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BiC-Net: Learning Efficient Spatio-Temporal
Relation for Text-Video Retrieval

Ning Han, Jingjing Chen, Chuhao Shi, Yawen Zeng, Guangyi Xiao, and Hao Chen

Abstract—The task of text-video retrieval aims to understand
the correspondence between language and vision, has gained
increasing attention in recent years. Previous studies either
adopt off-the-shelf 2D/3D-CNN and then use average/max pooling
to directly capture spatial features with aggregated temporal
information as global video embeddings, or introduce graph-
based models and expert knowledge to learn local spatial-
temporal relations. However, the existing methods have two
limitations: 1) The global video representations learn video
temporal information in a simple average/max pooling manner
and do not fully explore the temporal information between
every two frames. 2) The graph-based local video representations
are handcrafted, it depends heavily on expert knowledge and
empirical feedback, which may not be able to effectively mine
the higher-level fine-grained visual relations. These limitations
result in their inability to distinguish videos with the same visual
components but with different relations.

To solve this problem, we propose a novel cross-modal re-
trieval framework, Bi-Branch Complementary Network (BiC-
Net), which modifies transformer architecture to effectively
bridge text-video modalities in a complementary manner via
combining local spatial-temporal relation and global temporal
information. Specifically, local video representations are encoded
using multiple transformer blocks and additional residual blocks
to learn spatio-temporal relation features, calling the module a
Spatio-Temporal Residual transformer (SRT). Meanwhile, Global
video representations are encoded using a multi-layer trans-
former block to learn global temporal features. Finally, we align
the spatio-temporal relation and global temporal features with
the text feature on two embedding spaces for cross-modal text-
video retrieval. Extensive experiments are conducted on MSR-
VTT, MSVD, and YouCook2 datasets. The results demonstrate
the effectiveness of our proposed model. The code is available
at: https://github.com/lionel-hing/BiC-Net.

Index Terms—Text-Video Retrieval, Spatio-Temporal Relation,
Bi-Branch Complementary Network.

I. INTRODUCTION

RECENT years have witnessed an exponential growth of
multimedia data (e.g., video, image, and text), which

increases the demands for effectively retrieving relevant data
from another modality, when given a query of one modality.
Being one of these challenging tasks, text-video retrieval
aims to retrieve the video given a text query, which requires
measuring the semantic similarity between a sentence and
a video. Video data are distinct from images due to the
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Fig. 1: An example of text to video retrieval. Given a
textual query, a common pipeline with fine-grained [1] or
global semantical visual features [2] will return two videos
with the same compositions. The retrieval model with
complementary spatio-temporal relation visual features
can filter out false-positive without correct interactions.

temporal dependencies among frames and the additional dy-
namic relationships among objects, resulting in the inability
of existing video retrieval techniques to distinguish videos
with the same visual components but with different relations.
Figure 1 shows such an example. Given the text query “A
woman breaks the two bacon slices into pieces and lay them
on the tomatoes”, the existing retrieval systems are likely to
consider both (a) and (b) as positive examples, since both of
them contain the same motion (“laying”) and objects (“bacon
slices”, “tomatoes”) with the text query. However, example
(b) is indeed a false positive, as it presents “a woman lays
tomatoes on the green leaves” (with bacon slices on the
kitchen table). This example suggests that ignoring the visual
relations (i.e., object relations) presented in videos could lead
to inaccurate retrieval results. Therefore, capturing higher-
level spatio-temporal visual relations in videos is crucial to
distinguish similar videos.

This paper investigates the problem of cross-modal text-
video retrieval. In the literature, many efforts have been
devoted to learning better video representations, in order to
improve the performance of text-video retrieval. Based on
the granularity of feature representations, existing works can
be roughly categorized into global and local feature-based
methods. Global feature-based methods typically use global
representations to represent entire video and sentence, which
usually lose part of this temporal information and local details.
Such approaches work well in a simple cross-modal retrieval
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scenario, where only a single object is presented in the video
or text query. For more realistic cases involving complex
natural scenes, the performance of these methods is usually
unsatisfactory. In contrast, local feature-based methods pay
attention to local details and perform matching by detecting
objects in videos and texts. With local region modeling, the
performance of text-video retrieval has been significantly im-
proved. Nevertheless, the existing efforts can only capture sim-
ple visual relations by graph convolutional network (GCN) [1],
[3] or utilize an attention mechanism [4], [5] as a cross-modal
interaction module to delve into high-level correspondences.
As GCN-based video modeling is handcrafted, it depends
heavily on expert knowledge and empirical feedback, which
may not be able to effectively mine and model the higher-
level fine-grained visual relations. Attention-based models, on
the other hand, selectively align the key information presented
in different modalities. As the fine-grained visual relations
are also ignored by attention-based methods, the performance
of these methods is still unsatisfactory, and novel modeling
solutions are eagerly awaited.

To further improve the performance of text-video retrieval,
this paper studies this problem from the perspective of spatio-
temporal relation modeling for videos. Generally, there are two
major obstacles in modeling the spatio-temporal relation. First,
videos contain diverse spatial and temporal information within
variations in motion and richer information in local visual
details. These objects and interactions increase the difficulties
in capturing higher-level fine-grained visual contents. Second,
local relation modeling captures considerable fragmented in-
formation, which will overlook contextual information. There-
fore, the way to comprehensively capture multi-granularity
visual information to represent videos from complementary
spatial and temporal perspectives is of great importance.

