ)

DTPR-max(σ)
≤ ku1 − 2β

kL− 2β︸ ︷︷ ︸
cmax(σ)<u1

=
ku2 − 2β

u1 + (k − 1)L− 4β
=

ku2 − 2β

`1 + (k − 1)L− 2β︸ ︷︷ ︸
cmax(σ)<u2

. . . (8)

· · · = ku3 − 2β

u1 + u2 + (k − 2)L− 6β
=

ku3 − 2β

u1 + `2 + (k − 2)L− 4β
=

ku3 − 2β

`1 + `2 + (k − 2)L− 2β︸ ︷︷ ︸
cmax(σ)<u3

= · · · = ω.

Solving for the threshold values Given the above balancing equations for both the minimiza-
tion and maximization variants, the next step is to solve for the unknown values of `i and ui. The
following observation summarizes the key insight that enables this. We show that one can express
each `i in terms of ui and β, which facilitates the analysis required to solve for thresholds in each
balancing equation (given by Equations (7) and (8)).

Observation 3. By letting ui = `i+2β ∀i ∈ [1, k], we obtain each possible worst-case permutation
of `i thresholds, ui thresholds, and switching cost. Let y ∈ [1, k − 1] denote the number of switches
incurred by DTPR.
For DTPR-min, suppose that cmin(σ) > `j+1. By the definition of DTPR-min, we know that accepting
any ui helps avoid a switching cost of +2β in the worst case. Thus,

j∑
i=0

ui + (k − j)U + 2β = `i + . . .︸ ︷︷ ︸
y

+ui + . . .︸ ︷︷ ︸
j−y

+(k − j)U + (y + 1)2β =

j∑
i=0

`i + (k − j)U + (j + 1)2β.

For DTPR-max, suppose that cmax(σ) < uj+1. By the definition of DTPR-max, we know that accepting
any `i helps avoid a switching cost of −2β in the worst case. Thus,

j∑
i=0

`i + (k − j)L− 2β = ui + . . .︸ ︷︷ ︸
y

+ `i + . . .︸ ︷︷ ︸
j−y

+(k − j)L− (y + 1)2β =

j∑
i=0

ui + (k − j)L− (j + 1)2β.

With the above observation, for DTPR-min, one can substitute ui−2β for each `i. By comparing
adjacent terms in Equation (7), standard algebraic manipulations give a closed form for each ui in
terms of u1. Setting kU+2β

k(u1−2β)+2β = α, we obtain the explicit expression for u1, yielding a closed

formula for {ui}i∈[1,k] and {`i}i∈[1,k] in Equation (5). Considering the balancing rule in Equation (7)
for the case where cmin(σ) ≥ `k+1, it follows that `k+1 = L, and thus uk+1 = L+2β. By substituting
this value into Definition 1, we obtain an explicit expression for α as shown in Equation (9).

Conversely, for DTPR-max, we substitute `i + 2β for each ui. By comparing adjacent terms in
Equation (8), standard methods give a closed form for each `i in terms of `1. Setting k(`1+2β)−2β

kL−2β =
ω, we obtain the explicit expression for `1, yielding the closed formula for {`i}i∈[1,k] and {ui}i∈[1,k]

in Equation (6). Considering the balancing rule in Equation (8) for the case where cmax(σ) ≤ uk+1,
it follows that uk+1 = U , and thus `k+1 = U − 2β. By substituting this value into Definition 2, we
obtain an explicit expression for ω as shown in Equation (10).

4 Main Results

We now present competitive results of DTPR for both variants of OPR and discuss the significance
of the results in relation to other algorithms for related problems. Our results for the competitive

10

0
0

U/4

U/4

switching cost

L

~√θ

O(k)

∞

Figure 3: DTPR-min: Plotting actual values of
competitive ratio α for fixed k ≥ 1, fixed U >
L, and varying values for L and β (switching
cost). Color represents the order of α for a given
setting of θ and β.

0
0

U/4

U/4

switching cost

L

~√kkθ
k+1

∞

Figure 4: DTPR-max: Plotting actual values of
competitive ratio ω for fixed k ≥ 1, fixed U >
L, and varying values for L and β (switching
cost). Color represents the order of ω for a given
setting of θ and β.

ratios of DTPR-min and DTPR-max are summarized in Theorems 4 and 5. We also state the lower
bound results for any deterministic online algorithms for OPR-min and OPR-max in Theorems 8
and 9. Proofs of the results for DTPR-min and DTPR-max are deferred to Section 5 and Appendix B,
respectively. Formal proofs of lower bound theorems are given in Appendix D, and a sketch is
shown in Section 5.2. Note that in the competitive results, W (x) denotes the Lambert W function,
i.e., the inverse of f(x) = xex. It is well-known that W (x) behaves like ln(x) [HH08, Ste09]. We
start by presenting our competitive bounds on DTPR-min and DTPR-max.

Theorem 4. DTPR-min is an α-competitive deterministic algorithm for OPR-min, where α is the
unique positive solution of

U − L− 2β

U(1− 1/α)−
(

2β − 2β
k + 2β

kα

) =

(
1 +

1

kα

)k
. (9)

Theorem 5. DTPR-max is an ω-competitive deterministic algorithm for OPR-max, where ω is the
unique positive solution of

U − L− 2β

L(ω − 1)− 2β
(
1− 1

k + ω
k

) =
(

1 +
ω

k

)k
. (10)

These theorems present upper bounds on the competitive ratios, showing their dependence on
the problem parameters. To investigate the behavior of these competitive ratios, in Figures 3
and 4, we show the competitive ratios of both algorithms as problem parameters are varied. More
specifically, in Figure 3, we visualize α as a function of β and L, where k and U are fixed. The color
(shown as an annotated color bar on the right-hand side of the plot) represents the order of α. If
β > 0 and L → 0, Figure 3 shows that α is roughly O (k), which we discuss further in Corollary
6(a). In Figure 4, we visualize ω as a function of β and L, where k and U are fixed. The color
represents the order of ω. In the dark blue region of the plot, Figure 4 shows that ω → ∞ when
b→ k, which provides insight into the extreme case for switching cost when β & kL

2 .
To obtain additional insight into the form of the competitive ratios in Theorems 4 and 5, we

present the following corollaries for two asymptotic regimes of interest: REGIME-1 captures the
order of the competitive ratio when k is fixed and α or ω are sufficiently large, and REGIME-2

captures the order of the competitive ratio when k →∞.

Corollary 6. (a) For REGIME-1, with fixed k ≥ 1 and β ∈ (0, U−L2), the competitive ratio of
DTPR-min is

α ∼
kβ

kL+ 2β
+

√
k2LU + 2kLβ + 2kUβ + 4β2 + k2β2

k2L2 + 4kLβ + 4β2
, and α ∼ O (k) for L→ 0.

11

(b) Furthermore, for REGIME-2, with k →∞ and c = 2β
U , c ∈ (0, U−LU), the competitive ratio of

DTPR-min is

α ∼

[
W

((
c+ 1

θ − 1
)
ec

e

)
− c+ 1

]−1

.

Corollary 7. (a) For REGIME-1, with fixed k ≥ 1 and b = 2β
L , b ∈ (0, k), the competitive ratio of

DTPR-max is

ω ∼ O

(
k+1

√
kk

kθ

k − b

)
,

and (b) for REGIME-2, with k →∞ and b = 2β
L , b ∈ (0, k), the competitive ratio of DTPR-max is

ω ∼W

(
θ − 1− a
e1+b

)
+ 1 + b.

Corollary 6(a) contextualizes the behavior of α (the competitive ratio of DTPR-min) in the most
relevant OPR-min setting (when β ∈ (0, U−L2)). Let us also briefly discuss the other cases for the
switching cost β, and why this interval makes sense. When β > U−L

2 , the switching cost is large
enough such that OPT only incurs a switching cost of 2β. In this regime, α does not fully capture
the competitive ratio of DTPR-min, since every value in the threshold family {ui}i∈[1,k] is at least U ;
in other words, whenever the algorithm begins accepting prices, it will accept k prices in a single
continuous segment, incurring minimal switching cost of 2β. As β → ∞, the competitive ratio of
DTPR-min approaches 1.

Conversely, Corollary 7(a) contextualizes the behavior of ω in the most relevant OPR-max setting
(when β ∈ (0, kL2)), but we also discuss the other cases for the switching cost β, and why this interval

makes sense. When β ≥ kL
2 , the switching cost is too large, and the competitive ratio may become

unbounded. Note that this is shown explicitly in Figure 4. Consider an adversarial sequence which
forces any OPR-max algorithm to accept k prices with value L at the end of the sequence. On such
a sequence, even a player which incurs the minimum switching cost of 2β achieves zero or negative
profit of kL− 2β ≤ 0, and this is not well-defined.

