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ABSTRACT
Phishing scams have become the most serious type of crime in-

volved in Ethereum. However, existing methods ignore the natural

camouflage and sparse distribution of phishing scams in Ethereum

leading to unsatisfactory performance, and they are also limited

by the data scale which cannot be applied to real-world dynamic

scenarios. In this paper, we propose a Transaction Graph Contrast

network (TGC) to enhance phishing scam detection performance

on Ethereum. TGC inputs subgraphs instead of the entire graph for

training, which eases the model’s requirements for machine con-

figuration and data connectivity. Motivated by phishing nodes are

surrounded by normal nodes, we design the comparison between

node-level to help phishing nodes learn the unique properties of

themselves different from their neighbors. Observing the small

number and sparse distribution of phishing nodes, we narrow the

distance between phishing nodes by comparing node context-level

structures, so as to learn universal transaction patterns. We further

combine the obtained features with common statistics to identify

phishing addresses. Evaluated on real-world Ethereum phishing

scams datasets, our TGC outperforms the state-of-the-art meth-

ods in detecting phishing addresses and has obvious advantages in

large-scale and dynamic scenarios.

CCS CONCEPTS
• Applied computing → Digital cash; • Security and privacy
→ Phishing.
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1 INTRODUCTION
Ethereum is widely recognized as one of the largest blockchain

systems, heralding the advent of blockchain 2.0 [43]. However, de-

spite its success, the rise of decentralized finance (DeFi) and the

allure of blockchain’s anonymity have unfortunately given rise to a

plethora of cybercrimes, with phishing scams garnering significant

attention [25]. Disturbingly, phishing scams constitute a substantial

∗
Chang Liu is the corresponding author.
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Figure 1: Illustration of the Ethereum phishing scam pecu-
liarities. The phishing address is surrounded by normal ad-
dresses. The transaction pattern of the phishing addresses
are very similar, but they are not directly connected.
portion of malicious fraud within the blockchain ecosystem, ac-

counting for approximately 50% of such incidents [3]. Furthermore,

these scams tend to resurface periodically, exacerbating the need to

address the identification of phishing scams on Ethereum. Conse-

quently, combating this issue has become an urgent and paramount

concern [44], necessitating a sustained, long-term effort.

Phishing represents a form of cybercrime that exploits user vul-

nerabilities with the intent of acquiring personal and confidential

information [20]. Within the Ethereum ecosystem, phishing orga-

nizations employ enticing tactics to encourage remittances. For

instance, they entice investors by offering additional Ether coins as

incentives, prompting them to visit fraudulent platforms or web-

sites and provide personal information. Alternatively, these entities

promise high returns to induce investors into purchasing digital

assets from them [3].

The current approaches for detecting phishing activities on

Ethereum primarily rely on the transaction network, leveraging the

openness and transparency of the blockchain. These methods can

be categorized into two main groups. The first category involves

combining traditional machine learning techniques with manually

designed features, such as structural and statistical characteristics

of nodes, to detect phishing attempts [7]. However, these methods

heavily rely on expert knowledge to extract these features, which

can be inefficient and non-automated.

The second category involves employing network representation

learning techniques to extract deep features from the Ethereum

transaction network. This approach utilizes methods like random

walk [44, 49] and graph neural networks [4, 41] to automatically

learn representations from the transaction network. These tech-

niques offer a higher level of intelligence compared to relying solely

on statistical features.

While previous research has made significant strides in develop-

ing advanced techniques, they often overlook the unique challenges
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presented by Ethereum phishing scams. These challenges can be

summarized as follows:

• The natural camouflage: As depicted in the left panel of Fig-

ure 1, we observe that phishing addresses tend to have predom-

inantly normal addresses as their neighbors. This contradicts

existing methods that rely on the homophily assumption [4, 44],

where connected nodes in the graph are presumed to have simi-

lar representations. Traditional approaches assume that normal

users primarily interact with other normal users, while abnor-

mal users interact predominantly with other abnormal users.

However, these methods fail to consider the natural camouflage

employed by Ethereum phishing scams. Consequently, directly

applying homophily-based techniques to detect Ethereum phish-

ing fraud is not suitable for such scenarios.

• Sparsity of distribution: We have discovered that phishing ad-

dresses exhibit a low proportion and sparse distribution. Phishing

addresses typically avoid transacting with each other to evade

detection, as illustrated in the right panel of Figure 1. When

similar nodes have no direct connections, the performance of ex-

isting graph neural network (GNN)-based convolution detection

methods significantly deteriorates. The current methods strug-

gle to learn the transaction patterns’ similarity among phishing

addresses.

• Large scale and dynamic nature: The Ethereum transaction

network is both vast and dynamic. Most existing methods rely

on transduction approaches that involve training on the entire

graph. However, this becomes computationally expensive and

impractical for predicting emerging addresses in dynamic net-

works. Consequently, these methods are ill-suited for Ethereum

phishing detection scenarios.

To address these challenges comprehensively, we present a novel

approach called Transaction Graph Contrast Network (TGC) in

this paper. TGC is specifically designed to enhance the detection of

phishing scams on the Ethereum platform. Unlike existing meth-

ods that require training on the entire graph, TGC operates on

subgraphs, thereby reducing the machine configuration and data

connectivity requirements, and can be well adapted to dynamic net-

works. Technically, TGC incorporates two key modules: Node-level

contrast and Context-level contrast, inspired by our observation

that phishing nodes often have normal nodes as neighbors. In the

Node-level contrast module, we maximize the agreement between

embeddings of the center nodes in two different views while min-

imizing agreement with other nodes. This encourages the nodes

to learn distinctive characteristics unique to themselves, differ-

entiating them from their neighbors. To tackle the sparsity issue

associated with the distribution of phishing nodes, we introduce

the Context-level contrast module. This module operates at mul-

tiple views derived from the node-level contrasts, enabling us to

mine valuable node features. By aligning embeddings of correlated

contexts and distinguishing them from negative pairs, we facilitate

the learning of universal transaction patterns exhibited by phishing

nodes. Finally, the node representations obtained from the con-

trastive learning process are inputted into a classifier to identify

phishing addresses effectively. To validate the effectiveness of TGC,

we conduct extensive experiments using real-world datasets.

In summary, the paper makes the following contributions:

• We propose a Transaction Graph Contrast Network (TGC) to

mine deep features by designing subgraphs contrast, which both

detects Ehtherum phishing scams better and applies to the large-

scale dynamic network.

• Based on the observation of the phishing nodes surrounded by

normal nodes, we design node-level contrast to learn their unique

properties by setting neighbors as their negative samples.

• Considering the sparse distribution of phishing nodes, context-

level contrast is proposed to learn the universal transaction pat-

terns of phishing nodes, by narrowing the distance between their

different views representations.

• Evaluated on real-world Ethereum phishing scam dataset, TGC

outperforms state-of-the-art methods on multiple metrics, and

has obvious advantages in large-scale and dynamic scenarios.

2 RELATEDWORK
In this section, we provide an overview of prior work on Ethereum

phishing scam detection. We then review graph representation

learning and contrastive representation learning, which are essen-

tial for this task. Finally, we summarize and compare our proposed

method with related works in the field.

2.1 Ethereum Phishing Scams Detection
Phishing is an online threat where attackers impersonate legitimate

websites to obtain users’ private information, like usernames and

passwords [1]. Traditional phishing scams involve creating fake

platforms. Therefore, the detection effort focuses on analyzing

patterns in URLs, source code, CSS styles, and page layouts [15, 26,

30, 33].