To address the aforementioned problems, we propose a
novel Bi-Branch Complementary Network (BiC-Net), which
modifies transformer architecture to effectively bridge text-
video modalities in a complementary manner via combining
local spatial-temporal relation and global temporal informa-
tion. We present an overview of BiC-Net in Figure 2. Specifi-
cally, for videos, our BiC-Net attempts to extract two perspec-
tives of features — global temporal features and local relation
features. At the global temporal level, we directly adopt the
widely used 2D and 3D-CNN. For local relational features, we
use pre-trained Faster-RCNN [6] to extract regional features
(i.e., features of bounding boxes). Then, a spatio-temporal
residual transformer is employed for learning high-level fine-
grained relational features. This module separately captures
local spatial relations, and long-term temporal relations among
local spatial relations. In addition, a multi-layer transformer
block is applied for learning global temporal features. To cover
different levels of semantics, we align the global temporal and
local relation features with the text feature on two embedding
spaces. Lastly, the similarity between videos and texts is mea-
sured in both embedding spaces and then summed to obtain
the final similarity score. In this way, the global temporal
information and local relation information in a video can be
utilized for cross-modal text-video retrieval comprehensively.

Our contributions are summarized as below:

• We incorporate feature-split with bi-branch framework
called BiC-Net to capture local relations and global tem-
poral features comprehensively, which aligns the global
temporal and local relation features with the text feature
on two embedding spaces for cross-modal text-video
retrieval.

• We first introduce a simple and effective spatio-temporal
residual transformer to learn higher-level local relation
features, and a multi-layer temporal transformer to further
explore global temporal information for global temporal
features. In this way, the bi-branch information in video
and text can accurately capture cross-modal semantic
alignment in a cooperative and complementary manner.

• We conduct extensive experiments on three standard
benchmarks and verify the effectiveness of our proposed
method by showing that BiC-Net can achieve SOTA
performance (86.7% on MSR-VTT 1k-A test set) under
similar conditions.

The rest of this paper is organized as follows. In Section
II, we briefly describe a review of related work. In Section
III, we describe our proposed BiC-Net model. In Section IV,
we provide implementation details and experimental results.
In Section V, we finally conclude our paper.

II. RELATED WORK

A. Text-video Retrieval

According to the granularity of feature representations, we
roughly divide existing works into two groups: global feature-
based methods and local relation feature-based methods.

Global feature-based methods [2], [7], [8] extract global
feature representations of videos and texts and then learn a
joint embedding space where visual and textual similarity is
measured. For the video representation, they adopt 2D/3D
CNN models to extract frame features and aggregate frame
features by average-pooling [9]–[11] or max-pooling [2], [12].
For the video representation, they focused only on leveraging
the global feature of the video. For instance, Dong et al. [8],
[13] employ three levels, i.e., global, temporal, and local to
encode videos and texts and learn a hybrid common space
for video-text similarity measurement. Miech et al. [2] adopt
2D and 3D CNN to extract frame features and only use max-
pooling to obtain global video representation. Yang et al. [7]
present a latent semantic tree to encode the text and used a
multi-head self-attention mechanism to obtain the temporal-
attentive video representation.

Local feature-based methods [3]–[5], [14]–[16] use local
semantic information from language or video for better text-
video alignment from different aspects and then perform text-
video retrieval tasks. Wray et al. [14] disentangle action
phrases into verbs and nouns for fine-grained video retrieval.
The graph-based approaches [1], [3], [16] construct different
semantic correlation graphs for videos and learn fine-grained
semantic relations for text-video retrieval. Some works [4],
[5], [15] also propose fine-grained alignment models that
decompose text and video into multiple levels and align text
with video at multiple levels for text-video matching.
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Fig. 2: The overall framework of our proposed BiC-Net. First, we extract local relational and global visual features for
videos. The local relations are represented by local regional features using a spatio-temporal residual transformer. The
global video features are represented by 2D-CNN and 3D-CNN features via a multi-layer temporal transformer. Then,
we extract textual features by BERT. Finally, both video and relational features are leveraged to align with textual
features on two embedding spaces for cross-modal text-video retrieval. Among them, T-Block denotes the transformer
block.

Recently, some studies have also explored a combination
of video experts (e.g., motion, audio, and speech) [10], [17]–
[19] or pre-trained video experts [20]–[22] to improve the per-
formance of cross-modal retrieval. Lately, Transformer-based
works [23]–[27] have benefited from pre-training models on
large-scale language-vision datasets [23], [27]. For example,
Bain et al. [27] propose an end-to-end trainable model which
adopts a space-time transformer encoder to flexibly train
on both video and image datasets. Luo et al. [23] apply
the joint language-vision model of CLIP [28], pre-trained
on a large-scale text-image dataset as a backbone for text-
video retrieval. However, Transformer-based methods have a
heavy computational burden due to computational intensive
operations and are extremely time-consuming to pre-train on
large-scale datasets. Different from these existing works, our
study introduces a new spatial-temporal residual transformer
to learn higher-level local relation features and a multi-layer
transformer to further explore global temporal information for
global temporal features. In this way, bi-branch information
in video and text can accurately capture cross-modal semantic
alignment in a cooperative and complementary manner.