Next, to begin to investigate the tightness of Theorems 4 and 5, it is interesting to consider
special cases that correspond to models studied in previous work. In particular, when β = 0, i.e.,
there is no switching cost, OPR degenerates to the k-search problem [LPS08]. For fixed k ≥ 1 and
θ →∞, the optimal competitive ratios shown by [LPS08] are

√
θ/2 for k-min, and

k+1
√
kkθ for k-max

(see Section 2.2). Both versions of DTPR exactly recover the optimal k-search algorithms [LPS08].2

Figure 3 shows that if β = 0 and L→ 0, then α→∞, which matches the k-min result of
√
θ/2 ∼∞.

Similarly, Figure 4 shows that if β = 0 and L → 0, then ω →∞, which matches the k-max result
of

k+1
√
kkθ ∼∞.

More generally, one can ask if the competitive ratios of DTPR can be improved upon by other
online algorithms outside of the special case of k-search. Our next set of results highlights that
no improvement is possible, i.e., that DTPR-min and DTPR-max maintain the optimal competitive
ratios possible for any deterministic online algorithm for OPR.

Theorem 8. Let k ≥ 1, θ ≥ 1, and β ∈ (0, U−L2). Then α given by Equation (9) is the best
competitive ratio that a deterministic online algorithm for OPR-min can achieve.

2To see this, note that by eliminating all β terms from Equations (9) and (10), we exactly recover Equations (3)
and (4), which are the definitions of the k-search algorithms. When θ → ∞ as L→ 0, DTPR-min and DTPR-max match
each k-search result exactly when β = 0. In Corollaries 6(b) and 7(b), DTPR-min and DTPR-max also match each k
search result exactly when k → ∞ and β = 0. (See Sec. 2.2)

12

Theorem 9. Let k ≥ 1, θ ≥ 1, and β ∈ (0, kL2). Then ω given by Equation (10) is the best
competitive ratio that a deterministic online algorithm for OPR-max can achieve.

By combining Theorems 4 and 5 with Theorems 8 and 9, these results imply that the competitive
ratios of DTPR-min and DTPR-max are optimal for OPR-min and OPR-max.

Finally, it is interesting to contrast the upper and lower bounds for OPR with those for k-search,
since the contrast highlights the impact of switching costs. In OPR-min with β > 0, DTPR-min im-
proves on existing optimal results for k-min search, particularly in the case where L approaches 0
(i.e., θ →∞). Since Theorem 8 implies that DTPR-min is optimal, this shows that the addition of
switching cost in OPR-min enables an online algorithm to achieve a better competitive ratio com-
pared to k-min search, which is a surprising result. In contrast, for OPR-max with β > 0, DTPR-max’s
competitive bounds are worse than existing results for k-max search, particularly for large β. Since
Theorem 9 implies that DTPR-max is optimal, this suggests that OPR-max is fundamentally a more
difficult problem compared to k-max search.

5 Proofs

We now prove the results described in the previous section. In Section 5.1, we prove the DTPR-min

results presented in Theorem 4 and Corollary 6. In Section 5.2, we provide a proof sketch for
the lower bound results in Theorems 8 and 9, and defer the formal proofs to Appendix D. The
competitive results for DTPR-max in Theorem 5 and Corollary 7 are deferred to Appendix B.

5.1 Competitive Results for DTPR-min

We begin by proving Theorem 4 and Corollary 6. The key novelty in the proof of the main
competitive results (Theorems 4 and 5) lies in our effort to derive two threshold functions and
balance the competitive ratio in several worst-case instances with respect to these thresholds, as
outlined in Section 3.

Proof of Theorem 4. For 0 ≤ j ≤ k, let Sj ⊆ S be the sets of OPR-min price sequences for which
DTPR-min accepts exactly j prices (excluding the k− j prices it is forced to accept at the end of the
sequence). Then, all of the possible price sequences for OPR-min are represented by S =

⋃k
j=0 Sj .

Also, recall that by definition, `k+1 = L. Let ε > 0 be a fixed constant, and define the following
two price sequences σj and ρj :

∀j ∈ [2, k] : σj = `1, u2, . . . , uj , U, `j+1 + ε, . . . , `j+1 + ε︸ ︷︷ ︸
k

, U, U, . . . , U︸ ︷︷ ︸
k

.

∀j ∈ [2, k] : ρj = `1, U, `2, U, . . . , U, `j , U, `j+1 + ε, . . . , `j+1 + ε︸ ︷︷ ︸
k

, U, U, . . . , U︸ ︷︷ ︸
k

.

There are two special cases for j = 0 and j = 1. For j = 0, we have that σ0 = ρ0, and this sequence
simply consists of `1 + ε repeated k times, followed by U repeated k times. For j = 1, we also have
that σ1 = ρ1, and this sequence consists of one price with value `1 and one price with value U ,
followed by `2 + ε repeated k times and U repeated k times.

Observe that as ε→ 0, σj and ρj are sequences yielding the worst-case ratios in Sj , as DTPR-min
is forced to accept (k− j) worst-case U values at the end of the sequence, and each accepted value
is exactly equal to the corresponding threshold.

13

Note that σj and ρj also represent two extreme possibilities for the additive switching cost. In
σj , DTPR-min only switches twice, but it mostly accepts values ui. In ρj , DTPR-min must switch
j + 1 times because there are many intermediate U values, but it only accepts values `i.

In the worst case, we have

DTPR-min(σj)

OPT(σj)
=

DTPR-min(ρj)

OPT(ρj)
.

Also, the optimal solutions for both sequences are lower bounded by the same quantity: kcmin(σj)+
2β = kcmin(ρj)+2β. For any sequence s in Sj , we have that cmin(s) > `j+1, so OPT(ρj) = OPT(σj) ≤
k`j+1 + 2β.

By definition of the threshold families {`i}i∈[1,k] and {ui}i∈[1,k], we know that
∑j

i=1 `i + j2β =
∑j

i=1 ui
for any value j ≥ 2:

DTPR-min(ρj) =

(
j∑
i=1

`i + (k − j)U + (j + 1)2β

)
=

(
`1 +

j∑
i=2

ui + (k − j)U + 4β

)
= DTPR-min(σj).

Note that whenever j < 2, we have that σ0 = ρ0, and σ1 = ρ1. Thus, DTPR-min(ρj) = DTPR-min(σj)

holds for any value of j. By definition of `1, we simplify `1 +
∑j

i=2 ui + (k − j)U + 4β to∑j
i=1 ui + (k − j)U + 2β. Then, for any sequence s ∈ Sj , we have the following:

DTPR-min(s)

OPT(s)
≤ DTPR-min(σj)

OPT(σj)
=

DTPR-min(ρj)

OPT(ρj)
≤
∑j

i=1 ui + (k − j)U + 2β

k`j+1 + 2β
. (11)

Before proceeding to the next step, we use an intermediate result stated in the following lemma
with a proof given in Appendix C.

Lemma 10. For any 0 ≤ j ≤ k, by definition of {`i}i∈[1,k] and {ui}i∈[1,k],

j∑
i=1

ui + (k − j)U + 2β ≤ α · (k`j+1 + 2β).

For ε→ 0, the competitive ratio DTPR-min/OPT is exactly α:

∀0 ≤ j ≤ k :
DTPR-min(σj)

OPT(σj)
=

∑j
i=1 ui + (k − j)U + 2β

k`j+1 + 2β
= α,

and thus for any sequence s ∈ S,

∀s ∈ S :
DTPR-min(s)

kcmin(s) + 2β
≤ α.

Since OPT(s) ≥ kcmin(s) + 2β for any sequence s, this implies that DTPR-min is α-competitive.

Proof of Corollary 6. To show part (a) for REGIME-1, with fixed k ≥ 1, observe that we can expand
the right-hand side of Equation (9) using the binomial theorem to obtain the following:

U − L− 2β

U
(
1− 1

α

)
− 2β

(
1− 1

k + 1
kα

) = 1 +
1

α
+ Θ

(
α−2

)
.

Next, observe that α? solving the following expression satisfies α? ≥ α ∀k : k ≥ 1, (i.e. α? is an
upper bound of α):

14

U − L− 2β

U
(
1− 1

α?

)
− 2β

(
1− 1

k + 1
kα?

) = 1 +
1

α?
.

By solving the above for α?, we obtain

α ∼ α? =
kβ

kL+ 2β
+

√
k2LU + 2kLβ + 2kUβ + 4β2 + k2β2

k2L2 + 4kLβ + 4β2
.