Ethereum phishing scams offer a wider array of fraudulent meth-

ods compared to traditional scenarios. These scams not only exploit

phishing websites but also deceive victims through phishing ad-

dresses shared via emails, chat groups and social media [44]. As a

result, traditional phishing detection methods are ill-suited for the

Ethereum context.

Given the open and transparent nature of blockchain technology,

all transactions on Ethereum can be observed. This makes it pos-

sible to extract information from transaction records and analyze

the transaction behavior between addresses to identify phishing ad-

dresses [2, 27]. The transaction history of Ethereum naturally forms

a transaction network, where addresses serve as nodes and trans-

actions between addresses as edges. Current methods for detecting

phishing scams on Ethereum primarily rely on this transaction

network. They learn the representation of phishing nodes from the

transaction network and classify nodes accordingly.

Existing methods for detecting phishing scams on Ethereum can

be categorized into two main groups.

The first category utilizes shallow models, such as traditional

machine learning approaches, coupled with feature engineering

techniques that primarily focus on statistical features. For instance,

Chen et al. [7] extracted a set of 219 statistical features from the

node’s 1-order and 2-order neighbors, including in-degree, out-

degree, maximum transaction value, and more. They employed a

LightGBM-based ensemble machine learning algorithm, along with

a Dual-sampling Ensemble technique, to identify phishing nodes.
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The second category utilizes graph representation learning meth-

ods, including DeepWalk [31], Node2Vec [11], and graph convo-

lutional networks (GCN)[21], to extract deep features (detailed

in Section 2.2). Yuan et al.[49] directly employed the Node2Vec

algorithm on the Ethereum transaction network to learn node rep-

resentations. Wu et al.[44] introduced Trans2Vec, a variation of

Node2Vec specifically designed for Ethereum phishing detection.

Trans2Vec employs a biased sampling process based on the last

transaction of two nodes, making it more suitable for detecting

phishing on Ethereum. Chen et al.[4] developed E-GCN, the first

application of GCN for detecting phishing nodes on Ethereum.

They extracted 8-dimensional statistical features and used GCN

to learn the structural characteristics of the transaction network.

Additionally, Wang et al.[41] proposed TSGN, a variant of the SGN

model[46] tailored for the Ethereum transaction ecosystem. TSGN

treats transactions between phishing addresses as nodes and con-

nects two nodes represented by transactions if they share a common

address.

However, these researches are mostly based on homophily as-

sumption which means connected nodes in the graph have similar

representations. In other words, the homophily assumption as-

sumes that normal users interact more with normal users, while

abnormal users interact more with abnormal users. Based on the

homophily assumption, they can’t learn the distinguishing feature

between phishing addresses and normal addresses in the Ethereum

transaction network. Moreover, the large-scale transaction network

where the scarcity of labels and the huge volume of transactions

makes it difficult and intricate to take advantage of GNN methods.

2.2 Graph Representation Learning
Graph representation learning (GRL) refers to the process of learn-

ing a parametric mapping from the raw graph input data domain to

a feature vector or tensor, in the hope of capturing and extracting

more abstract and useful concepts that can improve performance

on a range of downstream tasks [23].

Traditional methods on graph representation learning are mostly

based on randomwalk. These randomwalk-based algorithms utilize

walk to perceive the centrality and similarity of nodes. DeepWalk

[31] obtains multiple node sequences based on random walk, and

on this basis tries to maximize the co-occurrence probability of

nodes in the window. As for Node2Vec [11], in the first stage of

generating nodes’ corpus, its design walking decision is more flex-

ible than DeepWalk, and the field of view can be selected deeper

or wider through parameters, but the time consumption increases

greatly. Different from DeepWalk, Large-scale Information Net-

work Embedding (LINE) [34] aims to generate neighbors rather

than nodes on a path based on current nodes. LINE [34] learns

a low-dimensional embedding via preserving the first-order and

second-order closeness of nodes.

Unlike the above shallow models, recent work mainly uses deep

neural networks to learn non-linear information in graphs. Struc-

tural Deep Network Embedding (SDNE)[40] apply deep autoen-

coders to keep network proximities within 2-order. It uses a semi-

supervised autoencoder to reconstruct the neighbor relationships

of the nodes and uses a supervised approach to trim the results.

As for the work on Graph Neural Networks (GNN), they employ

graph convolutional encoders which are more powerful than tra-

ditional methods for representation learning. GraphSAGE[14] is

an inductive GNN model based on a fixed sample number of the

neighbor nodes and incorporates DeepWalk-like objectives as well.

Variational graph auto-encoders (VGAE) [22] reconstruct the adja-

cency matrix to learn the generative distribution of graphs. Graph

Attention Networks (GAT)[38] employs attention mechanism for

neighbor aggregation. DGI [39] marries the power of GNN and con-

trastive learning, which focuses on maximizing Mutual Information

(MI) between global graph embeddings and local node embeddings.

2.3 Contrastive Representation Learning
Intuitively, contrastive representation learning can be considered

as learning representation by comparing among the input samples.

The comparison can be performed between positive pairs of “simi-

lar” inputs and negative pairs of “dissimilar” inputs. Through hand-

crafted contrastive pretext tasks, these approaches learn discrimina-

tive representations by contrasting positive instance pairs against

negative instance pairs [6]. In the process of learning representa-

tion, labels are "pseudo-labels" generated by specific method design,

so contrastive learning is a significant branch of self-supervised

learning (SSL) [28].

Many traditional graph representation learning methods also

embody the concept of contrastive learning, DeepWalk [31] and

Node2Vec [11] model probabilities of node co-occurrence pairs

using noise-contrastive estimation, nodes appearing in the same

random walk are considered as positive samples. Following the im-

mense success of contrastive learning on CV [12, 17, 35, 45] and NLP

[8, 9, 47], some recent works also exploit contrastive methods to

graph representation learning on deep graph neural networks. DGI

[39] considers a node’s representation and graph-level summary

vector obtained by a readout function as a contrastive instance pair,

and generates negative samples with graph corruption. On the basis

of DGI, Hassani et al. [16] suggests a multi-view contrastive learn-

ing framework by viewing the original graph structure and graph

diffusion [10] as two different views. GraphCL [48] adopts Sim-

CLR [6] to form its contrastive pipeline which pulls the graph-level

representations of two views closer.

Comparisonswith relatedGRLmethods.To adapt to Ethereu-
m phishing scam detection, our proposed TGC framework has es-

sential differences in motivation and implementation compared

with the above methods. From motivation, these methods focus on

learning representations for all nodes indiscriminately. Instead, our

proposed TGC focuses on detecting a minority class of Ethereum

phishing addresses based on phishing peculiarities. From imple-

mentation, since the existing contrastive learning instance pair

definitions cannot effectively capture Ethereum phishing scams,

we design a new type of comparison instance pair that combines

node-level contrast and context-level contrast learning, which fits

the natural camouflage and sparsity of distribution of Ethereum,

and the training method based on the subgraph can be applied to

large-scale dynamic transaction networks in the real world.

3 DESIGN OF TGC
Detecting phishing scams in Ethereum is divided into three steps:

data collection, address representation and address detection. We
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describe the data collection process in detail in Section 4.2. In the

following section, we first give a description of the problem for-

mulation of phishing identification. Then, we introduce the overall

transaction graph contrast framework to represent addresses. Fi-

nally, we briefly describe the classification process for Ethereum

address detection.