B. Spatio-Temporal Relation Modeling in Video Understand-
ing

For spatio-temporal relation modeling in video understand-
ing, earlier works adopt 2D/3D CNNs to represent the core op-
erators for spatio-temporal feature learning across downstream
video tasks [29]–[32], [32]. However, these video representa-
tions focus on learning spatio-temporal features from the entire
video and can hardly capture local spatial-temporal relation
information. To understand the local relation information in
the video, several efforts have demonstrated the effectiveness
of incorporating local spatial-temporal relationships into video

understanding in many downstream applications, such as vi-
sual relationship detection [33]–[35], action recognition [36]–
[38], and video retrieval [1], [3], [16]. For instance, Qian et al.
construct a spatio-temporal graph in adjacent video clips to de-
fine the relationships between objects. Wang et al. [36] abstract
the video as a space-time graphs for action recognition. Song
et al. [1] model video as a spatial-temporal graph between
object interactions for text-video retrieval. However, modeling
object spatio-temporal relations in the video is still not thor-
oughly investigated. These studies have built visual relation
graphs and adopted the GCN [39] to extract visual relation
graph features. Massive graph construction and graph feature
extraction are hand-crafted, complex, and time-consuming.
Recently, the transformer [40] has shown great superiority in
understanding 1, 2, and 3-dimensional signals (e.g., natural
language processing and computer vision), and has strong
interpretability, and strong representation capabilities. Unlike
these works, our work designs a spatio-temporal residual
transformer to learn the local spatio-temporal relations and
further mine the object interactions. Notably, we validate in the
experiments that under a strict memory budget, our approach
can surpass many related methods.

III. PROPOSED METHOD

As depicted in Figure 2, the overall pipeline of the proposed
method consists of four modules: 1) video embedding learning,
which involves extracting video global features; 2) relation
embedding learning, which involves extracting local relational
features in videos; 3) text embedding learning, which learns
the representation for textual sentences by BERT [41]; and 4)
joint embedding learning, which optimizes the correspondence
between text and video features in a common space with a
triple ranking loss.
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A. Video Embedding Learning

Given a long video clip, we sample T video frames from it
with the same temporal duration between every two frames.
For frame-level features, we first use 2D-CNN to extract
appearance features and 3D-CNN to extract motion features.
Then, we concatenate 2D and 3D features and apply a point-
wise linear layer to obtain global visual features Fg ∈ Rdg .
Finally, we feed the result to standard multi-layer transformer
block [40] and an attention-aware feature aggregation layer
[42] to obtain its video embedding, which is denoted as
Fv ∈ Rd∗ .

B. Relation Embedding Learning

In addition to having global visual features, the proposed
framework learns local relation features from the video to
improve the performance of cross-modal retrieval. The in-
troduction of spatio-temporal relation among objects in the
video equips the model with the ability to identify the fine-
grained differences of video with similarity. To capture the
visual relations from the video, we first adopt the pre-trained
Faster RCNN [43] to detect frame-level region proposals and
select the top N region proposals with the highest detection
confidence to represent each frame. Prior efforts [36], [38]
focus on abstracting frame-level region proposals as fully
connected spatial-temporal graphs and using GCN to learn
relational features. However, computing all pair-wise relations
across all video frames would be inefficient in creating a video
as a fully connected graph. In recent years, pure transformer-
based models have shown promising performance due to
their strong representation capabilities. As a central piece of
transformer, self-attention comes with a flexible mechanism to
deal with variable-length inputs. It can be understood as a fully
connected layer where the weights are dynamically generated
from pairwise relations from inputs, which conveys refreshing
solutions to process visual relations.

Inspired by these pioneering efforts, to capture higher-level
visual relations from the video, we design a new architecture
to learn the relation embeddings, named Spatio-Temporal
Residual Transformer (SRT), that exploits all the variants of
transformer blocks and residual connections but composes
each in different placement of SRT. In the following, the basic
components used in the transformer block and the transformer
block used in the SRT module are presented in detail.

Transformer Block. The Transformer consists of multi-
head self-attention (MSA), multi-layer perceptron (MLP), and
layer-norm (LN). In the self-attention module, the inputs
X ∈ Rn×d are linearly transformed to three parts, i.e., queries
Q ∈ Rn×dk , keys K ∈ Rn×dk and values V ∈ Rn×dv , where
n is the sequence length, d, dk, dv are the dimensions of
inputs, queries (keys) and values, respectively. The scaled dot-
product attention is applied on Q, K, V :

SA (Q,K, V ) = softmax

(
QKT

√
dk

)
V. (1)

With SA (Q,K, V ), MSA is defined as:

MSA (Q,K, V ) = Concat (head1, · · ·, headM )WO,

where headi = SA(QWQ
i ,KW

K
i , V WV

i ).
(2)

Where QWQ
i ,KW

K
i , V WV

i are projections of different
heads, WO is another mapping function. The MLP is applied
between self-attention layers for feature transformation and
non-linearity:

MLP (X) = GELU (XW1 + b1)W2 + b2, (3)

where W1 ∈ Rd×dm and W2 ∈ Rdm×d are weights of the two
fully-connected layers respectively, b1 ∈ Rdm and b2 ∈ Rd

are the bias terms, and GELU [44] is the activation function.
Layer normalization [45] is a key part in transformer for stable
training and faster convergence, and LN is applied over each
sample x ∈ Rd as follows:

LN (x) =
x− µ
η
� γ + β, (4)

where µ ∈ R, η ∈ R are the mean and standard deviation
of the feature respectively, � is the element-wise dot, and
γ ∈ Rd, β ∈ Rd are learnable affine transform parameters.