Last, note that as L→ 0, we obtain the following result: α ∼ k
2 +

√
kU
2β + 1 + k2

4 ≈ O (k).

To show part (b) for REGIME-2, we first observe that the right-hand side of Equation 9 can be

approximated as
(
1 + 1

kα

)k ≈ e1/α when k →∞. Then by taking limits on both sides, we obtain
the following:

U − L− 2β

U
(
1− 1

α

)
− 2β (1)

= e1/α.

For simplification purposes, let β = cU/2, where c is a small constant on the interval
(
0, U−LU

)
.

We then obtain the following:

U − L− cU
U
(
1− 1

α

)
− cU

= e1/α =⇒ L/U + c− 1 =

(
1

α
+ c− 1

)
e1/α.

By definition of Lambert W function, solving this equation for α obtains the result in Corollary 6(b).

5.2 Lower Bound Analysis: Proof Sketch for Theorems 8 and 9

Here we present a proof sketch for the lower bound construction that is used to prove both Theorems
8 and 9. We show how to formalize it in the case of Theorem 8 in Appendix D.1, and in the case
of Theorem 9 in Appendix D.2.

Suppose that ALG is a deterministic online algorithm for OPR. The lower bound proofs for both
OPR-min and OPR-max leverage the same instance, where ALG plays against an adaptive adversary.

To describe the instance, we first need some preliminaries. Define a sequence of prices T1, . . . , Tk,
which are the prices the adversary will present to ALG. The “worst-case value” that ALG can
encounter is defined based on the problem variant. Since we assume that prices are bounded on
the interval [L,U], these values are U for OPR-min, and L for OPR-max.

The adversary begins by presenting T1 to ALG, at most k times or until ALG accepts it. If ALG
never accepts T1, the adversary presents the worst-case value at least k times for the remainder of
the sequence. In the formal proof, we show that this case causes ALG to achieve a competitive ratio
of at least α for OPR-min, or at least ω for OPR-max.

If ALG does accept T1, the adversary continues the sequence by presenting the worst-case value
to ALG, at most k times or until ALG switches to reject it. This essentially forces ALG to switch
immediately after accepting T1. In the formal proof, we show that any algorithm which does not
switch away immediately achieves a competitive ratio worse than α and ω for OPR-min and OPR-max.

After ALG has switched away, the adversary continues the sequence by presenting T2 to ALG at
most k times or until ALG accepts it. Again, if ALG never accepts T2, the adversary presents the
worst-case value at least k times for the remainder, and ALG cannot do better than α or ω.

15

The adversary continues in this fashion, presenting each Ti at most k times (or until ALG accepts
it and the adversary forces ALG to switch away immediately afterward). Whenever ALG does not
accept some Ti after it is presented k times, the adversary sends the price to the worst-case value
for the remainder of the sequence. If ALG accepts k prices before the end of the sequence, the
adversary concludes by presenting the best-case value (L for OPR-min, U for OPR-max) at least k
times.

In the formal proofs presented in Appendix D, we show that any deterministic strategy that
ALG uses to accept prices on this sequence achieves a competitive ratio of at least α for OPR-min,
and at least ω for OPR-max.

6 Case Study: Carbon-Aware Temporal Workload Shifting

We now present experimental results for the DTPR algorithms in the context of the carbon-aware
temporal workload shifting problem. We evaluate DTPR-min (and DTPR-max in Appendix A) as
compared to existing algorithms from the literature that have been adapted for OPR.

6.1 Experimental Setup

We consider a carbon-aware load shifting system that operates on a hypothetical data center. An
algorithm is given a deferrable and interruptible job that takes k time slots to complete, along
with a deadline T ≥ k, such that the job must be completed at most T slots after its arrival. The
objective is to selectively run units of the job such that the total carbon emissions are minimized
while still completing the job before its deadline.

For the minimization variant (OPR-min) of the experiments, we consider carbon emissions in-
tensities, as the price values. At each time step t, the electricity supply has a carbon intensity ct,
i.e., if the job is being processed during the time step t (xt = 1), the data center’s carbon emissions
during that time step are proportional to ct. If the job is not being processed during the time
step t (xt = 0), we assume for simplicity that carbon emissions in the idle state are negligible and
essentially 0. To model the combined computational overhead of interrupting, checkpointing, and
restarting the job, the algorithm incurs a fixed switching cost of β whenever xt−1 6= xt, whose
values are selected relative to the price values.

Carbon data traces We use real-world carbon traces from Electricity Maps [Map20], which
provide time-series information about the average carbon emissions intensity of the electric grid.
We use traces from three different regions: the Pacific Northwest of the U.S., New Zealand, and
Ontario, Canada. The data is provided at an hourly granularity and includes the current average
carbon emissions intensity in grams of CO2 equivalent per kilowatt-hour (gCO2eq/kWh), and the
percentage of electricity being supplied from carbon-free sources. In Figure 9 (in Appendix A), we
plot three representative actual traces for carbon intensity over time for a 96-hour period in each
region.

Parameter settings We test for time horizons (T) of 48 hours, 72 hours, and 96 hours. The
chosen time horizon represents the time at which the job with length k must be completed. As is
given in the carbon trace data, we consider time slots of one hour.

The online algorithms we use in experiments take L and U as parameters for their threshold
functions. To set these parameters, we examine the entire carbon trace for the current location.
For the Pacific NW trace and the Ontario trace, these values represent lower and upper bounds

16

Table 2: Summary of carbon trace data sets

Location PNW, U.S. New Zealand Ontario, Canada

Number of Data Points 10,144 1,324 17,898

Max. Carbon Intensity (U) 648 gCO2eq/kWh 165 gCO2eq/kWh 181 gCO2eq/kWh

Min. Carbon Intensity (L) 18 gCO2eq/kWh 54 gCO2eq/kWh 15 gCO2eq/kWh

Duration (mm/dd/yy) 04/20/22 - 12/06/22 10/19/21 - 11/16/21 10/19/21 - 12/06/22

of the carbon intensity values for a full year. For the New Zealand trace, these values are a lower
and upper bound for the values during a month of data, which is reflected by a smaller fluctuation
ratio. We set L and U to be the minimum and maximum observed carbon intensity over the entire
trace.

To generate each input sequence, a contiguous segment of size T is randomly sampled from the
given carbon trace. In a few experiments, we simulate greater volatility over time by “scaling up”
each price’s deviation from the mean. First, we compute the average value over the entire sequence.
Next, we compute the difference between each price and this average. Each of these differences is
scaled by a noise factor of m ≥ 1. Finally, new carbon values are computed by summing each scaled
difference with the average. If m = 1, we recover the same sequence, and if m > 1, any deviation
from the mean is proportionately amplified. Any values which become negative after applying
this transformation are truncated to 0. This technique allows us to evaluate algorithms under
different levels of volatility. Performance in the presence of greater carbon volatility is important,
as on-site renewable generation is seeing greater adoption as a supplementary power source for data
centers [RKS+22, ALK+23].

Benchmark algorithms To evaluate the performance of DTPR, we use a dynamic programming
approach to calculate the offline optimal solution for each given sequence and objective, which
allows us to report the empirical competitive ratio for each tested algorithm. We compare DTPR

against two categories of benchmark algorithms, which are summarized in Table 3.
The first category of benchmark algorithms is carbon-agnostic algorithms, which run the jobs

during the first k time slots in order, i.e., accepting prices c1, . . . , ck. This approach incurs the
minimal switching cost of 2β, because it does not interrupt the job while it is being processed. The
carbon-agnostic approach simulates the behavior of a scheduler that runs the job to completion as
soon as it is submitted, without any focus on reducing carbon emissions. Note that the performance
of this approach significantly varies based on the randomly selected sequence, since it will perform
well if low-carbon electricity is available in the first few slots, and will perform poorly if the first
few slots are high-carbon.

We also compare DTPR against switching-cost-agnostic algorithms, which only consider carbon
cost. We have two algorithms of this type, each drawing from existing online search methods in
the literature. Although they do not consider the switching cost in their design, they still incur a
switching cost whenever their decision in adjacent time slots differs.

The first such algorithm is a constant threshold algorithm, which uses the
√
UL threshold value

first presented for online search in [EYFKT01]. In our minimization experiments, this algorithm
runs the workload during the first k time slots where the carbon intensity is at most

√
UL.

The other switching-cost-agnostic algorithm tested is the k-search algorithm shown by [LPS08]
and described in Section 2.2. The k-min search algorithm chooses to run the ith hour of the job
during the first time slot where the carbon intensity is at most Φi.