3.1 Problem Definition
In this paper, the Ethereum phishing scam detection task is phrased

as a graph node classification problem. Given a set of addresses and

their transactions on Ethereum, we can construct the transaction

network as a graph G = (V, E), we treat the transaction address as

a node 𝑣𝑖 , V = {𝑣1, . . . , 𝑣𝑁 } is a set of addresses. The transaction
as an edge E𝑖 , E = {E1, . . . , E𝑅} is the transaction set. We denote

the feature matrix and the adjacency matrix as 𝑋 ∈ R𝑁×𝐹
and 𝐴 ∈

{0, 1}𝑁×𝑁
. Our goal is to learn a graph representation 𝑓 (𝑋,𝐴) ∈

R𝑁×𝐹 ′
based on known nodes and transaction information, which

can effectively represent unseen nodes in Ethereum, improving

phishing scam detection performance in a large-scale dynamic

Ethereum transaction network. It is worth noting that we do not

use labels 𝑌 during the representation learning process, labels are

only used in the classifier training.

3.2 Model Architecture
TGC is a graph representation framework to detect phishing ad-

dresses. In this section, we describe the general framework of our

proposed TGC. As shown in Figure 2, the architecture could be

divided into four objectives: ego network construct, random walk

sample, node-level contrast, and context-level contrast.

At first, to generate the basic learning samples for contrastive

learning, we construct each sample node’s local substructures,

named "ego network", which is composed of the 𝑟 -order neigh-

bors of the central sample node and the connection relationship

among them. The construction of the ego network lays a good

foundation for the subsequent design of comparing pairs and sub-

graph training strategies. Next, we execute instance pair sampling

with random walk with restart (RWR) sampling strategy. Based on

the ego network of each sample obtained in the previous step, we

sample each ego network twice with RWR, so two local subgraphs

are generated based on the ego network of each sample. In this

step, we can get a pair of well-designed "local subgraph vs. local

subgraph" for each sample. In the end, we feed the instance pairs

into the designed node-level contrast and context-level module to

learn node representations. In the node-level contrast module, we

input the pair of local subgraphs generated by the same sample.

we define the positive pair as the same center nodes in different

subgraphs, while the negative pairs as the center node and the other

nods in subgraphs. our design is to force the phishing nodes to learn

discriminative representations different from their neighbors. In the

context-level contrast module, we input local subgraphs generated

by multiple samples, local subgraphs generated by the same ego

network are regarded as positive sample pairs, and those generated

by different ego networks are regarded as negative sample pairs.

Our designed instance pairs can learn the transaction patterns by

paying close attention to the contextual information of each node.

We will introduce the main modules of the TGC architecture in

detail in the following.

3.2.1 Ego Network Construct. As mentioned in Section 2.3, SSL

models are learned by solving a series of pretext tasks. Pretext tasks

refer to the predesigned tasks, which help models to learn more

generalized representations from unlabeled data, and thus benefit

downstream tasks by providing a better initialization or more effec-

tive regularization [29]. In contrastive learning, the pretext tasks

aim to estimate and maximize the MI between positive pairs and

minimize the Mutual Information (MI) between negative pairs.

Therefore, the definition of the data instance is very important

for contrastive learning. It is straightforward for CV and NLP tasks

to define an instance as an image or a sentence. However, such

ideas cannot be directly extended to Ethereum transaction graph

data. Some previous work on graphs has proposed some instance

pairs like "full graph v.s. node", "large subgraph v.s. node" and so on

[16, 39, 48], but most of them input the whole graph for training.

In the Ethereum scenario, the training method of directly inputting

the entire large-scale transaction graph leads to high computational

consumption, and can not be applied in transaction networks with

dynamic changes in the real world. The design of the data instance

also did not pay attention to the local property of Ethereumphishing

addresses, which is essential for learning the transaction pattern.

To address these issues, we propose to extend each training

sample node to its local structure, and then design contrastive

instances on this basis. Specifically, for a certain node 𝑣 , we define

its 𝑟 -ego network:

Definition 1 (A 𝑟 -ego network). Let G = (V, E), where V =

{𝑣1, . . . , 𝑣𝑁 }, E ⊆ V ×V , For a node 𝑣 , its 𝑟 -neighbors are defined
as 𝑆𝑣 = {𝑢 : 𝑑 (𝑢, 𝑣) ≤ 𝑟 } where 𝑑 (𝑢, 𝑣) is the shortest path distance
between 𝑢 and 𝑣 in the graph G. The 𝑟 -ego network of node 𝑣 , denoted
by G𝑣 , is the sub-graph induced by 𝑆𝑣 .

We extract the neighbors and transaction information of each

training sample, and construct the 𝑟 -ego network of the sample as

the input of the next step, the sample node is the center node of its

𝑟 -ego network. The left panel of Figure 1 shows an example of a

2-ego network.

Because of the anonymity of the blockchain platform, the node

itself does not carry any attribute characteristics. The ego networks

will provide essential node features for subsequent TGC learning

of the structural features of nodes. we extract the following 10-

dimensional features as the attribute characteristics of the node: the

node’s total degree, out-degree, in degree, the sum of transactions

amount, transfer out transaction amount, transfer in transaction

amount, the total number of neighbors, the inverse of transaction

frequency, the percentage of neighbors whose transactions are

all zeros, and the number of transactions with the most frequent

neighbors.

3.2.2 Subgraph Sampling. Contrastive pretext tasks and data aug-

mentation are both measures to enrich supervision signals. Unlike

pretext tasks, which train models by setting positive and negative

sample pairs, data augmentation helps the model explore richer

underlying semantic information by making pretext tasks more dif-

ficult to solve [42]. In our TGCmethod, we build two different views

for the subsequent contrastive learning, also known as the data
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Figure 2: The overall framework of TGC. TGC inputs the related transactions and neighbors of the train samples to learn their
representation. The two preprocessing modules construct the sample centered 𝑟 -ego networks and build two different views
based on them as the input of contrastive learning. The node-level contrast module forces nodes to learn distinguishing features
different from neighbors to build unique potential features, while the context-level contrast module captures the universal
transaction patterns of phishing nodes. Finally, the outputs of several modules are combined as the final representation of the
node, which feeds into the classifier to get the result.

augmentation step, which helps the algorithms learn expressive

representations [18].

However, unlike the regular grid-like image data where different

views can be simply generated by standard augmentation tech-

niques such as cropping or color distortion, the view augmentation

on irregular graph data is not trivial, as graph nodes and edges do

not contain visually semantic contents as in the image [39].

Although feature masking is a simple way to generate a related

graph, it might damage the rare features of Ethereum addresses,

thus degrading the representation results of graph convolutions

[16]. An effective way to data augmentation for graph contrastive

learning is to apply random walk with restart (RWR), by iteratively

generating subgraph structure via random walk with a restart prob-

ability [50]. Instead of directly changing the features, we employ

RWR to generate two different views revealing the important struc-

tural cues. In RWR sampling, the restart probability controls the

radius of the ego-network (i.e., 𝑟 ) which TGC conducts data aug-

mentation on. In this work, we follow [32] to use 0.8 as the restart

probability. The proposed TGC framework is flexible to other graph

sampling algorithms, such as neighborhood sampling [13] and for-

est fire [24].

By this mean, the representations from different views comple-

ment each other and thus enriching the final representation results.

Specifically, by performing different levels of contrastive learning

between the obtained representations from two views, the rich

properties and transaction pattern information can be encoded si-

multaneously. The details will be described in Section 3.2.3 and

3.2.4.

3.2.3 Node-level Contrast. In this module, we force nodes to learn

unique properties of themselves different from their neighbors by

treating neighbors as their negative samples.

According to our observation on the neighbors of phishing nodes,

97.99% of the neighbors around phishing nodes are normal nodes

(Detailed analysis in Appendix A). The GNN aggregation mecha-

nism is based on homophily assumptions, so the distinctive repre-

sentation of phishing nodes cannot be obtained by directly aggre-

gating neighbor features through GNN.