SRT for relation embedding learning. We propose a
spatio-temporal residual transformer architecture to learn local
relation information in a video. In this spatio-temporal residual
transformer, we have two data flows in which one flow
operates across the frame and the other processes the object
proposals inside each frame. Suppose that a set of object
proposals Y t = {yt}Nn=1 are in frame t, where yt ∈ Rdr

is the feature vector of the n-th proposal and N is the top N
region proposals. We view each frame tensor Y t

0 as a sequence
of object proposal embeddings:

Y t
0 =

[
yt,10 , yt,20 , · · ·, yt,N0

]
. (5)

For the object proposal embeddings, to capture spatial relations
among visual objects, we utilize a transformer block to ex-
plore the interaction pattern in spatial (frame) between object
proposals . Then, a residual connection is used to aggregate
spatial information and original local information:

Y t′

l = Y t
l−1 +MSA

(
LN

(
Y t
l−1

))
, (6)

Y t′′

l = Y t′

l +MLP
(
LN

(
Y t′

l

))
, (7)

Y t′′′

l = Y t′′

l + Y t
l−1. (8)

where l = 1, 2, · · ·, L is index of the l-th layer, and L is the
total number of layers. The updated features after multi-layer
transformer block are forwarded to an average pooling layer,
which calculates the mean of all the proposal features and
leads to a 1×dr dimensions representation. All frame tensors
after transformation are

Z0 =
[
Y 1′′′

L , Y 2′′′

L , · · ·, Y T ′′′

L

]
. (9)

This process builds the relationship among proposals by com-
puting interactions between any two proposals. For the frame
level, we create the object proposal embedding memories to
store the sequence of frame-level representations Z0. Similar
to the object proposal level processing, we use a transformer
block for transforming the frame embeddings. Then, a residual
connection is used to aggregate temporal information with spa-
tial information and spatio-temporal information with original
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Fig. 3: Designs of SRT and its variants: (a) spatial residual (Spatial-SRT); (b) temporal residual (Temporal-SRT); (c)
spatio-temporal residual (Spatio-Temporal-SRT); (d) our SRT.

local information, respectively. Our final relation embedding
is defined as:

Z
′

l = Zl−1 +MSA (LN (Zl−1)) , (10)

Z
′′

l = Z
′

l +MLP
(
LN

(
Z
′

l

))
, (11)

Z
′′′

l = Z
′′

l + Zl−1, (12)

Fr = Z
′′′

l + Y t
l−1. (13)

The temporal transformer block is used for modeling tempo-
ral relation among frame embeddings. Finally, we apply an
attention-aware feature aggregation layer [42] to obtain the
final relation embedding, denoted as Fr ∈ Rd∗ .

Next, we discuss several variants for SRT, as illustrated in
Figure 3. Spatial-SRT only utilizes Eq.(8) to aggregate spatial
information and original local information by a residual con-
nection (i.e., Figure (3a)). Temporal-SRT only adopts Eq.(12)
to aggregate temporal information and spatial information by
a residual connection (i.e., Figure (3b)). Spatio-Temporal-
SRT only uses Eq.(8) and Eq.(12) to aggregate temporal
information with spatial information and spatial information
with original local information by a residual connection,
respectively (i.e., Figure (3c)). Besides, we use Non-SRT as
a base variant, and the module indicates that no residuals
are added between the transformer blocks. We compare the
above five variants of SRT on a standard benchmark in Section
IV-B and observe the SRT achieves the best performance.
Moreover, we find that SRT introduces minor modifications
of the residual connection but grants maximum benefits.

C. Text Embedding Learning

For learning the contextual relations between the words
in the video description sentence si, we adopt a BERT
language representation model to encode the word sequence,
and it applies the bidirectional training of transformer [40]
to language modeling. It includes 12 layers of transformer
blocks. Each block has 12 attention heads, and the hidden
size is 768. Here, we take the hidden state of the per-token
outputs of the last 2 layers to represent the information of
the entire input sentence Fs ∈ Rdt . Finally, we transform
each sentence representation Fs ∈ Rdt into a text embedding
feature Ft ∈ Rd∗ by using a pointwise linear layer and an
attention-aware feature aggregation layer [42].

D. Joint Embedding Learning

The purpose of joint embedding learning between video and
textual features is to perform similarity comparisons. For a
given video Vi, the proposed framework extracts two types
of embedding features — video embeddings Fv and relation
embeddings Fr. We calculate the similarity between videos
and sentences in both embedding spaces. Specifically, for a
given sentence Ti, the similarity score with Vi is obtained by
summing the cosine similarities between its text embedding
features Ft and such two types of video embedding features,

S (Vi, Ti) = λ · cosine (Fr, Ft) + (1− λ) · cosine (Fv, Ft) .
(14)

where 0 ≤ λ ≤ 1 is a hyper-parameter to balance the
importance of two similarity scores. Based on the defined
similarity score, we use a hinge-based triplet ranking loss to
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TABLE I: Performance of introducing visual relations (VR) for cross-modal retrieval. The evaluations are done on
1k-A test set (Training-9k) [18] for MSR-VTT.