17

Table 3: Summary of algorithms tested in our experiments

Algorithm Carbon-aware Switching-aware Description

OPT (offline) YES YES Optimal offline solution

Carbon-Agnostic NO YES Runs job in the first k time slots

Const. Threshold YES NO Runs job if carbon meets threshold
√
UL

k-search YES NO Runs ith slot of job if carbon meets threshold Φi

DTPR YES YES This work (algorithms proposed in Section 3)

(a) Ontario, Canada (b) U.S. Pacific Northwest (c) New Zealand

Figure 5: Experiments for three distinct slack values, where T ∈ {48, 72, 96}.
(a): Ontario, Canada carbon trace, with θ = 12.06̄ (b): U.S. Pacific Northwest carbon trace,
with θ = 36
(c): New Zealand carbon trace, with θ = 3.05̄

6.2 Experimental Results

We now present our experimental results. Our focus is on the empirical competitive ratio (a lower
competitive ratio is better). We report the performance of all algorithms for each experimental set-
ting, in each tested region. Throughout the minimization experiments, we observe that DTPR-min

outperforms the benchmark algorithms. The 95th percentile worst-case empirical competitive ratio
achieved by DTPR-min is a 48.2% improvement on the carbon-agnostic method, a 15.6% improve-
ment on the k-min search algorithm, and a 14.4% improvement on the constant threshold algorithm.

In Figure 5, we show results for three different values of time horizon T in each carbon trace,
with fixed β, fixed k = dT/6e, and no added volatility. Although our experiments test three distinct
values for T , we later observe that the ratio between k and T is the primary factor which changes the
observed performance of the algorithms we test; in this figure, DTPR and the benchmark algorithms
compare very similarly on the same carbon trace for different T values. As such, we set T = 48 in
the rest of the experiments in this section for brevity. This represents a slack value of 48 hours.

In the first experiment, we test all algorithms for different job lengths k in the range from 4
hours to T/2 (24 hours). The switching cost β is non-zero and fixed, and no volatility is added to
the carbon trace. By testing different values for k, this experiment tests different ratios between the
workload length and the slack provided to the algorithm. In Figures 6(a), 7(a), and 8(a), we show
that the observed competitive ratio of DTPR-min outperforms the benchmark algorithms, and it
compares particularly favorably for short job lengths. Averaging over all regions and job lengths, the
competitive ratio achieved by DTPR-min is a 11.4% improvement on the carbon-agnostic method,

18

4 T/2 (24)
job length k

1.2

1.4

1.6

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(a) Changing k

0 U/5
switching cost

1.2

1.4

1.6

1.8

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(b) Changing β

1.0 1.5 2.0 2.5
noise factor

2

4

6

8

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(c) Changing volatility

1.0 1.2 1.4 1.6 1.8 2.0
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(d) CDF

Figure 6: Experiments on Ontario, Canada carbon trace, with θ = 12.06̄, and T = 48.
(a): Changing job length k w.r.t. time horizon T (x-axis), vs. competitive ratio (b): Changing
switching cost β w.r.t. U (x-axis), vs. competitive ratio (c): Different volatility levels w.r.t. U
(x-axis), vs. competitive ratio
(d): Cumulative distribution function of competitive ratios

4 T/2 (24)
job length k

1.05

1.10

1.15

1.20

1.25

1.30

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(a) Changing k

0 U/5
switching cost

1.10

1.15

1.20

1.25

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(b) Changing β

1.0 1.5 2.0 2.5
noise factor

1.25

1.50

1.75

2.00

2.25

2.50
em

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

(c) Changing volatility

1.0 1.2 1.4 1.6 1.8 2.0
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(d) CDF

Figure 7: Experiments on U.S. Pacific Northwest carbon trace, with θ = 36, and T = 48.
(a): Changing job length k w.r.t. time horizon T (x-axis), vs. competitive ratio (b): Changing
switching cost β w.r.t. U (x-axis), vs. competitive ratio (c): Different volatility levels w.r.t. U
(x-axis), vs. competitive ratio
(d): Cumulative distribution function of competitive ratios

a 14.0% improvement on the k-min search algorithm, and a 5.5% improvement on the constant
threshold algorithm.

In the second experiment, we test all algorithms for different switching costs β in the range
from 0 to U/5. The job length k is set to 10 hours, and no volatility is added to the carbon trace.
By testing different values for β, this experiment tests how an increasing switching cost impacts
the performance of DTPR-min with respect to other algorithms which do not explicitly consider the
switching cost. In Figures 6(b), 7(b), and 8(b), we show that the observed competitive ratio of
DTPR-min outperforms the benchmark algorithms for most values of β in all regions. Unsurprisingly,
the carbon-agnostic technique (which incurs minimal switching cost) performs better as β grows.
While the constant threshold algorithm has relatively consistent performance, the k-min search
algorithm performs noticeably worse as β grows. Averaging over all regions and switching cost
values, the competitive ratio achieved by DTPR-min is a 18.2% improvement on the carbon-agnostic
method, a 8.9% improvement on the k-min search algorithm, and a 4.1% improvement on the
constant threshold algorithm.

In the final experiment, we test all algorithms on sequences with different volatility. The job

19

4 T/2 (24)
job length k

1.05

1.10

1.15

1.20

1.25

1.30

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(a) Changing k

0 U/5
switching cost

1.10

1.15

1.20

1.25

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(b) Changing β

1.0 1.5 2.0 2.5
noise factor

1.25

1.50

1.75

2.00

2.25

2.50

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(c) Changing volatility

1.0 1.2 1.4 1.6 1.8 2.0
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(d) CDF

Figure 8: Experiments on New Zealand carbon trace, with θ = 3.05̄, and T = 48.
(a): Changing job length k w.r.t. time horizon T (x-axis), vs. competitive ratio (b): Changing
switching cost β w.r.t. U (x-axis), vs. competitive ratio (c): Different volatility levels w.r.t. U
(x-axis), vs. competitive ratio
(d): Cumulative distribution function of competitive ratios

length k and switching cost β are both fixed. We add volatility by setting a noise factor from
the range 1.0 to 3.0. By testing different values for this volatility, this experiment tests how each
algorithm handles larger fluctuations in the carbon intensity of consecutive time steps. In Figures
6(c), 7(c), and 8(c), we show that the observed competitive ratio of DTPR-min outperforms the
benchmark algorithms for all noise factors in all regions. Intuitively, higher volatility values cause
the online algorithms to perform worse in general. Averaging over all regions and noise factors, the
competitive ratio achieved by DTPR-min is a 53.6% improvement on the carbon-agnostic method,
a 13.5% improvement on the k-min search algorithm, and a 14.3% improvement on the constant
threshold algorithm.

By averaging over all experiments for a given region, we obtain the cumulative distribution
function plot for each algorithm’s competitive ratio in Figures 6(d), 7(d), and 8(d). Compared to
the carbon-agnostic, constant threshold, and k-min search algorithms, DTPR-min achieves a lower
average empirical competitive ratio distribution for all tested regions. Across all regions at the 95th
percentile, DTPR-min achieves a worst-case empirical competitive ratio of 1.40. This represents a
48.2% improvement over the carbon-agnostic algorithm, and improvements of 15.6% and 14.4%
over the k-min search and constant threshold switching-cost-agnostic algorithms, respectively.

7 Related Work

This paper contributes to three lines of work: (i) work on online search and related problems,
e.g., k-search, one-way trading, and online knapsack; (ii) work on online optimization problems
with switching costs, e.g., metrical task systems and convex function chasing; and (iii) work on
carbon-aware load shifting. We describe the relationship to each below.

Online Search. The OPR problem is closely related to the online k-search problem [LSLH22,
LPS08], as discussed in the introduction and Section 2.2. It also has several similar counterparts, in-
cluding online conversion problems such as one-way trading [EYFKT01, MAS14, SLH+21, DHT07]
and online knapsack problems [ZCL08, SYH+22, YZH+21], with practical applications to stock
trading [LPS08], cloud pricing [ZLW17], electric vehicle charging [SZL+20], etc. The k-search
problem can be viewed as an integral version of the online conversion problem, while the general

20

online conversion problem allows continuous one-way trading. The basic online knapsack prob-
lem studies how to pack arriving items of different sizes and values into a knapsack with limited
capacity, while its extensions to item departures [ZLW17, SYH+22] and multidimensional capac-
ity [YZH+21] have also been studied recently. Another line of research leverages machine learning
predictions of unknown future inputs to design learning-augmented online algorithms for online
k-search [LSLH22] and online conversion [SYH+22]. However, to the best of our knowledge, none
of these works consider the switching cost of changing decisions. Thus, this work is the first to
incorporate switching costs to the k-search framework.