In order for nodes to learn unique characteristics different from

their neighbors, in this section, we define the contrastive instance

pair as "target node v.s. node". We use node-level contrast loss

to optimize the GNN encoder, which encodes the 𝑟 -ego network,

regarding the central nodes of different sampling subgraphs gen-

erated by the same ego network as positive sample pairs while all

the other nodes form negative samples.

Specifically, the first element in the instance pair is our target

node, and the target node refers to the central node in the local

subgraph, which is obtained through the 𝑟 -ego network RWR of the

sample. The target node can be set as the center node of the local

subgraph of any sample in the training set. For positive instance

pairs, the second element in the instance pair is the central node

of another local subgraph of the target node, for example, the blue

node pair in Figure 3. For negative instance pairs, it is randomly

selected from all neighbor nodes except the target node in both of

the input subgraphs.

Formally, self-supervised contrastive learning is expected to

achieve the effect as

score

(
𝑓 (x𝑖 ) , 𝑓

(
x+𝑖

) )
≫ score

(
𝑓 (x𝑖 ) , 𝑓

(
x−𝑖

) )
(1)

where x+
𝑖
is a node similar to x𝑖 , x−𝑖 is a node dissimilar to x𝑖 , 𝑓

is the graph encoder, and the score function is used to measure

the similarity of encoded features of two nodes. Here, (x𝑖 , x+𝑖 ) and
(x𝑖 , x−𝑖 ) indicate the positive and negative instance pairs, respec-

tively. Eq.(1) encourages the score function to assign large values
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Figure 3: Illustration of the node-level contrast module.

to the positive pairs and small values to the negative pairs, which

can be used as the supervision signals to guide the learning process

of encoder 𝑓 . By resorting to the above explanations and definition

of instance pairs, our node-level self-supervised contrastive loss

L𝑛 can be presented as

L𝑛 =
1

2𝑁

𝑁∑︁
𝑖=1

[
ℓ𝑛

(
x1𝑖
)
+ ℓ𝑛

(
x2𝑖
)]

(2)

where ℓ𝑛
(
x1
𝑖

)
and ℓ𝑛

(
x2
𝑖

)
respectively denote the self-supervised

node-level pairwise contrastive losses of the central node x𝑖 in two

views G1

𝑖
and G2

𝑖
, the two views generated by the 𝑟 -ego network

of the sample node x𝑖 .
We employ a contrastive objective that enforces the encoded

embeddings of the center node in the two different views to agree

with each other and can be discriminated from embeddings of other

nodes. For each center node x𝑖 , it’s embedding 𝒉1𝑖 generated in one

view, is treated as the anchor, the embedding of it generated in the

other view, 𝒉2𝑖 , forms the positive sample, and we regard the other

embeddings in the two views as negative samples. ℓ𝑛
(
x1
𝑖

)
can be

obtained with the cosine similarity measured, namely

ℓ𝑛

(
x1𝑖
)
= − log

𝑒
𝜃

(
𝒉1𝑖 ,𝒉

2

𝑖

)
/𝜏

𝑒
𝜃

(
𝒉1𝑖 ,𝒉

2

𝑖

)
/𝜏 +∑

𝑘≠𝑖 𝑒
𝜃

(
𝒉1𝑖 ,𝒉𝑘

)
/𝜏

(3)

where 𝜏 is a temperature parameter, 𝜃 (𝑢, 𝑣) is the cosine similarity,

𝒉𝑘 is the embedding of negative instances of node x1
𝑖
.

The central node in the two views is a positive pair, and we

define negative instances as all other neighbor nodes in the two

views. Therefore, negative instances come from two sources, that

are inter-view and intra-view nodes, corresponding to the second

term in the denominator in Eq.(3), which can also be written as∑︁
𝑘≠𝑖

𝑒
𝜃

(
𝒉1𝑖 ,𝒉𝑘

)
/𝜏

=
∑︁
𝑘≠𝑐

𝑒
𝜃

(
𝒉1𝑖 ,𝒉

1

𝑘

)
/𝜏 +

∑︁
𝑘≠𝑐

𝑒
𝜃

(
𝒉1𝑖 ,𝒉

2

𝑘

)
/𝜏

(4)

where 𝒉1
𝑘
is the embedding of intra-view negative instances, 𝒉2

𝑘
is

the embedding of inter-view negative instances.

3.2.4 Context-level Contrast. In this module, we capture the trans-

actional structural patterns behind phishing and normal addresses

by distinguishing the context structure between them.

According to our statistical analysis, in the second-order con-

nected graph constructed around all phishing addresses, the pro-

portion of phishing nodes is only about 0.345%, and the distribution

of phishing nodes is very sparse (Detailed analysis in Appendix

A). When the scale of the transaction graph is large, inputting the

entire connected graph for node representation learning cannot

focus on the local transaction patterns of nodes, nor learning the

same transaction patterns of different phishing nodes.

In order to capture the transactional structural patterns behind

phishing and normal addresses, in this section, we propose to de-

fine contrastive instances pair as "target context v.s. context". As

Figure 4 shows, the first element in the instance pair is a subgraph

containing context information, which is generated by RWR on the

𝑟 -ego network of the central node. The central node here refers to

the training sample, which can be set to any node in the training set.

The second element is also a subgraph containing context informa-

tion, forming an instance pair with the target subgraph. When the

context subgraph and the target context subgraph are generated by

the same center node’s 𝑟 -ego network, they form a positive instance

pair. In contrast, when the two context subgraphs are generated by

different central nodes, they form a negative instance pair.
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Figure 4: Illustration of the context-level contrast module.

So we consider two random augmentations of the same 𝑟 -ego

network as a positive instance pair and augmentations of differ-

ent 𝑟 -ego networks are all negative pairs. Because there are no

supervision signals, the training task treats each context instance

as a distinct class of its own and learns to discriminate between

these instances. We propose to use InfoNCE [36] as our learning

objective, and the overall loss function of the context-level contrast

module can be formulated as

L𝑐 =
1

2𝑁

𝑁∑︁
𝑖=1

[
ℓ𝑐

(
G1

𝑖

)
+ ℓ𝑐

(
G2

𝑖

)]
(5)

ℓ𝑐

(
G1

𝑖

)
= − log

𝑒 (𝑪1⊤
𝑖 𝑪2

𝑖 )/𝜏∑𝑁
𝑗=1 𝑒

(𝑪1⊤
𝑖 𝑪 𝑗 )/𝜏

(6)

where ℓ𝑐
(
G1

𝑖

)
and ℓ𝑐

(
G2

𝑖

)
respectively denote the self-supervised

context-level pairwise contrastive losses of the central node x𝑖 in
two viewsG1

𝑖
andG2

𝑖
, the two views generated by the 𝑟 -ego network

of the sample node x𝑖 . 𝑪1

𝑖
and 𝑪2

𝑖
are the context embedding of G1

𝑖

and G2

𝑖
respectively, and 𝑪 𝑗 represents the context embedding of

data augmentation generated by the 𝑟 -ego network of node x𝑗 .
In context-level contrast tasks, we compare the overall represen-

tation of the context rather than the central node, so we need an

injective readout function to produce the context-level embedding.
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The target of the readout function is to transfer the embeddings

of nodes in subgraph G∗
𝑖
into a local subgraph embedding vector

𝑪∗
𝑖
. In this step, we use the average pooling functions as our read-

out module, which has been widely used in previous works [16].

Specifically, the readout function can be presented as

𝑪∗
𝑖 = Readout

(
h∗𝑖

)
= − 1

𝑛

𝑛∑︁
𝑖=1

h∗𝑖 (∗ ∈ {1, 2}) (7)

where 𝑛 is the number of nodes in the subgraph G∗
𝑖
, 𝒉∗𝑖 is the

representation of node x∗
𝑖
in subgraph G∗

𝑖
.