Method Text-to-Video Video-to-Text
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

dataset split from [18]
VG 32.9 65.8 79.7 3 32.1 65.2 77.6 3
VRst 29.8 64.4 77.2 3 29.2 63.6 76.8 3
VG+VRm 32.7 66.0 79.4 3 32.9 67.0 79.6 3
VG+VRs 33.8 69.3 82.9 2 36.2 72.4 84.3 2
VG+VRt 33.7 67.5 81.7 3 34.0 70.2 82.7 2
BiC-Net 39.4 75.5 86.7 2 39.4 76.5 85.9 2

TABLE II: Performance of the variants for SRT for cross-modal retrieval. The evaluations are done on 1k-A test set
(Training-9k) [18] for MSR-VTT.

Method Text-to-Video Video-to-Text
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

dataset split from [18]
Non-SRT 36.2 73.9 84.4 2 38.2 74.3 87.5 2
Spatial-SRT 37.8 71.7 85.0 2 39.2 74.5 85.2 2
Temporal-SRT 37.8 71.9 85.2 2 40.1 73.9 85.8 2
Spatio-Temporal-SRT 38.2 73.2 85.8 2 39.3 74.2 85.5 2
SRT (BiC-Net) 39.4 75.5 86.7 2 39.4 76.5 85.9 2

TABLE III: Cross-modal retrieval comparison with state-of-the-art methods on MSR-VTT.

Method Text-to-Video Video-to-Text
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

Full test set [46]
STG [1] 8.3 23.7 33.9 28 - - - -
HGR [4] 9.2 26.2 36.5 24 15.0 36.7 48.8 11
DualEncoding [8] 11.6 30.3 41.3 17 22.5 47.1 58.9 7
T2VLAD [19] 12.7 34.8 47.1 12 20.7 48.9 62.1 6
BiC-Net 19.2 47.0 62.5 6 20.6 49.3 63.7 6
1k-B test set [12]
CE [10] 18.2 46.0 60.7 7 18.0 46.0 60.3 6.5
DualEncoding [8] 23.0 50.6 62.5 5 25.1 52.1 64.6 5
MMT [18] 20.3 49.1 63.9 6 21.1 49.4 63.2 6
T2VLAD [19] 26.1 54.7 68.1 4 26.7 56.1 70.4 4
BiC-Net 34.0 71.1 84.1 3 37.9 73.4 85.3 2
1k-A test set (training-7k) [2]
Miech et al. [2] 12.1 35.0 48.0 12 - - - -
STG [1] 15.5 39.2 50.4 10 - - - -
TCE [7] 17.1 39.9 53.7 9 - - - -
DualEncoding [8] 21.6 49.5 62.3 6 27.8 48.7 58.7 6
BiC-Net 32.8 68.2 82.4 3 36.8 71.5 83.5 2
1k-A test set (Training-9k) [18]
MMT [18] 24.6 54.0 67.1 4 24.4 56.0 67.8 4
SUPPORT-SET [22] 27.4 56.3 67.7 3 26.6 55.1 67.5 3
Frozen [27] 31.0 59.5 70.5 3 - - - -
CLIP4Clip [23] 44.5 71.4 81.6 2 - - - -
BiC-Net 39.4 75.5 86.7 2 39.4 76.5 85.9 2

encourage the similarity score of matched video and sentence
to be larger than those of mismatched ones:

Lr = [δ − S (Vi, Ti) + S (Vi, Tj)]+
+ [δ − S (Vi, Ti) + S (Vj , Ti)]+ ,

(15)

where 0 < δ ≤ 1 is the margin, the operator [x]+ =
max(x, 0), and S(·, ·) is the similarity function.(Vi, Ti) rep-
resents the positive pair, while (Vi, Tj) and (Vj , Ti) represent
the negative pairs available in the mini-batch.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: We evaluated the proposed BiC-Net model on
three benchmarks: MSR-VTT, MSVD, and YouCook2. The
MSR-VTT dataset [46] is the most widely-used dataset for
text-video retrieval. It contains 10, 000 Youtube video clips
with 20 different text captions. Following the settings in [12],
[46], [47], we adopt three kinds of evaluation settings. For
the 1k-A test set [47], we using 7k train+val videos [2] and
9k train+val videos for training [18] and report results. The
MSVD dataset [48] contains 1, 970 video clips from YouTube.
Each video clip has around 40 descriptions in multiple lan-
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TABLE IV: Cross-modal retrieval comparison with state-of-the-art methods on MSVD.

Method Text-to-Video Video-to-Text
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

Mithun et al. [17] 16.1 41.1 53.5 9 23.4 45.4 53.0 8
CE [10] 19.8 49.0 63.8 6 - - - -
ViSERN [3] 18.1 48.4 61.3 6 24.3 46.2 59.5 7
SUPPORT-SET [22] 23.0 52.8 65.8 5 27.3 50.7 60.8 5
BiC-Net 24.6 57.0 70.3 4 24.2 58.7 70.1 4

TABLE V: Cross-modal retrieval comparison with state-of-the-art methods on YouCook2. TS: trained from scratch on
YouCook2.

Method Text-to-Video Video-to-Text
R@1 R@5 R@10 MedR R@1 R@5 R@10 MedR

HGLMM FV CCA [2] 4.6 14.3 21.6 75 - - - -
Miech et al. [2] 4.2 13.7 21.5 65 - - - -
COOT [42] 5.9 16.7 24.8 49.7 - - - -
AME-Net [16] 7.6 21.5 32.8 28 7.9 22.5 32.2 28
BiC-Net (TS) 8.7 23.9 33.5 31 8.3 23.6 32.6 31

guages. We only adopt English annotations in experiments.
Following prior work [49], we separate the dataset into 1, 200
clips for training,, 100 clips for validation, and 670 clips for
testing. The YouCook2 dataset [50] contains 2, 000 cooking
videos with 14, 000 video clips. It covers 89 types of recipes.
Each video clip is described by a textual sentence. Referring
to [2], we evaluate the text-video clip retrieval task on the
validation clips.