Metrical Task Systems. The metrical task systems (MTS) problem was introduced by Borodin
et al. in [BLS92]. Several decades of progress on upper and lower bounds on the competitive ratio
of MTS recently culminated with a tight bound of Θ(log2 n) for the competitive ratio of MTS on
an arbitrary n-point metric space, with Θ(log n) being possible on certain metric spaces such as
trees [BCLL21, BCR22]. Several modified forms of MTS have also seen significant attention in the
literature, such as smoothed online convex optimization (SOCO) and convex function chasing (CFC),
in which the decision space is an n-dimensional normed vector space and cost functions are restricted
to be convex [FL93, LLWA12]. The best known upper and lower bounds on the competitive ratio
of CFC are O(n) and Ω(

√
n), respectively, in n-dimensional Euclidean spaces [BKL+19, Sel20].

However, algorithms with competitive ratios independent of dimension can be obtained for certain
special classes of functions, such as α-polyhedral functions [CGW18]. A number of recent works
have also investigated the design of learning-augmented algorithms for various cases of CFC/SOCO
and MTS which exploit the performance of machine-learned predictions of the optimal decisions
[ACE+20, CHW22, CSW23, LYR22, RCMW22]. The key characteristic distinguishing OPR from
MTS and its variants is the presence of a terminal deadline constraint. None of the algorithms for
MTS-like problems are designed to handle such long-term constraints while maintaining any sort of
competitive guarantee.

Carbon-Aware Temporal Workload Shifting. The goal of shifting workloads in time to
allow more sustainable operations of data centers has been of interest for more than a decade,
e.g., [GSS19, LLW+11, LCB+12, LWAT12]. Traditionally, such papers have used models that build
on one of convex function chasing, k-search, or online knapsack to design algorithms; however such
models do not capture both the switching costs and long-term deadlines that are crucial to practical
deployment. In recent years, the load shifting literature has focused specifically on reducing the
carbon footprint of operations, e.g., [RKS+22, ALK+23, BGH+21, WBS+21]. Perhaps most related
to this paper is [WBS+21], which explores the problem of carbon-aware temporal workload shifting
and proposes a threshold-based algorithm that suspends the job when the carbon intensity is higher
than a threshold value and resumes it when it drops below the threshold. However, it does not
consider switching nor does it provide any deadline guarantees. Other recent work on carbon-aware
temporal shifting seeks to address the resultant increase in job completion times. In [SBM+23],
authors leverage the pause and resume approach to reduce the carbon footprint of ML training and
high-performance computing applications such as BLAST [fBI22]. However, instead of resuming at
normal speed (1×) during the low carbon intensity periods, their applications resume operation at
a faster speed (m×), where the scale factor m depends on the application characteristics. It uses
a threshold-based approach to determine the low carbon intensity periods but does not consider
switching costs or provide any deadline guarantees. An interesting future direction is to extend the
DTPR algorithms to consider the ability to scale up speed after resuming jobs.

21

8 Conclusion

Motivated by carbon-aware load shifting, we introduce and study the online pause and resume
problem (OPR), which bridges gaps between several related problems in online optimization. To
our knowledge, it is the first online optimization problem that includes both long-term constraints
and switching costs. Our main results provide optimal online algorithms for the minimization and
maximization variants of this problem, as well as lower bounds for the competitive ratio of any
deterministic online algorithm. Notably, our proposed algorithms match existing optimal results
for the related k-search problem when the switching cost is 0, and improve on the k-min search
competitive bounds for non-zero switching cost. The key to our results is a novel double threshold
algorithm that we expect to be applicable in other online problems with switching costs.

There are a number of interesting directions in which to continue the study of OPR. We have
highlighted the application of OPR to carbon-aware load shifting, but OPR also applies to many
other problems where pricing changes over time and frequent switching is undesirable. Pursu-
ing these applications is important. Theoretically, there are several interesting open questions.
First, considering the target application of carbon-aware load shifting, some workloads are highly
parallelizable [SBM+23], which adds another dimension of scaling to the problem (i.e., instead
of choosing to run 1 unit of the job in each time slot, the online player must decide how many
units to allocate at each time slot). This makes the theoretical problem more challenging, and
is an important consideration for future work. Additionally, very recent work has incorporated
machine-learned advice to achieve better performance on related online problems, including k-
search [LSLH22, SLH+21], CFC/SOCO [CHW22, LYR22], and MTS [ACE+20, CSW23, RCMW22].
Designing learning-augmented algorithms for OPR is a very promising line of future work, particu-
larly considering applications such as carbon-aware load shifting, where predictions can significantly
improve the algorithm’s understanding of the future in the best case.

22

References

[ABI+20] Pradeep Ambati, Noman Bashir, David Irwin, Mohammad Hajiesmaili, and Prashant
Shenoy. Hedge your bets: Optimizing long-term cloud costs by mixing vm purchasing
options. In 2020 IEEE International Conference on Cloud Engineering (IC2E), pages
105–115, 2020.

[ACE+20] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand
Simon. Online metric algorithms with untrusted predictions. In Proceedings of the
37th International Conference on Machine Learning, pages 345–355. PMLR, November
2020.

[ALK+23] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj
Chakkaravarthy, David Brooks, and Carole-Jean Wu. Carbon explorer: A holistic
framework for designing carbon aware datacenters. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, page 118–132, New York, NY, USA,
2023. Association for Computing Machinery.

[BCLL21] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical Task
Systems on Trees via Mirror Descent and Unfair Gluing. SIAM Journal on Computing,
50(3):909–923, January 2021.

[BCR22] Sébastien Bubeck, Christian Coester, and Yuval Rabani. The Randomized k-Server
Conjecture is False!, November 2022.

[BGH+21] Noman Bashir, Tian Guo, Mohammad Hajiesmaili, David Irwin, Prashant Shenoy,
Ramesh Sitaraman, Abel Souza, and Adam Wierman. Enabling sustainable clouds:
The case for virtualizing the energy system. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’21, page 350–358, New York, NY, USA, 2021. Association
for Computing Machinery.

[BKL+19] Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing
Nested Convex Bodies Nearly Optimally. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms (SODA), Proceedings, pages 1496–1508. Society
for Industrial and Applied Mathematics, December 2019.

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745–763, Oct 1992.

[CGW18] NiangJun Chen, Gautam Goel, and Adam Wierman. Smoothed Online Convex Opti-
mization in High Dimensions via Online Balanced Descent. In Proceedings of the 31st
Conference On Learning Theory, pages 1574–1594. PMLR, July 2018.

[CHW22] Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies
and functions with black-box advice. In Proceedings of the 35th Conference on Learning
Theory, volume 178, pages 867–908. PMLR, 02–05 Jul 2022.

[CSW23] Nicolas Christianson, Junxuan Shen, and Adam Wierman. Optimal robustness-
consistency tradeoffs for learning-augmented metrical task systems. In International
Conference on Artificial Intelligence and Statistics, 2023.

23

[DHT07] Peter Damaschke, Phuong Hoai Ha, and Philippas Tsigas. Online search with time-
varying price bounds. Algorithmica, 55(4):619–642, December 2007.

[EYFKT01] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way trading
online algorithms. Algorithmica, 30(1):101–139, May 2001.

[fBI22] National Center for Biotechnology Information. Basic Local Alignment Search Tool
(BLAST). https://blast.ncbi.nlm.nih.gov, Accessed March 2022.

[FL93] Joel Friedman and Nathan Linial. On convex body chasing. Discrete & Computational
Geometry, 9(3):293–321, March 1993.

[GSS19] Vani Gupta, Prashant Shenoy, and Ramesh K Sitaraman. Combining renewable solar
and open air cooling for greening internet-scale distributed networks. In Proceedings of
the Tenth ACM International Conference on Future Energy Systems, pages 303–314,
2019.

[HH08] Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the lambert w function and
hyperpower function. Journal of Inequalities in Pure and Applied Mathematics, 9(51),
January 2008.

[LCB+12] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui Wang,
Manish Marwah, and Chris Hyser. Renewable and cooling aware workload man-
agement for sustainable data centers. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement and Modeling
of Computer Systems, pages 175–186, 2012.

[LLW+11] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and Lachlan LH Andrew.
Greening geographical load balancing. ACM SIGMETRICS Performance Evaluation
Review, 39(1):193–204, 2011.

[LLWA12] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. Online
algorithms for geographical load balancing. In 2012 International Green Computing
Conference (IGCC). IEEE, June 2012.

[LPS08] Julian Lorenz, Konstantinos Panagiotou, and Angelika Steger. Optimal algorithms
for k-search with application in option pricing. Algorithmica, 55(2):311–328, August
2008.

[LSLH22] Russell Lee, Bo Sun, John C. S. Lui, and Mohammad Hajiesmaili. Pareto-optimal
learning-augmented algorithms for online k-search problems, November 2022.