Define graph encoders. For comparison tasks at different levels,

we encode them via two graph neural network encoders 𝑓𝑛 and 𝑓𝑐 ,

respectively. Technically, any graph neural network can be used

here as the encoder, and the TGC model is not sensitive to different

choices. In practice, we adopt the GAT [38], a classical graph neural

network model, as our graph encoder.

Given 𝑁𝑢 denotes the adjacent nodes of node𝑢 and node 𝑣 ∈ 𝑁𝑢 ,
the importance node-node pair ⟨𝑢, 𝑣⟩ can be formulated as follows:

𝑒Φ𝑢𝑣 = 𝜎

(
𝑎𝑇Φ · [ℎ𝑢 ∥ℎ𝑣]

)
𝛼Φ𝑢𝑣 = softmaxv

(
𝑒Φ𝑢𝑣

)
=

exp

(
𝑒Φ𝑢𝑣

)
∑
𝑘∈𝑁 Φ

𝑢
exp

(
𝑒Φ
𝑢𝑘

) (8)

where ℎ𝑢 and ℎ𝑣 are the features of node 𝑢 and node 𝑣 , 𝑎Φ is the

attention parameterize matrix for transaction graph Φ, 𝜎 denotes

the activation function, and | | denotes the concatenate operation.
Then, the node 𝑢 representation can be obtained by aggregat-

ing all neighbor attributes with the corresponding coefficients as

follows:

𝑧Φ𝑢 = ∥𝐾
𝑘=1

𝜎
©­«
∑︁
𝑣∈𝑁 Φ

𝑢

𝛼𝑘𝑢𝑣 · ℎ𝑣
ª®¬ (9)

where 𝑧Φ𝑢 is the learned embedding of node 𝑢 for the transaction

graph Φ, 𝐾 is the head number using the multi-head attention

mechanism[37].

3.3 Phishing Addresses Detection
The task of this section is to classify nodes to distinguish between

phishing nodes and normal nodes. After the above operations, we

have obtained three types of features: unique potential features

learned from Node-level Contrast module, transaction pattern fea-

tures learned from Context-level Contrast module, and statistical

features obtained from nodes. We splice them together as the com-

plete representation of the node. On the basis of obtaining com-

plete node representations, we need to learn the difference between

phishing and normal node representations. So we input them into

the classifier for Ethereum phishing addresses classification.

There are many choices of classifiers, and in this paper, we

choose XGBoost [5], which is a new GBDT (Gradient Boosting

Decision Tree) algorithm supporting efficient parallel training. The

key concept behind GBDT is to iteratively train the weak classi-

fier (decision tree) to get the optimal model. The fitting process

of XGBoost uses the second-order Taylor expansion of the loss

function, which is different from the traditional GBDT. Parallel and

Dataset #Total Nodes #Labeled #Edges #Average Degree

𝐷1 30,000 106 24,965,770 832.2201

𝐷2 40,000 140 27,642,111 691.0701

𝐷3 50,000 166 31,597,197 631.9566

𝐷4 60,000 207 33,072,308 551.2143

𝐷5 70,000 238 34,450,265 492.1537

𝐷6 80,000 269 35,872,229 450.3111

𝐷𝑝 9,237,535 5,639 219,927,673 23.8080

Table 1: Statistics of evaluation datasets. Labeled represents
the number of labeled phishing nodes in the dataset, and
each number is the average calculated by five subgraphs.
distributed computing make learning faster which enables quicker

model exploration.

4 EXPERIMENTS
In this section, we perform empirical evaluations to demonstrate

the effectiveness of the proposed TGC framework. We first con-

struct the network datasets by exploiting transaction records from

Ethereum, then we introduce the experimental setup, including

baselines, evaluation metrics and parameter settings. Finally, we

proceed to detail the experimental results and their analysis.

4.1 Datasets
According to the authorized website Etherscan

1
, as of March 2023,

5,639 addresses have been verified to be phishing addresses. We

crawl these phishing addresses from the Ethereum label cloud of

Etherscan. In order to simulate the scene with unbalanced cate-

gories in the real environment, we randomly select 25000 active

normal addresses at the same time. Taking these labeled phishing

addresses and normal addresses as the central nodes, we extract

their first-order, second-order neighbors and the transactions be-

tween all of them through the API provided by Etherscan. Finally,

we obtain 9,237,535 Ethereum addresses and 219,927,673 transaction

records. Based on the obtained transactions, we construct 30,639

transaction ego networks named 𝐷𝑝 , which support the compara-

tive experiments of Section 4.5 and 4.6.

In order to compare with the transductive methods of inputting

whole graph training, in the comparative experiments, we refer

to the data construction steps of [7]. We generate a large graph

based on the transaction information crawled around all labeled

phishing nodes, and select the largest connected component. Then

we sample with randomwalks to obtain subgraphs of different sizes.

These connected subgraphs serve as the entire large graph for our

comparison model and TGC input. Dataset denoted as 𝐷1, 𝐷2, 𝐷3,

𝐷4, 𝐷5, and 𝐷6 with sizes of 30,000, 40,000, 50,000, 60,000, 70,000,

and 80,000 respectively. For each subgraph of different sizes, we

sample five times to ensure the effectiveness of the performance.

𝐷1, 𝐷2 and 𝐷3 support the comparative experiments of Section 4.3

whlie 𝐷4, 𝐷5 and 𝐷6 support Section 4.4, 4.7 and 4.8.

1
https://etherscan.io
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Method Training Data

𝐷1 𝐷2 𝐷3

F1 Recall Pre F1 Recall Pre F1 Recall Pre

Only Features 𝑋 0.7713 0.7572 0.7859 0.7459 0.7759 0.7181 0.7825 0.7484 0.8198

DeepWalk 𝐴 0.7108 0.7572 0.6697 0.7597 0.7747 0.7452 0.7639 0.7097 0.8271

Node2vec 𝐴 0.7478 0.7624 0.7337 0.7931 0.8182 0.7695 0.7496 0.8065 0.7003

LINE 𝐴 0.7990 0.8721 0.7373 0.7636 0.7470 0.7810 0.7666 0.8000 0.7359

SDNE 𝐴 0.7447 0.6492 0.8732 0.7377 0.6838 0.8009 0.7472 0.7581 0.7367

GraphSAGE 𝑋 , 𝐴 0.8027 0.7709 0.8372 0.8273 0.8617 0.7956 0.8257 0.8097 0.8423

GAT 𝑋 , 𝐴,𝑌 0.8110 0.7749 0.8506 0.8577 0.8458 0.8699 0.8453 0.8194 0.8729

E-GCN 𝑋 , 𝐴, 𝑌 0.8136 0.8796 0.7568 0.8650 0.8735 0.8566 0.8670 0.8516 0.8829

TSGN 𝑋 , 𝐴, 𝑌 0.8174 0.7382 0.9156 0.8444 0.8261 0.8636 0.8892 0.9065 0.8727

TGC 𝑋 , 𝐴 0.9261 0.9164 0.9360 0.9528 0.9565 0.9490 0.9550 0.9581 0.9519

Table 2: Performance comparison results of F1-score, Recall and Precision on three datasets. Available data for each method
during the learning representation phase is shown in the second column, where 𝑋 , 𝐴, 𝑌 correspond to node features, the
adjacency matrix, and labels respectively.