2) Evaluation Metrics: We employ the widely used me-
dian retrieval rank (MedR) and recall rate at top K (R@K)
for assessing retrieval accuracy. MedR measures the median
rank position among where true positives are returned. R@K
measures the fraction of true positives being ranked at top K
returned results. Therefore, lower MedR scores indicate higher
performance; in contrast, higher R@K scores indicate better
performance.

3) Implementation Details: We sample 26 video frames from
it with the same temporal duration between every two frames.
In our experiments, the ILSVRC-2012-CLS [51] pre-trained
InceptionResNetV2 [52] is adopted to extract 1536-D 2D
features and the Kinetics [53] pre-trained I3D [54] to extract
1024-D 3D features. The number N of regions within a frame
is 36, identical to [43]. The dimension d of region features
extracted from ResNet-101 is 2048-D. The dimensionality of
video-embedding vectors Fv and relation-embedding vectors
Fr are set as 1024-D. For each sentence, we use pre-trained
BERT to extract 1536-D word embedding and apply a point-
wise linear layer and an attention-aware feature aggregation
layer [42] to obtain 1024-D text-embedding vectors.

We implement our proposed model using PyTorch1 and train
it on 4 Tesla V100 GPUs. We train for 60 epochs using Adam
optimizer [55] with a mini-batch size of 64. On the MSR-VTT,
MSVD, and YouCook2, the learning rates are set to 0.0002,
0.0004, and 0.0004, respectively. As for the layer number L of
transformer block, we set it to 4, 2 and 4 on the MSR-VTT,
MSVD, and YouCook2 datasets, respectively. In addition, the
trade-off parameter λ in Eq. (14), the margin δ in Eq. (15) are
set to 0.5 and 0.2, respectively.

1http://www.pytorch.org

B. Ablation Studies

1) Experiments with spatio-temporal Relation. We exper-
imented with variants of our model to verify the effectiveness
of introducing spatio-temporal relation for text-video retrieval:

• VG. We only utilize the pre-trained 2D and 3D CNNs
to extract the global features of the whole video as video
embedding learning.

• VG+VRm. We apply the average-pooling features
of all regions without using the features extracted by
spatio-temporal residual transformer as relation embed-
ding learning.

• VG+VRs. We only utilize regional spatial relation fea-
tures as relation embedding learning and global features
as video embedding learning.

• VG+VRt. We only utilize regional temporal relation
features as relation embedding learning and global fea-
tures as video embedding learning.

• VRst. We only utilize regional spatio-temporal relation
features as relation embedding learning.

We explore these model variants on the MSR-VTT, as
shown in Table II. We omit the results on MSVD and
YouCook2 because of space limitations, but they show similar
trends to MSR-VTT. From the results, we have the following
observations. First, as expected, on both text-to-video and
video-to-text, our BiC-Net, VG+VRs, and VG+VRt

significantly outperforms VG alone. The result verifies the
significance of introducing spatio-temporal relation represen-
tation. Second, compared with VG+VRm, the performance
of our BiC-Net verifies that the spatio-temporal residual trans-
former can capture the fine-grained local relational features.
Third, compared with two variants of models (i.e., VG and
VRst) that only use either global visual features or local
relational features, our model considers both global and lo-
cal relational features to achieve the best performance. This
verifies the effectiveness of aligning the global visual and local
relational features with text features on two embedding spaces.
Notably, global visual features and local relational features
are highly complementary, and their combination leads to
an improvement far beyond the performance of the global
visual features alone. Moreover, compared with VG+VRs

http://www.pytorch.org
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and VG+VRt, our BiC-Net achieves substantially better
performance, which reveals the complementary of the spatial
and temporal relation features.

2) Evaluation of of SRT. We test the effectiveness of our
proposed SRT and its variants on relation embedding learning.
As shown in Table IV, our SRT and its variants achieve better
performance than Non-SRT, which indicates the effective-
ness of spatio-temporal relation modeling by adding residual
blocks. The difference between Spatial-SRT and Temporal-
SRT is that a residual block is added at different positions.
We can see that Temporal-SRT significantly surpasses Spatial-
SRT, which indicates the importance of temporal relation
modeling. Spatio-Temporal-SRT adds a residual block based
on Spatial-SRT/Temporal-SRT, which achieves better perfor-
mance than Spatial-SRT/Temporal-SRT by aggregating tempo-
ral information with spatial information. In the end, compared
to the other variants, we observed that our proposed SRT
achieves the best performance when three residual blocks are
added, indicating that simultaneously adding residual blocks
in our model performs better than adding only one of them. To
sum up, the contribution of each component enables our SRT
to learn higher-level spatio-temporal relation information.

C. Comparison with State-of-the-art Methods

To demonstrate the effectiveness of the BiC-Net solution,
we compared it to several state-of-the-art baselines: (1) RNN-
based methods: DualEncoding [8], TCE [7], (2) Multimodal
Fusion methods: Mithun et al. [17], CE [10], MMT [18], (3)
GCN-based methods: ViSERN, [3], STG [1] and AME-Net
[16], (4) Transformer-based methods: COOT [42], CLIP4Clip
[23] and Frozen [27], (5) other methods: HGLMM FV CCA
[2], Miech et al. [2], SUPPORT-SET [22], T2VLAD [19].