[LWAT12] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. Dynamic
right-sizing for power-proportional data centers. IEEE/ACM Transactions on Net-
working, 21(5):1378–1391, 2012.

[LYR22] Pengfei Li, Jianyi Yang, and Shaolei Ren. Expert-Calibrated Learning for Online
Optimization with Switching Costs. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 6(2):1–35, May 2022.

[Map20] Electricity Maps. Electricity Map. https://www.electricitymap.org/map, Accessed
September 2020.

24

https://blast.ncbi.nlm.nih.gov
https://www.electricitymap.org/map

[MAS14] Esther Mohr, Iftikhar Ahmad, and Günter Schmidt. Online algorithms for conver-
sion problems: a survey. Surveys in Operations Research and Management Science,
19(2):87–104, 2014.

[RCMW22] Daan Rutten, Nicolas Christianson, Debankur Mukherjee, and Adam Wierman.
Smoothed Online Optimization with Unreliable Predictions, October 2022.

[RKS+22] Ana Radovanovic, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte,
Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, et al. Carbon-aware
computing for datacenters. IEEE Transactions on Power Systems, 2022.

[SBM+23] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David Irwin,
and Prashant Shenoy. Ecovisor: A virtual energy system for carbon-efficient applica-
tions. In Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023,
page 252–265, New York, NY, USA, 2023. Association for Computing Machinery.

[Sel20] Mark Sellke. Chasing convex bodies optimally. In Proceedings of the Thirty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, pages 1509–1518,
USA, January 2020. Society for Industrial and Applied Mathematics.

[SLH+21] Bo Sun, Russell Lee, Mohammad H Hajiesmaili, Adam Wierman, and Danny HK
Tsang. Pareto-optimal learning-augmented algorithms for online conversion problems.
In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[SRI16] Supreeth Shastri, Amr Rizk, and David Irwin. Transient guarantees: Maximizing the
value of idle cloud capacity. In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 992–1002.
IEEE, 2016.

[Ste09] Seán M. Stewart. On certain inequalities involving the lambert w function. Journal
of Inequalities in Pure and Applied Mathematics, 10(96), November 2009.

[SYH+22] Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John CS Lui, Don
Towsley, and Danny HK Tsang. The online knapsack problem with departures. Pro-
ceedings of the ACM on Measurement and Analysis of Computing Systems, 6(3):1–32,
2022.

[SZL+20] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and
Danny HK Tsang. Competitive algorithms for the online multiple knapsack problem
with application to electric vehicle charging. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 4(3):1–32, 2020.

[WBS+21] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz
Thamsen. Let’s Wait AWhile: How Temporal Workload Shifting Can Reduce Car-
bon Emissions in the Cloud. In Proceedings of the 22nd International Middleware
Conference, pages 260–272, 2021.

[YZH+21] Lin Yang, Ali Zeynali, Mohammad H. Hajiesmaili, Ramesh K. Sitaraman, and Don
Towsley. Competitive algorithms for online multidimensional knapsack problems. 5(3),
Dec 2021.

25

[ZCL08] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. Budget constrained bid-
ding in keyword auctions and online knapsack problems. In Lecture Notes in Computer
Science, pages 566–576. Springer Berlin Heidelberg, 2008.

[ZLW17] ZiJun Zhang, Zongpeng Li, and Chuan Wu. Optimal posted prices for online cloud
resource allocation. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems, 1(1):1–26, 2017.

26

Figure 9: Carbon intensity (in gCO2eq/kWh) values plotted for each region tested in our numerical
experiments, with one-hour granularity. We plot a representative random interval of 96 hours, with
vertical lines demarcating the different values for T (time horizon) tested in our experiments. In all
regions, carbon values roughly follow a diurnal (daily cycle) pattern. Actual values and observed
intensities significantly vary in different regions.

A Case Study Results for DTPR-max Algorithm

This section presents and discusses the deferred experimental results for the DTPR-max algorithm
(pseudocode summarized in Algorithm 2) in the carbon-aware temporal workload shifting case
study. We evaluate DTPR-max against the same benchmark algorithms described in Section 6.1.

For the maximization metric, we consider the percentage of carbon-free electricity powering the
grid. At each time step t, the electricity supply has a carbon-free percentage ct, i.e., if the job
is being processed during time slot t (xt = 1), the electricity powering the data center’s is ct%
carbon-free, and the objective is to maximize this percentage over all k slots of the active running
of the workload.

In these maximization experiments, the switching-cost-agnostic k-max-search algorithm chooses
to run the ith hour of the job during the first time slot where the carbon-free supply is at least
Φi. Similarly, the constant threshold algorithm chooses to run the job whenever the carbon-free
supply is at least

√
UL. We set L and U to be the minimum and maximum carbon-free supply

percentages over the entire trace being studied.
As in Section 6.2, our focus is on the competitive ratio (lower competitive ratio is better). We

report the performance of all algorithms for each experiment setting, in each tested region.
In the first experiment, we test all algorithms for different job lengths k in the range from 4

hours to T/2(24). The switching cost β is non-zero and fixed, and no volatility is added to the
carbon trace. By testing different values for k, this experiment tests different ratios between the
workload length and the slack provided to the algorithm. In Figures 10(a), 11(a), and 12(a), we
show that the observed average competitive ratio of DTPR-max narrowly outperforms the benchmark

27

Algorithm 2 Double Threshold Pause and Resume for OPR-max (DTPR-max)

Input: threshold values {ui}i∈[1,k] and {`i}i∈[1,k] defined in Equation (6), deadline T
Output: online decisions {xt}t∈[1,T]

1: initialize: i = 1;
2: while price ct arrives and i ≤ k do
3: if (k − i) ≥ (T − t) then . close to the deadline T, we must accept remaining prices

4: price ct is accepted, set xt = 1
5: else if xt−1 = 0 then . If previous price was not accepted

6: if ct ≥ ui then price ct is accepted, set xt = 1
7: else price ct is rejected, set xt = 0

8: else if xt−1 = 1 then . If previous price was accepted

9: if ct ≥ `i then price ct is accepted, set xt = 1
10: else price ct is rejected, set xt = 0

11: update i = i+ xt

T/2 (24)

(a) Changing k

U/5

(b) Changing β

1.0 1.5 2.0 2.5
noise factor

1.05

1.10

1.15

1.20
em

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

(c) Changing volatility

1.0 1.1 1.2
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(d) CDF

Figure 10: Maximization experiments on Ontario, Canada carbon trace, with θ ≈ 1.51 and T = 48.
(a): Changing job length k w.r.t. time horizon T (x-axis), vs. competitive ratio (b): Changing
switching cost β w.r.t. U (x-axis), vs. competitive ratio (c): Different volatility levels w.r.t. U
(x-axis), vs. competitive ratio (d): Cumulative distribution function of competitive ratios

algorithms for all values of k in all regions, and it compares particularly favorably for short job
lengths. Averaging over all regions and job lengths, the competitive ratio achieved by DTPR-max

is a 4.9% improvement on the carbon-agnostic method, a 8.4% improvement on the k-max search
algorithm, and a 2.1% improvement on the constant threshold algorithm.

In the second experiment, we test all algorithms for different switching costs β in the range
from 0 to U/5. The job length k is set to 10 hours, and no volatility is added to the carbon trace.
By testing different values for β, this experiment tests how an increasing switching cost impacts
the performance of DTPR-max with respect to other algorithms which do not explicitly consider the
switching cost. In Figures 10(b), 11(b), and 12(b), we show that the average competitive ratio
of DTPR-max notably outperforms the other algorithms for a wide range of β values in all regions.
Unsurprisingly, the carbon-agnostic technique (which only incurs a switching cost of 2β) is more
competitive as β grows. The k-max search algorithm performs noticeably worse as β grows. While
the constant threshold algorithm has relatively consistent performance, the k-max search algorithm
performs noticeably worse as β grows. Averaging over all regions and switching cost values, the
competitive ratio achieved by DTPR-max is a 2.5% improvement on the carbon-agnostic method,
a 6.4% improvement on the k-max search algorithm, and a 0.1% improvement on the constant

28

(a) Changing k

U/5

(b) Changing β

1.0 1.5 2.0 2.5
noise factor

1.2

1.4

1.6

em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

(c) Changing volatility

1.00 1.25 1.50 1.75 2.00
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(d) CDF

Figure 11: Maximization experiments on U.S. Pacific Northwest carbon trace, with θ ≈ 5.24 and
T = 48.
(a): Changing job length k w.r.t. time horizon T (x-axis), vs. competitive ratio (b): Changing
switching cost β w.r.t. U (x-axis), vs. competitive ratio (c): Different volatility levels w.r.t. U
(x-axis), vs. competitive ratio (d): Cumulative distribution function of competitive ratios