4.2 Experimental Setup
Comparison Methods. We compare our proposed TGC frame-

work with three categories of Ethereum phishing scams detection

methods, including (1) Feature-based methods where only the node

attributes are considered [7], (2) Random walk-based GRL meth-

ods ( i.e., DeepWalk [31], Node2Vec [11], and LINE [34]) that take

topological information into consideration. In addition, we also

use some of the popular (3) Deep learning-based GRL methods (

SDNE [40], GraphSage [14], GAT [38], E-GCN [4] and TSGN [41])

to learn node representations to compare with the representations

learned by our method TGC.

Evaluation Metrics. In this paper, we use the following three

metrics to have a comprehensive evaluation of the performance of

different methods in terms of Ethereum phishing scam detection:

(1) Recall. The recall rate means the percentage of known phishing

node samples detected. (2) Precision. The precision rate means

the percentage of real phishing nodes are in the accounts that are

judged to be suspicious. (3) F1-score. F1-score is a comprehensive

evaluation of the Precision and Recall score.

Implementation Details. We use the mini-batch size of 128.

For node-level contrast and context-level contrast, the temperature

𝜏 is set as 0.4 and 0.2 respectively, and we adopt GAT with 2 layers

and 32 hidden units each layer as our encoders, we set the attention

hidden size to 4 and the learning rate to 0.005. All models are

implemented using Deep Graph Library 0.4.3, PyTorch 1.8.0, and

NetworkX 2.5.1. All experiments are conducted on a computer

server with three NVIDIA Tesla V100S GPUs (32GB memory each),

Intel(R) Xeon(R) Silver 4110 CPU (2.10GHz) and 125 GB of RAM.

For more experimental details, please refer to Appendix B.

4.3 Conventional Comparison Results
First, we conduct comparative experiments on a conventional data

scale adopted by many studies. We evaluate the performance of

all the compared methods in the task of Ethereum phishing scam

detection on 𝐷1,𝐷2 and 𝐷3. The corresponding results are reported

in Table 2.

4.3.1 Analysis of Conventional Comparison Results. From the Table

2, we can draw the following conclusions:

(1) Our approach TGC outperforms all the other compared meth-

ods by a significant margin. Our method TGC achieves the best

performance at about 95.50% F1-score, 95.81% Recall and 95.19% pre-

cision under the 𝐷3 dataset. The following method is deep learning

methods which reach the F1-score around 85%. The performances of

the random walk-based method and the feature-based method are

similar, and their indicators are both around 75%. TGC consistently

performs better than unsupervised baselines and is competitive

with models trained with label supervision on all three datasets,

the strong performance verifies the superiority of the proposed

contrastive learning framework.

(2) TGC has better node representation capability than existing

Ethereum phishing detection methods because we pay attention

to the camouflage and sparsity of Ethereum phishing. Compared

with the TSGN, E-GCN and features-only methods, the F1-score

difference on 𝐷3 is 6.58%, 8.80% and 17.25%, respectively. TSGN

only extracts the transaction of the node’s first-order neighbors and

heavily relies on the preset graph proximity matrix, while E-GCN

based on the entire graph cannot learn the transaction patterns

of sparsely distributed phishing nodes, which we can obtain from

our node-level contrast and context-level contrast modules. These

results demonstrated TGC can fully mine addresses’ unique prop-

erties and transaction patterns which enriches the features of the

nodes and strengthens the nodes’ representation ability.

(3) Compared with the feature-based methods, our four evalua-

tion metrics are nearly 17% higher than them due to rich structure

and contextual information awareness. Among existing Ethereum

phishing detection methods, the performance of feature-only meth-

ods is the worst. When the dataset is small, its effect is better than

the factorization-based method, but as the number of nodes in-

creases, the information that the statistical features can learn is

very limited. Apart from the lack of feature mining, it may be be-

cause of these methods’ unawareness of the network structure and

environment information that we obtain from the designed ego

network and the context-level module.
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(4) As for the random walk-based methods, LINE performed the

best, which is lower than our method 18.84% F1-score on the 𝐷3

dataset. LINE uses the deep excavation of proximity within the

second-order, through it LINE can perceive the nearby information

than Deep Walk and Node2Vec. However, this type of method

focuses too much on domain similarity, resulting in nodes failing to

learn discriminative features different from their neighbors. In our

method TGC, we design the node-level contrast module to force

nodes to learn unique features by setting neighbors as negative

samples.

(5) Graph representation methods based on deep learning are

our strong opponents, however, they are also not performing well.

On dataset 𝐷3, our three evaluation metrics are nearly 12% higher

than it, which we believe can be attributed to their naive method

of selecting negative samples that simply chooses contrastive pairs

based on edges. This fact further demonstrates the important role of

selecting negative samples in contrastive representation learning.

The superior performance of TGC compared to GAT also once

again verifies the effectiveness of our proposed TGC framework

that contrasts nodes across graph views.

4.3.2 Case study. We think analyzing false positives and false neg-

atives is very important, which can help us understand the nature of

the problem and the shortcomings of the model. In this section, we

analyzed 320 misclassified addresses in 𝐷3 to find out the reasons

for misclassification.

For false negatives, the pattern of phishing addresses usually

does not match the two patterns we listed. For example, phishing ad-

dress 0x017F86B90a46D8Fd999EAeFda1339355b98dA12F has only 2

transactions (one in and one out) and two neighbors, so we cannot

correctly extract its transaction characteristics for recognition. For

false positives, the benign address may have the characteristics

of what we consider a phishing address, like some star addresses,

they receive ether transfers from multiple users and only send out

to a few addresses. Moreover, our subgraph is sampled, and the

neighbors of the central node in the subgraph are not complete.

The benign nodes misidentified as phishing nodes may have similar

transaction patterns with phishing nodes after sampling, but the

two may not be similar before sampling, the same as false negatives,

which is the trade-off between the detection effect and computing

performance.

4.4 Large-scale Data Comparison Results
In fact, the real Ethereum transaction data scale is much larger

than the conventional data scale. In this part, we conduct a data

scale experiment on 𝐷4, 𝐷5 and 𝐷6, which compares the processing

effects and capabilities of different methods on large-scale Ethereum

transaction data. As Table 3 shows:

(1) The TGC subgraph sampling training method can remain

lightweight in large-scale network scenarios. With the further in-

crease of the data scale, the transductive methods of inputting the

entire large graph for training have been unable to detect phishing

scams due to limited machine capabilities, such as GAT and E-GCN.

However, TGC can still maintain a strong performance by reducing

the computational complexity through the subgraph training mode.

(2) TGC has better node representation capability and stable

performance than other methods on large graphs. As the number

Method 𝐷4 𝐷5 𝐷6

Only Features 0.7850 0.8010 0.7806

DeepWalk 0.7104 0.7111 0.7075

Node2vec 0.7577 0.7477 0.7534

LINE 0.7637 0.7842 0.7794

SDNE 0.7239 0.7273 0.7056

GraphSAGE 0.8105 0.7938 OOM

GAT OOM OOM OOM

E-GCN OOM OOM OOM

TSGN 0.8286 0.8595 0.8878

TGC 0.9538 0.9600 0.9580

Table 3: Performance comparison results of F1-score on three
larger datasets. OOM indicates Out-Of-Memory on a 32GB
GPU.

of dataset nodes increases from 60,000 to 80,000, the gap between

TGC and other comparison methods remains and even further

widens. These results again demonstrate that TGC can better detect

phishing addresses on large-scale transaction networks by fully

mining interaction relationships, transaction patterns and unique

characteristics of Ethereum addresses.
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Figure 5: Performance comparison results of Recall and Pre-
cision on three larger datasets.

4.5 Dynamic Data Comparison Results
As time goes on, the Ethereum transaction network changes dynam-

ically. The phishing detection method should be able to effectively

identify the newly added nodes, not just detect the seen nodes.