1) Experiments on MSR-VTT: The experimental results
are presented in Table III. We can observe that for all data
partitions, our proposed method consistently outperforms all,
compared to traditional RNN-based methods and multimodal
Fusion methods in all evaluation metrics by a large margin,
including CE [10], MMT [18], and T2VLAD [19], which
use expert features (e.g., object, motion, face, scene, sound,
and speech). Moreover, our BiC-Net significantly outperforms
recent spatio-temporal relation-based method (STG [1]) in
all evaluation metrics, especially, it boosts the text-video
retrieval quality by a margin of 28.6% in R@10 on full test
set. This condition reveals the effectiveness of our BiC for
modeling video global and relational information. The obvious
performances are shown on full test set and 1k-A test set
(training-7k).

We also compare with some typical transformer-based meth-
ods, such as CLIP4Clip [23] and Frozen [27]. CLIP4Clip
adopts the language-vision transformer model of CLIP [28]
pre-trained on a large-scale text-image dataset as a back-
bone. Frozen uses a transformer-based video model [56] as
a backbone. In contrast, we design a new transformer-based
backbone to model spatio-temporal relations and global tem-
poral information. Our BiC outperforms most of the compared
methods on 1k-A test set (Training-9k), e.g., BiC 86.7% vs
CLIP4Clip 81.6% w.r.t. text-to-video R@10. This indicates

Fig. 4: Performance of text-to-video retrieval with different
layers number of transformer blocks.

that learning cross-modal complementarity in a cooperative
and complementary manner takes effect.

2) Experiments on MSVD: Table IV summarizes the perfor-
mance comparison results. We also observe that our proposed
BiC outperforms recent state-of-the-art methods in terms of
most indicators. Note that among all these methods, ViSERN
[3] uses only local video features to compute the similarity
between the video and text. Analogously, we also observe that
BiC-Net outperforms the local feature-based method ViSERN
[3] by a great margin. This reveals that jointly modeling
the global and local video representation plays a significant
role in text-video retrieval, contributing to more powerful
representation. To ensure a fair comparison, we compare the
previous SOTA method, SUPPORT-SET [22] without pre-
training on HowTo100M [2]. Under the full fair comparison,
our BiC outperforms the previous best method SUPPORT-SET
by 9.3% on video-text retrieval R@10. Notably, on MSVD, the
performance of our model is not as outstanding. The reason for
small gains is that the transformer has the property of lacking
structural bias making it prone to overfitting for small-scale
data.

3) Experiments on YouCook2: As shown in Table V, our
method achieves the best performance, which is 8.7% absolute
gains in the evaluation metric of text-video retrieval R@10
better than COOT [42]. In Miech et al. [2] and COOT [42], the
global video features are used for video representation, whose
performances are worse than most methods. AME-Net [16]
adopts global features and handcrafted graph-based relation
features. AME-Net achieves better performances than Miech
et al. [2], while their performances are worse than ours, which
indicates that the global and local information learned by our
method can be mutually promoted in a complementary manner.
This observation indicates that in addition to the global video
features, local relation features are also important for video
representation.
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Fig. 5: Evaluation of different weight combination of the
global and relation similarities.

D. Parametric Sensitivity Analysis

We carry out experiments to explore how the layer number
of transformer block L and the trade-off parameter λ affect
the retrieval performance. Notably, we omit the video-text
retrieval results on three datasets due to space limitations,
which show similar trends to text-video retrieval. First, we
analyze the influence of the hyperparameter, that is, the layer
number of transformer block on the MSR-VTT 1k-A test set
[18], MSVD, and YouCook2 datasets. Figure 4 presents the
results across the layer number of transformer block on the two
datasets by R@10; note that R@1 and R@5 present the same
trend, in which performances increase until certain numbers
(4, 2, and 4 for MSR-VTT, MSVD and YouCook2 datasets,
respectively) and then become stable. This result is due to the
model’s capability of capturing the spatio-temporal relations
of the deepest layer numbers.

Moreover, the influence of the hyperparameter λ in Eq. (11)
is revealed in Figure 5. We assign different trade-off parameter
λ to the two scores (i.e., VRst and VG) to observe their
influence on the matching performance on the three datasets.
By analyzing the results shown in Figure 5, we have the
following observations: 1) The leftmost part of Figure 5 shows
the results when VRst accounts for 0, that is, when the
proportion of VG is 1, which means that we remove the visual
relations module from our model (i.e., VG). We can observe
that when the spatio-temporal relations module is removed,
the retrieval performance is reduced by a large margin over
the three datasets. This condition shows the positive effect
of comprehensively introducing spatio-temporal relations for
text-video retrieval. 2) Increasing the proportion of VRst

substantially boosts the performance of model. Our model
performs best performance on the three datasets when λ =
0.5. Therefore, we argue that VRst and VG occupy the
same contribution to the overall similarity. We conclude that
the two similarities work together to obtain the best retrieval

TABLE VI: Comparison with different models in terms
of model size and computation overhead at the inference
stage.

Model Parameters (M) FLOPs (G)
MMT [18] 133.4 12.64
DualEncoding [8] 95.9 3.64
BiC-Net 31.48 10.33

performance in a cooperative manner.