(a) Changing k

U/5

(b) Changing β

1.0 1.5 2.0 2.5
noise factor

1.02

1.04

1.06

1.08

1.10

1.12
em

pi
ric

al
 c

om
pe

tit
iv

e
ra

tio

(c) Changing volatility

1.00 1.05 1.10 1.15 1.20
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(d) CDF

Figure 12: Maximization experiments on New Zealand carbon trace, with θ ≈ 1.35 and T = 48.
(a): Changing job length k w.r.t. time horizon T (x-axis), vs. competitive ratio (b): Changing
switching cost β w.r.t. U (x-axis), vs. competitive ratio (c): Different volatility levels w.r.t. U
(x-axis), vs. competitive ratio (d): Cumulative distribution function of competitive ratios

threshold algorithm.
In the final experiment, we test all algorithms on sequences with different volatility. The job

length k and switching cost β are both fixed. We add volatility by setting a noise factor from
the range 1.0 to 3.0. By testing different values for this volatility, this experiment tests how each
algorithm handles larger fluctuations in the carbon intensity of consecutive time steps. In Figures
10(c), 11(c), and 12(c), we show that the observed average competitive ratio of DTPR-max outper-
forms the other algorithms for most noise factors in all regions, with a slight degradation in the
Pacific Northwest region. Intuitively, higher volatility values cause the online algorithms to perform
worse in general. Averaging over all regions and noise factors, the competitive ratio achieved by
DTPR-max is a 13.0% improvement on the carbon-agnostic method, a 11.2% improvement on the
k-max search algorithm, and a 2.1% improvement on the constant threshold algorithm.

By averaging over all experiments for a given region, we obtain the cumulative distribution func-
tion plot for each algorithm’s competitive ratio in Figures 10(d), 11(d), and 12(d). Compared to the
carbon-agnostic, constant threshold, and k-max search algorithms, DTPR-max generally exhibits a
lower average empirical competitive ratio over the tested regions. Notably, all of the algorithms are
nearly 1-competitive in our experiments. Compared to our minimization experiments, DTPR-max

29

outperforms the baseline algorithms by a smaller margin. Across all regions at the 95th percentile,
DTPR-max achieves a worst-case empirical competitive ratio of 1.08. This represents a 16.1% im-
provement over the carbon-agnostic algorithm, and improvements of 11.4% and 2.19% over the
k-max search and constant threshold switching-cost-agnostic algorithms, respectively.

We conjecture that one dynamic contributing to this is the relatively low values of θ observed
for the carbon-free supply percentage in these real-world carbon traces.

B Competitive Analysis of DTPR-max: Proof of Theorem 5

Here we prove the DTPR-max results presented in Theorem 5 and Corollary 7.

Proof of Theorem 5. For 0 ≤ j ≤ k, let Sj ⊆ S be the sets of OPR-max price sequences for which
DTPR-max accepts exactly j prices (excluding the k− j prices it is forced to accept at the end of the
sequence). Then all of the possible price sequences for OPR-max are represented by S =

⋃k
j=0 Sj .

By definition, uk+1 = U . Let ε > 0 be fixed, and define the following two price sequences σj and
ρj :

∀0 ≤ j ≤ k : σj = u1, `2, . . . , `j , L, uj+1 − ε, . . . , uj+1 − ε︸ ︷︷ ︸
k

, L, L, . . . , L︸ ︷︷ ︸
k

.

∀0 ≤ j ≤ k : ρj = u1, L, u2, L, . . . , L, uj , L, uj+1 − ε, . . . , uj+1 − ε︸ ︷︷ ︸
k

, L, L, . . . , L︸ ︷︷ ︸
k

.

We have two special cases for j = 0 and j = 1. For j = 0, we have that σ0 = ρ0, and this sequence
simply consists of u1− ε repeated k times, followed by L repeated k times. For j = 1, we also have
that σ1 = ρ1, and this sequence consists of one price with value u1 and one price with value L,
followed by u2 − ε repeated k times and L repeated k times.

Observe that as ε → 0, σj and ρj are sequences yielding the worst-case ratios in Sj , as
DTPR-max is forced to accept (k − j) worst-case L values at the end of the sequence, and each
accepted value is exactly equal to the corresponding threshold.

σj and ρj also represent two extreme possibilities for the switching cost. In σj , DTPR-max only
switches twice, but it mostly accepts values `i. In ρj , DTPR-max must switch j + 1 times because
there are many intermediate L values, but it only accepts values which are at least ui.

Observe that OPT(σj)/DTPR-max(σj) = OPT(ρj)/DTPR-max(ρj). First, the optimal solution for
both sequences is exactly the same: kcmax(σj)− 2β = kcmax(ρj)− 2β.
For any sequence s in Sj , we also know that cmax(s) < uj+1, so OPT(ρj) = OPT(σj) ≤ kuj+1 − 2β.

By definition of the threshold families {ui}i∈[1,k] and {`i}i∈[1,k], we know that∑j
i=1 ui − j2β =

∑j
i=1 `i for any value j ≥ 2:

DTPR-max(ρj) =

(
u1 +

j∑
i=2

`i + (k − j)L− 4β

)
=

(
j∑
i=1

ui + (k − j)L− (j + 1)2β

)
= DTPR-max(σj).

Note that whenever j < 2, we have that σ0 = ρ0, and σ1 = ρ1. Thus, DTPR-min(ρj) = DTPR-min(σj)
holds for any value of j.

By definition of u1, we simplify u1 +
∑j

i=2 `i + (k − j)L− 4β to
∑j

i=1 `i + (k − j)L− 2β. For
any sequence s ∈ Sj , we have the following:

OPT(s)

DTPR-max(s)
≤ OPT(σj)

DTPR-max(σj)
=

OPT(ρj)

DTPR-max(ρj)
≤ kuj+1 − 2β∑j

i=1 `i + (k − j)L− 2β
. (12)

30

Lemma 11. For any j ∈ [0, k], by definition of {ui}i∈[1,k] and {`i}i∈[1,k],

ω ·

(
j∑
i=1

`i + (k − j)L− 2β

)
≤ kuj+1 − 2β. The proof is deferred to Appendix C.

For ε→ 0, the competitive ratio OPT/DTPR-max is exactly ω:

∀0 ≤ j ≤ k :
OPT(σj)

DTPR-max(σj)
=

kuj+1 − 2β∑j
i=1 `i + (k − j)L− 2β

= ω.

and thus for any sequence s ∈ S,

∀s ∈ S :
kcmax(s)− 2β

DTPR-max(s)
≤ ω.

Since OPT(s) ≤ kcmax(s)− 2β for any sequence s, this implies that DTPR-max is ω-competitive.

Proof of Corollary 7. For simplification purposes, let β = bL/2, where b is a real constant on the
interval (0, k). To show part (a) for REGIME-1, with fixed k ≥ 1, observe that for sufficiently large
ω, we have the following:

θ − b− 1 = (ω − 1)
(

1 +
ω

k

)k
−
(
b− b

k
+
bω

k

)(
1 +

ω

k

)k
≈ (1 + o(1))

[
ω
(ω
k

)k
− b

(ω
k

)k+1
− b
]
.

Let ω+ = k+1

√
kk · kθ

k−b . Then, for sufficiently large ω, we have the following:

(1 + o(1))

[
ω+

(ω+

k

)k
− b

(ω+

k

)k+1
− b
]

= (1 + o(1))
(k − b)(θ)
k − b

= (1 + o(1)) [θ − b] .

Furthermore, let ε > 0 and set ω− = (1− ε) k+1

√
kk · kθ

k−b .

A similar calculation as above shows that for sufficiently large θ we have:

(ω− − 1)
(

1 +
ω−
k

)k
−
(
b− b

k
+
aω−
k

)(
1 +

ω−
k

)k
≥ (1− 3kε) [θ − b] .

Thus, ω = O
(

k+1

√
kk kθ

k−b

)
satisfies (10) for sufficiently large ω, fixed k ≥ 1, and

β = bL
2 s.t. b ∈ (1, k).

To show part (b) for REGIME-2, observe that the right-hand side of (10) can be approximated

as
(
1 + ω

k

)k ≈ eω when k →∞. Then by taking limits on both sides, we obtain the following:

U − L− 2β

L (ω − 1)− 2β (1)
= eω.

Let β = bL/2 as outlined above. We then obtain the following:

U − L− bL
L (ω − 1)− bL

=
θ − 1− b
ω − 1− b

= eω =⇒ θ − 1− b = (ω − 1− b) eω.