Therefore, based on the data described in Section 4.2, we conduct

an experiment on the detection of Ethereum phishing addresses on

a dynamic network.

In order to build a dynamic Ethereum transaction network, we

use the transaction data set before a specific time as the training

set, and the subsequent ones as the test set. As for the choice of

data division time point, in order to ensure the balance of the data,

we make the distribution of phishing addresses in the training set

consistent with the test set. We take the time of the first transaction

of the phishing node as its creation date, count the creation time

distribution of the phishing node, and finally choose January 2019 as

the time point for dividing the data, detailed data time distribution

can be found in Appendix B.

We train the model using transactions before January 2019, and

then use the trained model to detect addresses occurring between
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January 2019 and March 2023. The details of the training set and

test set are shown in Table 4.

Dataset #Total Nodes #Labeled #Edges #Average Degree

Train 4,824,725 2,273 24,965,770 5.1745

Test 4,412,810 2,355 27,642,111 6.2640

Table 4: Statistics of dynamic network evaluation datasets.
Labeled represents the number of labeled phishing nodes in
the dataset.

Most of the existing Ethereum phishing detection methods input

the whole graph for training, which requires the connectivity of

the graph, and cannot predict new nodes that are not in the whole

graph. Therefore, in the dynamic network experiment setting of

the comparison method with connectivity requirements, for the

test set nodes connected to the training set, we use its model to

predict normally, and for the test set nodes not connected to the

training set, we consider that it is unpredictable and sets its result

to 0. From Table 6 we can see that:

Method Retrain Conn F1 Recall Pre

Only Features % % 0.7260 0.6333 0.8506

E-GCN " " 0.5009 0.4856 0.5172

TSGN % % 0.7663 0.7887 0.7451

TGC % % 0.9237 0.9291 0.9183

Table 5: Performance comparison results on dynamic net-
work datasets. Conn indicates whether the model requires
the connectivity of the entire graph.

(1) TGC can detect emerging addresses in real-world scenarios

without model retraining, and has no requirement on the overall

connectivity of the transaction network. While the transductive

method E-GCN cannot predict unseen nodes that are not connected

to the training set.

(2) Compared with existing TSGNmethods trained on subgraphs,

TGC obtains competitive prediction results with a 16% higher F1-

score. The superior performance of TGC verifies that our proposed

subgraph training combine contrastive learning scheme is able to

help improve embedding quality by learning important transaction

patterns and unique properties in the case of real-world large-scale

graphs, and can be applied to the dynamic network.

In summary, the superior performance of TGC verifies that our

proposed subgraph training combine contrastive learning scheme

is able to help improve embedding quality by learning important

transaction patterns and unique properties in the case of real-world

large-scale graphs, and can be applied to dynamic networks.

4.6 Few-shot Analysis
In the real world, labeled data is usually scarce, and the acquisition

of Ethereum phishing labels usually requires professional analy-

sis, which is very expensive and time-consuming. Therefore, it is

very meaningful and necessary to conduct a few-shot analysis in

Ethereum phishing detection scenarios.

Method 100% 80% 50% 20% 10%

Only Features 0.7260 0.7154 0.7092 0.6870 0.6610

E-GCN 0.5009 0.5283 0.4091 0.2292 0.2087

TSGN 0.7663 0.7280 0.5800 0.4554 0.1473

TGC 0.9237 0.8983 0.8635 0.8750 0.8409

Table 6: Comparison results of F1-score on few-shot setting.
The percentage means the proportion of labeled samples
used in the training process.

To validate the effectiveness and robustness of TGC in few-shot

settings, we design comparison experiments with different data

proportions on the dynamic datasets used in Section 4.5. We select

80%, 50%, 20% and 10% of the samples from the training set to train

the classifier. In the process of learning representation, TGC still

uses the overall unlabeled data for contrastive learning. In Table 4.6,

the comparison results illustrate that our proposed TGC method is

least affected by the reduction of data size. The F1 scores of TGC

with 80%,50%, 20%, 10% data size are respectively 89.83%,86.35%,

87.50% and 84.09%. Our model achieves the best results among all

methods. In contrast, traditional supervised methods (e.g. E-GCN,

TSGN) show substantial F1 performance degradation when the

sample size is reduced, e.g. TSGN’s performance drops to 14.73%

when the sample size is reduced from the full size to 10%. This

indicates that the contrastive learning approach with pre-training

solves the few-shot Ethereum phishing scam detection problem

more effectively.

4.7 Ablation Study
To validate the effectiveness of each module of our TGC, we elimi-

nated the Node-level Contrast module (i.e. TGC/n) and the Context-

level Contrast module (i.e. TGC/c) respectively. Also, we examines

the impact of eliminating statistical features (i.e. TGC/s).

Figure 6: F1-score and Recall results of TGC and its variants.

From Figure 6, we can find that (1) our model performance gets

worse by removing any key components, which reflects that all

modules are important; (2) The performance of TGC/c drastically

degrades, which is 1.56%, 2.55%, and 3.57% lower than TGC’s F1-

score on 𝐷4, 𝐷5, and 𝐷6 datasets. This result indicates that learning

transaction patterns in the transaction graph is essential for the

phishing scams detection task, and also proves that the context

structure of transaction nodes contains rich transaction pattern in-

formation; (3) The sharply decreased results in TGC/n is 2.64% lower

than TGC on the 𝐷5 dataset, which indicates the node-level con-

trast can capture the unique properties of the nodes and strengthen
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the nodes’ representation ability; (4) After removing the statistical

features, the F1-score of TGC on D4, D5, and D6 decreased by 1.68%,

2.25%, and 1.22% respectively, but the results still outperform the

state-of-the-art methods.

4.8 Sensitivity Analysis
In this section, we perform sensitivity analysis on critical hyper-

parameters in TGC, i.e. the batch size that determine the negative

sample selection and discrimination of contrastive learning, to show

the stability of the model under perturbation of these hyperparam-

eters. We only change the parameters in the sensitivity analysis,

and other parameters remain the same as previously described.
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Figure 7: Sensitivity analysis of TGCwith different batch size

The results on the 𝐷4,𝐷5 and 𝐷6 are shown in Figure 7. From

Figure, under each batch size setting (1) TGC always achieves simi-

lar performance on all datasets, which is still the best performance

compared with other methods in Table 2; (2) TGC can still achieve

good performance when training with a relatively small batch size

(e.g., batch size = 64), which demonstrates the strong capability

of its infrastructure. But too small batch size is not conducive to

the model learning discriminative features from too few negative

samples. We thus conclude that, overall, our model is insensitive

to the batch size, demonstrating the robustness to hyperparameter

perturbation.

4.9 Discussion on Robustness and Extendibility
The robustness against evasion and extendibility is one of the im-

portant evaluation indicators of the model, which can reflect the

sustainability and versatility of the method. In this section, we dis-

cuss TGC’s robustness against evasion and extendibility to other

blockchains.

Unlike traditional account registration, the process of creating

an Ethereum account is private and does not require permission,

thus having a low cost, and the same goes for other cryptocur-

rencies. In order to evade detection, some crimes prepare separate

addresses for each victim to confuse the transaction analysis, such

as Bitcoin ransomware attacks [19]. However, there is a big dif-

ference between Ethereum phishing scams and cryptocurrency

attack scenarios where addresses are frequently switched. Phishing

scams take high-reward propaganda to induce remittances, which

usually sends phishing emails containing phishing addresses to

multiple potential targets [25]. Therefore, phishing scams focus

on masquerading as official or luring victims with high rewards.