E. Model Complexity
We compare our method with open-source methods in terms

of model size and computation overhead at the inference stage.
As shown in Figure 4, since the performance of using one layer
of transformer block outperforms MMT by a large margin, we
only calculate the model size and computational overhead of
using one layer of transformer block. Analogously, we also
observe that our BiC-Net with one layer of transformer block
outperforms DualEncoding by a great margin on the MSR-
VTT 1k-A test set [2]. Notably, we omit the text-video retrieval
results of VSR with a layer of transformer block on the MSR-
VTT 1k-A test set [2] due to space limitations, which show
similar trends to the MSR-VTT 1k-A test set [18]. In addition,
we conclude that for each additional layer of transformer
block, the computational cost will increase by 8.29 GFLOPs
and the parameters will increase by 25.19M. Following [8],
we measure the number of FLOPs required for a text-video
pair. As shown in Table VI and Figure 4, we have two main
observations: 1) our BiC-Net with one layer of transformer
block achieves 85.6% text-to-video R@10 accuracy on the
MSR-VTT 1k-A test set [18], which is 18.5% higher than
MMT, with fewer parameters and lower computational cost.
2) our BiC-Net with one layer of transformer block is smaller
and slightly slower than DualEncoding.

F. Qualitative Results
Figure 6 shows two examples of text-to-video retrieval

results between the model with and without visual spatio-
temporal relations. We specifically choose two text-video
retrieval examples that include complex spatio-temporal rela-
tionships. Figure 6 (a) shows multiple sub-actions retrieval ex-
ample; the sentence describes two objects (“man” and “crab”),
and two actions (“cutting open a crab” and “taking the meat
out”) in a short-term segment, which requires accurate spatio-
temporal grounding. Comparing BiC-Net to its variant VG, our
model successfully retrieves the correct video, which contains
all spatio-temporal relationships and entities described in the
sentence. The second video only contains “taking the meat
out from carb” actions. The third and fourth videos only
involve a “cutting” action and similar objects (e.g., “man”
and “knife”). The fifth video also only contains an action
(“taking the meat”). In the left example, the VG model also
retrieves similar scenes (e.g., similar man and cutting action) in
the video. However, we observe that videos involving related
elements are only ranked as the true positive in the top-3 posi-
tions. The performance of VG indicates that removing the fine-
grained spatio-temporal relationships hurts the expressiveness
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Query: a man cutting open a crab and taking the meat out to prepare a food dish.

Top-1

With spatio-temporal relation Without spatio-temporal relation 

Top-2

Top-3

Top-4

Top-5

(a)

Top-1

With spatio-temporal relation Without spatio-temporal relation 

Top-2

Top-3

Top-4

Top-5

Query: a woman applies eye shadow to her right eye with a makeup brush.

(b)

Fig. 6: Qualitative examples of the text-video tasks: In (a), (b), we show retrieval ranks of BiC-Net and the variant VG
on MSR-VTT dataset test set [2]. Given a textual description as a query, we retrieve the most relevant video ranked
from top to bottom. True positives are bounded in green boxes.

*

Caption: a man cutting open a crab and taking the meat out to 
prepare a food dish.

Caption: a woman applies eye shadow to her right eye with 
a makeup brush.    

(a) (b)

Fig. 7: Visualization of attention map on sample clips from the MSR-VTT. The top row presents original frames, and
the bottom presents corresponding attention maps.

of the video representation and further degrades the retrieval
performance. Another example is showed in Figure 6 (b),
which requires fine-grained spatio-temporal relation ground-
ing. The positive example contains a scenario involving two
objects (“woman”, and “makeup brush”) and a fine-grained
action (“applies eye shadow”). Comparing these results, we
observe that the variant VG retrieves a list of similar action
videos, which cannot capture the fine-grained action (“applies
eye shadow to her right eye”) in the video. Our model not
only identifies the relevant objects “woman” and “makeup
brush” but also captures the fine-grained relations between
them. Again, it verifies the effectiveness of introducing spatio-
temporal relation features to distinguish videos with the same
visual components but with different relations.

G. Visualization Results

To intuitively observe the effectiveness of introducing
spatio-temporal relations, we visualize the attention map to
infer the value of the spatio-temporal relation features. We
select 2 videos, including two positive example in text-to-video
retrieval from MSR-VTT. In Figure 7, we show the original
frames and attention maps. As can be seen, our BiC-Net learns

to value core parts with intense semantic relations such as
“man + crab” in “cutting open a crab and taking the meat out”,
“woman + makeup brush” in “applies eye shadow to her right
eye”. Furthermore, we find that the salient regions (e.g., man,
crab, woman’s right eye) are highlighted separately in Figure
7. This also verifies that our model can learn fine-grained
relational information with the corresponding text sentences.

V. CONCLUSIONS

This work contributes to a novel modeling method for cross-
modal text-video retrieval. We claim that video representation
should learn not only from global features but also from
local spatio-temporal relationships. To fulfill this target, we
design the Bi-Branch Complementary Network (BiC-Net) to
capture local relational and global visual information for
modeling comprehensively. Extensive experimental results on
three benchmarks have demonstrated the effectiveness and
superiority of our proposed method. Besides, we still face an
inherent computational burden of attention in processing long-
length video with more complex local relations. Therefore,
we leave computational optimization of the multi-layer spatio-
temporal transformer as future works.
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