By definition of the Lambert W function, solving this equation for ω obtains part (2).

31

C Proofs of Lemmas 10 and 11

In this section, we give the deferred proofs of Lemmas 10 and 11, which are used in the proofs of
Theorem 4 and Theorem 5, respectively.

Proof of Lemma 10. We show that the following holds for any j ∈ [0, k], by Definition 1:

j∑
i=1

ui + (k − j)U + 2β ≤ α · (k`j+1 + 2β).

First, note that k`j+1 = k(uj+1−2β) for all j ∈ [0, k], by Observation 3. This gives us the following:

j∑
i=1

ui + (k − j)U + 2β ≤ αkuj+1 + α2β − αk2β,

j∑
i=1

ui + (k − j)U + [2β − α2β + αk2β] ≤ αkuj+1,

(k − j)U
αk

+

∑j
i=1 ui
αk

+

[
2β

αk
− 2β

k
+ 2β

]
≤ uj+1.

By substituting Def. 1 into
∑j

i=1 ui, the above can be simplified exactly to the closed form for
uj+1:

U

α
− jU

αk
+

(∑j
i=1 ui
αk

)
+

[
2β

αk
− 2β

k
+ 2β

]
= uj+1,[

U −
(
U − 1

α

)(
1 +

1

αk

)j]
+

[(
2β

αk
− 2β

k
+ 2β

)(
1 +

1

αk

)j]
= uj+1.

and the claim follows by the definition of uj+1.

Proof of Lemma 11. We show that the following holds for any j ∈ [0, k], by Definition 2:

ω ·

(
j∑
i=1

`i + (k − j)L− 2β

)
≤ kuj+1 − 2β.

First, note that kuj+1 = k(`j+1+2β) for all j ∈ [0, k], by Observation 3. This gives us the following:

j∑
i=1

`i + (k − j)L− 2β ≤ k`j+1

ω
− 2β

ω
+
k2β

ω
,

j∑
i=1

`i + (k − j)L−
[
2β − 2β

ω
+
k2β

ω

]
≤ k`j+1

ω
,

ω
(∑j

i=1 `i

)
k

+
ω(k − j)L

k
−
[
ω2β

k
− 2β

k
+ 2β

]
≤ `j+1.

32

By substituting Def. 2 into
∑j

i=1 `i, the above can be simplified exactly to the closed form for `j+1:

ωL− ωjL

k
+
ω
(∑j

i=1 `i

)
k

−
[
ω2β

k
− 2β

k
+ 2β

]
= `j+1,[

L+ (ωL− L)
(

1 +
ω

k

)j]
−
[(

ω2β

k
− 2β

k
+ 2β

)(
1 +

ω

k

)j]
= `j+1.

and the claim follows by the definition of `j+1.

D Proofs of Lower Bound Results

This section formally proves the lower bound results for both OPR-min and OPR-max, building on
the proof sketch provided in Section 5.2.

D.1 Proof of Theorem 8 (OPR-min Lower Bound)

Proof of Theorem 8. Let ALG be a deterministic online algorithm for OPR-min, and suppose that
the adversary uses the price sequence `1, . . . , `k, which is exactly the sequence defined by (5). `1 is
presented to ALG, at most k times or until ALG accepts it. If ALG never accepts `1, the remainder of
the sequence is all U , and ALG achieves a competitive ratio of kU+2β

k`1+2β = α, as defined in (7).
If ALG accepts `1, the next price presented is U , repeated at most k times or until ALG switches

to reject U . After ALG has switched, `2 is presented to ALG, at most k times or until ALG accepts
it. Again, if ALG never accepts `2, the remainder of the sequence is all U , and ALG achieves a
competitive ratio of at least `1+(k−1)U+4β

k`2+2β = α, as defined in (7).
As the sequence continues, whenever ALG does not accept some `i after it is presented k times,

the adversary increases the price to U for the remainder of the sequence. Otherwise, if ALG accepts
k prices before the end of the sequence, the adversary concludes by presenting L at least k times.

Observe that any ALG which does not immediately reject the first U presented to it after ac-
cepting some `i obtains a competitive ratio strictly worse than α. To illustrate this, suppose ALG

has just accepted `1, incurring a cost of `1 + β so far. The adversary begins to present U , and ALG

accepts y ≤ (k− 1) of these U prices before switching away. If y = (k− 1), ALG will accept k prices

before the end of the sequence and achieve a competitive ratio of `1+(k−1)U+2β
kL+2β > α. Otherwise, if

y < (k − 1), the cost incurred by ALG so far is at least `1 + 2β + yU , while the cost incurred by
ALG if it had immediately switched away (y = 0) would be `1 + 2β – since any price which might
be accepted by ALG in the future should be ≤ U , the latter case strictly improves the competitive
ratio of ALG.

Assuming that ALG does immediately reject any U presented to it, and that ALG accepts
some prices before the end of the sequence, the competitive ratio attained by ALG is at least∑j

i=1 `i+(j+1)2β+(k−j)U
k`j+1+2β = α, as defined in (7).

Similarly, if ALG accepts k prices before the end of the sequence, the competitive ratio attained

by ALG is at least
∑k

i=1 `i+k2β
kL+2β = α, as defined in (7).

Since any arbitrary deterministic online algorithm ALG cannot achieve a competitive ratio better
than α playing against this adaptive adversary, our proposed algorithm DTPR-min is optimal.

D.2 Proof of Theorem 9 (OPR-max Lower Bound)

Proof of Theorem 9. Let ALG be a deterministic online algorithm for OPR-max, and suppose that
the adversary uses the price sequence u1, . . . , uk, which is exactly the sequence defined by (6). u1

33

is presented to ALG, at most k times or until ALG accepts it. If ALG never accepts u1, the remainder
of the sequence is all L, and ALG achieves a competitive ratio of ku1−2β

kL−2β = ω, as defined in (8).
If ALG accepts u1, the next price presented is L, repeated at most k times or until ALG switches

to reject L. After ALG has switched, u2 is presented to ALG, at most k times or until ALG accepts
it. Again, if ALG never accepts u2, the remainder of the sequence is all L, and ALG achieves a
competitive ratio of at least ku2−2β

u1+(k−1)L−4β = ω, as defined in (8).
As the sequence continues, whenever ALG does not accept some ui after it is presented k times,

the adversary drops the price to L for the remainder of the sequence. Otherwise, if ALG accepts k
prices before the end of the sequence, the adversary concludes by presenting U at least k times.

Observe that any ALG which does not immediately reject the first L presented to it after accepting
some ui obtains a competitive ratio strictly worse than ω. To illustrate this, suppose ALG has just
accepted u1, achieving a profit of u1 − β so far. The adversary begins to present L prices, and ALG

accepts y ≤ (k− 1) of these L prices before switching away. If y = (k− 1), ALG will accept k prices
before the end of the sequence and achieve a competitive ratio of kU−2β

u1+(k−1)L−2β > ω. Otherwise, if

y < (k− 1), the profit achieved by ALG so far is at most u1 − 2β + yL, while the profit achieved by
ALG if it had immediately switched away (y = 0) would be u1 − 2β – since any price which might
be accepted by ALG in the future should be ≥ L, the latter case strictly improves the competitive
ratio of ALG.

Assuming that ALG does immediately reject any L presented to it, and that ALG accepts
some prices before the end of the sequence, the competitive ratio attained by ALG is at least

kuj+1−2β∑j
i=1 ui−(j+1)2β+(k−j)L

= ω, as defined in (8).

Similarly, if ALG accepts k prices before the end of the sequence, the competitive ratio attained
by ALG is at least kU−2β∑k

i=1 ui−k2β
= ω, as defined in (8).

Since any arbitrary deterministic online algorithm ALG cannot achieve a competitive ratio better
than ω playing against this adaptive adversary, our proposed algorithm DTPR-max is optimal.

34

	1 Introduction
	2 Problem Formulation and Preliminaries
	2.1 Problem Formulation
	2.2 Background: Online Threshold-Based Algorithms (OTA)

	3 Double Threshold Pause and Resume (DTPR) Algorithm
	4 Main Results
	5 Proofs
	5.1 Competitive Results for DTPR-min
	5.2 Lower Bound Analysis: Proof Sketch for Theorems 8 and 9

	6 Case Study: Carbon-Aware Temporal Workload Shifting
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	A Case Study Results for DTPR-max Algorithm
	B Competitive Analysis of DTPR-max: Proof of Theorem 5
	C Proofs of Lemmas 10 and 11
	D Proofs of Lower Bound Results
	D.1 Proof of Theorem 8 (OPR-min Lower Bound)
	D.2 Proof of Theorem 9 (OPR-max Lower Bound)