Usually, one phishing address corresponds to many victims, and the

address will be changed only after a fixed start-up fund is collected.

So our method TGC is robust against evasion.

As for the extendibility to other blockchains, The design of TGC

is based on the analysis of the largest account-based blockchain, the

Ethereum transaction network, and two Ethereum phishing address

patterns proposed: the natural camouflage and sparsity of distribu-

tion. If other account-based blockchain phishing addresses involve

these two patterns, TGC can be well adapted. Unlike account-based

blockchains, transactions in a UTXO-based blockchain usually in-

volve three or more addresses, so TGC cannot adapt to it such as

Bitcoin, Litecoin, etc.

5 CONCLUSION
In this work, we propose a Transaction Graph Contrast Network

(TGC) to enhance the performance of phishing scam detection on

Ethereum. TGC inputs subgraphs instead of the entire graph for

training, which eases the model’s requirements for machine config-

uration and data connectivity, and can be well adapted to dynamic

networks. Motivated by the natural camouflage and sparsity dis-

tribution of phishing addresses, we design node-level contrast and

context-level contrast to learn the unique properties and universal

transaction patterns of phishing addresses. We have conducted

comprehensive experiments using various real-world datasets. Ex-

tensive experiments indicate that TGC’s performance and practical-

ity outperform state-of-the-art algorithms by a significant margin,

and it can be better applied to large-scale dynamic networks.
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A PHISHING ADDRESSES DATA ANALYSIS
A.1 Phishing Addresses Neighbor Statistics
First, we count the address categories and proportions around phish-

ing addresses. Given a set of phishing addresses𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛},
for address 𝑣𝑖 , its 𝑟 -neighbors are defined as 𝑆𝑣𝑖 = {𝑢 : 𝑑 (𝑢, 𝑣𝑖 ) ≤ 𝑟 }
where 𝑑 (𝑢, 𝑣𝑖 ) is the shortest path distance between 𝑢 and 𝑣𝑖 in its

𝑟 -ego network. 𝑁 denotes the length of the phishing address 𝑉 set,

while 𝐶𝑣𝑖 is the length of 𝑆𝑣𝑖 , which is the number of neighbors of

phishing address 𝑣𝑖 . The proportion of phishing addresses in the

neighborhood can be calculated as

𝑃1 =
1

𝑁

𝑁∑︁
𝑖=1

𝑝𝑖 (10)

𝑝𝑖 =
1

𝐶𝑣𝑖

∑︁
𝑢∈𝑆𝑣𝑖

1[𝑢∈𝑉 ] (11)

When 𝑃1 calculates the value at the local level, 𝑃2 pays more atten-

tion to the whole

𝑃2 =

∑𝑁
𝑖=1

∑
𝑢∈𝑆𝑣𝑖 1[𝑢∈𝑉 ]∑𝑁
𝑖=1𝐶𝑣𝑖

(12)

We use the 𝐷𝑝 ’s phishing addresses 𝑟 -ego network as the data set

for analysis which is described in detail in Section 5.1, and set 𝑟 = 2.

There are 5847 phishing 𝑟 -ego networks in 𝐷𝑝 .

According to the above formula, we get 𝑃1, 𝑃2 are 5.59% and

2.01% respectively, which means that the normal address occupies

94.41% or 97.99% of the neighbors of the phishing address.

(a) Calculated by Eq. 10 (b) Calculated by Eq. 12

Figure 8: Neighbor distribution of phishing addresses.

In conclusion, no matter which calculation method is used above,

we can see that the normal addresses account for the vast majority

of the neighbors of the phishing address, and in Section 4.1 we

used the value calculated by Eq. 12 as the standard in our paper.

Ethereum phishing address has natural camouflage, so existing

methods which based on domain similarity assumptions cannot

mine the unique properties of phishing addresses in this scenario.

A.2 Phishing Addresses Quantity Statistics
Next, we count the proportion of phishing addresses in all addresses.

Given the number of phishing addresses as 𝑁𝑝 , the number of total

Dataset Proportion of phishing addresses

𝐷1 0.353%

𝐷2 0.350%

𝐷3 0.332%

𝐷4 0.345%

𝐷5 0.340%

𝐷6 0.336%

𝐷𝑝 0.061%

Table 7: The proportion of phishing addresses in seven
datasets

addresses as 𝑁𝑡 , the overall proportion of phishing addresses 𝑃3
can be presented as

𝑃3 =
𝑁𝑝

𝑁𝑡
(13)

We calculate the proportion of phishing addresses 𝑃3 on the 𝐷1, 𝐷2,

𝐷3, 𝐷4, 𝐷5, 𝐷6 and 𝐷𝑝 datasets described in Section 4.2, and the

results are shown in the Table 7.

From Table 7 we can see that in either of the above seven datasets,

the proportion of phishing addresses is very low. Moreover, we

capture transactions centered on phishing addresses, which have

increased the proportion of phishing addresses to a certain extent.

This means that in real Ethereum transaction scenarios, the pro-

portion of phishing addresses is even lower than the values we

calculated.

In summary, the proportion of phishing addresses in the real

Ethereum transaction network is very low. We use the median

value 0.345% of 𝐷1 to 𝐷6 in Section 4.1 as the standard in our

paper. Combined with the observation in Appendix A.1 that most

of the neighbors of phishing addresses are normal addresses, we can

conclude that the distribution of phishing addresses is very sparse.

Existing methods cannot learn the similarity of the transaction

patterns of phishing addresses.

B IMPLEMENTATION DETAILS
B.1 Computing Infrastructures
All models are implemented using Deep Graph Library 0.4.3, Py-

Torch 1.8.0, and NetworkX 2.5.1.

B.2 Hyperparameter Setting
For DeepWalk and Node2Vec, the walk length, window size, the

latter’s 𝑝 and 𝑞 are set to 20 and 4, 0.25, 0.4, respectively. For TSGN,

we use Diffpool, which performs best in their papers, as their en-

coder. For the XGBoost model, the max depth and the learning rate

are empirically fixed at 4 and 0.1, respectively. Due to the imbalance

of the data, we upsample the minority class with a ratio of 8. For all

the comparison methods, we set parameters based on their official

implementations. We employ a two-layer GCN as the encoder for

deep learning baselines like GraphSAGE due to its simplicity.

B.3 Baselines Encoder
We employ a two-layer GCN as the encoder for deep learning

baselines like GraphSAGE and VGAE due to its simplicity. The
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Creation time Number of phishing addresses

2016 5

2017 340

2018 1928

2019 523

2020 1050

2021 218

2022 533

2023 31

Table 8: The creation time distribution of the phishing ad-
dresses

encoder architecture is formally given by

GC𝑖 (𝑋,𝐴) = 𝜎
(
𝐷̂− 1

2𝐴𝐷̂− 1

2𝑋𝑊𝑖

)
(14)

𝑓 (𝑋,𝐴) = GC2 (GC1 (𝑋,𝐴), 𝐴) (15)

Where𝐴 = 𝐴 + 𝐼 is the adjacency matrix with self-loops, 𝐷̂ =
∑
𝑖 𝐴𝑖

is the degree matrix, 𝜎 (·) is a nonlinear activation function, e.g.,

ReLU(·) = max(0, ·), and𝑊𝑖 is a trainable weight matrix.

B.4 Phishing Addresses Creation Time
Distribution

As shown in Table 8, we can see that the number of phishing nodes

before January 2019 is roughly equal to the number of phishing

nodes from January 2019 to March 2023,

we use the transactions before January 2019 to train the model

to detect the emerging addresses from January 2019 to March 2023.

Gang Xiong1,2, Zhen Li1,2, Junchao Xiao1,2, Xinyu Xing3„
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